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EXPONENTIAL STABILITY OF COUPLED BEAMS WITH DISSIPATIVE
JOINTS: A FREQUENCY DOMAIN APPROACH*

RICHARD REBARBER

Abstract. Two examples of coupled Euler-Bernoulli beams with a dissipative joint are considered. The joint
placements that lead to exponential stability for these systems are characterized. The technique used shows input-
output stability of a related controlled, observed system, and then shows that in these examples, input-output stability
implies exponential stability. In the first example, the energy dissipation arises from a discontinuity in the shear at the
joint. In the second example, the energy dissipation arises from a discontinuity in the bending moment at the joint.
The analysis of this system involves a complete spectrum analysis of the zero dynamics of the associated controlled,
observed system.
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1. Introduction. In this paper we discuss the exponential stability of two beams coupled
in a dissipative joint. The problem addressed here has been posed by Chen et al. [3], and
systems ofthis form have been discussed in detail by Chen et al. [5]. In [5] asymptotic formulas
for the eigenvalues of such systems are given, and the eigenvalue placement suggests that some
of these systems are exponentially stable. Further spectrum analysis for coupled beams has
been done by Conrad [6]. It is well known, however, that distributed parameter systems do
not necessarily have spectrum-determined growth. There are examples in Zabczyk [25] and
Huang [11], among others, where the resolvent set of a generator A of a C0-semigroup S(t)
contains C+ {z E C lRe(z > } for c < 0, but S(t) has positive exponential growth.
Although there are several classes of systems that do have spectrum-determined growth, there
is no reason to expect that the boundary feedback systems considered in [5] have this property.

A useful way to show that S(t) is exponentially stable has been given in [11] (or inde-
pendently, Prtiss [14]). If S(t) is a bounded semigroup, if R(A, A), and if the resolvent of A
satisfies

(1.1) sup II(,A)ll < M

for some M, then S(t) is exponentially stable. This condition has been used to prove expo-
nential stability for mechanical systems by Chen et al. [4], Liu [12], and Liu, Huang, and
Chen[ 13].

For the systems under consideration in this paper, we show that the resolvent is bounded
on the imaginary axis by first showing that a transfer function for a related controlled, observed
system is bounded on the imaginary axis. This shows that the related system is input-output
stable, and we then apply a result in Rebarber [16] to show that in this case input-output
stability implies exponential stability. We describe this approach in detail in 2.

We assume that one of the beams has spatial extent from s 0 to s s and that the other
beam has extent from s s to s 1. In [5] the eigenvalues are only computed for the joint in
the middle of the span, but the results in this paper are for general s. We assume that both are
uniform Euler-Bernoulli beams with the same mass density per unit length m and the same
flexural rigidity EI. We normalize so that EI/m 1. This last assumption is not necessary
for our work, but it makes the calculations a bit simpler. Let w(s, t) be the displacement of
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the coupled beams at position s E [0, 1] and time t E [0, o]. The notation *(t, s) denotes the
derivative of w(s, t) with respect to time, and D denotes the spatial differentiation operator.
Then w satisfies the following Euler-Bernoulli equation in both beams:

(1.2) @(s, t) + D4w(s, t) 0, s (0, Sl) U (s,, 1).

The energy of this system is given by

E(w(., t)) {@2(s, t) + (D2w(s, t))2}ds.

We consider two sets of boundary and joint conditions. In both cases the energy of the system
can be shown to dissipate, that is (d/dt)F_,(t) <_ 0; this is done in [5] when the beams are of
equal length, and the argument can be easily modified for general s l. The goal of this paper
is to characterize those joint placements for which the energy decay is in fact exponential.
We say that the system (1.2) with various boundary conditions is exponentially stable if there
exists M > 0 and c > 0 such that ]E(w(., t)) <_ Me-t]E(w( ., 0))].

Let w(s-(, t) be the limit of w(s, t) as z -- 81 from the left and w(s+, t) be the limit of
w(s, t) as z Sl from the right. The two cases we consider are as follows.

Case 1. In this case the end at s 0 is simply supported, and at s there is a shear
hinge end. The dissipative joint condition at S is a rigid support joint where the discontinuity
in the shear is proportional to the velocity at Sl. See [3] for a discussion of the joint and end
conditions for coupled beams. The boundary and joint conditions are then given by

(1.3)

w(O, t) D w(O, t) O,
Dw(1, t) D3w(1, t) O,

t)
t) Dw(S+l t),

DZw(s-(, t) D2w(s+ t),

(1.4) D3w(8+l t) D3w(8-(, t) -)(81, t),

where k > 0. In (1.4) we are assuming that zb(s-, t) @(Sl+, t), which follows from the
third equation in (1.3) when @(., t) is in HI[0, 1].

The following theorem states our conclusions about the exponential stability of (1.2),
(1.3), (1.4).

THEOREM 1.1. The system described by the coupled beam equations (1.2), (1.3), (1.4) is
exponentially stable ifand only ifs is a rational number with coprimefactorization

(1.5) s p-, where p is odd.
q

Remark 1.2. The proof of this theorem, which is given in 2, is easily modified if the end
conditions (the first two equations in (1.3)) are changed. However, the proof of Theorem 1.1
is very dependent on the form of the feedback (1.4). This is because the system in Case is
regular in the sense given in Weiss [22]-[24]. This will be made precise in 2. The system in
Case 2 below is quite a bit more difficult to handle, because the natural associated controlled,
observed system is not regular, or even well posed.

Case 2. Both ends are simply supported in this case. The dissipative joint condition at

Sl is an angle guide (see [3]), where the discontinuity in the bending moment is proportional
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to the angular velocity at s l. The boundary and joint conditions are then given by

(1.6)

D2w(.s-, t) D2w(81+, t) - D@(81,

where > 0. In (1.7) we are assuming that Db(s-, t) D@(s+, t), which follows from
(1.6) if zb(., t)is in Ha[0, 1].

The following theorem states our conclusions about the exponential stability of (1.2),
(1.6), (1.7).

THEOREM 1.3. The system described by the coupled beam equations (1.2), (1.6), (1.7) is
exponentially stable ifand only if s is a rational number with coprime factorization

p
(1.8) s -, where q is odd.

q

Conditions (1.5) and (1.8) indicate that exponential stability of coupled beams is highly
nonrobust with respect to the placement of the joint. Conditions analogous to (1.5) and (1.8)
for coupled wave equations can be found in Theorems 4.3 and 4.4 in 12]. Section 2 is devoted
to the proof of Theorem 1.1, whereas Theorem 1.3 is proved in 3.

Remark 1.4. To prove Theorem 1.3 we follow the same general approach as in the proof
of Theorem 1.1. However, before we apply this approach, we need to do a careful eigenvalue-
eigenvector analysis of a "nonstandard" generator, defined in 3. This approach should work if
the end conditions (the first two equations in (1.6)) are changed, but the eigenvalue-eigenvector
analysis might be more difficult.

2. Proof of Theorem 1.1. We need to put (1.2), (1.3), (1.4) into a standard state-space
form. It is important to be very precise about the state-space formulation, because the proof
of exponential stability is systems theoretic in nature, rather than being motivated by classical
partial differential equations techniques such as multiplier methods. For any n E Z+, let
H’[0, 1] be the space of all functions f such that f, Df, DZf,...,Dn-f are absolutely
continuous and in L2[0, 1], and Dnf is in L2[0, 1]. Let the state space be

.X {[x,,xa]T E H2[0, 1] (R) L2[0, 1] x,(0) Dx,(1) --0}.

Then X is a Hilbert space with the inner product

(2.1) ([Xl, X2] T, [Yl, Y2] T) {D2Xl (8)D2yl (8) + x2(8)y2(,s)}ds.

Let the operator A be defined on X by

(2.2) A [ x

X2

with domain

-D4 0 X2

79(A) {[Xl,X2]T 94[0, 1] 92[0, 1] X,(0)
D2x,(0) D3Xl(1) x2(0) Dx2(1) --0}.
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For any k Z+, let

2(2.3) ak -7r/2 + 7rk, A+k -t-zany, (s) sin(as).

Let the index set I henceforth deote {...,-n,-(n- 1),...,-1, 1,...,n,n + 1,...}. It is
easy to see that {A } are the eigenvalues of A with associated eigenvectors

/
It is also easy to see tht A*, the adjoint of A, is equal to -A (in other words A is skew adjoint)
and that {}z is an orthonoal basis of X.

We need to identify the appropriate input operator for the control system (1.2), (1.3),

(2.4) D3w(s?, t) D3w(s t) u(t),

where u Loc[0 ). We follow the approach introduced by Ho and Russell in [9]. To that

end let be the extension of A with domain

{[Xl,X2]r x H4[0, X2[(81,1 H4(81, 1],
(2.5) X2 H2[0, 1], D2Xl(0) Dgxl(1) x2(0) Dx2(1) 0,

Let x [Xl,X2]T ()and v Ivy, v2]T D(A*) D(A). Using integration by
parts we find that

(2.6)

Let

(fix, v) (x,-Av) + [D3Xl(S+l D3x,(s-)]v2(s,).

o ]B-- (.__ S1

Then B is not an element of X, but it is easy to check that B is in the larger space X_
(D(A*))t, the dual space of D(A). The notation X-I is used in Weiss [21] and is motivated
by the fact that if X is a Hilbert space, X_l is the closure of X in the norm I](A A)-Iz]l
for any A in the resolvent set of A.

We also need to define another extension of A. Let X X_ be defined by

(2.7) (x, v) (x, A’v) for all v D(A*),

with D() X. Because is a standard extension for A, we refer to both A and its extension
as A whenever no confusion will arise. It follows from (2.6) that for x 79(),

(2.8) x x + [D Xl (S1-t-) D Xl (S]-)]B

in X_I.
If w(s, t) satisfies (1.2), (1.3), and x(t) [w(., t), b(., t)] T, then :b(t) ftz(t). Now

suppose that we further insist that w(s, t) satisfy (2.4). Then it follows from (2.8) that Ax(t)
Ax(t) + Bu(t) in X_ 1. From the above discussion, we see that our state-space equation for
(1.2), (1.3), (2.4)is

(2.9) 5c(t) Ax(t) + Bu(t),
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where we look for generalized solutions x(t) C X such that (2.0) is true in X-1.
Consider now the observation for (1.2), (1.3), (2.4) given by

(2.10) y(t) b(sl, t).

The observed system (1.2), (1.3), (1.4) with k 0, and (2.10) is then equivalent to b(t)
Ax(t) with

(2.11) y(t) B*x(t),

where

B* [ X’
--X2 X2(81),

As is typical for colocated sensing and control, the output operator is the dual of the input
operator.

For some purposes it is convenient to represent (2.9), (2.11) as a diagonal system in the
basis {Pk}kI. In this basis A can be represented as the diagonal matrix diag[k]ki, and B
can be represented by the column vector [bk]T I, where

(2.12) b B*P (1/x/) sin((rc/2 + rrk)sl).

In a general setting, letting U be a Hilbert space, we say that/3 C/3(U, X_ l) is an admis-
sible input operator for S(t) if there exists tl, a > 0 such that for every u L2[(0, tl ); U],

X

Because {bk } keI is a bounded sequence, it is easy to use the Carleson measure theorem, as
in Ho and Russell [9] or Weiss [20], to show that in our case/3 /3(R, X_ l) is an admissible
input operator for S(t).

In a general setting, letting Y be a Hilbert space, we say that C /3(TP(A), Y) is an
admissible observation operator for S(t) if there exists a > 0 such that for every x D(A),

In our case, letting Y R, it follows by duality that/3* is an admissible observation operator
for S(t).

We are Of course interested in the feedback system (1.2), (1.3), (1.4). This system is
equivalent to :b(t) Az(t), where A is given by the matrix (2.2) with domain

7)(A) {[Xl,X2]T C D(A) lD3xl(S+l) D3Xl(87) --/gX2(.51) }

(cf. (2.5)).
It follows from the Lumer-Phillips theorem and an easy generalization of [5, eq. (1.4)]

that A is a dissipative operator that generates a C0-semigroup of contractions Sk(t) on X. If
we can show that S(t) is exponentially stable, then (1.2), (1.3), (1.4) is exponentially stable
in the sense discussed in 1. For our subsequent development we need that A A k/3/3"c,
where/3 is the Lebesque extension of/3* defined by

(2.13) B*x -olim -rl foo B* S(t)x dr,
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defined on the set D(B*r) of all x X such that the limit on the right side exists in X (see
Weiss [19], [23]). The proof of this appears in Lemma 2.6.

We now describe the approach we use to show that Ak generates an exponentially stable
semigroup. Because Ak is dissipative, it suffices to show that R(A, A) is bounded on the
imaginary axis as in (1.1). To do this, we consider the controlled, observed system for A
given by (1.2), (1.3), and (2.10) with

(2.14) Dw(s+l t) Dw(s7, t) + k(v(s,, t) u(t).

It is easy to show that (1.2), (1.3), (2.14) is equivalent to

(2.15) 2(t) Ax(t) + Bu(t)

in the same way that (2.9) was obtained.
In a general setting we denote the controlled, observed system

ie(t) Ax(t) + Bu(t),

c (t)

by (C, A, B). As this system is written now, it may be that the solution x(t) of the first
equation is not in 79(C), so we need to put conditions on the system so that the mapping from
the input to the output is continuous.

DEFINITION 2.1. Suppose A is the generator of a Co-semigroup S(t), B B(U,X_,),
and C 13(79(A), U). Then (C, A, t3) is regular if

(1) 13 is an admissible input operatorfor S(t),
(2) C is an admissible observation operatorfor S(t),
(3) the range of R(l, A)B is in 79(Cr) (see (2.13))for some , p(A),
(4) CLR(A, A)B is bounded in the halfplane C+ for some c R.
For a regular system it would be more precise to replace the observation y(t) Cz(t)

with y(t) CLz(t), because the solution of the controlled solution z(t) is in the domain of

Cr (see [23]).
Recall that the transfer function H of a controlled, observed system is that function for

which )(A) H(A)t(1), where ) denotes the Laplace transform of y. LetH be the space of
all bounded and analytic complex functions onC+ H is a Banach space with the supremum
norm. For a regular system (C, A, 13), it is shown in [23] that the transfer function is given
by H(A) CLR(I, A)B and H(t) has a strong limit of D 0 as , oc along the positive
real axis.

This definition is a special case of the definition of regular system given in Weiss [23]
because we are assuming here that the feedthrough operator D is 0. In this paper, if a
Jsystem is given by the abstract triple (C, A, 13), then we assume that the feedthrough is 0.
However, when the system is given by a partial differential equation with boundary control
and observation, if we wish to describe it by the abstract triple, we need to verify that the
feedthrough lim)+,AeR H(A) D is zero. Therefore, we do not describe the system
(1.2), (1.3), (2.10), (2.14) as an abstract triple until we verify that the feedthrough is indeed 0.

We would like to consider the closed-loop system obtained by closing the loop in :b(t)
Ax(t) + Bu(t), y(t) Cz(t) with y(t) Ju(t), where J B(U). When B and C are both
unbounded, the closed-loop system is not necessarily well posed, and it is not guaranteed that
the closed-loop operator A+ BJC generates a strongly continuous semigroup. Therefore, we
need to be precise about when such a feedback leads to a well-posed system. In Weiss [24] the
following definition of admissible feedback is introduced. The notationH is used to denote
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the set U6RH, or, more precisely, the vector space of equivalence classes of elements in
this set, where two functions are in the same equivalence class if one is a restriction of the
other.

DEFINITION2.2. J l(U) isanadmissiblefeedbackforH, or equivalently,for (C, A, B),
if (I JH) is invertible in H.

It is shown in [24, Thm. 6.6] that if J is an admissible feedback for a regular system
(C, A, 13), then the closed-loop generator obtained by letting u(t) Jl(t) is A + BJCr,
interpreted as follows. For : 6 D(CL), :c + BJCLx can be evaluated in X-1. Then
D(A + BJCs) { D(Cs) Ac + BJCrc X}. For a related result, see Salamon [18,
Thms. 4.2 and 4.3].

To apply Theorem 2.5, stated below, to our system we need to show that it is stabilizable
and detectable, as defined in Rebarber [16]. These definitions, which we now give, are
nonstandard, but are more general than the more standard definitions (see, for example, Curtain
[7]); this is because the stabilizing operator F and the detecting operator/ are allowed to be
unbounded.

DEFINITION 2.3. (A, 13) is stabilizable if there exists F 13(XI U) such that (F, A, 13)
is regular, the identity I is an admissible feedback operatorfor (F, A, B), and A + BFr is
the generator ofan exponentially stable semigroup on X.

DEFINITION 2.4. (C, A) is detectable ifthere exists I( 13(U, X_ such that (C, A, I()
is regular, I is an admissible feedbackfor (C,A, I(), and A + BSCs is the generator of an
exponentially stable semigroup on X.

The following theorem from [16] is used to verify that _R(A, Ak) is bounded on the
imaginary axis.

THEOREM 2.5. Suppose that (C, A, B) is a regular system with transfer function H(A),
(A, B) is stabilizable, and (C, A) is detectable, lfH(A) is bounded on the imaginary axis,
then so is R(A, A).

A controlled, observed system is said to be input-output (or externally) stable if its transfer
function is bounded on Co+ Hence, Theorem 2.5 gives conditions under which input-output
stability implies exponential stability. To apply this theorem we break the work into several
lemmas. In Lemma 2.6 it is shown that Ak A BB*L, and that the feedthrough for the
system (1.2), (1.3), (2.10), (2.14) is 0, so the system can be represented by (B, Ak, B), where
13 is interpreted as the restriction ofB to the domain of A. It is also shown in Lemma 2.6
that (B, A, B) is a regular system. In Lemma 2.8 we show that the transfer function H(A)
for (B*, Ak, B) is bounded on the imaginary axis. In Lemma 2.10 we show that (A, B) is
stabilizable and (B*, A) is detectable when condition (1.5) holds. Putting this together with
Lemma 2.6 and Theorem 2.5 shows that (1.5) is a sufficient condition for A to generate an
exponentially stable semigroup. In Lemma 2.12 it is shown that (1.5) is a necessary condition
for A to generate an exponentially stable semigroup.

LEMMA 2.6. (1) Thefeedthroughfor the system (1.2), (1.3), (2.10), (2.14) is O.
(2) (B’L, Ak, 13) is regular.
(3) A A- kBB.
Proof. We first show that the system (1.2), (1.3), (2.4), (2.10)is regular. We have already

shown that B and B* are admissible for S(t). We can obtain the formula for B*LR(A, A)B
by using the matrix representations of A and B in the basis {}. Because B can be
represented by
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(c.f. (2.12)), R(A, A)B can be represented by

b(2.16) R(A, A)B Z A

To check whether R(A, A)B is in the domain of B, note that the right side of (2.13) is, with
(,A),

(2.17) -lim -1 f-B*rR(A A)B
"r-O T Jo

where the second inequality requires simple applications of Fubini’s theorem and the domi-
nated convergence theorem. It is clear that this converges for any A A.

The proof of the following result is straightfoward but very technical, and is found in the
Appendix. []

THEOREM 2.7. Suppose A+ +/-ico2 for k C Z+ where co >_ 0 and satisfies, for some
real numbers m, a, and b,

(2.18) mk + b <_ <_ rnk + a.

Let

dk

where {d } . Then H Hfor every a > O, and

(2.19) lim IIHIIH 0.

This shows that the system (1.2), (1.3), (2.4), (2.10) is regular in the sense of [23] (with
the feedthrough undetermined so far) and regular in the sense of Definition 2.1 if we can show
the feedthrough is 0. We can easily obtain a transcendental description of the transfer function
H(A) by taking Laplace transforms of the partial differential equation system. Let A ico2.
There are of course two values of co that satisfy this for any A Co+, so we restrict co to

{rei r > 0, 0 [-rr/2, 0]}. The transfer function can then be written in the form

(2.20) { sinh(cos,) cosh co(s, 1)H(A)
cosh co

sin(cos, cosCS coco(s’ l) }.
It is easy to use this form to see that H(A) -* 0 as A c along the positive real axis.
Therefore, we can refer to the system as (B*, A, B), which is regular.

Theorem 3.13 in Weiss [24] states that if (2.19) is true, then any feedback u(t) Jy(t)
with J 13(U) leads to a well-posed closed-loop system with generator A / BJB*r. Fur-
thermore, from [24, Thm. 4.6], the closed-loop system is regular with feedthrough 0. We
refer to this system as (B, A + BJB*, B), where the first operator B is interpreted as B
restricted to the domain of A / BJB*r.

The system (1.2), (1.3), (2.4), (2.10) is a "boundary control system" discussed in Salamon
[18]. By part (iii) of Lemma 4.4 and part (i) of Corollary 4.5 in that paper, A kBB* A.
Therefore, letting J -hi, we see that (B,, A, B) is regular.

LEMMA 2.8. The transferfunction H(A)for (B, A, B) is bounded on the imaginary
axis.
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Proof. Ha is that function such that )(A) Ha(A)fi(,\) when y and u are related by
(2.11), (2.15), which is equivalent to

go(t) Ax(t) + By(t),

v(t) e*

Therefore, )(A) H(A)?(A) H(A)(-k)(A) + fi(A)). Solving for z) in terms of fi, we see
that

(2.21) Ha(A) ((H(A)) -1 + )-1.

Because A ico2, A is on the imaginary axis when co is on the real or imaginary axes.
Therefore, it follows from (2.20) that H(A) is imaginary on the imaginary axis. Hence, when
A is imaginary, (2.21) implies that IH()I <_ /, finishing the lemma. []

From Lemma 2.8 and the dissipativity of Aa, it follows that Ha(A) is bounded on

{Re(z) _> 0}, so (/3*, Aa,/3) is input-output stable. This does not in general imply ex-

ponential stability, so we need to verify the conditions in Theorem 2.5 to show that we do
indeed also have exponential stability. We first need to show that condition (1.5) is equivalent
to a condition on the input coefficients ba given in (2.12).

LEMMA 2.9. Condition (1.5) is true ifand only if there exists m > 0 such that

(2.22) sin((Tr/2 + rk)s,)l > rn for all k E Z+.

Proof. First suppose (1.5) is true, so S p/q, where p is odd. Then

sin(Tr/2 + 7rk)s, sin 7r(p(2k + 1))/2q.

Note that if j is an integer

Ip(2k + 1)/2q Jl (1/2q)lp(2k + 1) 2qj > (1/2q),

the last inequality following from the fact that p(2k + 1) is odd and 2qj is even. Therefore,
sin(Tr/2 + 7rk)s is always bounded away from sin jTr 0, proving (2.22).

Now suppose (1.5) is not true. Then either s is irrational, or Sl is of the form p/q, where
p and q are coprime integers with p even, so q is odd and p 2/5 for some integer . In this
last case,

sin(Tr/2 + 7rk)s, sin(Tr/3(2k + 1)/q).

When k (q 1)/2, this becomes sin 7r15 0, so (2.22) cannot be true.
If S is irrational, note that for any integer m,

sin(zr/2 + 7rk)Sll- sin 7r(81/2 + ks1 @

The set {ksi + rnlk, m Z} is dense in R if s is irrational (see [10, Thm. 438]), which
shows that (2.22) cannot be true, finishing the proof of Lemma 2.9. []

LEMMA 2.10. If (1.5) is true, then (Aa,B) is stabilizable as in Definition 2.3, and
(/3*r, Aa) is detectable as in Definition 2.4.
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Proof. We first prove that (A,/3) is stabilizable. In this proof we consider A to be the
diagonal operator in the basis {k}I with eigenvalues {A}I, and/3 to be the column
vector [b]i, where b is given by (2.12).

We apply the results in Rebarber 15] to construct our stabilizing feedback. Let

Let

p(A- 1)bj

J
bap’(Aa)(Aa Aj 1) Oj,

+kGI

It is shown in [151 that {Xk}kEI is a Riesz basis for X and (h, Xj) 5j. Let

kGI

D(F) D(A).

We first need to show that (F, A,/3) is regular. In [15] it is shown that F can also be
written as

kGI

where

bp’(A) q’(Aj 1)(A Aj 4- 1)

In [151 it is shown that {p(Aj 1)q(A)/q’(Aj 1)p’(A)},jI is a bounded set. Because
A+ :ki(Tr/2 4- 7rk) 2, it follows that {f}el E go. Therefore, using the Carleson measure
criterion as in [9] or [20], we see that F is an admissible observation operator for S(t). As in
the derivation of (2.17), we see that R(A,A)/3 79(FL) and

fbH(A) FLR(A,A)B Z (A- A)"
kL

Because {fb } go, we see from Theorem 2.7 that HF(A) is bounded inC+ for any a > 0,
and that ItF(A) -+ 0 as A oc along the real axis. Therefore, (F, A,/3) is regular.

Theorem 2.7 shows that (2.19) is true for this transfer function, so Theorem 3.13 in [24]
shows that I is an admissible feedback for (FL, A, B). Therefore Theorems 4.6 and 6.6 in
[241 show that (FL, A +/3FL,/3) is a regular system, where as usual we interpret the first FL
as the restriction of FL to the domain of A +/3FL.

If (1.5) is true, then (2.12) and Lemma 2.9 show that the sequence of b’s is bounded
above and below, and Theorem 2 in [15] shows that A +/3FL has eigenvalues {A 1}i
and eigenvectors {Xa}eI. Because these eigenvectors are a Riesz basis for X, A +/3FL
generates an exponentially stable semigroup. This shows that (A,/3) is stabilizable in the
sense of Definition 2.3.
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An obvious candidate for the operator that stabilizes (Ak, B) (A kBB*L, B) is
[7 FL + kB*L, because (A kBB*L) +B A + BFL is exponentially stable. Because
the transfer functions for (B*, A, B) and (F, A, B) satisfy (2.19), it follows from Theorem
6.6 in [24] that (B’L, A kBB*L, B) and (FL, A- kBB*L, B) are also regular. Therefore
(, A-kBB*L, B) is regular. To show that I is an admissible feedback for (, A- kBB*L, B),
first note that we know from our previous work that I is an admissible feedback for
(F, A, B) and (kB*, A, B), and then apply the following lemma, which is proved in the
Appendix. []

LEMMA 2.11. Suppose If is an admissible feedback for the regular systems (C, A, 13)
and (C’, A, 13). Then If is admissible for (CL CL, A + 13IfCL, 13).

This finishes the proof that (Ak, 13) is stabilizable in the sense given in Definition 2.3. We
can use a similar dual argument to show that (13", A) is detectable in the sense of Definition
2.4, finishing the proof of Lemma 2.10.

Putting together Lemmas 2.6, 2.8, and 2.10 allows us to apply Theorem 2.5, so it follows
that condition (1.5) is sufficient for exponential stability of the system (1.2), (1.3), (1.4).
Therefore, to finish the proof of Theorem 1.1 we need to prove the necessity of condition
(1.5). It is clear that in our case the eigenvalues satisfy the following condition.

Condition 1. For any h > 0, the number of eigenvalues Nh in {zl0 _< Re(z) <_ h,
a h _< Im(z) _< a + h} satisfies Nh <_ Mh for some M < oc that is independent of a.

LEMMA 2.12. Suppose A is a diagonal operator with eigenvalues that satisfy Condition
1, and suppose 13 is an admissible input operatorfor S(t) that is represented by the column
vector [b]t. Suppose there exists afunctional F on X such that AF A + 13F generates
an exponentially stable semigroup Sic(t), and F is an admissible observation operator (or an
extension of an admissible observation operator)for SF(t). Then there exists M > 0 such
that

(2.23) Z [x/bkl2 <- MZ [xt2

for all {x)k E g2.

eroof. Let M > 0,, < 0 be such that II(t)ll M t, and let fl (, 0). The
variation of parameters formula implies that for z X,

where (; z) FS()z. Then (. ;z)is in the Hardy space H(C), which is the space
of Laplace transforms of all in L]oc[0 ) such that e- L[0, ). Because B is
admissible, we can take the Laplace transform of (2.24), obtaining for Re() > 0,

R(A, A)x R(A, A)x + R(A, A)B(A; x).

Because R(A, d,)x and (A; x) are holomorphic in Cf and R(A, d)x is meromowhic in C,
we can consider the left side of this equation to be a holomowhic extension of the right side.
Representing x in a basis {k}ki of X by ezx, this equation is equivalent to

(2.25) R(A d)x x + bg(A; x)k.
kI

Because R(A, A)x is holomowhic on the imaginary axis, (2.25) is tree only if

(2.26) g(A; x) -x/b.
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Now define the following measure # on the Borel subsets of CS"
(2.27) #(,k) 1, #({z IRe(z) >/3}\{/k}Er 0.

Because {, }eI satisfies Condition 1, we easily see that is a Carleson measure onC (see
[9] and [20] for the definition of Carleson measure and for other examples along these lines).
The Carleson measure theorem as stated in [9] implies that there exists M > 0 such that for
all H2(C),

(2.28) [(k)[2 M1f lim [O(p + i)]2 d.
kI

P

Note that by the Plancherel theorem,

(2.29) lim (p + i, z)l 2 d 2w Ie-tu(t; z)l 2 dr.

Because u(t; z) FS(t)z, F is an extension of an admissible observation operator for
SF(t), and SF(t) has exponential decay a, there exist M2, M3 > 0 such that

(2.30)

e-tu(t;z)l2 dt M2 le-ts(t)zl2 M Izl2 e2(-)t dr.

Let 0(k) g(A, z) in (2.28), keeping in mind (2.26), (2.29), and (2.30), and we get (2.23),
finishing the lemma.

Remark 2.13. The proof of Lemma 2.12 is motivated by the idea of open-loop stabiliz-
ability (see Zwart [26]). In the proof we show that (2.23) is a necessary condition for open-loop
stabilizability, hence also for closed-loop stabilizability.

Now suppose that the system (1.2), (1.3), (1.4) is exponentially stable, soA A-kBB
generates an exponentially stable semigroup. Then Lemma 2.12 is applicable with F
-kB, so (2.23) is true, and {1/b}ei must be a bounded sequence. This means that
condition (1.5) is a necessary condition for stabilization, which completes the proof of
Theorem 1.1.

3. Proof of Theorem 1.3. We need to approach the system (1.2), (1.6), (1.7) differently
than the system (1.2), (1.3), (1.4). To see why this is the case, we briefly discuss the state-space
formulation for,the controlled, observed system associated with (1.2), (1.6), (1.7) and explain
why our approach in 2 cannot be applied directly to this system.

Let

(3.1) X {[x,, x2]T C H2[0, 1] (R) L2[0, 1]lx (0) Xl (1) 0),

and let A be the matrix (2.2) with domain

V(A) {[Xl,X2]T H4[0, 1] (R) H2[0, 1] x,(0) Xl(1)
(3.2)

D2xl (0) D2xl (0) x2(0) x2(1) 0},

so it is easy to see that A generates a C0-semigroup S(t) on X. Ifwe let z (t) [w (., t), b(-, t)] T
and/3 [0,5’(.- Sl)]T, then (1.2), (1.6) with control

(3.3) D2w(8-, t) D2w(8+l, t)
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can be seen to be equivalent to (2.9). Similarly, (l.2), (1.6), (1.7) with 0, and observation

(3.4) !l(t) D(s,, t)

is equivalent to 5:(t) Ax(t) and (2.11). However, B is not an admissible input operator
for S(t), B* is not an admissible observation operator for S(t), and the transfer function for
(1.2), (1.6), (3.3), (3.4) can easily be computed and is not bounded on any half planeC+. Such
a system is ill posed, and we cannot apply the approach of 2 directly to this system.

If we formally close the loop in (1.2), (1.6), (3.3), (3.4) with the feedback u(t)
-icy(t), /c > 0, then the resulting system is (1.2), (1.6), (1.7) is shown in [5] to have so-
lutions with nonincreasing energy, and the underlying semigroup generator is easily seen to
be dissipative using the Lumer-Phillips theorem. This implies that the controlled, observed
system (1.2), (1.6), (3.3), (3.4), while possibly natural from a physical point of view, is not the
appropriate systems-theoretic framework for studying the feedback system (1.2), (1.6), (1.7).
This is because the input-output relation defined by (1.2), (1.6), (3.3), (3.4) is not well posed
in the sense of [8], [18], [22], and [23]. In Rebarber and Townley [17] an ill-posed system is
analyzed by reversing the roles of u(t) and y(t), which is what we do here. Therefore, we
consider the "inverse" system (1.2), 1.6),

(3.6) y(t) D2w(s-{-, t) D2w(s+, t).

When we put this system into state-space form, we see that it is regular. When the loop
in this system is closed by u(t) -(1/c)V(t), we obtain the system (1.2), (1.6), (1.7),
and we apply the approach from 2 to the inverse system. The difficulties in this approach
arise in characterizing which joint placements lead to stabilizability and detectability. This
is because the underlying semigroup generator is not standard, and the eigenvalue {lk } and
input coefficients {b } are not easily computed. The analysis of the eigenvalues and input
coefficients is done in Lemmas 3.2, 3.5, 3.6, 3.7, and 3.8.

We start by discussing the state-space formulation for (1.2), (1.6), (3.5), (3.6). We note
here that we will be using most of the notation as in 2, to minor the development in that
section. However, much of the notation needs to be redefined for this new system, so the
notation will not represent the same things unless explicitly stated. Once the analysis of the
eigenvalues and input coefficients is completed the rest of the proof of Theorem 1.3 is almost
identical to the proof of Theorem 1.1. Because many of the proofs in this section proceed like
the proofs in 2, we will not repeat the details and merely refer to 2.

The state space is X, given by (3.1), with the inner product (2.1). Let A be the operator
given by the matrix (2.2) with domain

D(A)- {[z,,z2]T X z,[[0,, H4[O,s,), z,l(,,, H4(s,, 1],
(3.7) Z2 H2[0, 1], D2Zl (0) D2zl(1) z2(0) z2(1) 0,

Dz2(Sl)- 0, D3Zl(S7)= D3Zl(S)}.
Remark 3.1. The operator A here is the generator of the zero dynamics of 1.2), (1.6), 1.7)

()ee Byrnes and Gilliam [2]). The zero dynamics of a feedback system with gain parameter
R is that system obtained formally by letting k . It is shown in Rebarber and Townley

[17] that if the inverse system is regular with underlying semigroup S(t), and if T (t) is the

semigroup associated with (t) -(t) in the original system, then lim
in the operator norm for every t > 0.
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This generator A is not as familiar as the generator A in 2, so we briefly discuss here
how to show that A is skew adjoint on X. Let :e [;el,e2]T C D(A). Let M be the
operator given by (2.2) and v [vl,v2] C X be such that Vll[0,s,) H4[0,81), VlJs,,]
H4(81, 1], v2[[o,,) H2[0, 81), and v21(,,1] H2(81, 1]. Using integration by parts we see
that (Ax, v) Ix,-My) plus terms at 0, 1, and 81. Thus A* is given by -M on the domain
of all so that the terms at 0, 1, and 81 are zero. The terms at 0 and are fairly standard and
imply that v C D(A*) must satisfy v2(0) DZv, (0) v2(1) DZv, (1) 0. The terms at

81 are as follows:
(1) x2(s-)D3vl(s-) x2(s+)D3Vl(S+). Because e2 H2[0, 1], ;e2(s-) x2(s+),

which implies that D3vl (s-) Dvl (s+ ).
(2) Dx2(s-()D2v(s-() Dx2(s+)D2v,(s+). Because Dx2(s) 0, this implies no

condition on DZvl (51).
(3) DZxl(s)Dv2(s-()- DZxl(s+l)DV2(S+l). Because there is no condition on DZx at

81, this implies that Dv2 (s+ Dv2 (s O.

(4) D3xl (s)v2(s-)- Dxl (s+ )v:(s+ ). Because D3xl (s-() D3xl (s+ ), this implies
that v2(s-) v(s+).

Putting this all together, we see that D(A*) D(A), so A* -A and A is skew adjoint.
Because it is clear from the Rellich-Kondrachov theorem (see 1, Thm. 6.2]) that the D(A) is
compactly embedded in X, A has compact resolvent. Therefore, the spectrum of A consists
solely of eigenvalues {Ak } on the imaginary axis with associated eigenvectors { I,k } that form
an orthogonal basis ofX. Hence A generates aC0-semigroup S(t) on X such that ]IS(t) 1.

To identify the appropriate input operator for the control system (1.2), (1.6), (3.5), we let
be the extension of A with domain

Let x [xl, x2]T D(_) and v [u1, V2]T C D(A*). Using integration by parts we
find that

(3.8) (flc, v) (x,-Av) + Dz2(s,)D2vl (57) D2v, (8+ ).

Let t3 D(A*)’ be given by

,,) (. -)(3.9)
0

We interpret B as a functional on D(A*) D(A) as

13[U1, U2]T D2Vl (8) D2)I (57).

This interpretation of B is not consistent with the inner product (2.1) but is consistent with
the usual interpretation of 5". Let . be defined by (2.7). Then from (3.8) we see that
x fix + DXZ(Sl)B in X-1. As in 2, we see that if x(t) [w(., t), b(., t)]T and
w(8, t) satisfies (1.2), (1.6), and (3.5), then Ax(t) x(t) + Bu(t) in X-1. Therefore, the
state-space equation for (1.2), (1.6), (3.5) is (2.9).

The observation (3.6) is given by y(t) B* x(t). We prove in Lemma 3.7 that for any
81 [0, 1], B is an admissible input operator, and hence B* is an admissible observation
operator.
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Letting k (l/k), the system (1.2), (1.6), (1.7) is equivalent to k(t) Akx(t), where

Ak is given by the matrix (2.2) with domain

D(A) {[z,,:e2]T 79(A) Dce(s, -k(DZc,(sT) DZ:e,(s+))}.
It is again an easy consequence of [5, (1.4)] and the Lumer-Phillips theorem that A is a

dissipative operator that generates a C0-semigroup of contractions S (t) on X.
As in the proof of Theorem 1.1, we show that S’ (t) is exponentially stable by showing

that R(A, Ak) is bounded on the imaginary axis. To do this, we apply Theorem 2.5 to the
controlled, observed system for Ak given by (1.2), (1.6), (3.6) and

(3.10) D(v(s, t) + k[D2w(s+ t) D2w(s, t)] u(t).

As in the proof of Theorem 1.1, when it is shown that the feedthrough for this system is zero,
it will follow that the system is equivalent to (2.15) with observation (2.11). Let H be the
transfer function for this system.

To apply the approach in 2 to the generator A for this reversed system, we need to

analyze the eigenvalues and eigenvectors of A in detail. Although this is a simple task if
we are dealing with the generator for the "forward" system with domain (3.2) (which is
unfortunately associated with a control system that is not well posed), the operator A we
are working with here, with domain (3.7), is not standard. The asymptotic analysis of the
eigenvalues is simpler here than in Chen et al. [5] because in that paper the eigenvalues for A
were analyzed, whereas we are only interested in the eigenvalues for k 0. However, in this
case we also need a formula for the normalized eigenvectors because these are used for the
computation of the input coefficients b. The following lemma characterizes the eigenvalues
and eigenvectors of A.

LEMMA 3.2. All of the eigenvalues and eigenvectors of A are of one of the three forms
described below in parts (a), (b), and (c).

(a) A 0 is an eigenvalue ofmultiplicity one with associated eigenvector 0 [0, 0]T,
where

(3.11) 0(s) s + (3s2 6s + 2)s for s [0, s),

(3.12) 0(8)-(8-1)3-+-(382-1)(8-1) fors(8,,1].

(b) Ifcos(Trns Ofor some n Z+, then A -+-i(Trn) 2 are eigenvalues ofmultiplicity
one with associated eigenvectors

(3.13)

where

(3.14)

%On/ q-iTl’n2 ]p+

n(s) sin(Trns) for s [0, 1].

(c) Let co be a real positive solution of

(3.15) g(w) :: tanh(wsl) tan(ws,) tanh w(s, 1) + tan w(s, 1) O.

Then A +iw2 are eigenvalues with associated eigenvectors

(3.16) q+co w/ + iw2 ]
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where

sinh(cos) sin(cos)
for s {0, s,)(3.17) gao(s) co-i) cos(cos,)

sinh co(s 1) sin co(s 1)
for s (s,, 1].(3.18) c(S)-

cosh co(S 1) COS co(S 1)

Proof. A is skew adjoint, so the eigenvalues are on the imaginary axis, and it is easy to
show that the eigenvalues come in complex conjugate pairs. Therefore, the eigenvalues are of
the form A -+-ico2, where co is on the nonnegative real axis.

Assume that [g;, X]T is an eigenvector associated with the eigenvalue A. Then k A1b
and !b satisfies

(3.19) ,)2ff3(S) + D4(s) 0

with boundary conditions

(3.20)

(3.21) kDb(s,) =0.

It is easy to verify that if A 0, then all solutions of (3.19), (3.20), (3.21) are given by
where c is a scalar and !9 is given by (3.11), (3.12).

Now assume A 0, so (3.21) becomes

(3.22) Db(s) 0.

Equation (3.19) and the first line of (3.20) imply that

(3.23) (s) C, sinh(cos) + C2 sin(cos) for s [0, s,).

Equation (3.19) and the second line of (3.20) imply that

(3.24) (s)=C3 sinhco(s-1)+C4 sinco(s-1) fors (s,,1].

The third line of (3.20) is true if and only if

(3.25) C, sinh(cos) + (72 sin(coSl) (73 sinh co(SI 1) + 6’4 sin co(s, 1).

The fourth and fifth lines of (3.20) are true if and only if

(3.26) c, cosh(  ,) cosh

(3.27) C2 cosh(ws, C4 cos co (s, 1).
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Equation (3.22) is true if and only if

(3.28) C1 cosh(ws,) -Ce cos(wsl),

(3.29) C3 cosh cv(sl- 1)=-C4 cos cv(sl- 1).

To find real positive co so that (3.25)-(3.29) have nonzero solutions for C1, C2, C3, and C4,
we consider four cases.

Case 1. Suppose cos co(s 1) 0 and cos(cos) - 0. Then (3.27) implies that C2 0,
(3.28) implies that C 0, and (3.26) implies that C3 0. Finally, (3.25) implies that
C4 0, so +ico2 cannot be an eigenvalue.

Case 2. Suppose cos co(Sl 1) = 0 and cos(cosl) 0. Then (3.27) implies that C4 0,
(3.29) implies that C3 0, and (3.26) implies that C1 0. Finally, (3.25) implies that
C2 0, so +ico2 cannot be an eigenvalue.

Case 3. Suppose cos co(Sl 1) 0 and cos(coSl) 0. Then co(sl 1) 7r(1/2 j)
and cos, 7r(-1/2 + k) for some j, k E Z+. Therefore co -r for some n E Z+. Then
(3.28) is true if and only if C’ 0, and (3.29) is true if and only if C3 0. Equation (3.25)
is true if and only if

e sin(n-s) C4 sin nTr(s, 1).

Therefore

C4 =C2(-1)n.

Hence, using (3.23) and (3.24), we see that (s) is a solution of (3.25)-(3.29) if and only if

(s) C2 sin(Trns) for s [0, s,),

(s) C2(-1) sin rr(s 1) C2 sin(rns) fors (31, 1].

Therefore (3.13), (3.14) give eigenvectors associated with co 7rn, where n is such that
cos(Trrsl 0, and :t:i(Trr) 2 are eigenvalues of multiplicity one.

Case 4. Suppose cos co(s, 1) =/= 0 and cos(cos,) 0. Then (3.26) is true if and only if

(3.30) C’3 C’l(COsh(cos,)/cosh co(s, 1)).

Equation (3.28) is true if and only if

(72 C,(- cosh(cos,)/cos(cos,)).

Using this, we see that (3.27) is true if and only if

(3.32) C4 C,(-cosh(ws,)/cos w(s, 1)).

Equation (3.29) is also satisfied if C3 and C4 are given by (3.30) and (3.32). Plugging (3.30),
(3.31), and (3.32) into (3.25) and dividing by cosh(ws ), we see that +ico2 is an eigenvalue in
Case 4 if and only if (3.15) is true. Plugging (3.30), (3.31), (3.32) into (3.23) and (3.24) and
letting C’I / cosh(cosl ), we obtain the eigenvectors given by (3.16), (3.17), (3.18). []

It is proved in Proposition 3.3, below, that the eigenvalues of A described in part (c) of
Lemma 3.2 are also of multiplicity 1.
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For our purposes we need the normalized eigenvectors of A. For the eigenvector in part
(a) of Lemma 3.2, let C0 1/lltI’011 and let 0 be the normalized eigenvector CoG0. For the
eigenvectors in part (b) of Lemma 3.2, we easily find that the normalizing constant is 1, so let
I,+, +,. For the eigenvectors in part (c) of Lemma 3.2, let co be a positive solution of
(3.15). Let

(3.33) (I)+o C,+o,

where

(3.34) 1/C2 -lilY,o/co2, o]TII 2 {ID2w(S)/o212 + I(s)12}&.

Using (3.17) on [0, s), we compute that

’{lD()/l IW()I}-+
(.5)

[sinh(2coSl) _s2]cosh2 (coSl) 2co

sin(2coSl)
sCOS2(cogl) 2co

sinh 2co (s
cosh co(s 1) 2co

[sin 2co(Sl 1)+
cos2 co(s- 1) 2co

Using (3.18) on (s, 1], we compute that

(3.36)

{ID2o(s)/co2[2 4-Ibo(s) 2}ds

Putting (3.35) and (3.36) together, we see that

(3.37)

1/C2 (1/co)(tanh(cos) -tan(cos) -tanh co(s, 1) + tan co(s 1))
-+- Sl (sec2(coSl) sech2(coSl)) q- (Sl 1)(sech2co(Sl 1) sec2 co(Sl 1)).

Because co satisfies (3.15), we can simplify this expression to

(.38)

C [s,(sec2(cos,) sech2(cos,)) + (s, 1)(sech2 co(s, l) sec co(s, 1))] -’/2

PROPOSITION 3.3. The eigenvalues ofA are all ofmultiplicity one.

Proof. We only need to show that the zeros of 9 given by (3.15) are of multiplicity one.
If co is a zero of 9, then comparing (3.15) to (3.38) we see that 9’(00) -1/C2, which is
always negative. []

We can now compute the input coefficients/3" associated with/3 given by (3.9). The
input coefficient associated with 0 is b0 -6C0, and all we need to note about this is that
it is not 0. The input coefficients associated with (I,+, are

(3.39) b+, 0.

The input coefficients associated with +o are b+o /3+o, where/3 is given by (3.9).
Using (3.17) and (3.18), these are easily computed to be b+o -+-bo, where

bo iCo [tanh co (s, + tan co (s tanh(ws,) tan(ws,)],
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and C is given by (3.38). Using (3.15) we see that

(3.40) bo -2iC[tanh(cosl) -tanh co(s, 1)].

The next lemma is proved in almost exactly the same way as Lemma 2.9, so the proof is
omitted.

LEMMA 3.4. Condition (1.8) is true ifand only if there exists m > 0 such that

(3.41) COS(71"kSl)] > TEL for all k E Z+.

Now we can relate the behavior of the eigenvalues to condition (1.8).
LEMMA 3.5. (a) Suppose that (1.8) is true for some m > O. Then there exists 1 > 0

and2 > 0 such thatfor any positive zero co of 9,

(3.42) cos(cos,)l >

(3.43) ICOS co(81- 1) > m2.

Furthermore, there exists m3 > 0 such thatfor any two zeros col and 032 of 9,

(3.44) Iwl-//)21 > m3.

(b) Suppose there exists a sequence ofpositive integers {nt } such that

(3.45) lim cos(nzTrs) O.

There there exists a sequence {cok } ofpositive zeros of9 such that

(3.46) lim o,

Proof. We first prove part (a), so we assume that (1.8), hence (3.41), is true. Suppose
{cok } is a sequence of positive zeros of 9 such that (3.46) is true. Examining 9 in (3.15), we see
that this can only happen if lim_ cos cok (s 1)1 0. Therefore there exists a sequence
of integers {ink } and {rt } such that

lim Iws, 7r(1/2 + rth:)l- O,

lim I//)k(81 1) 7r(1/2 + m)[- O.

This means that

lim [w 7rjl O,

where j n ink, so

lim cos 7rjksl O,

contradicting (3.41). From this we see that if (3.41) is true, then (3.46) cannot be true. Note
that if co is a zero of 9, (3.15) shows that cos(cos) - 0 and cos co(Sl 1) 0. Therefore, if
(3.41) is true, then (3.42) is true for some ml and all real positive zeros of 9. It is clear from
the form of 9 given in (3.15) that if (3.42) is true, then (3.43) must also be true.
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The vertical asymptotes of the graph of 9(co) for co on the real positive axis are the lines
co 7 and co j, where

(3.47) / 7r(k + 1/2)/(1 s), )j -(j + 1/2)/s,,

where /c and j are nonnegative integers. Note that 9’(co) (Sl 1)[sec2 co(s| l)
sech2 co(Sl 1)] 4- Sl [sech2(cos,) sec2(coSl)], which is always negative where it is defined.
Therefore, between any adjacent numbers in

(3.48) A {}0 {}%0
there is exactly one positive zero of 9.

We show that when (3.41) is true the points in A are separated in the sense that there exists
m > 0 such that if 7, # E A, then 17-# > m. Because I/,-721 >- 7rlkl-k21/(1-s,)and
Ilj, Oj21 >- 7rljl j2l/s, we need to find m > 0 so that Ir/a )jl > m for all nonnegative
integers k and j. To that end, note that

(3.49) r/a jl - s(1 + k + j) (1/2 + J)l
Sl(1--Sl)

By (3.41), there exists an m > 0 such that

Ins (1/2 + J)I > m

for all nonnegative integers n and j. Comparing this with (3.49) (with n + k + j), we
see that

for all nonnegative integers/c and j, showing that the points in A are separated.
Let co be a positive zero of 9, so (3.42) and (3.43) are true. Because cos r/(Sl 1) 0

and cos(Ojs) 0, we see that there exists m2, m3 > 0 such that

Icosl- jsll > m2,

]co(s,- 1)- ]/c(Sl- 1)1 > m3.

Let m4 be the minimum of {m2/Sl,m3/(1 s,)}. Therefore, if r/ E A, It/- col > m4.
Because the points in A are separated and there is only one positive real zero.co of 9 between
any adjacent points of A, this shows that the positive real zeros of f are separated in the sense

given in (3.44).
We now prove part (b). Suppose (3.45) is true for a sequence of positive integers {rt}.

Therefore there exists a sequence of positive integers {m } such that

(3.50) lim InZl (1/2 +  z)l- 0.

In (3.49) let j mz and k nz mz 1, so we obtain

81(1 81)

Comparing this with (3.50) we see that
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Because there is at least one real positive zero cz of 9 between 7-,- and, we see that

lim cos(czs) cos(/mSl)l 0.

Applying, in order, (3.51), (3.47), (3.50), and (3.45), we see that

lim Icos(as)l lim lim Icos 7r(1/2+mz)l lim Icos(nzsl)]--0.
l-x 1--cx 1--x l--*

This finishes the proof of part (b). []

In the proof of Lemma 3.5 it is shown that the positive zeros of 9(a) are countable. We
append to this set the values {7rn}, where n satisfies cos(Trns 0, and label them {a}Ez+,
where we assume that the sequence is increasing. Recall from Lemma 3.2 that these are the
nonzero values of c for which :]:ia)2 are eigenvalues.

The following lemma is useful in the proofs of Lemmas 3.7 and 3.9.
LEMMA 3.6. {ce}Ez+ satisfies condition (2.18).
Proof. For some values of s all of the r/k’s and )j ’s, as defined in (3.47), are distinct,

whereas for some values of ql there are nonnegative integers/c and j such that r/ j. It is
easy to verify that the latter values of s are the set of rational numbers in [0,1 of the form
n/m, where n is an odd integer and m is an even integer. If Sl is of this form, let be any odd
integer, and we see that if k (l(m- n)- 1)/2 and j (nl- 1)/2, then r/ j 7rlm/2.
It is also easy to see that these are the only nonnegative integer values of j and k such that

r/ Oj. The integers lm/2 are precisely the integers a such that cos(Trcos) 0. The
statement "between any two adjacent elements of A (see (3.48)) there is exactly one zero of

9" (see (3.15)) was proved in theproof of Lemma 3.5. This statement can be extended to
"between any two adjacent elements of A there is exactly one element of {c }," interpreted
to mean that if two elements ofA are equal, then the number "between" them is the common
value.

In a closed interval of length M, there are at most + M(1 s )/Tr values of r/h, and
at most + Ms/Tr values of j. Therefore there are at most 2 + M/Tr elements of A (not
necessarily distinct) in an interval of length M. In light of the above paragraph, we see that
there are at most 3 + M/Tr values of oz in an interval of length M. Therefore, ck+4 must be
outside of the interval [0, kTr], that is,

or

(3.52) k > k- 4.

In a closed interval of length M, there are at least -1 + M( s )/Tr values of r/ and at
least -1 + Ms/Tr values of j. Therefore there are at least -2 + M/Tc elements of A (not
necessarily distinct) in an interval of length M. We then see that there are at least -3 / M/Tr
values of c in an interval of length M. Hence a_ must be inside of the interval [0, kTr],
that is,

or

c _< kTr + 37r.

Combining this with (3.52) completes the proof of the lemma. []
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We can now prove the admissibility of the input and observation operators.
LEMMA 3.7. For any s l, the input operator B and the observation operator B* are

admissiblefor
Proof. It follows from (3.38) that for positive zeros c of 9,

(3.53) lim ICco -[s! secZ(cds,)+ (1 s,)sec2 co(s, 1)] -1/21 0.

Therefore {Co} is a bounded sequence. It is then clear from (3.40) for b that {b} is
a bounded sequence. Taking (3.39) into account, we see that the input coefficients are all
bounded.

To conclude that/3 is an admissible input operator, we use the Carleson measure criterion
found in Ho and Russell [9] or Weiss [20]. This criterion applies here if the eigenvalues are
on the imaginary axis and Condition 1, defined before Lemma 2.12, is satisfied. In the proof
of Lemma 3.6 we see that the number of wk’s in an interval of length M is at most 3 + M/r,
so the number of eigenvalues of A in

Sa,M {z IRe(z) 0, a2 Im(z) <_ (a + M)2}
is less than or equal to 3 / MITt. This shows that Condition preceding Lemma 2.12 is
satisfied, so/3 is an admissible input operator. By duality,/3* is an admissible observation
operator. []

We now see how condition (1.8)effects the behavior of the input coefficients {bo}.
LEMMA 3.8. (a) Suppose (1.8) is true. Then there exists m > 0 such thatfor all positive

zeros c of 9,

(3.54)

(b) Suppose there exists a sequence ofpositive integers {nz } such that (3.45) is true. Then
there exists a sequence of zeros {zk } of9 such that

(3.55) lim Ib 0.

Proof. We first prove part (a). Because (1.8) is true, (3.42) and (3.43) are true. Combining
this with (3.53), we see that {C } is a bounded sequence, so {C } is bounded below away
from zero. Because (tanh(ZSl) + tanh w(1 s )) -- 2 as w -- oc along the real axis, we see
from (3.40) that (3.54) is true.

To prove part (b), note that if (3.45) is true, then part (b) of Lemma 3.5 gives a sequence
{a} such that (3.46)is true. Therefore, we see from (3.53)that {C-] } is an unbounded
sequence. Because {tanh(ws) tanh w(Sl 1)} is a bounded sequence, we see from
(3.40) that (3.55) is true. []

We are now in a position to follow the approach given in the proof of Theorem 1.1.
Because many of the details are the same, we frequently refer to the corresponding proofs
in 2.

LEMMA 3.9. (1) Thefeedthroughfor the system (1.2), (1.6), (3.6), (3.10) isO.
(2) (/3", Ak, /3) is regular.
(3) A A- kB/3*L.
Proof. We first show that the system (1.2), (1.6), (3.5), (3.6) is regular. We have already

shown that/3 and/3* are admissible for S(t). As in the proof of Lemma 2.6, we obtain
the formula for B*LR(, A)/3 by using the matrix representations of A and/3 in the basis
{(I)k }kGI, SO

B*LR(A A)B- Ib12 { Ib’12 Ib’12 }+ + +k=l
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Because Lemma 3.6 shows that {cok} satisfies condition (2.18), we can apply Theorem 2.7
to conclude that the system (1.2), (1.6), (3.5), (3.6) is regular in the sense of [23] (with the
feedthrough undetermined so far), and in fact satisfies (2.19).

We can compute the transfer function H(A) of this system by taking the Laplace transform
of (1.2), (1.6), (3.5), (3.6). Recall that in this paper A ico2, where we can restrict co to

{re r _> 0, 0 [-rr/2, 0]}.
Let

(3.56) p(sl co)

We find that

(3.57)

sinh(cos,) cosh(cos) tanh co(s 1)
cos(cos1) tan co(s, 1) sin(cos)

H(,)
-2i { sinh(cosl)- cosh(cos,)tanh

From this it is easy to see that H()) -- 0 as cx along the positive real axis. Therefore, the
system (1.2), (1.6), (3.5), (3.6) is regular in the sense of Definition 2.1 and can be represented
by (13", A, 13).

As in the proof of Lemma 2.6, if J B(U), then A + 13J13 is the generator of a
C0-semigroup, and the closed-loop system obtained by letting u(t) J/(t) is regular in
the sense of Definition 2.1 and can be represented by (13, A BJ13, 13). Also as in the
proof of Lemma 2.6, A kBt3* Ak, so we can take J -kI to finish the proof of
Lemma 3.9. []

The proof of Lemma 2.8 applies to this system, so H(,k) is bounded on the imaginary
axis.

LEMMA 3.10. If (1.8) is true, then (A,13) is stabilizable as in Definition 2.3, and
(13", A is detectable as in Definition 2.4.

Proof. This lemma is proved in exactly the same way as Lemma 2.10. Therefore, rather
than give the proof, we explain why the proof of Lemma 2.10 also goes through in this case.
That proof relied on three properties of A that are needed to be able to apply results in 15].
These follow from Lemmas 3.2, 3.6, and 3.8 and Proposition 3.3.

(1) The eigenvectors of A form a Riesz basis for X.
(2) The eigenvalues of A are of multiplicity and grow quadratically on the imaginary

axis.
(3) The input coefficients for (A, 13) are bounded above and bounded below away from

zero. []

Therefore, if (1.8) is true, then an application of Theorem 2.5 shows that A is exponen-
tially stable. To finish the proof of Theorem 1.3, suppose (1.8) is not true, so (3.41) is not
true by Lemma 3.5. There are then two possibilities. If cos(Trmsl) 0 for some positive
integer m, then part (b) ofLemma 3.2 and (3.39) show that -+-i (rcrr) 2 are eigenvalues with
associated input coefficients b+/-, 0. The other possibility is that there exists a sequence of
positive integers {nz} such that (3.45) is true. Then part (b) of Lemma 3.8 gives a sequence of
eigenvalues {+ico } with associated input coefficients satisfying (3.55). In either case we see
that (3.54) is not true. Therefore, (2.23) cannot be satisfied. Because the eigenvalues of A are
shown in the proof of Lemma 3.7 to satisfy Condition stated before Lemma 2.12, Lemma
2.12 shows that Ak A k13B* cannot generate an exponentially stable semigroup. This
finishes the proof of Theorem 1.3.

4. Appendix. In this Appendix we prove Lemma 2.11 and Theorem 2.7.
We start with Lemma 2.11. The result seems almost obvious formally, because (A /

BKCr) + BK(C’ Cr) A + 13KC’ and K is an admissible feedback for (C’,A,B).
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However, to prove the result rigorously we need to show that (C’L --CL, A+ 13CL, 13) satisfies
Definition 2.2 with feedback K.

ProofofLemma 2.11. Let H be the transfer function for (C, A, 13) and H2 be the transfer
function for (C’, A, 13). Let H1/c be the closed-loop transfer function for (C, A, 13) under the
feedback u --/4/+ v, that is, the transfer function for the system

(4.2) /(t) CLZ(t).

Then it is shown in [24] that

(4.3) H1K H (I KH1

where all inverses are in H.
Let H be the transfer function for (C’c CL, A + 13KCL, 13), so H can be written as

H3 H1, where H3 is the transfer function for (C’c, A + 13KCL, 13). We need to show that
(I KH) is invertible in H. To do this we need to find a formula for H3 in terms of H2
and H1.

Consider the system

Jc(t) Ax(t) + Bu(t),

v(t)

The transfer function for this system is 171 _- [Hi, H2]T. It is easy to see that/72 [K, 0] is an
admissible feedback for 17t, because (I KH) I KH, which is invertible by hypothesis.
The closed-loop system with the feedback u =//+ v is then

(A + +

which has the transfer function I7tR. Because H1/ is the transfer function for (4.1), (4.2),

17I/22 [H1K,H3]. Using Proposition 3.6 in [24], we see that the admissibility of/ for 17t
implies that

Writing down the second component in this identity gives

H3 H2 H/gH1.

Solving this for H3, we obtain

H3 H2(I-/H1) -1.

Combining this with (4.3) we see that

(4.4) H-H3-H- (H2-H1)(I-/gH1)-I.
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Let

(4.5) H; (H2 -H1)(I- KH2)-’,
where we are using the fact that K is an admissible feedback for (C, A,/3), so (! -/H2)
is invertible. It is now easy but tedious to use (4.4) and (4.5) to verify algebraically that

(I-

This shows that (I KH) is invertible in H, so K is an admissible feedback forH according
to Definition 2.2, finishing the lemma.

Proofof Theorem 2.7. Because {da }at , there exists M > 0 such that

s i + M
s + iwk=l k=l

We analyze the first sum and note that the second sum can be analyzed in the same way. Let
a, b, and m be as in the statement of Theorem 2.9, and let K be the smallest nonnegative
integer greater than or equal to -b/re. So if k > , then (ink + a) and (ink + b) are both
positive. We can write the first sum above as

K

k=l k:K+l

where the first finite sum (interpreted as 0 if K 0) clearly satisfies (2.19). To analyze
the second sum in (4.6), let s x + iy, where x > 0. The second sum is then less than or

equal to

(4.7)

We show that this sum has a bound that is independent of y and dependent of x. If
y (m(K + 1) + a), let Kl(y) be the largest integer less than or equal to ( a)/m. If
< (( + 1) + a), et () . Then

> (ink + a)(4.8) y-_y- 0 forK<kKa(y).

If y (ink + b), let K:(y) be the smallest integer greater than
< ( + b):, et :() + 1. Then

: < (ink+b): <0 fork>K:(y).(4.9) y y

Now we see that (4.7) is equal to

( /v) ’()

x + I-

,j( + + ),

\

+ Z
k=K+l k=K2(y)+l

where $2 is interpreted as 0 if K1 (y) K. To analyze S1, note that there are K2(y) K1 (y)
terms in S, each of modulus less than or equal to 1Ix. Because K2(y) > (v/- b)/m +
and/1 (Y) (-- a)/Tl 1, we see that

(4.10) S _< (2 + (a b)/rn)/x.
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We now analyze $2. Note that if y < (m(K + 1) + a)2 then $2 0, so we assume that
y > (m(K + 1) + a)2. Using (4.8), we see that

k=K+l

Therefore,

dr/
+1 x + y (m/+ a)2

f’/’ (v)+a d

Because mK (y) + a <_ and m(K + 1) + a > 0, this is

fv d
2m o x+y-

This integral is evaluated as

m v/x +y
In

mx/ v/1 + b

where y/x. This is

( )2_< mvr 1+ V//(1 + ) _<
mx/-J

when > 0, which is the case here, because y >_ (m(K + 1) + a)2 and x > 0. Therefore
there exists a constant M > 0 independent of y such that

(4.11) Se _< M

We now analyze 5’3. Using (4.9) we see that

(4.12)

$3 <
x + (ink + b) 2 y

k=K2(y)+l

<
2(v) x + (m + b) y m K(y)+b x y -- 2"To analyze this integral we consider several cases. If z > y >_ 0, we use the fact that

mK2(y) + b > v/, so this integral is

< tan-
m x-- y 2r- 2 mv/x y

mV/v/1-1/ -tan- -1
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where x/y > 1. (If y 0 the modifications are obvious.) If we let 9()
( tan-l(( 1)-’/2))//1 1/, it is easy to use L’H6pital’s rule to see that 9()
is bounded on (1, x). Therefore, for x > y >_ 0, there exists M > 0 such that

(4.13) $3 <_ M

If x > y and y < 0, then the last integral in (4.12) is less than or equal to

f0 d 7r <
7r

?Tt X y _qt_ 2 2mv/x y 2rex
so in this case (4.13) is also true.

If x y, then the last integral in (4.12) is

so (4.13) is true in this case.
If x < y, then the last integral in (4.12) is less than or equal to

m x--y-t-2 rrt y,z-J In

Letting y/x > 1, we see that this is

It is easy to use L’H6pital’s rule to show that 9() In Iv/-f + v@ I/v/P is bounded
on (1, oc), so we see that in this case (4.13) is again true. Therefore, there exists an M such
that for all x > 0, (4.13) is true.

Combining (4.10), (4.11), and (4.13), we see that for any a > 0, the second sum in (4.6)
is bounded by M/v for some M and all x _> a. This shows that the conclusions of Theorem
2.7 are true, finishing the proof. []
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DYNAMIC PROGRAMMING AND PRICING OF CONTINGENT CLAIMS IN AN
INCOMPLETE MARKET*

NICOLE EL KAROUI AND MARIE-CLAIRE QUENEZ

Abstract. The problem of pricing contingent claims or options from the price dynamics of certain securities is
well understood in the context of a complete financial market. This paper studies the same problem in an incomplete
market. When the market is incomplete, prices cannot be derived from the absence of arbitrage, since it is not possible
to replicate the payoff of a given contingent claim by a controlled portfolio of the basic securities. In this situation,
there is a price range for the actual market price of the contingent claim. The maximum and minimum prices are
studied using stochastic control methods.

The main result of this work is the determination that the maximum price is the smallest price that allows the seller
to hedge completely by a controlled portfolio of the basic securities. A similar result is obtained for the minimum
price (which corresponds to the purchase price).

Key words, option pricing, incomplete market, equivalent martingale measures, portfolio processes, stochastic
control

AMS subject classifications. 90A09, 90C39, 93E25

Introduction. We study the problem of determining the price of a contingent claim from
the price dynamics of certain securities (such as stocks and bonds). However, the price
system alone cannot give a complete description of the exogenous uncertain environment;
other information that is inside or outside the market is available and might influence market
fluctuations. Therefore, the information structure used is as general as possible; in particular,
it is not supposed to be generated by Brownian motions.

The primitive securities consist of a bond and z stocks, the latter being driven by a d-
dimensional Brownian motion. Absence of arbitrage is assumed. The fluctuation in those
prices is linked to the rest of the market (market fluctuations, change in rates, prices of other
securities, and so on) and to other factors that are outside the market. The contingent claim is
not linked only to the basic securities.

In 1, we formulate the basic problem of hedging by constructing a portfolio of the basic
securities that attains (at least) the payoff of the contingent claim as its terminal wealth. Unlike
in the complete market case, it is not possible to replicate the payoff of every contingent claim
by a portfolio, and there are several probability measures that are equivalent to the initial
probability, such that the discounted price processes are martingales. Several price systems
are associated by duality to those martingale measures. Thus in this situation there is a price
range for the actual market price of the contingent claim.

In 2, we study the maximum price using stochastic control methods. We show that the
maximum price can be written as the difference of the (discounted) value of a portfolio and an
optional increasing process that is equal to zero at time zero. We then state that the maximum
price is the selling price defined as the smallest price that allows the seller to hedge completely
by a controlled portfolio of the basic securities. A similar result is obtained for the minimum
price (which corresponds to the purchase price). We also state that the class of contingent
claims for which the supremum price is obtained for an optimal martingale measure is exactly
the set of attainable claims.

In 3, we give a few methods for computing the maximum price (approximation methods,
use of Bellman equations in the Markovian case). We also give two examples that illustrate
the obtained results.
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1. Formulation of the problem.

1.1. The model. The basic securities consist of n + assets; they are the only assets
that are available to agents for trading. One of them is a nonrisky asset (the bond), with
price-per-unit Po(t) governed by the equation

(1) dPo(t) Po(t)r(t)dt.

The interest rate r(t) is positive and bounded.
In addition to the bond, there are n risky securities (stocks). The price Pi(t) for one share

of the ith stock is modeled by the linear stochastic differential equation

(2) dP(t) P(t) b(t)dt + Z cr,J (t)dWt
j--1

The information structure is modeled by a filtration (Ft, 0 <_ t < T) that satisfies the
standard hypotheses and is left quasi-continuous. The coefficients of the model r, hi, cri,j
are taken to be predictable with respect to {Ft}. W (W1,..., Wa)* is a d-dimensional
(Ft)-Brownian motion under P, with the "objective" probability taken as a primitive. We
suppose that n _< d.

To be a reasonable model of securities markets, the prices of the basic securities should
not allow one to create something out of nothing or to create free lunches. Thus, we will
suppose the existence of d coefficients 0, 02,..., Oa that are (Ft)-predictable processes such
that

d

bi(t) r(t) crij(t)Oj(t),
j=l

P a.s., <i<n.

Oj(t) represents the risk premium associated with the source of uncertainty Wj; we suppose
that Oj is bounded.

We adopt the following notation and make the following assumptions"
We denote by b the column vector of stock appreciation rates b (b,..., bn)*.
For <_ < n, let cri be the volatility row vector of the ith stock cri (O’i,1,... Oi,n)
Let or(t) be the volatility (n x d) matrix whose rows are o-(t),..., crn(t), or(t) is

supposed to be bounded.
Let Ot be the relative risk column vector 0 (01,02,..., 0a)*.

If we denote by 1 the vector whose every component is 1, the above equations are
written as

b(t) rt l crtOt, P a.s.

Furthermore, we will suppose that there exists a predictable vector ct for which Ot cr ct.
(This hypothesis, which is not restrictive, will be explained in 1.8.)

Remark. Notice that if at is taken to be injective, the above hypotheses are satisfied.
In the next section, we recall the characteristics of portfolios.

For information concerning the equivalence between the assumption of no arbitrage and the existence of 0, one
is referred to [F6-Sc], [H-J-M], [An-St]. We thank the reviewers for the following references concerning this point:
[Ch-Mul, [He-Pe], [Sch].
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1.2. The portfolios. Let us consider an investor who can invest in the n + basic secu-
rities. At time 0, he invests the amount x > 0 in the n + securities. We shall denote by X (t)
the value of the amount invested at time t in the n + securities; X(0) x. For 1,..., d,
we denote by Try(t) the amount that he invests in the ith stock at time t.

DEFINITION 1.2.1. A portfolio strategy 7r(t) (71-1(t),... 71-n(t)) 0 t T, is an
Rn-valued process that is predictable with respect to (Ft) and satisfies

The amount invested in the bond at time t is then given by

i=1

Let N(t) be the cumulative total sum of additional amounts that have been invested by the
agent in the n + securities between 0 and t; N is a right-continuous left-limited (RCLL),
(Ft)-optional process that satisfies No O.

The value of the portfolio X(t) is given by

dXt Z ri(t)[bi(t) + cri(t)dWt] + Xt Z ri(t) r(t)dt + dNt,
i=1 i=1

or equivalently,

dXt rtXtdt + 7c;(bt re 1)dr + r; atdWt + dNt.

Remark. Loosely speaking, dNt is the amount saved (or consumed if negative) during
the time period It, t + dt].

We denote by X,N,x (t) the value of the portfolio corresponding to the strategy (Tr, N)
and the initial investment x.

If N 0, the portfolio is called self-financing, then X’,x (t) is the value at time t of
the self-financing portfolio corresponding to the initial investment x and the portfolio

If Nt -Ct, where (Ct, 0 < t <_ T) is an RCLL, (Ft)-optional increasing process
that satisfies Co 0, the portfolio is called aportfolio strategy with consumption; X’-c,x

is the value at time t of the portfolio corresponding to the initial investment x, the portfolio
7r, and the process Ct that represents the cumulative amount the agent withdraws up to time t
for consumption:

If Nt Dt where (Dr, 0 <_ t <_ T) is an RCLL, (Ft)-optional increasing process that
satisfies Do 0, the portfolio is called a portfolio strategy with savings; x’D’(t) is the
value at time t of the portfolio corresponding to the initial investment x, the portfolio 7r, and
the process Dt that represents the cumulative amount the agent adds in the portfolio up to
time t.

1.3. Contingent claim/3, selling price. Let T, a positive constant, be the terminal time
for the problem.

DEFINITION 1.3.1. A contingent claim/3 is a nonnegative, FT-measurable random vari-
able. It can be thought ofas a contract or agreement that pays/3 at maturity T.

The problem is to price this contingent claim. Let us consider a seller who wants to sell
some contingent claim with payoff/3 and maturity T, between time 0 and time T. Suppose the
seller chooses the price Yt for/3 at any time t; more precisely, the seller must choose his price
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process (Yt, t _> 0) (i.e., an RCLL optional nonnegative process that satisfies YT =/3). Also,
the seller does not want to run any risk of losing money. Therefore, he will only choose price
processes that allow him to hedge completely by a controlled portfolio of the basic securities
in the sense that, if at any time t, he sells the option/3, and if at a later date, he buys it back, he
wants to make a profit. More precisely, suppose that at time t, the seller sells the contingent
claim at the price Yr. He then invests this amount in the self-financing portfolio determined by
7ft. At time t / dr, he buys back the contingent claim at the price Yt+at and sells the portfolio;
he then makes a profit equal to

r, dt + ;,(dWt + O, dr) d.

Hence, we have the following definition.
DEFINITION 1.3.2. A process Y is called a price admissible for sellers ifY is an RCLL

nonnegative optionalprocess that satisfies YT --/3 and such that there exist aportfolioprocess
7vt and an RCLL, (Ft)-optional increasing process (Ct, 0 <_ t <_ T) such that Co 0 and
dY rYt dt + 7v; ch(dWt + Ot dr) dot.

Remark. It is equivalent to say that a process Y is a price admissible for sellers if there
exists a hedging portfolio of/3 that is a portfolio with consumption (i.e., with withdrawals)
whose value is equal to the price, that is, if there exists a portfolio process 7r, and an RCLL, (Ft)-
optional increasing process (C,, 0 _< t _< T) that satisfies Co 0 and an initial investment x
such that

X’-c’(T) B and Y X’-c’(t) >_ 0, 0<t<T.

Note that every price admissible for sellers corresponds to one (and only one) hedging portfolio
with consumption.

For the seller who sells the contingent claim/3 to an investor, such a strategy can be
interpreted as follows"

x is the price paid by the investor to the seller at time 0.
7r characterizes the hedging portfolio held by the seller.
C(t) represents the cumulative amount the seller withdraws from the hedging portfolio

up to time t (which should be given to the investor, and since it is not, it is a profit for the
seller).

Hence, it follows that x is the price paid not only for getting/3 at maturity T but also for
getting additional amounts represented by the process (C(t), 0 _< t _< T). Also, the seller’s
price will be the lowest price admissible for sellers. Thus, we define the selling price by
Definition 1.3.3.

DEFINITION 1.3.3. If it exists, the lowest price process admissiblefor sellers is called the
selling price.

Remark 1. We will see in 2 that such a process always exists, which is not obvious.
Remark 2. We could have defined the selling price as the essential infimum of the price

processes admissible for sellers (but this would not define a stochastic process).
(Note that by symmetry, we can define the purchase price for/3; it will be studied in 4.)

1.4. Discounting. Let/3 be the discount process given by

}/3t-exp rds O <_ t <_ T.

We denote by Pa(t), 7ra(t), Ca(t) the discounted price process, the discounted portfolio
process associated with the portfolio 7r(t), and the discounted consumption process associated
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with the consumption C(t), respectively. For 0 < t _< T, we have

Pa(t) tP(t) (1 < < n),

We have the following equation for the discounted price process"

(3) dP(t) Pa(t)[(b(t) r(t))dt +
The discounted value of the portfolio with withdrawals Xd associated with the portfolio-
consumption strategy (Trt, Ct) is governed by the equation

 )dt + dC ,
that is,

(4) dXtd (rta)*crt(0t dt + dWt) dCdt
Also, for a contingent claim/3, we denote by/3d the discounted contingent claim

/3d /T/3-

We now come back to the problem of pricing the contingent claim/3 from the price
dynamics of the n + securities. We begin by recalling the theory of contingent claim
valuation in the context of a complete market (see [Ha-Kr], [Ha-P1], [Duf], and [Karl). It is
well known that the reference probability Q defined below has a fundamental role. Hereafter,
we will often use the Girsanov theorem. (See A.1, where we recall a general form of this
theorem.)

1.5. The reference probability Q.
Notation. Let Nt be a local martingale (RCLL) under P with respect to {Ft }, such that

No 0. We denote by (N)t the exponential of N, that is, the solution of the stochastic
differential equation (SDE)

dZt Zt- dNt, O <_ t <_ T, Zo 1.

This process is a local martingale under P.
Let Zo(t) be the exponential local martingale of

(/0 )02 dW, 0 <_ t < T

that is,

{ f0 lff0t }Zo(t) exp 0; dWs - I]Osll 2 ds

Because 0 is bounded, Zo(t), 0 <_ t <_ T is martingale under P.
We then define Q as the probability measure equivalent to P on FT that admits the

Radon-Nikodym derivative Zo(T). Let

Wt Wt + Osds, 0<t<T.
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By the Girsanov theorem, (Wt, 0 <_ t <_ T) is an (Ft)-Brownian motion under Q.
The SDE (3) relative to the discounted prices may be written as

()

Also, the discounted value Xa of the portfolio with withdrawals associated with the portfolio
7rt, consumption Ct, and initial investment x is given by

(6) Xta-x+ (Trff)*crsds-Cta, Qa.s., 0<_t_<T.

Notice that the prices of the basic securities are Q-martingales and the prices (of the contingent
claim) admissible for sellers are Q-supermartingales.

1.6. Pricing in a complete market. We review briefly in this section important results
for use later in the treatment of the incomplete market case.

DEFINITION 1.6.1. The security market is said to be complete if the filtration (Ft) is that
generated by the Brownian motion Wt, n d, and cr has full rank. It means that all the
sources of uncertainty can be explained by the price dynamics of the basic securities. If it is
not complete, the market will be called incomplete.

Recall that if the market is complete, it is possible to construct a portfolio that attains as
its final wealth any contingent chain B that is integrable under Q, that is, there exist some
x >_ 0 and some portfolio (nt) satisfying

T

:c + (r)* dW,

and such that the process defined by

0<t<T

is a martingale under Q.
It is clear that z EQ (Ba). This property allows us to derive the price for any contingent

claim from an absence of arbitrage.
PROPOSITION 1.6.1. In a complete market, every contingent claim (Q-integrable) ispriced

by arbitrage. This price is given by the expectation of the discounted contingent claim under
Q, which is the unique probability measure under which the discounted prices of the basic
stocks are martingales.

Proof. Let PB be the price for the contingent claim B. Suppose that PB is strictly greater
than Ec2(Ba); then there exists some opportunity for arbitrage. For example, you can sell the
contingent claim at t 0 at the price PB and invest the amount P in the hedging portfolio
determined by 7r. At time T, you pay the amount B to your buyer and sell the portfolio, whose
value is given by

From an initial wealth equal to 0, at time T, you make a strictly positive profit equal
to (/3T) -1 (PB z). Also, if P < Ec(Ba), there exists an arbitrage opportunity. Hence,
p. ee(.).
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The fact that Q is the unique probability that is equivalent to P such that the discounted
price processes of the basic stocks are martingales can be easily proved using the Girsanov
theorem. (The proof is similar to that of Proposition 1.8.1.) []

Remark 1. The price at time t for the contingent claim B can be determined by an absence
of arbitrage and it is given by Ec[Ba/Ft].

Remark 2. It should be emphasized that the price system is associated by duality to
the probability measure Q, which is equivalent to P and under which the discounted price
processes are martingales.

Remark 3. In the case of a complete market, the arbitrage-free price coincides with the
selling price. The hedging portfolio is a self-financing portfolio associated with the portfolio
process 7r and the initial investment z. Clearly, if the market is complete the consumption pro-
cesses are unnecessary since it is always possible to replicate the payoff of a given contingent
claim by a self-financing portfolio. In the complete market contingent claim valuation, notice
the fundamental roles of the construction of a hedging portfolio and the reference probability
Q, which is the unique probability measure equivalent to P and under which the discounted
price processes are martingales. Those remarks should be kept in mind when considering the
more difficult case of an incomplete market.

We now turn to the consideration of an incomplete market. Recall that, contrary to the
complete market case, the price system cannot suffice in itself to give a complete description of
the environment. As a result, agents will not be able to replicate the payoff of every contingent
claim by a self-financing portfolio of the basic securities and to price every contingent claim
by arbitrage. Also, there exist several probability measures that are equivalent to P and under
which the discounted price processes are martingales, associated by duality to different price
systems.

1.7. The P-martingale measures and the attainable contingent claims.
DEFINITION 1.7.1. Any probability measure that is equivalent to P on FT and is such that

the discounted price processes (ofthe basic claims) are martingales is called a P-martingale
measure.

We denote by 79 the set of all P-martingale measures. Notice that Q belongs to 79 and
that, if the market is complete, 79 {Q}. If the market is incomplete, there are several
P-martingale measures. Each martingale measure can naturally be associated by duality with
a price system (for more details see [Ha-Kr]).

Assumption. Hereafter, the contingent claim/3 is supposed to be such that there exists a
price admissible for sellers, or equivalently/3 is supposed to be smaller than the value of a
self-financing portfolio, that is,/3 satisfies

B xH’’Y(T), P a.s.

for some portfolio strategy H and initial investment y > 0. Also, we make the following
technical assumption: (xH’’v)a is supposed to be a square-integrable martingale under
each P-martingale measure. This assumption will allow us to work with square integrable
martingales but the main results of this paper remain true under the weaker hypothesis (see
A.3).

sup EI(Ba) < +oc.

DEFINITION 1.7.2. Every real that can be written ER(t3d), where R is a P-martingale
measure, is called a possible price at time t 0 for B.

More generally, any random variable EI(Bd/Ft), where R is a P-martingale measure,
is called a possible price at time t for B. However, there exists a class of contingent claims
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such that the price is unique, that is, the set of possible prices contains a unique element. We
will show that this class is exactly the set of contingent claims that can be synthetized by a
controlled portfolio of the basic securities (called "attainable").

DEFINITION 1.7.3. A contingent claim B is said to be attainable ifthere exist some x >_ 0
and some portfolio process r such that

T

t z + ()*

and

[/oT ]ds < +x.

As in the complete market case, an attainable contingent claim /3 can be priced by
arbitrage; therefore, z Ec2(/3a) is the arbitrage-free price at t 0. Also, we state the
following property.

PROPOSITION 1.7.1. /3 is attainable if and only if ER(/3d) is constant over all R E T2,
that is, there is only one possible price.

Remark. We show only one implication. The opposite implication follows from
Theorem 2.3.2.

Proof. Let x >_ 0 and a portfolio process 7r such that

T

e. +

and

Let R be a P-martingale measure. The discounted prices P(t) are martingales under R.
Hence, the process defined by

0<t<T

is clearly a local martingale under R. It is lower than (xH’’v) a, the discounted value of
the portfolio (associated with H and y), because it is equal to Ec2[Ba/Ft]. Therefore, it is a
martingale under R (by Proposition 1.a in the Appendix) because (XI-I,,v) a is a martingale
under R. Hence, EI(Bd) x. []

Remark. If/3 is attainable, then the price for B at t _> 0 can be derived by an absence
of arbitrage and El[/3a/Ft] does not depend on R E 79, that is, the set of possible prices
contains only one element given by

d* dX -+- u O-u

If/3 is not attainable, there are several prices for/3 and/3 cannot be priced by arbitrage.
Thus, it seems interesting to determine the bounds of the set of possible prices for/3. At t 0,
the price for/3 is worth not less than inf/ E(/3a) and not more than sup



PROGRAMMING AND PRICING IN AN INCOMPLETE MARKET 37

Using optimal control techniques, we shall study dynamically those maximum and minimum
prices. In particular, we shall show that the supremum of the possible prices is equal to the
selling price.

Before proceeding with the analysis of the maximum price, let us characterize the set of P-
martingale measures. Recall that Pagbs [Pag] has already characterized this set in the context
of a Brownian model (see also [KLSX] for utility maximization problems in that context).
Also, Ansel and Stricker JAn-St] have shown that the market model contains no arbitrage
opportunities if and only if 7-) is nonempty. Furthermore, they have characterized the set of P-
martingale measures in a different context: n and the price process (one-dimensional) is
supposed to be any continuous semimartingale (actually, the arbitrage-free hypothesis implies
that it can be written M / f asdIM)s for some continuous local martingale M and some
predictable process a).

1.8. Characterization of the P-martingale measures.
PROPOSITION 1.8.1. Thefollowing properties are equivalent:
(i) R is a P-martingale measure.
(ii) R is a probability equivalent to P that admits the density

ow + :v
dP FT T

where Nt is a local martingale that is orthogonal (in the quadratic variation sense) to the
prices of the basic securities

N, cri(s)dWs -0 Vi {1,2,...,n}, Qa.s.

Proof. Let us show that (i) and (ii) are equivalent. Let R be some probability measure
that is equivalent to P on FT. Put

dR
Lt -ffi O <_ t <_ T.

Lt is a strictly positive martingale under P. We introduce the local martingale M given by

Mt dL 0 < t < T,

so that

Lt (M)t, 0 < t < T.

Note that, for any <_ n, Pff(t) is continuous, and hence locally bounded; therefore, by
Proposition 1.b in the Appendix, it follows that (M, Pff) exists. By the Girsanov theorem
(Appendix Corollary 1.A (i)), for any 1,..., n, Pff (t) is a local martingale under R if and
only if

(bi(t) rt)dt + d M, cr(s)dW O,

which can also be written, because b r 0, as

M + O d5, (s)dW O, P a.s.
T

The result therefore follows.
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In particular, the reference probability Q is an equivalent martingale measure. Also, if
we suppose that 0 belongs to the range of r*, then Q is a minimal P-martingale measure, in
the following sense (see [F6-Sc] or [An-St]).

DEFINITION 1.8.1. A P-martingale measure R will be called minimal if any local P-
martingale that is orthogonal to f cr dW,for <_ <_ n, under P, remains a local martingale
under R.

We state the following property.
PROPOSITION 1.8.2. Thefollowing properties are equivalent:
(i) Q is a minimal probability.
(ii) There is a predictable vector process at such that Ot
Remark. Suppose that (i) or (ii) is satisfied. Let R be a P-martingale measure. By Propo-

sition 1.8.1, there exists some local martingale N with No 0, orthogonal to f
_< n, such that

Recall that

dR
dP O dW + N

T

FT

If N is locally square integrable, then R is minimal if and only if N 0, that is, R Q.
Indeed, ifR is minimal, then N is a local martingale under R (because it is a local P-martingale
orthogonal to f ri dW, < < n). If N is supposed to be locally square integrable, then
(-f O* dW + N, N} exists and we can apply the Girsanov theorem (Appendix Corollary
1.A (i))

(-JO*dW+N, N}-O,
that is, (N, N) 0 (because Ot croat). Hence, N 0.

Proof. The definition gives that the fact that Q is minimal is equivalent to the following
property"

(**) Any local P-martingale orthogonal to f r dW, for <_ < n, is a local martingale
under Q.

By the Girsanov theorem, Corollary 1.A (i), property (**) is equivalent to the following
one. Any local P-martingale orthogonal to f cr dW, <_ <_ n, is orthogonal to f O* dW.
By some results on stable subspaces of martingales and orthogonality (see [De-Me, pp. 371,
372, VIII-46-VIII-49]), (**) is equivalent to the fact that f O* dW belongs to the space
generated by f r dW, <_ <_ n, which is equivalent to the existence of n predictable
processes o (t), < < n, such that

that is, Ot (rct where ct (cl(t),..., cn(t))*. []

Hereafter, the above hypothesis ((i) or (ii)) is supposed to be satisfied. 2

Actually, this is not restrictive because if this hypothesis is not satisfied, just replace Ot by its orthogonal
projection 0J on the range of cry’ in all the equations (indeed, crtOt rtO).
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We introduce the following notation.
Notation. We denote by D the set of local (Ft)-martingales (Nt, 0 <_ t <_ T), with

No 0, satisfying the following three properties.
(i) The jumps of N are strictly greater than -1 so that c(N)t, 0 <_ t < T, is a strictly

positive local martingale.
(ii) c(N)t, 0 <_ t <_ T, is a martingale under Q.
(iii)

(N, fo’ Cr(s)d}T O Vi(1,2,...,n}, Qa.s.

For any local (Ft)-martingale N belonging to D, define Qv as the probability measure
equivalent to Q that admits g(N)T as a Radon-Nikodym derivative with respect to Q on F7.
QV is then a P-martingale measure.

PROPOSITION 1.8.3. The mapping N --+ QN is a one-to-one mapping that carries D
onto 79

Proof We have clearly

T T

Indeed, (N, f O dWu} 0 because it is supposed that Ot tricot. The result now follows
easily. []

Hereafter, to simplify notation, we will suppose that r 0. Then the SDEs relative to
the prices are written as’

dP(t) P(t)cr(t)dWt.

Also, the value X,-c,x (t) of the portfolio with consumption associated with portfolio
7r, consumption (7, and initial investment :c is given by

x2 + [0, a.s.

This seems highly restrictive but it is not. All the results we obtain can be generalized
to the case r - O. In all the properties, just replace B by Ba and the prices, portfolio, and
consumption processes by the discounted processes defined above.

We now turn to the study of the maximum price.

2. Dynamical study of the maximum price.

2.1. Predictable decomposition of the maximum price. The supremum of the possible
prices for/3 at time 0 is given by

sup E(B)- sup Ec2N(B).
RET) NED

Also, the essential supremum of the possible prices for/3 at time t is given by

ess sup EI(B/Ft) ess sup Ec2u (B/Ft).
RE7z’ NED

Using dynamical programming methods (see [ELK]), we have the following theorem. (The
proof is given in the appendix.)
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THEOREM 2.1.1. There exists an RCLL process (Jr, 0 <_ t <_ T) so that, for each t

dt ess sup EQu [13/Ft].
ND

Jt is characterized as the smallest right continuous supermartingale under QN,for every N
belonging to D, which is equal to 13 at time T. Also, N* is optimal (i.e., Jt EQN, (B/Ft),
Q a.s., 0 <_ t <_ T) ifand only if Jt is a martingale under QN*.

Before continuing the dynamical study of Jr, recall the hypothesis satisfied by 13 (intro-
duced in 1.7):

T

B <_ y + H2cr dW,

where y is a positive constant and Ht is a portfolio process that satisfies

T

for each N E D.
This hypothesis implies the following result.
PROPOSITION 2.1.1. Jt is of class D and satisfies

Jt < Y + H2 o- dW, Q a.s., O<t<_T.

Proof. The process given by

y + H2a dW

is a square integrable martingale under each P-martingale measure. Thus, for each N E D,

EQ [B/Ft] < y + H:o dW, Qa.s., O<tGT,

and the desired result clearly follows. []

The fact that Jt is a supermartingale under Q shows that Jt can be written under Q as
the difference between a local Q-martingale and a predictable increasing process (and this

decomposition is unique). The above properties relative to Jt will allow us to write the
Q-martingale as the sum of a portfolio and a martingale j that may be characterized.

THEOREM 2.1.2. There exist a portfolio process g)t, a right continuous increasing pre-
dictable process At with Ao O, and a purely discontinuous Q-martingale jt such that

(7) V t [0, T], Jt Jo + *cr dW + jt At, Q a.s.

Remark. Notice that the assumption made on 13 is not necessary. Theorem 2.1.2 remains
true under the hypothesis

sup
NED
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but in this case Jt is not generally of class D and the process j is only a local martingale. The
arguments of the proof still hold, but it is a bit more complicated technically because/J) is
not always defined (see A.3).

Scheme ofthe proof. Jt is a Q-supermartingale; hence, it admits a unique decomposition
as a local martingale Mt minus an increasing predictable process At Jt Mt At. The
martingale Mt admits the Kunita-Watanabe decomposition

M Jo + *cr dW + jt V t E [O, T], Qa.s.

for some predictable process ? and some Q-local martingale j, such that

)j, cr(s)dW -0, Qa.s. Vi{1,...,n}.

Using the fact that Jt is a supermartingale under each P-martingale measure, we show
that the continuous part of j is equal to zero.

Proof. J EQ [B/Ft] is a positive RCLL optional supermartingale that is equal to zero at
time T and lower than the Q-martingale xH’’Y. By the Doob-Meyer decomposition theorem
(cf. [De-Me, Thin. VII.8, p. 211]), there exists a Q-integrable right continuous increasing
predictable process A with A0 0 such that

E [Av/F ] A,, 0 T.

AT is square integrable under Q since

e[(d):] 4 [( up d,):] a e[(X’’):]
0<t<T

(see [De-Me, inequality VII. 15.1, p. 221 ]).
Put Mt EQ[AT + B/Ft], 0 <_ t < T. Mt Jt + At is square integrablb martingale

under Q; hence, (M) exists. Thus, Mt admits the Kunita-Watanabe decomposition with
respect to the Q-square integrable martingales f r dWt, that is, there exist a predictable
process t and a square integrable Q-martingale (RCLL) jt with j0 0 such that

and

[/0T

j, cri(s)dWs -0, Qa.s. Viz {1,...,n},
T

Mt Jo + *cr dWs + j V t [0, T], Qa.s.

(for the Kunita-Watanabe decompositions, see [De-Me, p. 374, VIII-52]).
Now, j can be written as the sum of its continuous martingale part jc and its purely

discontinuous martingale part jd

j_jc+jd.

It remains to be shown that j is equal to zero.
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This result can be obtained using the following lemma (which comes from the fact that
Jt is a supermartingale under each P-martingale measure).

LEMMA 2.1.1. For all N E D, At (N,j)t is an increasing process.
Proof. By Theorem 2.1.1, we have the following property: for each N D, Jt is a

supermartingale under QN. By the Girsanov theorem (Corollary 1A (ii) in the Appendix),
this property is equivalent to the following:

V N D, At + (N, M) is a decreasing process,

which may be written, because N D, as

V N D, At (N, j)t is an increasing process. []

Lemma 2.1. l, applied to some N that can be written as a stochastic integral with respect
to jc, will allow us to show that jc is equal to zero. We take

where n is a bounded predictable process. If (N)t is a martingale, then N belongs to D and
Lemma 2.1.1 applied to N yields the fact that A f ns d(j)s is increasing. It now remains
to decompose the measure dAt with respect to d(j)t and to choose n.

(j) is integrable because j is square integrable. By the Lebesgue decomposition theorem,
there exist a positive predictable process h which belongs to LI([0, T] f.,d(j)t dQ) and
an integrable predictable increasing process B such that

dAt htd(jC)t + dBt

and such that, Q almost surely, the measure dBt is singular with respect to d(j)t. For each
integer p, we can write the following decomposition:

dAt ht l{h(t)<_p}d(j)t + dB,
where, Q almost surely, the measure dtp is singular with respect to the measure

l{h(t)<_p}d(j)t
Let N be given by

Nt l{hs<p}(1 + h)dj.

Clearly, we may choose a sequence of stopping times T,, n >_ 0, such that Tn T T almost
surely as n tends to infinity and for each n I, g(N)Tn (__ (NTn)) is a martingale. Thus,
for each n i, NTn belongs to D. Lemma 2.1.1 applied to NT shows that for each
n :., At (NT,j)t is an increasing process. Hence, for each n N, ATn (N,j)T is
an increasing process and thus A (N, j) is an increasing process.

Because, Q almost surely, the measure dBp is singular with respect to the measure

l{h(t)<_p}d(jC)t, it follows that the process given by

l{hs<p}hsd(j l{h_<p}(1 + h)d(jC)

is an increasing process. Hence, for all p i, Q almost surely, -(j)t is increasing on

{t/h(t) <_ p} and this yields the equality

Hence, j 0. []
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2.2. The Brownian case. We now turn to the case when the filtration is generated by
the Brownian motion. In this case, Theorem 2.1.2 takes a more simple form: j is equal to
zero because every local martingale is continuous. Thus, the maximum price process can be
written as the difference of a self-financing portfolio and a predictable increasing process that
is equal to zero at time zero. This remarkable decomposition should be stressed; it is similar
to that of the price for an American option in a complete market. (One is referred to the theory
of American option pricing [Kar].)

THEOREM 2.2.1. There exist a portfolio process t and an increasing (Ft)-predictable
right continuous process At with Ao 0 such that

(8) V t E [0, T], Jt Jo + * or, dW, At, Q q.s.

Remark. Because the process At is predictable, we can consider only portfolios with
consumption for which the consumption process is predictable. We have the following corol-
laries.

COROLLARY 2.2.1. Jt is the lowest price process admissible for sellers; it is the selling
pricefor 13.

Proof. Jt is a price process admissible for sellers because
t is a portfolio process,
At is an optional (because it is predictable) RCLL increasing process with A0 0, and
Jt is positive and JT B.

Let us show that it is the lowest, that is, that for every price process admissible for sellers
Xt, we have Jt <_ Xt. Let Xt be a price process admissible for sellers. Suppose that X
is a supermartingale under any P-martingale measure. Then, by the characterization of Jt
(Theorem 2.1.1), it follows that Jt _< Xt. It remains to show that X is a supermartingale
under every P-martingale measure. Now, X is a positive process such that XT 13 and
such that there exist a portfolio process 7r and an RCLL optional increasing process Ct with
Co 0 satisfying Xt X’-c’x (t) (the value of the portfolio with consumption associated
with (rrt, C)), that is,

Xt z + 7r, dW Ct > O, Q a.s.

Let N be a local martingale of D. Under QN, x + f0 7rcrd is a positive local
martingale, hence, a supermartingale. Also, CT is integrable under QN. Hence, X is a
supermartingale under QN. []

2.3. Optional decomposition of the maximum price. When the filtration is not that
generated by the Brownian motion, j is not equal to zero, as is shown by example 2 in 3.4.
As a result of the constraint AN > -1, Lemma 2.1.1 does not imply that j is equal to
zero. Thus, the predictable decomposition of Jt under Q is not the good one. The good
decomposition will be the optional decomposition (Theorem 2.3.1). Using Lemma 2.1.1 (in
other words, the fact that Jt is a supermartingale under each P-martingale measure), we
will show that jt is a process with negative jumps only such that the process f defined by
ft At j is a nondecreasing process.

Let us decompose j with respect to the sign of its jumps:

j=j+ +j-,

where j+ (respectively, j-) is the compensated integral of l{/xj(t)>0} (respectively,
l{Aj(t)<O}) with respect to j, that is,

j+ l{/xj>0} j; j- I{Aj<O} j.
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Notice that j+ and j- are square integrable martingales.
Concerning j+, the part of j corresponding to the positive jumps of j, Lemma 2.1.1

applied to a well-chosen local martingale N will allow us to show that j+ 0. (The proof is
the same as that for jc 0 in the proof of Theorem 2.1.2.)

PROPOSITION 2.3.1. Thejumps of the purely discontinuous martingale j are negative.
+Proof. We take Nt fo rs dis where n is a bounded positive predictable process.

Notice that N is a square integrable martingale that admits only positive jumps.
It now remains to decompose the measure dAt with respect to d(j+)t and choose the

process rt. Using the same arguments as those used in the proof of Theorem 2.1.2 (replacing
j by j+), we obtain the desired result. []

We now come to the most important result, which will allow us to characterize the
supremum of the possible prices for B.

THEOREM 2.3.1. The process At jt is an increasing process, hence, if we denote it

byft,

(9) Vt e [0, T], Jt Jo + g)*cr dW ft, Q a.s.

In particular,

T

B- Jo+

Remark. The results of Proposition 2.3.1 and Theorem 2.3.1 still hold under the weaker
hypothesis

sup ECN B <
NED

(see A.3).
Proof. Put ft At jr. By definition, f is an RCLL process. Hereafter, we will adopt

the following notation: for any locally integrable finite variation RCLL adapted process V,
we denote by VP its predictable compensator.

For any g C ]0, 1[, define

and jg ug (ug) f’. Recall the following result (see [De-Me, p. 369, VII-44])" jg locally
converges in M to j as g --, 0, that is, there exists a sequence of stopping times T, k c ,
such that T T T almost surely as k tends to infinity and for every k B3,

E[ sup (j)] <
s<Tk

and

lim E[sup J[-Jl]-o.
g---,O s<_Tk

Suppose we have shown that for all g ]0, 1[, At + (u)t is an increasing process. Put
f A j. We have ft (At + (u)) ut. The fact that the jumps of j are negative
shows that u is a decreasing process. Hence, fe is an increasing process.
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We have f(t) f (t) + j (t) j(t). Using the above property of convergence, it fol-
lows that

lim E[ sup If[ fsI] 0.
8--0 s<_Tk

Hence, f is an increasing process as the limit of increasing processes.
It remains to be shown that for all E ]0, 1[, At + (ug)ff is an increasing process.
For any g E ]0, [, define

Nt Z lzxjs<- + lzxjs<-g
s<_t s_t

Because the filtration is left quasi-continuous,

INs,j] _s, hence (NS,j) -().
Then it is clear that Lemma 2.1.1 applied to Ns shows that the process A + (us) is an
increasing process. However, Ns does not belong to D because Ns admits only jumps equal
to -1. To solve this, put

N=Ns for0<< 1,

so that AN > -1.
Now, we may choose a sequence of stopping times %, n _> 0, such that % T T almost

surely as n tends to infinity and for each n N, Co(N)Tn (= (NTn)) is a martingale. Thus,
for each n I, N% belongs to D. Lemma 2.1.1 applied to N7; shows that for each
n I, A% (N, j)% is an increasing process; hence, A (N, j) is an increasing process,
that is, A + a(u)P is an increasing process for each a < 1. Hence, A + (us) is an increas-
ing process. []

To explain the consequences of the preceding theorem, we begin with the following
corollary.

COROLLARY 2.3.1. Jt is the lowest price process admissible for sellers; it is the selling
price for 13.

Proof The proof is similar to that of Corollary 2.2.1. []

The dynamic hedging strategy adopted by the seller happens continuously in time. At
t 0, the seller sells the claim at J0. He invests this amount in the hedging portfolio
(determined by ). At time t > 0, the value of the self-financing portfolio determined by
and J0 is greater than the price for/3 at time t; hence, between 0 and t, the seller has withdrawn
from the portfolio the nonnegative amount given by

Jo + * dWs Jt.

At time t, the amount invested in the portfolio is only equal to Jr. At time s > t, the value of
the self-financing portfolio determined by and J,

Jt + cr dW,

is greater than the price for 13 at time s (J); between t and s, the seller has withdrawn the
amount

d, + ;dW &
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from his portfolio. At time s, the amount invested in the portfolio is only equal to Js, and
so on.

The readjustments have to be done continuously in time so that the withdrawals correspond
to the process ft, which represents the cumulative amount withdrawn from the portfolio
between 0 and t. As time passes, the amount invested in the portfolio is too high, so the seller
withdraws some money from the portfolio that should be given to the buyer, which, because
it is not, is a profit for the seller.

COROLLARY 2.3.2. (1) For each N E D, EQN [/3] Jo EQN [fT].
(2) Let Nn, n >_ O, be an optimizing sequence ofD, that is, such that

lim EQNn [B] d0.

Then

lim EQNn (fT) O.

Remark 1. If B is only supposed to satisfy

sup
NED

then the second point of this corollary still holds but the first one does not (see A.3).
Remark 2. If QN converges in a certain sense to a limit probability Q0 and if fT is

smooth enough, then we have Eo0[f:r] 0. In this case, Jt is a martingale under Q0, but
this limit probability is not necessarily equivalent to Q, as is shown by example 2 in 3.4.
More generally, if there exists a subsequence still denoted by Nn such that g(Nn)T converges
almost surely and if the limit is denoted by L*, then fT 0 on {L* > 0).

Proofof (1). We denote by Vt the process

/0Jo + dW .

Let N be an element of D. Vt is a positive continuous QN-local martingale, hence, a QN_
supermartingale, fT" is QN-integrable because VT and B are QN-integrable. We have, by the
assumption made on B,

sup Vt _< sup (Jr + ft) <_ sup (xI-l’’v (t)) + fT.
tE[O,T]

Now, xl4’’v(t) is a square integrable QU-martingale; hence, suPt (X/-/’’Y(t)) is square
integrable under QN. Hence, Vt is a uniformly integrable local martingale under QN, and
thus it is a QN-martingale. It follows that for each N E D,

Proofof (2). Equality (1) applied to the local martingales Nn gives the equalities

Hence, if we let n tend to +oc, we obtain the desired result of

lim ENn If7] 0. []
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In the following theorem, we state that the class of contingent claims for which the
supremum price is obtained for an optimal N is exactly the set of attainable claims. This
result generalized those of Pages [Pag] and Karatzas et al. ([KLSX, Thm. 8.5]) in the context
of a Brownian model.

THEOREM 2.3.2. Thefollowing properties are equivalent.
(i) SUPND E(N [B] is attained by N D.
(ii) 13 is attainable, that is, there exist a constant x and a portfolio 7r such that

and

T

[/oT ]Q IIZII2 d < +.

(iii) For each local martingale N E D, EC2N (B) E (B).
Remark. If B is only supposed to satisfy

sup EQN (B) < +oc
NCD

then only a part of this theorem still holds (see A.3).
Proof. Let us show that (ii) (iii). Suppose that there exist a constant z and a portfolio

7r such that

and

Let St be the process

T

t X + 7ru O"

[/o 112112 d < +,

x + 7c dW, 0 < t <_ T.

St is a square integrable Q-martingale; hence, St Ec[B/Ft]. Therefore, St is positive and
lower than XH,0,v (t).

Let N be an element of D. Under QN, St is a local martingale of class (D), and hence,
a martingale. Also, St is continuous; hence, the processes S and J are indistinguishable.
Notice that we have also shown that each element N of D is optimal, which is equivalent to
(iii).

It remains to show that (i) (ii). Suppose that No is an optimal local martingale of D.
Item (1) of Corollary 2.3.2 applied to No gives

Eo() J0- eo(f),

that is,

eQo(f) =0.
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Hence,

fr-0, Q0a.s.,

that is,

fr-0 Qa.s.

since Q and Q0 are equivalent. []

After the study of the maximum price, we now turn to the study of the minimum price
for B.

2.4. Study of the minimum price. Recall that /3 is lower than Mr where Mt
XI-I,,v(t). Let us determine the buyer’s price for/3. Let us consider a buyer who wants
to buy some contingent claims with payoff/3 and maturity T, between time 0 and time T.
Suppose the buyer chooses the price Xt for/3 at any time t; more precisely, the buyer must
choose his price process (Xt, t >_ 0) (that is, an RCLL optional process lower than Mt with

Xr /3) and a portfolio process 7ct. Also, the buyer does not want to run any risk of
losing money. Therefore, he will only choose strategies that allow him to hedge completely
by the controlled portfolio of the basic securities in the sense that, for any t, any s such that
O<t<s<T.

Suppose that, at time t, the buyer buys the claim at price Xt and sells the self-financing
portfolio (determined by 7r) at price Xt. At time s, he sells the claim at price Xs and buys the
self-financing portfolio; he then makes the profit (nonnegative) given by

X Xt + 7rcr dW

More precisely, the process given by

( /0 dXt Xo + 7rc 0<t<T

is an increasing process.
DEFINITION 2.4.1. A process Xt is called a price process admissible for buyers if

Xt is an RCLL optional process lower than Mt with Xr /3 such that there exist a port-

folio 7rt and an RCLL optional increasing process Dt with Do 0 satisfying dXt
;(dW + O dr) + D.

Remark. It is equivalent to say that a process Xt is a price process admissible for buyers
if there exists a hedging portfolio of/3 that is a portfolio with savings whose value is equal to
the price, that is, if there exist a portfolio process t and an RCLL optional increasing process
Dt with Do 0 satisfying

X’D’x(T)-B and Xt--X’D’x(t), O<_t<_T.

The purchase price is then given by Definition 2.4.2.
DEFINITION 2.4.2. The greatest process admissible for buyers is called the purchase

price.
We have clearly the following property.
PROPOSITION 2.4.1. (i) A process Xt is a price process for/3 admissible for buyers if

and only ifMt Xt is a process price for Mr -/3 admissible for sellers.
(ii) The purchase pricefor/3 is equal to the dfference between Mt and the selling price

for Mr -/3.
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We now turn to the study of the essential infimum of the possible prices for/3. Let
Kt, 0 <_ t _< T, be the right continuous process satisfying

Kt-ess inf EQu[B/
ND

0<t<T.

Notice that the minimum price for B is given by the maximum price for MT B by the
equality

O_<t_<T, Qa.s.

It follows that the properties of K can be derived from those of J.
THEOREM 2.4.1. Kt, 0 <_ t <_ T, is characterized as the greatest right continuous

submartingale under QN, for any N E D, with NT B. Also, N is optimal ifand only if
Kt is a martingale under QN.

THEOREM 2.4.2. There exist a portfolio process Pt and a right continuous increasing
optional process 9 with 9o 0 such that

(10) Kt Ko + po dW + gt, Q a.s., 0 <_ t _< T

Also, there exist a right continuous increasing predictable process/3 with/3o 0 and a

purely discontinuous martingale it with negative jumps such that

gt -it + B, 0 < t <_ T.

COROLLARY 2.4.1. Kt is the greatest of the price processes admissible for buyers, that
is, I4 is the purchase pricefor B.

Remark 1. The properties of/4t can be clearly derived directly without using the prop-
erties of Jt (by the use of stochastic control methods).

Remark 2. The assumption made on B is not necessary to obtain the above results. One
should derive the properties of K directly; the price processes should be supposed to be lower
than ,Q (/3/Ft (instead of Mr).

Now, let us compare the hedging strategies associated with the maximum and minimum
prices to the "optimal" strategy in FSllmer and Schweizer’s sense. Recall that their optimal
strategy is obtained by projecting the Q-martingale EQ[B/Ft] orthogonally on the stable
subspace generated by f c dW, <_ <_ n, that is,

T

where N is a local martingale under Q orthogonal to f cri dW, < <_ n and hence a local
martingale under P, because Q is minimal. EQ[B] is called the "optimal" price for B.

Let us compare the three price-portfolio strategies:
The price-portfolio strategy associated with the "optimal" price for B, whose value of

the self-financing portfolio is given by

"t

+ dW , 0<t<T

and whose price process is given by EQ(B/Ft), 0 <_ t <_ T, is characterized by the fact
that the difference between the value of the self-financing portfolio and the price is a local
martingale under P equal to zero at time zero that is orthogonal to f r dW, <_ <_ n.
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The price-portfolio strategy associated with the maximum price for B, whose value of
the self-financing portfolio is given by

’t

Jo + dW , 0<t<T

and whose price process is given by Jr, 0 <_ t _< T, is characterized by the fact that the
difference between the value of the self-financing portfolio and the price is an increasing
process equal to zero at time zero and by the fact that the price is minimal (in the sense defined
above).

Also, the price-portfolio strategy associated with the minimum price for B is charac-
terized by the fact that the difference between the price and the value of the self-financing
portfolio is an increasing process equal to zero at time zero and by the fact that the price is
maximal (in the sense defined above).

In the next section, we give a few methods for computing the maximum price and a few
examples that illustrate the obtained results.

3. Methods for computing.

3.1. Determination of dt as the limit of a sequence of processes (in the Brownian
case). The selling price for/3 is given by Jr, the essential supremum of En(B/Ft), for
R E 79 (the set of martingale measures). However, Jt is generally difficult to compute. We
may then restrict the control set to 79n, n E N, so that the essential supremum jn taken over
all the elements of 79 is attained. 79 is chosen so that Jt is the limit of J (t) as n tends to
infinity, and we then obtain a sequence approximating J that can be calculated explicitly. We
develop this method in the context of a Brownian model. In this case, every local martingale
is a stochastic integral with respect to a reference martingale (the Brownian); we will see later
that this property allows us to obtain some precise results.

In this section, we will suppose that supn EI(B) < oc and Ec2(B2) < oc. Let us
denote by L2 [0, T] the class of predictable processes satisfying

aoSo

Let K(cr) be the subset of L2[0, T] defined by

u K(cr),= u L2[0, T]/cr(t)u(t)- 0 Vt [O,T], a,So

and

(/0" )r,2d 0 _< t _< T

is a Q martingale.
The following result is clear.
PROPOSITION 3.1.1. Thefollowing properties are equivalent.
(i) N belongs to D.
(ii) There exists u K(cr) such that

’0
Nt u2 dW V t E [O,T], a.s.
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It follows that Jt ess supK() EQ, [t3/Ft], whereQ denotes the probability measure
that admits the following Radon-Nikodym derivative with respect to Q:

exp u2 dW I[ ds

In this context, u can be interpreted as a risk premium vector associated with the risks of
the market that cannot be controlled using the prices of the basic securities (loosely speaking,
those risks are in an another direction). Thus, this risk premium has the role of control in the
determination of the maximum price of the contingent claim.

For any n E N, define K’(a), a subset of K(a) by

Kn(cr) {u K(cr)/llu(t)[ <_ nVt [0, T], a.s.}.

For any n N, let jn (t) be the right continuous process satisfying

Jn(t) ess sup EQ[B/Ft].
K()

It is characterized by the following property (similar to the characterization of J).
PROPOSITION 3.1.2. jn (t) is characterized as the smallest right continuous supermartin-

gale under QU,for every u Kn(cr), with Jn(T) B. Also, u is optimal (i.e., u Kn(cr)
with Jn(t) EQ[B/Ft], 0 <_ t <_ T, a.s.) ifand only if Jn(t) is a martingale under Qu.

The properties relative to J and jn, n N, allow us to state that J is the limit of jn as
n tends to infinity.

THEOREM 3.1.1.

Jr= lim TJn(t) a.s- Vt[0, T].

Proof. Let jo be the process defined by J limn--,+o ]" Jn(t). Let us show that

Jt Jr. We clearly have J < Jr. It remains to show that J >_ Jr.
Jt is an RCLL supermartingale under every Q’, u K(cr) and bounded, because it is

the increasing limit ofRCLL supermartingales. Using this property, one can show quite easily,
by a proof similar to that of Theorem 2.1.2, that J’ is a price process for B admissible for
sellers in the sense that there exist a portfolio process 7r’ and a predictable increasing process
A such that

"t

J J) + (7r2 )*o dW A, O<_t<_T,

hence, Jt <_ J (because Jt is the lowest of the admissible prices). []

Whereas Jt is a priori difficult to calculate, we have a characterization of jn that is linked
to the fact that there exists an optimal control for jn (contrary to J).

THEOREM 3.1.2. There is an optimal control associated with jn.

Proof. The proof is an application of Theorem 3.30 in [ELK]. (Indeed, the model is
strongly dominated and the space to which ut belongs is compact.) []

jn (t) can be determined explicitly as the unique solution of a backward stochastic dif-
ferential equation of the type studied by E. Pardoux and S. G. Peng (see [Pa-Pe]). Thus, we
have, in the general case, a construction of the value function similar to the construction of
the solution of the Hamilton-Jacobi-Bellman equation in the Markovian case. We denote by
1-IKercr(s) the orthogonal projection that maps ]d onto the kernel of ors.
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THEOREM 3.1.3. Let (Xn(t), Yn(t)) be the unique solution of the backward stochastic

differential equation

(1 1) Xy TL 7I’Kercrs (311 d + 2" dW , 0 t T.

Then
(1) X (t) jn (t), 0 <_ t <_ T, almost surely.
(2) If u is an optimal control associated with J(t), then

HKeras (Ysn)
l{y?0}, ds dQ a.s.u n

iiHKer ()

Remark. Thus, we have Jt limn_,+ EO,n(B/Ft and dsdQ almost surely. If
a subsequence of {llun(s)ll, n E N} converges, its limit is equal to 0 or +. Loosely
speaking, we see that the maximum price for the contingent claim is obtained by letting the
norm of the risk premium tend to + or 0.

Proof. Let u be an optimal control associated with jn. Under Q, J is a supermartingale
and admits the following decomposition

d Jg + dW- A?, O<t<T,

where n E L2 [0, T] and A is a predictable increasing process with A (0) 0. Now, J is
a martingale under Q’n; hence, by the Girsanov theorem,

dsd- u 0<t<T.

Let u K (or). J is a supermartingale under Q"; hence, by the Girsanov theorem

(s)*un(s) > (s)*u(s), ds dQ a.s.

Because this inequality holds for each u K (or), we have

(s)*u(s) ess sup
.K()

and

u2 n
IiHKer ()11 1{20}’ ds dQ a.s.

Hence,

0<t<T. []

Remark. For the results of existence and uniqueness of solutions of backward equations,
see [Pa-Pe].

M2(0, 7"; d) will denote the normed vectorial space of -valued processes that are
predictable and belong to L2([0, T] 9l, dt dQ).
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For any q M2 (0, T; d), define its norm by

The backward equation (R) given by

has Lipschitz coeNcients (with respect to Y), and hence admits a unique solution (X,
M(0, T; R) x M(0, T; Re). Recall that the solution can be constructed using a Picard type
iteration. Y0 is taken to be equal to 0. Let (Xp, Yp), p N* be a sequence in M(0, T; N) x

M(0, T; Na) defined recursively by Xp(0) and Yp, which are constructed from Yp_ by the
representation theorem

e - le(-()ll /f x(0) + (*, a..

X(t) is then defined by

Using Pardoux and Peng’s result, Xp (respectively, Yp) converges inM (0, T; ) (respectively,
M (0, T; Na)) to X, Y, the solution of (R) as p tends to +.

Recall that the increasing process associated with the Q-supermartingale J is denoted by
A. We denote by A the increasing process associated with , that is,

In general, the process A does not converge to A almost surely, but we have the following
property (cf. [De-Me, Thm. VII.18, p. 223]). If is of class D, then for each t, the sequence
of random variables A(t) converges to A(t) weakly in Ll, that is, for each bounded Fr
measurable variable U, lim+

In the next section, we study the Markovian case. We will see that, contrary to
is the solution of a usual Bellman equation (and this is linked to the existence of an optimal
control associated with , contrary to ).

3.. The Bellman equation and the maximum price. In a particular case, we propose
a numerical method to solve the problem. The general model is complete, that is, the filtration
is that generated by the d-dimensional Brownian W. The market contains d securities whose
volatility matrix has full rank, but only certain securities (the first ones) can be traded.
Therefore, the market is incomplete. We suppose that all the coefficients of the model are
only functions of the time t and the price vector P(t) (P (t),..., Pa(t)), functions that
are taken to be smooth enough so that the Bellman equations are satisfied. We denote by
(respectively, , ) the volatility matrix of the d securities (respectively, the n first securities,
the (d- )others). We have ’- ().

Under Q (the reference probability), the prices of the securities satisfy the following
equations

(12) dP(t) P(t)[r(t, Pt)dt + (t, Pt)dWt,
dP(t) P(t)[(t, Pt)dt + (t, Pt)dWt], n + d.



54 NICOLE EL KAROUI AND MARIE-CLAIRE QUENEZ

The contingent claim/3 is taken to be equal to 9(P1 (T),..., Pd(T)) for a ]+-valued
function 9 on Id satisfying smoothness conditions (see [Kry, p. 205]). Recall that the selling
price is given by

Jt ess sup Ec, [B/Ft],
vK()

where Q denotes the probability measure that admits the following Radon-Nikodym deriva-
tive with respect to Q"

exp u dWs - I]usll 2 ds

and/4((7) denotes the set of Ker (7(t, P(t))-valued predictable processes ut that belong to

L2[0, T].
Note that under Q", t fd v ds is a Q’-Brownian motion.
Using some of Krylov and E1 Karoui’s results [Kry], [ELK], we see that the maximum

price Jt (which is a function d of t and P(t)) is the value function for a more general problem.
(ft, Ft, P, W) is a fixed probability space on which W is an F-Brownian. The controlled
system is described by the following equations:

dPy(t) Pj(t)[r(t, Pt)dt + (7j(t, Pt)dWt], <_ j <_ n,(13) dPk(t) Pk(t)[[#(t, Pt) + 5k(t, Pt)vt]dt + 5(t, Pt)dWt], n+l<k<_d,

where the control u belongs to
The value function is then given by

J(t,x) sup E.,t[g(PT)/Pt x]
leK()

for z (R+)d and t [0, T].
Because the coefficient # + 5 vt is not bounded, J(t, z) is not the solution of the clas-

sical Bellman equation. However, if we impose some smoothness conditions on the coeffi-
cients, J satisfies the following inequality in terms of generalized derivatives:

Lg)(t, x) + G(t, x)v <_ 0 V v Ker (7(t, x),

where

Lg)(t x)- O (t x)+-g-i - (t,
l<_i,j<.d

d

k=n+l

d

k=n-t-1

(J is characterized as the smallest solution of (a).) Also, equation (o0 is clearly equivalent to
the following system:

(A) { Gp(t, x)v 0 V v Ker (7,

L(t, x) <_ O.
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Thus, J is the smallest solution of system (A). It corresponds to the characterization of J as
the smallest selling price (Thm. 2.2.1).

Notice that if J is Cl,2([0, T] x Ra), this system can be derived directly by applying
Ito’s formula to J(T, P (T),..., Pn(T)) and using the fact that, by Theorem 2.2.1, J can be
written as the difference of a portfolio (constructed from the first n securities) and an increasing
process.

Notice that the above system can also be derived using some of Krylov’s results on optimal
control problems of Markov diffusion processes with unbounded coefficients. Using Krylov’s
results (cf. [Kry, p. 266]), one can show that, if the coefficients are taken to be smooth enough,
J(t, z) is solution of the normalized Bellman equation (in terms of generalized derivatives)

sup (Lp(t, x) + G(t, x)u) 0
(r,EKercr(t,)}

where A(u) sup (1, IIll). This equation is clearly equivalent to system (A).
To calculate J, we can use the following property (as in 3.1).
PROPOSITION 3.2.1.

where

J(t,x)= lim J(t,z),

J(t,z) sup Et,[9(Pt)/Pt
Egn()

and Kn(cr) is the set of the processes Pt K(a) that are bounded by
For each , there exists an optimal control associated with J. Also, J is solution of the

Bellman equation

sup [L(t, z) + G(t, z)p] O.
{Ker

Notice that

sup
{,Ker (t,m),llll_<l}

where Ht,x is the orthogonal projection from Ra onto Ker a(t, z) (G(t, z) is a row vector).
Hence, we have the following property.

PROPOSiTiON 3.2.2. J (t, z) is solution of the following equation:

Remark. Notice that if

O (t,z) z(t,) + a()(t )H()(t,x)

then Ht,z (H(t, x)) Ht,x (G(t, x)). It follows that if is solution of the Bellman equation
with (T, x) 9(x), then ((Pt), H(t, Pt))is solution of the backward equation given by

We recognize the backward equation obtained in 3.1.
In the next section, we give an example that shows that there exist some discontinuous

solutions of the normalized Bellman equation.
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3.3. Example 1. Let W’ be a (unidimensional) Brownian independent of the Brownian
Wt (d-dimensional). The filtration is that generated by the Brownians W and W’. The prices
of the different securities and the coefficients relative to those prices (appreciation rates and
volatilities) depend only on W (that is, are adapted to the filtration of W). /3 is taken to be a
function of the terminal value of W’, that is,/3 f(W) for a positive bounded real-valued
function f on I?,. In this case, we show that the maximum price for/3 is constant on [0, T[,
equal to the supremum of the function f and jumps at time T to reach the value f(W(r).

Let us consider a more general case. The contingent claim/3 is taken to be positive
bounded and to depend only on W. Let us determine its maximum price Jr. We define the
model more precisely.

Let ftl be the space of all Rd-valued continuous functions on R+,

"1 C(]x+ ]-ad)

We denote by/l the a-field generated by the coordinate process Wt col col (t) for t _> 0.
Let (Ft t >_ 0) be the filtration generated by the process Wt. Let p1 be the Wiener measure
on f/1 constructed so that the coordinate mapping process Wt is Brownian motion.

Let f2 be the space of all real-valued continuous functions on I+,

-’2 C(]+ ]).

We denote by/w2 the a-field generated by the coordinate process W[ co2 --+ c02(t) for t _> 0.
Let (Ft2) be the filtration generated by the process (WI). Let p2 be the Wiener measure on

’2 constructed so that the coordinate mapping process W[ is Brownian motion.
Let (f*, F, P) be the cross-product probability space (fl x f2, F1 (R) F2, P1 (R) P2). The

filtration Ft is defined by Ft Ft (R) Ft2. We denote by co the elements of f

We denote by Wt the first coordinate mapping process and by W[ the second coordinate
mapping process. Wt and W[ are independent (Ft)-Brownian motions under P. The prices
of the basic securities P(t), the vector of stock appreciation b(t), and the volatility matrix
or(t) are taken to depend only on the first coordinate of the path (COl). /3 is taken to be

FrZ-measurable, positive bounded.
Clearly, if N is a stochastic integral with respect to W’ and if the associated exponential

martingale is a martingale, then N belongs to D. Hence,

Jt ess S2PD, Ep2 [Bg (f lJ dWIg)
T / F2I /g (/ l] dWIs)t;

where D’ is the set of all (F2)-predictable processes u defined on 2 such that

Ep2 IS (f usdWtS)Tl -1.

Now, it follows by the representation theorem that

sup Ep2 [/3g(fusdWs) J sup
uD T XL

Ep2[BX],

where L Ll(2, P2, FT2) and IlXIll Ep2[ XI] for X c L 1.
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Now, because the L norm of any function on any measure space is equal to its norm as
a linear functional on L we have

sup Ep[BX]
XCL
IlXll_<

where }IBIIL(p2) denotes the essential supremum of/3 under p2. Therefore,

sup Ep Itg
uGD T

Also, by the same argument we have

uD T

where BI]c(pa/{) denotes the essential supremum of B under the conditional probability
measure of p2 given U. It follows that Jt ]BI]c(/{) for each t [0, T].

Remark. This example shows that there exist some discontinuous solutions of the nor-
malized Bellman equation.

In the next section, we give an another example but not in a Brownian model. It illustrates
the fact that the purely discontinuous Q-martingale j obtained in the decomposition of Jt may
not be equal to zero. Consequently, the optional decomposition of Jt is the good one.

3.4. Example 2. Let Nt be a Poisson process with intensity independent of Wt. The
filtration is that generated by the Brownian W (d-dimensional) and the Poisson N (one-
dimensional). The prices of the different securities and the coefficients relative to those prices
(appreciation rates and volatilities) depend only on W (that is, are adapted to the filtration of
W). The contingent claim B is taken to be positive bounded and to depend only on N. It is a
contract that pays if Nr 0, and 0 if Nr 0. Note that

B 1NT--O.
The maximum price J0 for B at time 0 is clearly equal to (because it is impossible to hedge
against the risk). To prove this result rigorously, choose P-martingale measure Q so that Nt
is a Poisson process with intensity + a under Q(a > -1). Then it is easy to show that

Jo- sup Ec2a(B)- sup e-(l+c)T 1.
]-1,+[ ]-1,+o[

Also, the maximum price Jt for/3 at time t will be equal to 0 if Nt >_ (because then the
event N7 0 is impossible) and if Nt O.

It follows that the different processes of Theorem 2.3.1 are given by
the price for/3 at time 0, J0 1,
the portfolio process 0,
the optional increasing process ft NtAT, 1N >_1.

We see that ft At-jr, where jt --NtAT, +tAT is a purely discontinuous martingale
with negative jumps, and At t A T1 is a predictable increasing process. By defining the
model on the canonical space, it is possible to show that the sequence Q converges weakly
in distribution, as c tends to 1, to a probability measure that is not equivalent to P and under
which the Poisson process is equal to 0 almost surely. We define the model more precisely
below and give explicit calculations.
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Let ’1 be the space of all d-valued continuous functions on F+,

We denote by/7,1 the a-field generated by the coordinate process Wt cot col (t) for t _> 0.
Let (FIt t _> 0) be the filtration generated by the process Wt. Let P be the Wiener measure
on gtl constructed so that the coordinate mapping process Wt is Brownian motion.

Let "2 be the space of all Radon positive measures on F+,

"2 J+ (]+)"

We denote by F2 the a-field generated by all the random variables Nt co2 + co2([0, t]) for
t >_ 0. Let (Ft2) be the filtration generated by the process (Nt). Let p2 be the probability
measure on ’-’2 constructed so that the coordinate mapping process Nt is Poisson process with
intensity 1.

Let (, F, P) be the cross-product probability space (Q ’-2, F1 @ F2, P @ P2). The
filtration F is defined by Ft Ft ) Ft2. We denote by co the elements of Q

We denote by Wt the first coordinate mapping process and by Nt the second coordinate
mapping process

Nt(co) N(co2) 022(0 t).

Under P, Wt is a (Ft)-Brownian motion, and Nt is a (Ft)-Poisson process with intensity 1.
The prices of the basic securities Pi(t), the vector of stock appreciation rates b(t), and

the volatility matrix a(t) are taken to depend only on the first coordinate of the path (COl).
Let Q1 be the probability measure that is equivalent to P on F such that

/0Wt Wt + O ds, 0<t<T

is Brownian motion under Q1. The reference probability measure Q on/ is equal to Q (R)/92.
The contingent claim is equal to

B lNr=O.

Let us calculate

Jo sup EQV [1 Nr=O].
MD

Let J( be defined by

J sup E_p2[1Nr=o].

Let p2 be the probability measure defined on FT2 by

dP2
clog + NT T(cN)r
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where t Nt t, 0 <_ t <_ T. Let Q be defined by Q, (1 @ p2. We have

--g(aN)T and cN E D,

hence, J _< J0.
Let us show that J 1. From the change of measure theorem for point processes ([Br-Ja,

pp. 377-379]), we have that N is a Poisson process with intensity + c under p2; hence,
P2(Nr 0) e-(1+)7" and

J sup P2(NT O) 1.
]-1,+0[

The supremum is obtained for c -1; hence

J0 1.

Let us calculate

Jt ess sup Ec2M [lvT=o/Ft].
MD

Let J be given by

d ess sup E, [lvT=0/Ft2].
]-1,+0[

We have J[ _< Jr. Let us determine J:
Ep [1NT=o/F2t] 1Nt=0 Ep [1N,=0//wt21 1Nt=0 e-(l+o)(Y-t)

hence,

J 1Nt=0

and the supremum is obtained for c -1. Now,

Jt <_ 1N=o;

hence,

Jt 1N=0 Nt/xT.

The seller follows the following strategy. At t 0, he receives from the buyer. If the
Poisson process remains equal to 0 until T, the seller does not make any profit; at time T, he
gives to the buyer. Otherwise, at the first instant the Poisson process is different from 0(T1 ),
the seller makes profit 1.

Let us determine the limit of the probability measures Q as c 1:

Vt E R+ and , R+ lim E,[e-)’N‘] lime(+)t(e-x-1) 1.

Also, for all tl, t2,..., tk (R+) k, the Laplace transform of (Nt,,..., Nt) tends to under

P as c tends to 1. Hence, p2 (Nt,,..., Nt)-I converges to the Dirac measure at zero on

(R+) as c tends to -1, and Q Q1 @ p2 converges in a weak sense to Q Q1 @ (0 as
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tends to -1. Under the limit probability measure Q @ 50, the increasing optional process
is equal to zero almost surely, that is,

Q1 @ o(NtAT, O) 1,

Jt 1, Q (R)0a.s.

Hence, J is a martingale (constant) under the limit probability measure. But this probability
measure is not equivalent to P. Notice that this probability measure makes the market complete
(because it annuls the Poisson process).

The essential infimum of the possible prices at t > 0, t < T, is given by

Kt ess inf Q(NT 0/Ft),
c>--I

lim Q(N7 0/Ft),

---0.

Hence, for each t C [0, T], we have

Kt 1NT=0 lt=T.

Let us determine the limit of the probability measures Q as c +o. For all
t,t2,... ,tk C (R+) k, the Laplace transform of (Nt,,..., Ntk) tends to zero under p2
as c tends to +c. Hence, Q converges in a weak sense to the null measure as c +.
This result shows that an optimizing sequence of P-martingale measure does not necessarily
converge to a probability measure.

A. Appendix.

A.I. A few useful (well-known) properties and theorems.
PROPOSITION 1.a. A local martingale that is ofclass (D) is a martingale (see [De-Me, p.

97, VI-30]).
Recall that if M and N are local martingales, their quadratic variation process (M, N)

is defined only if MN is a special semimartingale. (For the definition, see [De-Me, p. 247,
VII-39].) It always exists if one of the local martingales M, N is locally bounded by the
following property (see [De-Me, p. 240, VII-32]).

PROPOSITION 1.b. If X is a special semimartingale and Y is a locally bounded semi-
martingale, then XY is a special semimartingale.

Proof. Using Doob’s inequality, it is easy to show that sups<t IxYl is locally integra-
ble; it follows that XY is a special semimartingale (by using Thm. 25-d, p. 234 in [De-Me]).

Notation. Let Xt be a local martingale (RCLL) under P with respect to {Ft }, such that
X0 0. We denote by g(X)t the exponential of X, that is, the solution of the SDE

dUt-Ut-dXt withU0- 1.

The process g(X) is a local martingale under P.
We recall a general form of the Girsanov theorem that we shall use several times. (For

more details see [De-Me, p. 259, VII-49] or [Mey, p. 377].)
Let P and Q be two probabilities equivalent on FT, such that

FT
(N),
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where N is a local martingale which satisfies No 0. Let Z be a special semimartingale
under P. It has the unique canonical decomposition under P

Zt Zo + Mt + At, 0 < t < T,

where M is a local martingale that satisfies M0 0, and A is a predictable VF (finite variation)
and RCLL process that satisfies A0 0. Note that a supermartingale is special and that in
this case, At is a decreasing process.

THEOREM 1.A. Suppose that (M, N) exists. Then Z is a special semimartingale under
Q and its canonical decomposition under Q is given by Zt Zo + (Mr M, N)t) 4-
(At + M, N)t). The first term between brackets is a local martingale under Q, and the
second one is a predictable finite variation process.

COROLLARY 1.A. Suppose that (M, N) exists. Then
(i) Z is a local martingale under Q ifand only if the process (At 4- (M,N)t) is equal

to O.
(ii) Z is a supermartingale under Q ifand only if(At 4- (M, N)t) is a decreasingprocess.

A.2. Characterization of the essential supremuln of all the possible prices (proofs).
Let Jt be the essential supremum of the possible prices for/3 at time t and

Jt ess sup EI[B/Ft] ess sup E [B/Ft].
R ND

We use dynamic programming methods [ELK] to solve the problem. Notice that (Jr) is not
defined as a process yet because for each t, it is defined Q almost surely. Now,

VN G D and t [0, T], EQ[B/Ft]- EQs[B/Ft],
where

Hence,

Jt ess sup EQN[B/Ft],
NED(t)

where D(t) {N D/N -0 V u [0, t]). For any N D(t), put

r(t,

PROPOSITION 1. {I(t, N), N D(t) } is stable by supremum and infimum.
By this property, it follows that for each t, there exists a sequence Nv D(t) so that,

almost surely, F(t, Nv) is an increasing sequence of random variables that converges to Jr,
that is,

Jt lim T r(t, Np) lim T EQNp [B/Ft].
p---+oc p--+cx

This property will allow us to invert supremum and expectation (using the monotone conver-
gence theorem).

Proof. Let N1, N2 D(t). There exists N D(t)/F(t,N)- F(t, N1)V F(t, N2).
Indeed, put A {F(t, N2) >_ 1-’(t, N1)}. We have A Ft. Put N N1 1a 4- N2 1a. We
have N D(t);

1-’(t, N) F_[C(N1)T/3/Ft]IA 4- F_[cc,(N2)T/3/Ft]IA,
F(t, N1)IA + F(t, Nz)IA.
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Hence, I’(t, N) 1-’(t, N, V r(t, N2). []

For each t, take a sequence Np E D(t) such that, Q almost surely,

dt- lim T r(t Np)- lim T EQN, [B/Ft].

Now, Jt will denote a (Ft)-adapted process that is equal to the above limit almost everywhere.
PROPOSITION 2. For any N D, (Jr) is a supermartingale under QN (that is, g(N)t Jt

is a supermartingale under Q).
Proof. Let s, t be two positive reals such that s < t _< T. Take a sequence Np D(t)

such that, Q almost surely,

Jt lim T r(t, Np) lim T EQNpp---+cx p--+cxz

Let N D. Since we can invert limit and expectation (by the monotone convergence theorem),
we have

[(N)tE
Lg(N) Jt/F8 lim

p--+cx

lim T E g(N)8
g(N)TB/F

where Np(u) N(u/ t) + Np(u), for u [0, T]. Now, (Np(u), u [0, T]) E D. Hence,

<-

PROPOSITION 3. (Jt) is the smallest supermartingale under QN,for any N D, which
is equal to B at time T (unique up to a null set).

Proof Let (J[) be a supermartingale under QN, for any N D, which is equal to/3 at
time T. Then,

Vt [O,T] and N D, J[ > EQN[B/F,], Qa.s.

Hence,

Vt E [O,T], Qa.s., J _> Jr. []

We have also the following property.
PROPOSITION 4. Let ]Q be a local martingale that belongs to D. Thefollowing properties

are equivalent:
(i) is optimal, i.e., V t [0, T], Jt Ec2 [B/Ft], Q a.s.

(ii) Jt is a martingale under QR.
PROPOSITION 5. There exists an RCLL supermartingale still denoted by Jt so that for

each t [0, T],

Jt ess sup EQN [B/Ft].
NED
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Proof. Put D [0, T] C/Q. Because (Jr) is a supermartingale, we have that for P almost
every co, the mapping t Jt (co) defined on D has at each point t of [0, T[ a finite right limit

Jr+ (co) lim
sED,st

and at each point of ]0, T] a finite left limit

Jt-(co)-lim J(co).

One can show (using a well-known property) that (Jr+) is an (Ft+)-supermartingale under
QN for all N E D. Because the filtration is right continuous, Jr+ is an (Ft)-supermartingale
under QN for all N E D. Hence, by Proposition 3, for all t [0, T], Q almost surely,
Jr+ >_ Jr. Also, Jt >_ E[Jt+ /Ft]. Hence, Q almost surely, Jt Jr+ or else,

V t [0, T], Jr+ ess sup Ecru [B/Ft].
NED

The result follows by taking Jt equal to the above process Jr+.
Jt is an RCLL process that satisfies

Jt ess sup ECN [B/Ft].
NED

Jt is characterized as the smallest right .continuous supermartingale under QN, for every N
belonging to D, which is equal to B at time T. Also, N is optimal if and only if Jt is a
martingale under QN.

A.3. Generalization ofthe results ofthis paper. The results ofTheorem 2.1.1, Theorem
2.1.2, Theorem 2.3.1, and Corollary 2.3.1 remain under the hypothesis

EO, N(B <sup
NED

(In fact, we shall see below that this hypothesis is equivalent to the fact that there exists a
price admissible for sellers, or equivalently that B is smaller than the value of a self-financing
portfolio, that is, B satisfies

13 <_ xl-l’’V(T), P a.s.

for some portfolio strategy H and initial investment /> 0.)
The whole proof of Theorem 2.1.1 still holds under the above hypothesis. In this case,

Jt is not generally of class D. The results of Theorem 2.1.2, Proposition 2.3.1, and Theorem
2.3.1 still hold, but j is a Q-local martingale only (but not a martingale in general). The
arguments of the proof still hold, but it is a bit more complicated technically because (j) is
not always defined.

Proof of Theorem 2.1.2 under the above hypothesis. Jt is a Q-supermartingale; hence,
it admits a unique decomposition as a local martingale Mt minus an increasing predictable
process At Jt Mt At. The local martingale Mt admits the following Kunita decompo-
sition:

vt [0,T], 0.s.
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for some predictable process and some Q-local martingale j such that

(/o"j, cr(s)dWs O, Q a.s.,
T

Vi E {1,...,n}.

As in the proof of Theorem 2.1.2, we show that the continuous part j of j is equal to zero,
using the following lemma (which follows from the fact that Jt is a supermartingale under
each P-martingale measure).

LEMMA. Let N be an element of D such that (N, j) exists. Then At (N,j)t is an

increasing process.
Now, (jc) is locally integrable. By the Lebesgue Decomposition Theorem, there exist

a positive predictable process h that belongs to Loc([0, T x f,d(j)t dQ) and a locally
integrable predictable increasing process B such that

dAt htd(jC)t + dBt

and such that, Q almost surely, the measure dBt is singular with respect to d(j)t. Using the
same arguments as in the proof of Theorem 2.1.2, we obtain the desired result. []

The proof of Theorem 2.3.1 under the weaker hypothesis is unchanged, and the result of
Proposition 2.3.1 can be obtained by the same methods as before, but it is a bit longer because
the lemma must be applied to some N such that (N, j) exists.

Remark. It follows from this, that the following properties are equivalent.
(i) supvD Ec2N(B) <

(ii) There exists a price admissible for sellers, or equivalently that B is smaller than the
value of a self-financing portfolio, that is, B satisfies

13 < xI-l’’U(T), P a.s.,

T

B < y + Hs cr db, Q a.s.

for some portfolio strategy H and initial investment y _> 0.
Notice that the technical assumption on B given by

[/0T
for each N E D may be interpreted as the fact that the contingent claim/3 is not too risky.
When we do not make the technical assumption on/3, Corollary 2.3.1 still holds, but Corollary
2.3.2 must be replaced by the following.

COROLLARY 2.3.U. (1) For each N D, Ec2N(B) <_ Jo Ec2v(fT).
(2) If Nn, n >_ O, is an optimizing sequence belonging to D, that is, such that

lim Ecun [B] J0

then

lim EQun (f7) 0.
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Proofof (1). Let N be an element of D. The process given by

do + *dW

is a positive continuous Qn-local martingale, and hence a Qn-supermartingale; this yields
the inequality

& + :e w <_ &.

Thus, fr is QN-integrable and EQN (B) <_ Jo EQN (fr).
Proofof (2). Inequality (1) applied to the local martingales Nn gives the inequality

vn N, Q() < do Q (fT).

Hence, if we let n tend to +c, we obtain the desired result

lim EQN fT O. []

Also, when we do not make the technical assumption on B, Theorem 2.3.2 does not hold
anymore, but we have the following result.

THEOREM 2.3.2’. IfsuPNeD EQN [/3] is attained then/3 is attainable, that is, there exist
a constant x and a portfolio 7r such that

divvy, Q a.s.B x + 7rc

Proof Compare the proof of Theorem 2.3.2.
Thus, the contingent claims that satisfy the technical assumption (loosely speaking, those

that are not too risky) are divided in two sets:
The set of contingent claims that are attainable, which is equal to the set of contingent

claims that admit a unique price.
The set ofcontingent claims that are not attainable, which is equal to the set ofcontingent

claims that admit several possible prices.
Things are not as clear for contingent claims that admit a finite selling price but do not

satisfy the technical assumption. Even if they are attainable in the above sense, they may
admit several possible prices. (Loosely speaking, this can be explained by the fact that, even
if they are attainable, they can be too risky.) Nevertheless, we have the following properties
that are equivalent.

(i) For each local martingale N C D,

(ii) There exist a constant x and a portfolio r such that

dW Q a.s./3 x -+- ’uo’u

and such that the process given by

x 7uO

is a martingale under each P-martingale measure.
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FINITE ELEMENT APPROXIMATIONS OF COMPENSATOR DESIGN FOR
ANALYTIC GENERATORS WITH FULLY UNBOUNDED

CONTROLS/OBSERVATIONS*

I. LASIECKAt

Abstract. An approximation theory leading to a design of a finite-dimensional compensator for control systems
generated by analytic semigroups is presented. The novelty of this paper with respect to other results available in the
literature is threefold: (i) it treats fully unbounded control/observation operators; (ii) it does not require compactness
property of the underlined generator (an assumption that is often violated in practice); and (iii) the design of a
finite-dimensional compensator is based on finite element approximation of the original model rather than on modal
(eigenfunctions) approximations which, in turn, require the a priori knowledge of the eigenvalues for the system.
Applications of the theory to heat equations and plate equations are provided.

Key words, finite element approximations, compensator design, Riccati equations, analytic semigroups, un-
bounded control/observation operators

AMS subject classifications. 49, 65

1. Introduction. Consider the following control system:

x(O) xo H,

We make the following assumptions on (1.1).
(i) H, U, and Z are Hilbert spaces.
(ii) A H D(A) -- H is the generator of a strongly continuous analytic semigroup

eat on H; t > 0, generally unstable on H so that Ileatll(H) <_ MeWt; t > O. We then

consider throughout the translation -A + ,I, where > w, so that A has well-defined
fractional powers on H and -A is the generator of a strongly continuous analytic semigroup
e-At on H satisfying lie-At Z2(H) -- J’eAt; A W

,.
(iii) B U -- (D(A*))’ where (D(A*))’ is the dual of D(A*) with respect to the H-

topology. It is assumed that B is ’7 bounded, or equivalently, as in the following hypothesis.
Hypothesis la. (./)-TB E/2(U; H); 0 <_ "7 < 1.
(iv) C D(C) c H Z is a closed, densely defined operator such that the following

hypothesis holds.
Hypothesis lb. C(fl) Z2(H; Z); 0 < r < 1.
Standard arguments from perturbation theory of analytic semigroups (see [K. ]) yield the

fact that with any F (H; U) and K (Z; H), A + BF and A KC generates an
analytic semigroup on H. In what follows we make the following stabilizability-detectability
assumptions.

Hypothesis 2. There exists F (H; U) and/f (Z; H) such that

le(A+B)tlc(H + e(A--KC)tlc(H Me-w’t

for some W > 0. Under the above assumptions it is straightforward to show that there exists
an infinite-dimensional "compensator," i.e.,

(1.2) wt (A + BF- KC)w + KCx,

Received by the editors June 9, 1992; accepted for publication (in revised form) August 2, 1993. This research
was supported by National Science Fundation grant DMS-9204338.

Department of Applied Mathematics, University of Virginia, Charlottesville, Virginia 22903.
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68 I. LASIECKA

such that the feedback control

(1.3) u Fw

exponentially stabilizes system (1.1). Precise statement of this fact is given in the following
theorem.

THEOREM 1.1. Let "H =- H x H. The operator A 79(A) c "H -- TI given by

KC A + BF- KC

with 79(,4) =_ { (x, y) e 7-l; Ax + BFy E H; KCx + (A + BF- KC) y e H} generates
an analytic and exponentially stable semigroup on

Proof of Theorem 1.1. The proof, being a rather routine exercise in perturbation theory
of analytic semigroups, is omitted.

The main goal of this paper is to construct finite-dimensional compensator Wh (which
will be based on finite element approximations of the original problem) such that the finite-
dimensional control feedback

(1.4) Uh (t) FhWh (t),

once inserted into the original system, will produce the solutions that are uniformly (with
respect to h) exponentially stable.

The concept of a dynamic compensator is well known in the context of finite-dimensional
systems and the idea goes back to Luenberger (see [L.3]). Many of these finite-dimensional
ideas have been successfully generalized to infinite-dimensional systems--mainly ofparabolic
type (or, more generally, analytic semigroups); see [S.1], [C.1], [G.1], [G.2]. However, the
techniques employed in these references are restricted to the cases when either the control/
observation operators are bounded or, if unbounded (see [C. ]), the degree of unboundedness

On the other hand, there are many physicallyis severely limited--typically -y + r _< g.
significant examples (heat equation with Dirichlet boundary control, strongly damped plate
equations, etc.; see 6) where the above restrictions are not met. Also, the mathematical
difficulties encountered in dealing with "fully" unbounded control operators (i.e., g < /< 1)
are much greater. Indeed, when’,/> g, the basic solution operator u x(t) is not defined from
L2 (0T; U) H. This fact, recognized earlier in the context ofthe theory ofRiccati equations
(see for instance [B-D-D-M] and [L-T]), is a source of substantial technical difficulties. Thus,
the main feature that distinguishes this paper from the other works is the fact that we treat
fully unbounded control/observation operators, i.e., -y / r < 1. Moreover, in most papers
available in the literature, the construction of finite-dimensional compensators is based on the
knowledge of the eigenfunctions/eigenvalues of the generator A (see for instance [C.1 ]). For
partial differential equation (PDE) systems in higher dimensions defined on arbitrary domains
f, the eigenfunctions of the open-loop systems are generally not available. In view of this, our
goal is to design finite-dimensional compensators based on finite element approximation of
the original model and, as such, it would not require any specific knowledge of the spectrum
of the original, usually unstable, generator. (Finite element approximations of compensator
design with control operator B bounded were treated in [G.2] and references cited therein,
while the case of unbounded operator B for hyperbolic-like dynamics was considered in [L.2].)
Another attractive feature of our approach is that it does not require the compactness of the
resolvent of the generator A--an assumption that has been used in an essential way in all
previous works. In fact, as we will see in 6.3, there are examples of damped plate equations
where this assumption is violated.
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To establish the appropriate convergence and stability results for the compensator, the
techniques recently developed in the context of finite element approximations of Riccati equa-
tions with fully unbounded control operators (see [L-T. ]) are used in an essential way. The
outline of the paper is as follows. In 2 we introduce approximating subspaces and operators
together with their properties. In 3 we formulate the main results of this paper. Sections
4 and 5 are devoted to the proofs of the main results. Section 6 provides several physical
examples motivating the theory.

2. Approximating subspaces and operators. We introduce a family of approximating
subspaces Vh C H N 7(B*) N D(), where h is a parameter of discretization that tends to
zero, h _< h0. Let 7rh be the orthogonal projection of H onto Vh with the usual approximating
property, for some s > 0,

(2.1)

Throughout this paper, M denotes a generic constant independent on 0 <_ h <_ h0.

Approximation of A. Let Ah Vh --+ Vh be an approximation of A that satisfies the
requirements in Assumptions and 2.

Assumption (uniform analyticity). For a > w, there exists -(A, a) closed triangular
sector containing the axis [-o, a] and delimited by two rays
Q0 < 27v, and there exists ha such that, if c denotes the complement of ’ in the complex
plane, then for all 0 _< h _< ha, we have cr(Ah) spectrum of

(2.2) R(,k, Ah)Ah 7rhl(H) <_
iA all_Q

V E (A, a).

Assumption 2. ]Trht-’ t-’TCh](H) <_ MhS.

Approximation assumptions on the operators B and C.
Assumption 3. (i)IB*xh]u <_ Mh-’s]Xh]H, Xh Vh;
(ii) IAXh]H <_ Mh-]Xh]H.
Assumption 4. (i)]B*(h I)xu Mh(’-)]xl(A.);
(ii) IA(n- I)wlH Mhs(1-r) I(A).
Assumption 5 (i)tB*xlv MIA*x ;
(ii) IA*   lz MIA  Iz.
Approximation of F and K.
Assumption 6. The operator F Vn U satisfies one of the following conditions:
(i) eitherF F strongly and B*R(Ao, A*) is compact,
(ii) or IF F]c(; v) 0 as h 0.
Assumption 7. Similarly for K, Kh Z V,
(i) either Kn K strongly and CR(A0, A) is compact,

(ii) or [Kn Kl(z; H) 0 as h 0.

Consequences of approximating assumptions on A. From Assumptions and 2, the
following "rough" data estimates follow (see [L. 1, Appendix], in the form to be used later):

(2.3) IIR(A, A) R(,X, A)’hlIC(H) < Mh, s > 0

uniformly in A }-c (A, a),

(2.4) A*)- t (,Xo, A* ) rh]IC(H;U) < Mhs(1-7)



70 I. LASIECKA

where the last two inequalities follow from Lemma 3.1 in [L-T. ]. From Assumptions 4 and
5, by interpolation, we obtain

(2.6) IAr(r I)X]H < Mh(-’) IAQx]H; r <_ Q <_ 1.

3. Statement ofmain results. Consider the following finite-dimensional dynamic com-
pensator:

(3.1) wt (AhTrh + rhBFhrh KhC)w + KhCx.

We associate (3.1) with the control system

(3.2)
xt Ax + BFhTChW,

x(O) xo E H.

Our main results are contained in the following theorem.
THEOREM 3.1. Assume Hypotheses and 2 and Assumptions 1-7. Moreover, assume

3’ + r < 1. Then system (3.1), (3.2) represented by

A BFhTrh
.Ah

KhC AhTrh + 7rhtFhTrh KhC

generates a uniformly analytic and uniformly exponentially stable semigroup, i.e.,

[eAhtlz:() _< Me-wt for some w0 > O,

where the constants M and wo are uniform with respect to 0 < h <_ ho.
Remark 3.1. In (3.1) one could also approximate the operator B by its approximation

Bh /2(U; Vh) subject to the usual consistency assumptions (see [L-T.1]). The analysis of
the problem is the same.

The problem of practical interest is how to find the stabilizing feedbacks Fh and Kh.
If the knowledge of unstable eigenvalues is available then this could be accomplished by a
routine pole assignment procedure (see [C.1], [S.1 ]). Since, in general, a precise knowledge
of eigenfunctions is not known, a different approach based on approximation of the algebraic
Riccati equation are pursued (see [G.1] for the case of bounded control/observation opera-
tors). To accomplish this we recall recent results from [L-T] and [L-T.1] on solvability and
approximations of Riccati equations arising in control dynamics with unbounded input/output
operators.

We associate the following algebraic Riccati equation with the dynamics (1.1):

(3.3) (A*Px, y)H +(PAx, y)H + (x,y)H (B*Px, B*Py)u forx, y 7P(A).

By virtue of Hypotheses and 2 we know (see [D-I], [E2], [E3], [L-T], [B-D-D-M]) that
there exists a unique solution P (H), P P* such that

(3.4) B*P (H; U),

7rh B C Yh is defined, as usual, by duality: (Trht3g Vh)H (g, B*vh)U for all vh E Yh, g U.
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e(A-BB*P)t generates an analytic and exponentially stable semigroup.

On the other hand, the approximating properties (Assumptions 1-7) guarantee (see [L-T. ])
that the equation

(3.6) A Ph + PhAh + 7rh PhTrhBB Ph

is uniquely solvable with Ph E (Vh). Moreover,

(3.7) B*PhTrh (H; U) uniformly in h > 0

and (see [L-T. 1, Thm. 1.1])

(3.8) IPhTrh Plc() + I/3*(PhTrh P)Ic(; v) --’ 0 as h ---, 0.

The same argument can be repeated for the "dual" Riccati equation

(3.9) (AQx, y)H + (QA*z,y)H + (z,y)H (C*Qz, C*Qy)H; z,y D(A*),

which, in view of Hypotheses and 2, yields the unique solution Q (H) such that

(3.10) CQ (H; Z),

e(A*-C* CQ)t is exponentially stable.

Moreover, in view of Assumptions 1-5, approximation theory of [L-T. applies to provide
the existence ofQ Qh (Vh) such that

(3.12) AQ + QA + 7r QCC*Q

is satisfied and, moreover,

(3.13) ICQhTrhlC(H; Z)

_
M,

(3.14) IC(QTrh Q)Ic(H; z) ---’ 0 as h --, 0.

Thus we are in a position to apply the results of Theorem 3.1 with the specific feedbacks

Indeed, parts (ii) of Assumptions 6 and 7 are satisfied by virtue of (3.8) and (3.14), with
F =_ B’P; If =_ QC* and Fh, Ifh as in (3.15). We have thus obtained the following
corollary.

COROLLARY 3.1. Assume Hypotheses and 2, and Assumptions 1-5, 7 + r < 1. Then
the conclusion of Theorem 3.1 holds with Fh and Ifh given by (3.15).
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4. Technical lemmas and the proof of Theorem 3.1. We define

AhB AhTrh + 7rhBhTrh,

Au A + BFhTrh,

Ac A- KhC.

The following result is a consequence of Theorem 4.2 in [L-T. ].
PROPOSITION 4.1 There exist constants M > O, wo > 0 such that

M
(4.1)

(4.2) IR(k, Au){c(u) <_ M

IA + w0l’

M
(4.3)

+  o1’
where the above estimates hold uniformity in h < ho and c c, where closed
triangular sector containing the axis (-cx,-wo) and delimited by two rays -wo
for some 7r/2 < Q < 27r. Here wo < wl where, we recall, Wl is the margin of stability for
A + BF and A KC.

Proof By virtue of Assumption 6, for some A0 C P (A),

(4.4) IR(Ao, A)B(FhTrh F)lC(H -+ O, as h --, 0.

Hence we are in a position to apply Theorem 4.2 of [L-T. 1] to conclude (4.1). To assert (4.3)
it is enough to note that Assumption 7 implies

(4.5) I(K; *)C(Ao, A*)Ic(H) --+ o ash ---, 0.

Now conclusion of Theorem 4.2 applied to the operator A* C*K yields the desired
inequality in (4.3). The estimate (4.2) holds by virtue of (4.4) and Remark 4.3 in
[L-T.1]. []

The proof of Theorem 3.1 is based on the following three lemmas.
LEMMA 4.1. We have that

(4.6)

Let T + r < 1. Then

(4.7)

IAR(A, Ac)IZ.(H) < M.

(4.8) IflrR(A, Au)AIC(H) <_ M,

where the bounds are uniform in h <_ ho; & Y’.
LEMMA 4.2. Let "y + r < 1. Then we have the following.
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(i) For all ,k (A, a), the following inequality holds uniformly in ,k and h <_ ho:

MfV[R(A,AB) t(A, AB)]IC(H) <

(ii) For any Ao C(A,a) (Ao fixed), the following inequality holds uniformly in
h < h0:

(4.10) IA[(A0, An) -/(Ao, A.)]lc(/-/) < Mhs(1-r-).

(iii) The estimate in (4.10) can be extended to hold uniformly in Ao for all Ao such that

(4.1 1) Ao E 71 {,o; I,ol _< Ro} where Ro isfixed.

The proofs of Lemmas 4.1 and 4.2, being technical, are relegated to 5.
Let us introduce the operator Th (,k) D(C) H defined by

(4.12) Th(A) R(A, Ac)(A + tFhTrh AI)[t(A, Ah,B) I(A, AB)]thC.

We prove the following lemma.
LEMMA 4.3. Assume / + r < 1. Then
(i) [%(,k)lc(z,(A)) < M,

(ii) 1(I- T(,k))- ((A)) < M, where the constant M is uniform in h < ho and

Proof. To prove the lemma it suffices to show that

(4.13) ITh(,X)lz;(v(A,)) < uniformly inh < h0andA -.
From part (i) of Lemma 4.2 we obtain, for , }- (A, a),

M
(4.14) AhB) R(,, AB)]KhC C(H) <

i al,_ IC c(z(A);H)"

On the other hand,

(4.15) R(A, Ac)(A + BFhrh AI) --I + R(A, Ac)(BFhrh + KC).

From (4.6) in Lemma 4. l,

(4.16) IftrR(A, Ac)KhCIc(Z3(A,);H) <_ MICI(z(A);H) <_ M,

and by (4.7) together with Hypothesis a and Assumption 6,

(4.17) IA(,X, Ac)A’A-"F,,I <_ M.

Combining (4.14)-(4.17) with the definition of Th(,,k) given in (4.12) yields

M
(4.18)

which, in particular, implies

for , ’ (A, a)and I1 >/o,
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where R0 is sufficiently large. Consider next A E -]c fq {]A[ _< R0}. By repeating the same
arguments as above, with the only difference that instead of result (i) of Lemma 4.2 we use
result (iii), we obtain

1
(4.19) ]Th(Ao)lc(z(A,)) < Chs(1-’-r) < -for h < h0 where A0 E -c N (11 <_/0, which then leads to the desired conclusions of
Lemma 4.3. []

Proofof Theorem 3.1. We use the following transformation introduced in [S.1 ]"

Z Z- where I is an identity on the Hilbert space H.
0 I 0 I

To prove Theorem 3.1 it is enough to show the estimate

M
(4.20) I(,Ah)lc<> <_

I / 01’
or equivalently,

M
(4.21) where ji,h Z-1AhZ,

holds with some a0 > 0. It is straightforward to verify that

.,th ( A KhC A AhTrh + l Trh BFhTrh ).KhC AhTrh -1- 7rhlFh’rfh

We compute _R(A, Ah). Let

k,w(A)’
hence

(4.22)
(A- KhC Al)x(A) + (A- AhTrh + (1- 7rh)BFhTrh)W(A) f,
ICz() + (A + )w() g.

The result of Proposition 4.1 is

(i)
(4.23)

(ii)

We show that

(4.24)

Indeed,

w(A) R(A, AhB)[--g + KhCx(A)],
x(A) R(A, Ac)[-f + (A- AhTrh + (I- 7rh)BFhTrh)W(A)].

R(A, AhB) R(A, AB) -R(A, AB)(A- AhTrh + (I-- 7rh)BFhTrh)R(A, AhB).

R(A, AB)[A- AhTrh + (I- 7rh)BFhTrh]R(A, AhB)

R(A, AB)[AB AI- AhB + AI]R(A, AhB)

R(A, AB) R(A, AhB)
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as desired for (4.24). Combining (4.23) with (4.24) we arrive at

x(A) R(A, Ac)(A + BFhTrh AI)[R(A, AhB) R(A, AB)]KhCx(A),

(4.25) R(A, Ac)f R(A, Ac)(A + BFhTrh AI)[R(A, Ah) R(A, AB)]g, or

(4.26)

x(A) -[1- Th(A)]-[R(A, Ac)f
+ R(A, Ac)(A + BFhTrh AI)[R(A, AhB)- R(A,A,)]9],

w(A) R(A, dhB)[--g + KhCx(A)].
Noting that

R(A, Ac)(A + BFhh A/) --I + R(A, Ac)(BFhh + KhC),

we obtain, by Lemma 4.2 and Lemma 4. l,

(4.27)

IAR(A, Ac)(A + BFhh AI)[R(A, AhB) R(A, AB)]gIH

+ A(A. Ac)(Bhh + hC)[(A. Ah) (A. AB)]glH

Mg]g.

From (4.27), (4.26), and Lemma 4.3 we then infer that

(4.28) Ax(A)I. M[ glH + IIH].
and by Proposition 4.1 with (4.26),

M
(4.29) Iw(A)H I + wo [IglH + lfIH] for X E
Going back to (4.25) and recalling (4.15), we obtain

(4.30)

M[I(.Ac)Ic(H)IflH + I[I- (.Ac)" (h + hC)]((.AhB)

+ I(A.A)I)c(H)" I- hCX(A)IH
+ IR(A. Ac){CH)IhCA-IcH)

M
w0[1+ fl- + IglH].

where in the last inequality, we have used once more the result of Proposition 4.1, Lemma
4.2, Lemma 4.1, and (4.28).

Inequalities (4.29) and (4.30) yield the desired conclusion in (4.21) with w0

w0>0.
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5. Proofs of Lemmas 4.1 and 4.2. We begin with a sequence of preliminary estimates.
PROPOSITION 5.1. Let T H --+ (79(A*))’ be such that A-TT E (H). Then for any

> 7 there exists a constant M > 0 such that

A- T)-(1-’) IZ3(H) _< M

for all A0 E -C(A + T), where -(A + T) is a closed triangular sector containing in its
interior the spectrum ofA + T.

Proof. By the assumption and analyticity of A, A + T generates an analytic semigroup
[K.1].

Step 1. For # p(A + T) f? p(A),

(5.2) (#I A T)- (I R(#, A)T) -1R(#, A).

On the other hand, by the definition of fractional powers of the operators (see [P. ], [K. 1 ]),

(5.3) (AoI- A- T)-(1-’) 27ril fv z-(-’) [(Ao z)I A T] -1 dz,

where F denotes the triangular path that runs in p(AoI A T) fq p(AoI A), avoiding the
real negative axis and the origin. Hence

-(oI A T)-(-’)

t_ fr[i_ R(Ao z; A)T]-R(Ao z,A)z-(-’) dz(5.4) 27ri

27ril j A,_#[I R(Ao z,A)T]-’A-(’-)A-zn(o zA)z-(-’) dz.

Step 2. We show that for # p(A) N p(A / T) and for " > 7, the following bound
holds:

(5.5) IAI-’[I- R(#,A)T]-A-(-)Ic(I4) <_ m

uniformly in # 79, where the set 79 is any closed set contained in p(A) p(A + T).
Since

M
IR(#’ A)TIc() <

l# al
for I1 large enough, say I1 > , we have

(5.6) I[I- R(#, A)T]- It(H) <--
The above estimate can easily be extended to hold for all # 79 (with the bound uniform in

#). Indeed, for # p(A + T) f? p(A), I R(#, A)T is injective. Thus, in order to show (5.6)
it suffices to prove that the range of I R(#, A)T is all of H. But this can be accomplished
by routine computations involving the resolvent equation. Thus for all # 79 we can solve

(5.7) A’-#[I R(#,A)T]-A-(-#)x y

with the estimate
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On the other hand, from (5.7),

(5.9) x y fl(-)R(#, A)TA-(1-#)y;

and by (5.8), the analyticity of A, and the assumption assumed on T,

]ft(-#)R(#, A)TfI-(-#)ylH < M]fi(-#)R(#,
(5.o)

Combining (5.9) and (5.10) yields the desired conclusion in (5.5).
Step 3. By combining (5.4) with (5.5) and noting that 0 z D for z F we obtain

A’-(AoI A T)-(1-Y)](H Mf Al--n(0 z,A)lc(,)z-(’-) dz

dz
< M.

PROPOSITION 5.2. We have that

M’’R,Ac(.) I-al
(5.11)

(5.12)

where the estimates are uniformfor all h <_ ho and/ c(A, a).
Proof Inequality (5.11) is a consequence of Assumptions and 3, and (2.3), and it can

be proved by routine arguments (see [L-T. ]).
To prove (5.12), we use duality

+ IB*7rR(A, A*)fI*IC(H; u).

From Assumption 5 and the analyticity of A*,

(5.14)
MIB*rht(A,A*)A*I(H.U) <_ C R(A,A*)A*+I(H _<

IA--al -(+) < M.

From Assumption 3,

(5.15)

As a consequence of Assumption 3, (2.3), and Assumption 1, we obtain

(5.16) IA[R(,, Ah)rh 7rhR(A, A)] (/4) _< Mhs(1-).

By (5.16), (2.6) applied with Q and (5.15),

(5.17) IB* [R( fl, A*h)Trh rhI(A, A* )]A*IC(H,U)
_< Mhs(1-’-r) + Ch(1--),IAR(A,A)lc(H) <_ M.
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Combining (5.13) with (5.14) and (5.17) and recalling the assumptions imposed on Fh leads
to conclusion (5.12). []

PROPOSITION 5.3. Let + r < 1. Then the following inequalities hold uniformly in
A E (4, a)and h <_ ho"

(i) IAR(A, Au)I() < M/IA-a -;
(ii) IA  (A, AhB)Ic(H) M/]A-al
Proof. (i) Since, by vigue of Hypothesis a,

(5.18) -7BFhhIE(H) M uniformly inh,

we can apply (5.5) in Proposition 5.1 with T BFhh, r . This yields

(5.19) IA[I R(A, A)BFhh]A-I(H) M uniformly in A (A, a).

On the other hand, by using the peAurbation formula

(5.20) R(A, AB) [I- R(A,A)BFhh]-IR(A,A)

and (5.19) with (5.20), we obtain

M

desired for part (i).
(ii) We start with

5.21) AR(A,A.) A(I- R(AAh)hBFhh)-’R(A, Ah).

From (2.5) for ]A large enough,

M
I (A,

Hence

(5.22) 1[I + R(A, Ah)hBFhh]- It(H) M.

By the uniform analyticity ofAh and the resolvent equation, the above estimate can be extended
to hold for all A (A, a). Recaliing (5.12) and repeating the same arguments as in Step
2 of Proposition 5.1 (where we use r 7) yields

(5.23) A[I R(A, Ah)hBFhh)-A-IC(H M uniformly inA (A,a).

Combining (5.21) and (5.23) with (5.11) gives

M
al

as desired.

ProofofLemma 4.1.

Proofof (4.6). We first show that for A0] > R0 and R0 being sufficiently large, we have

(5.24) ]A(A- KhC- AoI)- It(H) M.
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Indeed, using the formula

A(A- KhC- AoI)-’ -AR(Ao, A)[I + KhCR(Ao, A)]-
and noting that for R0 sufficiently large

M
IKhCI(Ao, A)I-

iol,_
< ,

we obtain (5.24). The resolvent equation

(5.25)

A(A- KhC)- A(A- KhC- AoI) -1 ,oA(A- KhC- AoI)- (A- KC)-
together with (5.24) and (4.3) gives

(5.26) IA(A KuC)- It(u) < M uniformly in h _< ho.

Writing

IAR(A, Ac)lcu) _< IA(A KhC)- Ic()IAcR(A, Ac)Ic)

yields the result in (4.6).
Proofof (4.7). For any c > 0,

(5.27)

AI(,X, Ac)A V(-A + KhC)--(-A + KhC)R(A, Ac)(-A + KhC)-(1--) fiV.
By using (5.24) together with Lemma 7.3 in [K.2, p. 144], we obtain

(5.28) IA(-A / :C)<-->lc<,> _< m.

Uniform analyticity of Ac (see (4.3)) yields

(5.29) I(A- KhC)I(A, Ac)Ic(H) < M uniformly in -c and h _< ho.

To estimate the last two terms in (5.27) we apply the result of Proposition 5.1 with A A*,
,0 0, T -C*K, and 7 r + c. This gives

for all g > r + e. By duality,

(5.3) I(-A + tfhC)-(1-"-)A(-)lz:(H) <_ M.

Since 7 + r < 1, we take small so 7 + r + < and we replace by 7 to obtain

(5.32) I(A- KhC)-(I-r)ATII:(H) < M.

Combining (5.27) with (5.28), (5.29), and (5.32) yields the desired result in (4.7).
Proofof4.8. The proof is the same as that of (4.7) after noting that (4.8) is equivalent to

IA*(A* + FyB* + ,I)-lA*rl(H <_ M.
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Since IFB*ft*-71C(H <_ M, it suffices to reverse the role of r and 7. []

ProofofLemma 4.2. (i) Part (i) is a direct consequence of Proposition 5.3.
(ii) For , E :’C(A, a),

IAII(H) <_ IA(I R(A,A)BFhrn) -’ fl- (H) IA[/(A, A)

and by (5.23),

(5.34) < MIfU[R(A A) R(,, Ah)Trh]l(I).

On the other hand, by Assumptions 3-5 and (2.3) we obtain

(5.35)

IA[R(A, A) R(A, Ah)Trh]l(H)
<_ IfV[R(A, Ah)Trh 7mR(A, A)]](H) + IA(I- 7Ch)R(A,A)I(H_
Mh-h + h(’-)lAR(a A)IC(H

_
Mh(’-).

Equation (5.34) combined with (5.35) gives

(5.36) [frI[E(H)
_
Mh(-)

As for term II we have

IAII(.) _< IA(:- R(A, A)BFhTrh)-I [R(A, A) R(A, Ah)Trh]
BFhTrh(I- R(A, Ah)TrhBFhrh)-R(A, Ah)Trh[H

and by (5.23),

(5.37)

We prove that for Ao E c(A, a),

(5.38) IA[(o, A) R(Ao, Ah)rh]FhrhlC(H) <_ Mhs(1-r-/).

Indeed,

IA[R(A0, A) R(Ao, Ah)Trh]BFhTrhlC(H) <_ IA[h(0, A) R(Ao, Ah)Trh]Fhrhl(H)

and by (ii) of Assumption 3 and (2.6) applied with Q 3’ > r and (2.4),

<_ Mh-8IB*(R(Ao, A* -R(Ao, A)) C(H) + MhS(1--)lfill-’R(Ao, A)BFhTrhlC(H)
< Mh-Srhs(l-)

as desired for (5.38).
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Now we are in a position to complete the proof of part (ii) of Lemma 4.2. Indeed, from
(5.37), (5.38), and the uniform analyticity of R(,, Ah3) (Proposition 4.1) we obtain

]IIl(H < MhS(1--’),

which, combined with (5.36) and (5.37), leads to result (ii) of Lemma 4.2.
(iii) To prove part (iii) we use the resolvent equation together with the compactness of the

set in (4.11). Indeed, let A0 be such that (4.10) holds. Then for any A E ,c and A0 E -c (A, a)
we have

and by (4.8), (4.1), and (4.10),

(5.39)

where the constant M [R(A0, AhB)In(H) is uniform in A0 (and in A). Taking A such that

[A-
Repeating the same argument finitely many times leads to the desired result of

part (iii).

6. Examples. We provide several examples illustrating the theory presented. All the
examples presented here refer to the situation when + r > . Moreover, Example 6.3 deals
with the case when the resolvent operator is not compact.

Let be an open bounded domain in R with a boundary F. We assume that is either
smooth or convex.

Example 6.1. Heat equation with Dirichlet boundary control. In , we consider the
Dirichlet mixed problem for the heat equation in the unknown x(t, ),

(6.1) x(0, .) x0 in

l
with a boundary control u L2() and the initial data x0 L2(). The solution x(t) is
"observed" via a finite-dimensional observation operator given by

(6.2) (t, )- f()()d(), r,

Here w satisfieswhere g

(6.3)

where Oj are the eigenvectors coesponding to unstable eigenvalues of
1... N, which (without loss of generality) are assumed to have simple multiplicity. To put
problem (6.1), (6.2) into the abstract setting of the preceding sections, we introduce the
following operators and spaces:

(6.4) Ah Ah + c2h, D(A) H2() H();
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(6.5) H- L2(9), U- L2(F), Z L2(F);

(6.6) Bu -ADu;

where D (Dirichlet map) is defined by h D9 if and only if (A + c2)h 0 in f; h[v g.
By elliptic regularity and the identification of fractional powers of elliptic operators (see [F. ],
[G.3]) we obtain

(6.7) D" continuous L2(F) -- H1/2(Q) C )(A1/4-e); E > o.

From (6.7) and (6.6) it follows that Hypothesis a is satisfied with 7 4
3- + E, where e is

arbitrarily small,

f
(6.8) Cx ] x(s)w(s)ds 9(),

C e (H(Q), L2(F)).

Since H() c T)(/2) (see [F.1] and [G.3]), for c < 1/2, Hypothesis lb holds with
r a p, where p is any positive constant. Hence r + "y < 1. To verify Hypothesis 2 we
recall some stabilizability results proved in [T.2] for the heat equation with boundary controls.
In fact, in [T.2] it was shown that the pair (A, B) (A given by (6.4) and B given by (6.6)) is
stabilizable with boundary feedback F e :(L2(); L2(F)) given by

(6.9) (Fx)({) xz da g (), F,

where z E L2(F); gl E L2(1-’) and z satisfies condition (6.3) (with w replaced by z). Hence
there exists wF > 0 such that

(6.10) le(A+BF)tIZ.(L2()) <_ Ce-Et.

As to the detectability condition, note that C*v({) fp vg dr w(), . Thus selecting
the operator K e Z:(L2(P); L2()) as (Ku)({) fr u. grip z(); e for a suitable
vector z L2(), we obtain

f
(6.11) (C*K*x)()- 191=()j xzdw(g).
Now the theory of [T.2] applies again to assert that under condition (6.3) there exists a vector
z L2 (Q) such that

(6.12) le(A*-C*K*)tlz:(L2(f)) <_ Ce-w:t

for some w; > 0. Taking w min(w/, wF) yields the desired conclusion in Hypothesis
2. Thus we have verified all the continuous hypothesis. As to the approximation framework,
we start by introducing the following spaces and operators"

(6.13) Vh C Ho (Q)

a space of splines (linear, cubic, etc.) that comply with the usual approximation properties

(6.14) 17rhY-- YIH() --< Ch*-tlYlHs(), s <_ 2, s > O, 0_<l< 1;

(6.15) [Yh[H() <_ Ch-alYh[L2(), 0 < a < 1;
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3
(6.16) (i) IDt(y rhY)JL2(r) <_ ChS-Z-/21yjHs(), - < s <_ 2, l-0, l;

(ii) [DZyh]L2(r) <_ Ch-Z-/21yu[n2(), O, l;

where D stands for the differential operator of order 1. Standard formulation of approximation
properties (6.14), (6.16) (see [T. ]) involves an interpolation operator rather than an orthogonal
projection. However, since inverse approximation properties (6.15), (6.16(ii)) are assumed
(always satisfied on a quasi-uniform mesh), we can easily show that these properties hold with
the orthogonal projection operator as well. Also, in the case of property (6.16(i)), the usual
formulation requires that s >_ 2. However, it was pointed out by Peterson [P.2] that it suffices
to assume s > .
(6.17) Ah Vh Vh is defined as the usual Galerkin approximation,

(Ah,Xh,Yh) j AhXhYhd-- --/[xhVYh --C2XhYh]d forallxh, Yh Vh.

It is well known (see IT.1 ], [B-S-T-W], and [L. ]) that the condition of uniform analyticity,
i.e., Assumption l, is satisfied. Also, classical results on approximation of elliptic problems
(see [T. ]) imply that Assumption 2 holds with s 2. Since

(6.18) B*x

Assumptions 3(i) and 4(i) are direct consequences of (6.16) applied with 1. Assumption
5(i) follows at once from the trace theory. Indeed by (6.16) and (6.18),

L(F) L(r)

As for Assumptions 3(ii), 4(ii), and 5(ii), it is enough to note that

and validity of these assumptions follows directly from (6.14) and (6.15). Finally, to comply
with Assumptions 6 and 7, since B*($0, A) and C($0, A) are compact, it suffices to take

Fh Fh and

We conclude that all the assumptions of Theorems 1.1 and 3.1 are satisfied.
Remark 6.1. Note that actual design of a finite-dimensional compensator for system

6.1 does not require any knowledge of the eigenfunctions/eigenvalues of A. Indeed, we can
construct stabilizing feedbacks Fh and Kh from the appropriate Riccati equations (3.6) and
(3.11) that involve only Ah, Bh, and Ch.

Example 6.2. Heat equation with Neumann boundary control and boundary observation.
In f we consider

(6.19)

Xt A -I- c2)x
z(o) zo
Ox- F

u

in Q,
in 92,
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We observe on the boundary

(6.20) y

To put problem (6.19), (6.20) into an abstract framework we set

(6.21) Ah Ah + C
2 h,

(6.22) H L2(),

(6.23)

o
hi -o}.D(A)- h E H2(f); p

U L2(r), Z L2(F);

Bu -ANu;

where N (Neumann map) is defined by

0
hit g.h Ng iff(A + c2)h 0 inf,,

By the elliptic regularity and [E ], [G.3],

(6.24) N continuous Lz(F) -+ H3/Z-(f) C D(A3/4-),
(6.25) Cx

From (6.23) and (6.24) it follows that Hypothesis la is satisfied with y + c. Equation
(6.25) together with trace theory and the inclusion 7)(]t /4+t’) C H1/Z+Z’(f) (see IF.l],
[G.3]) imply that Hypothesis b holds with r / p, where p is arbitrarily small. Hence

As to the stabilizability condition (Hypothesis 2) we recall that in’+r< 1, but+r> .
[T.2] it was shown that the same feedback F as in (6.9) (with appropriate choices of vectors

gl and z) uniformly stabilizes A, i.e., there exist constants C and wF such that

(6.26) le(A+BF)tlI2(L2(f)) Ce-wFt, WF > O.

Detectability condition in Hypothesis 2 amounts to the same thing, since

(A* C*K*)x xt

C*u A Nu and

is equivalent to xt (A + C2)X; 0
K*

Thus, it is enough to select K* F to obtain

(6.27) le(A*-C*K*)tlIZ(L2(Ft)) <__ Ce-wt

which, in turn, implies Hypothesis 2. Approximation framework is very similar to the Dirichlet
case considered in Example 6.1. Indeed, the space Vh C H (f) is defined as a space of splines
complying with properties (6.14)-(6.16). The approximating generator Ah Vh -+ Vh is
defined by the same formula (6.17), and Assumptions and 2 hold with s 2. Since

(6.28) B*x xlr

Assumptions 3(i) and 4(i) are direct consequences of (6.16) applied with 0. As for
Assumption 5(i),

IB*TrhXlL2(r) <_ 17rhXlLa(r) <_ C]Trhx Hl/2+2e() ClXlHi/2+2e(,l) Clx
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where we have used (6.14) and trace theory. Since

(see [Eli, [G.3]), the validity of Assumption 3(ii), 4(ii), and 5(ii) follows from (6.14) and
(6.15). Assumptions 6 and 7 hold (in view of compactness of R(A, A)) with Fh and Kh taken
as the projections of F and K, respectively, i.e., Fh =-- FTrh, Ih hK.

We conclude that all the hypotheses of Theorems 1.1 and 3.1 are satisfied.
Example 6.3. Structurally damped plate equation with point control and boundy obser-

vation. Consider the following model of a plate equation in the deflection w(t, ):

wtt+ A2W + A2wt (- i)ui(t) in Q,
i=l

(6.29) w(0, .) Wo; wt(0, .) Wl in ,
Aw + (1 )B,w 0 in ,

Aw]r + (1 )Bzw 0 on E,

with load control concentrated at the interior points of an open bounded domain of R2.
is the Poisson modulus and the boundary operators B and B2 areHere 0 < <

Bw 2uU2Wxv uwvv UUxx,
0

2w [(p P)Wxy + PlP2(Wyy Wxx)],

where 0/0 stands for the tangential derivative. The observation operator is given by

0
(6.0) y w,

To put problem (6.29), (6.30) into an abstract setting we introduce

Ah A2h,
(6.31)

(N)- hH4(a);h+(1-)Blh-O;h+(1-)Bh-Oonr

(6.32) H D(A’/2) L() H2(t) Lz(t), U R, Z- L2(F);

E ’](6.33) A-
-A -A

(6.34)

(6.35) cz- c(z) o
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It is known (see [L-T. ]) that A generates an analytic semigroup on H and, moreover, com-
putations in [L-T.1, p. 536] (see also [Ch-T.2]) show that Hypothesis la is satisfied with

7 + e. As to Hypothesis lb, we note that with x (Xl, x2) C H,

CO A1/4 gl 1/4 A1 -1-’/2x u [- [2I + /2]-/2Xl + A- [21 + /2] /2x2],

and by trace theory and the equivalence D(.AQ, H4Q 0 <_ Q, < -,

(6.36) Cz-l/2x Z M X[H.

and + r-Hence, the value of r in Hypothesis lb is equal to 7 + + < 1. As for the
stabilizability condition (Hypothesis 2), note that A 0 is the only unstable eigenvalue of A
(hence of A) with the multiplicity equal to three. In fact, functions 1, , 2 are three linearly
independent eigenfunctions (corresponding to the zero eigenvalue of ,A). Thus, the results of
[T.2] apply, provided that the points (i, 3 satisfy the following rank condition:

(6.37) det

If (6.37) holds, then the feedback operator F H R given by

(6.38) Fx -/xYd with Y’ (Lz(t2)) 3,

suitably selected vector, uniformly stabilizes the dynamics in (6.29) with u Fx. This is to
say that

]e(A+BF)t[E(H) Ce-WFt; WF > O.

To establish the detectability condition (Hypothesis 2), it suffices to note that the problem
of finding K ,(Z; H) such that ]e(A-/C)[(H _< Ce-/, w/ > 0 is equivalent, in
our case, to finding K* (H; Lz(F)) such that the system

(6.39)

is exponentially stable on D(A/2) L2(f). Problem (6.39)is a classical damped plate
problem with boundary feedback and with one unstable pole (A 0). Thus the results of
[T.2] apply again. Indeed, we can easily show that the feedback

K* (w) l f wzi dz

where zi L2(f) and 9 L2(F) are suitably selected (to guarantee the appropriate rank
condition to be satisfied) exponentially stabilizes (6.39).
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For the approximation part we introduce the following spaces and operators. Vn
Vn Vn, where Vn c H2(Q) is a space of splines (of order r0) complying with the following
properties:

(6.40) IQhX- XlH’() ChS-ZlXlHs(), 0 < < 2, < s <_ to;

(6.41)

where Qh is the orthogonal projection of L2

0_<oz<2;

Ah’’12n -- Vh
(6.42) Ah- Q, hAQh,

Ah" V V

is given by

i.e., (AhXh, Yh)L2(f2) (AXh, AYh)L2(a) (tXh, Yh)L2(f2),
is defined as

(6.43) Ah
--Ah --Ah

(6.44) 7rh Qh Qh,

(6.45) Fn =- FTrn, Kn 7rnK.

Validity of the uniform analyticity hypothesis (Assumption 1) follows by applying ver-
batim the argument of [Ch-T. of the continuous case to the finite-dimensional operator An
(note that in this example the bilinear form associated with A is not coercive). Assumption 2
with s 2 is a consequence of

11(TrnA-- AlTrn)XllH
where we have used standard approximation properties of the biharmonic operator. To verify
part (i) of Assumptions 3-5, we note first that in our case,

(6.46) B*x [X2(l),x2(2); X2(3)].
Hence, by Sobolev imbeddings and (6.41),

]B*xh]u sup ]X2h()l CJx2hl,+() Ch--]X2hlL() Ch-]XhlH

as 7s 7 + 2e, where e can be taken arbitrarily small. Assumptions 4(i) and 5(i) are verified
in a similar manner (see [L-T. 1, p. 537]). Parts (ii) of Assumptions 3-5 follow in a direct
way from the trace theory combined with approximation properties (6.40) and (6.41). Details,
being straightforward, are omitted.

Finally, Assumption 6 is satisfied by the virtue of the compactness of B*R(A0, A*) (note
that R(A0, A*) is not compact). Indeed, from (6.46),

(6.47)

Inequality (6.42) combined with the fact that x
H2(Q), hence compact H H+(Q); e < yields the desired conclusion. Similarly,
validity of Assumption 7 follows from (6.45) and the compactness of CR(A0, A). Indeed,
note that CR(A0, A): H H’/2(F) is bounded, hence compact H L2(F).

We conclude that all the hypotheses of Theorems 1.1 and 3.1 are satisfied.
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WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS

B. BERCU

Abstract. For complex multivariate ARMAX models, the author studies the weighted least squares algorithm
which offers, by the choice of suitable weightings, the advantages of both the extended least squares and the stochastic
gradient algorithms. Concerning adaptive tracking problems, the strong consistency of the estimator and control
optimality are both ensured. Almost sure rates of convergence are also provided.

Rsum. Pour les modules ARMAX vectoriels complexes, on 6tudie 1’ algorithme des moindres carrds ponddr6s
qui conjugue, par le choix de pond6rations convenables, h la fois les avantages des algorithmes des moindres carr6s
g6n6ralis6s et du gradient. Concernant les problbmes de poursuite adaptative, on assure la consistance de l’estimateur
et l’optimalit6 du contr61e. On pr6cise 6galement les vitesses de convergence presque sfire.

Key words, linear systems, estimation, strong consistency, adaptive tracking
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1. Introduction. In the study of recursive identification and adaptive tracking for
ARMAX linear systems, the major goal is to find a stochastic algorithm that ensures both
strong consistency of the estimator and control optimality. On one hand, if we focus our
attention on the strong consistency, we choose the extended least squares (ELS) algorithm
[15], [19], [22], [23], [24]. On the other hand, if we are interested in adaptive tracking, we
should use the stochastic gradient (SG) algorithm [8], [18]. Therefore, a natural question
is: Can we find a stochastic algorithm that combines both advantages of the ELS for strong
consistency and of the SG for adaptive tracking? A positive answer was recently given by
Bercu and Duflo [4] when they proposed a new weighted least squares (WLS) algorithm. In
this paper we complete their work, giving a solution to the twenty-year-old adaptive tracking
problem proposed by Astr6m and Wittenmark for ARMAX models.

The paper is organized as follows. In 2, we describe the WLS algorithm. The main
difference from the ELS algorithm is the introduction of a random weighting sequence a

(an). Section 3 is devoted to the crucial choice of a (an). The main results of the paper
are given in 4. We can see that the WLS algorithm equals the performance of the ELS for
the strong consistency and matches the best result of the SG for the adaptive tracking. More
precisely, the relation (24) is similar to the one obtained by Lai and Wei [24], [25] or Chen
and Guo 12] for the ELS estimator. Moreover, concerning the prediction errors sequence, the
relation (26) is exactly the same as the one proved by Goodwin, Ramadge, and Caines [18]
for the SG algorithm. Finally, in 5 and 6, we solve, in a simple way, the adaptive tracking
problem. We prove both strong consistency of the WLS estimator and control optimality. We
also provide almost sure rates of convergence. Section 7 is devoted to a survey on earlier
related works on adaptive tracking. Comparing our work with previous similar results, we
show how the WLS algorithm is well suited for adaptive tracking problems. A short conclusion
is given in 8. All technical proofs are collected in the Appendices.

Notations. In the following sections, for any matrix A, A denotes the transpose of A, A
represents the Hermitian adjoint of A and we set IIA tr(A* A). Moreover, if A is a square
matrix, tr(A) denotes the trace of A, det(A) the determinant of A, and Amin(A), Amax(A) the
minimum and the maximum eigenvalues of A, respectively. In addition, if A and B are two
positive definite Hermitian matrices, then A _< B if B A is positive definite. Finally, for
any positive integer d, Ia is the identity matrix of order d.

Received by the editors August 31, 1992; accepted for publication (in revised form) August 5, 1993.
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2. Weighted estimation. Let
(.T’n)n_>0, where f’n is the o--algebra generated by events occurring up to time n. We consider
the following complex multivariate ARMAX model of order (p, q, r)"

(1) A(R)Yn B(R)Un +
where Y, U, and are the dl-dimensional output, d2-dimensional input, and all-dimensional
driven noise, respectively. Set for the shift-back operator R,

(2) A(R) Id, AIR App,

(3) B(R) B1R +... + BqRq,

(4) C(R) Idl + C1R +’" + CrRr,
where A, Bj, Ck are unknown matrices. Assume that the control U (U) and the noise

() are adapted to F and that is a martingale difference sequence with

(5) sup E[llen+ IZl] < o-2 a.s.,

where cr2 is deterministic. The initial state tiff0 (tYoP tU, tc) is U0 measurable and,
for >_ 0,

(6) (ty, Uq, ),

where tY
Let 0n be an estimator of 0 where

(7) *0 (A1,...,Ap, B1,...,Bq,C,...,C).

The noise is predicted by the a posteriori error g with g 0 and, for n _> 0,

(8)

where

(9) tn (tyyn, t^’en ).
Let a (a) be a sequence of random variables adapted to F, positive, nonincreasing,

and 1. a (a) is called a weighting sequence. We propose, in order to estimate 0, the
WLS estimator 0 introduced by Bercu and Duflo [4] and given, for n 0, by

(10) On+ On + anSgl(a)n*(Yn+ *n),
where the initial value 0 is arbitrarily chosen and, for n O,

(11) n(a) akk *k +
k=O

with any positive definite Hermitian and deterministic matrix S. We also write, for such a
matrix Q,

(12) Qn(a) akk*q + Q.
k=O
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The inverses ofthe matrices Sn (a) and Q, (a) are recursively generated by the matrix inversion
formula of Riccati. Denote by s, (a) and q, (a) the traces of S, (a) and Qn (a), respectively.
We also make use of

(13)

where s tr(S), and of the prediction errors sequence 7r (Trn) defined by

(14)

3. Admissibility. Consider a weighting sequence a (an) and set, for n _> 0,

(15) fn(a)
r--0

a is said to be admissible ifA is integrable. Let F be the family ofcontinuous and nonincreasing
functions f from R+ to R+ such that zf(z) converges to 0 as z goes to infinity and

(16) f(x)dx <

for any constant c > 0. We have the classical inequality

(17) fn(a) <_ inf{1, log(det Sn(a))- log(det S,_ (a))}.

Using (17), Bercu and Duflo [4] have shown that a weighting sequence a (an) such that
an f(n) or a, f(log s,) with f E F is admissible. More precisely, they have proved
that A is always almost surely bounded.

Throughout the following, we always assume that the weighting sequence a is admissible.
Remark. It is important to see that theWLS algorithm does not include the ELS as a special

case since the weighting sequence with general constant term equal to is not admissible.

4. Strong consistency. We make use ofthe following traditional assumption ofpassivity:
(A1) C-1 " Idl is strictly positive real.
THEOREM 1. For the model and the WLS algorithm (1) to (14), assume that (A) is

satisfied. Then we have

/sup Ils/2(o;)(0n+l 0)112/ % -+-oo,(18) E
/>_o

(19) E ICnll*(On+l--O)nll21n=O
(20)

(21)
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(22)

(23)

Proof The proof is given in Appendix A.
COROLLARY 1. If (A1) holds, the WLS estimator given by (10) is strongly consistent on

and, on I, we have

I- {oo/minSn()- nt-CX:3}

(24) t)+l 0112 O({/minSn(6)} -1) a.s.

Remark. As S(c) > S, the WLS estimator is always almost surely bounded. By (24),
we can conclude that the WLS algorithm behaves as well as the ELS for ARMAX parameter
estimation [12], [24], [25].

COROLLARY 2. If (A1) holds, the prediction errors sequence satisfies

(25) (+ 11,I)ll2)-lllrll 2 <

More particularly, if, for r >_ O, s <_ can with c deterministic > O, then

Finally, we also have

(27) E (;t-l - /minSn_l((;t) 117l’nll 2 < -+-0(3.

n=0

Remark. By (26), we can conclude that the WLS algorithm behaves as well as the SG
for adaptive tracking [8], [18].

Proof. 7rn *On *On, so we can rewrite 7r -n+l + *(0n+l 0n)(I) where

7-n+l *0n *0n+l(I). Then, by use of (19) together with (21),

(28)

Hence, (25) and (27) immediately follow from (20) and (28). Moreover, if s <_ ca with c

deterministic > 0, (20) and (28) imply (26). []

COROLLARY 3. Assume that the driven noise c satisfies the strong law of large numbers
(LN) with, for n >_ O,

(29)

where r is a deterministic covariance matrix. To estimate F, we propose the two empirical
estimators

" n ; ’/=1 (Y/- *0/--1(I)/--1) (]//- *0/--1(I)/--1)

Suppose that (A1) is satisfied and that s- 0(an). Then, on the set {sn 0(n) and

sn --+ +oc}, and [’n areboth strongly consistent estimators ofF.
Proof. The proof is obvious using (21) and (26) with Kronecker’s lemma. []
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5. Adaptive tracking. We still consider the model and the WLS algorithm (1) to (14).
The goal of adaptive tracking is to find a control sequence U (Un) that forces the output
Y (Yn) to follow a given reference trajectory y (yn). We first use the traditional adaptive
tracking control (ATC) introduced by Astr6m and Wittenmark such that, for r _> 0,

(30) Yn+l *Onn.
It is well known that the ATC is almost surely defined if the following assumption is

satisfied:
(A) For n 0, the U conditional distribution of e+ is absolutely continuous with

respect to the Lebesgue measure.
Remark. If (A2) is satisfied, Caines [8] has shown how to solve the zero divisor problem

for the ATC. We will see in the next section how to avoid this assumption.
Throughout the following, we assume that the driven noise e has constant conditional

covariance matrix F given by (29). We also make use of the two classical assumptions
about

(N1) has finite conditional moment of order >2;
(N2) e is independent and identically distributed with mean 0 and covariance matrix F.

Therefore, if (N1) or (N2) are fulfilled, e satisfies LN, i.e., if

(31) F--
=1

F converges to F almost surely. Finally, we need the following usual assumption of causality:
(A3) d2 dl and the matrix B is of full rank d2. Moreover, if B+ denotes the left inverse

of B1 and if D() B+-1B() for the shift-back operator , then D is causal.
Throughout this section, we use a similar approach as that of Bercu and Duflo [4] in the

ARX framework. Let C (C) be the average cost matrix sequence defined by

(32) C (y Y)* (y Y)
k=l

The ATC is said to be optimal ifC converges almost surely to F. If we use the ATC, we have
from (30)

(33) Y+ +1 + e+l.

Then, we can easily prove that

k__l
2 a.s.

Therefore, in order to show the ATC optimality, we only have to prove that the prediction
eors sequence satisfies

(35) 11112- o()a.s.
k=l

THEOREM 2. For the model and the WLS algorithm (1) to (14), assume that (A1)-(A3)
and (N1) or (Ne) are satisfied. For the tracking trajecto y (y), suppose that, for

O, y+ is measurable with respect to and

(36) I1112 o() a,s.

k=l
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Ifan f(log Sn) with f E F and if s- O(an), then the ATC is optimal. Moreover, we
have

(37) -lllYn y enll 2 < -+-oe a.s.

Finally, n and n are both strongly consistent estimators ofF.
Remark. For the SG algorithm, the ATC optimality was established by Goodwin, Ra-

madge, and Caines 18]. Such a theorem was never proven for the ELS algorithm.
Proof. The proof is given in Appendix B.
We now give a useful excitation transfer (ET) lemma similar to the one established by

Lai and Wei [25]. We begin by stating the following assumption of ieducibility which uses
the same notation as (A3):

(A4) The matrix B+Bq is regular and the polynomials of matrices B+A, B+C and D
are left coprime.

EXCITATION TRANSFER LEMMA. Suppose that (A3) and (A4) are satisfied. Then we can

find a constant M > 0 such that, for n s,

where tHn_ p+s+Y and s d2(q 1).
Pro@ A proof can be found in Lai and Wei [25] or Duflo [17].
THEOREM 3. For the model and WLS algorithm (1) to (14), assume that (A)-(A4) and

(N1) or (N2) are satisfied. Assume that the covariance matrix F is regular For the tracking
trajecto y (y), suppose that Yn+l is n--p-s U__-measurable with
and

(39) ilyll 2 o() a.s.
k=l

Moreover, suppose that y is exciting with order p + s + 1, i.e.,

(40) liminfmin (1
_

p+s+l,_p+s+l)n
yk yk > 0 a.s.

k=p+s

Ifa f(log s) with f F and ifs O(a), then the ATC is optimal

(41) I1112 o(), f(a) o(1) a.s.,

(42) I[Cn rll- o
nf(log n)

a.s.,

(43) Z f(log )11 112 < +
n--1

a.So

Moreover, the WLS estimator On converges almost surely to 0 and we obtain

( )(44) IlCn+l 0112 O
nf(log n)

a.s.
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Finally, n andn are both strongly consistent estimators of ’ and wefind relations similar
to (42) with n or n instead of

Proof The proof is given in Appendix C.
Remark. We can prove the ATC optimality and the strong consistency with a condition less

restrictive than (40) for the tracking trajectory. More precisely, let A (An) be a deterministic
positive sequence, increasing to infinity, such that (An) has the same behavior as (An_ 1) and
An O(n). Assume that is A-exciting with order p + s + 1, i.e.,

(45) lim inf/min -n Z p+s+l,yp+s+lYk k > 0 a.s.
k=p+s

2Then, if A O(an), the ATC is optimal and the WLS estimator is strongly consistent with

(46) II/l 0112 o
Anf(log n)

a.s.

We next consider the continually disturbed control (CDC) introduced by Caines [6], [8] such
that, for n > 0,

(47) Yn-t-1 -- r+lwhere is a dl-dimensional exogenous noise, adapted to F, with mean 0 and covariance matrix
A. The CDC is said to be residually optimal if C converges almost surely to 1 + A.

THEOREM 4. For the model and WLS algorithm (1) to (14), take the same assumptions as
in Theorem 3 except condition (40)for the tracking trajectory 1. Moreover,for the exogenous
noise , assume that the LN is satisfied with A regular. In addition, assume that is independent
ofe, of], and ofthe initial state o. Ifan f(log sn) with f E F and ifs- O(a2), then
the CDC excited by is residually optimal

(48) I1 2 o(n), f(a) o(1) a.s.,

(49) Z f(log  )IIY nll 2 < -+-o a.s.
n--1

Moreover, the WLS estimator On converges almost surely to 0 and we obtain

( )(50) II0 +l 0112 o
r f(log

a.s.

Proof. The proof is similar to that of Theorem 3.

6. Modified adaptive tracking. We now use a similar approach as that of Guo and Chen
[19], [15] in the ELS framework. Assume that (A1) and (A3) are satisfied. Without assumption
(A2), to avoid the zero divisor problem with the ATC, we propose a modified WLS estimator.
Throughout the following, the major restriction is that the noise is supposed to satisfy (N1).
All the results of this section are also true, without modification, if we assume that (A2) is
satisfied.

Let/ be the matrix component of n that estimates/1. Pn and Qn are the orthogonal
matrices associated with the singular value decomposition of/. The columns of P are
eigenvectors of/1,/1 and the columns ofQ are eigenvectors of*//l [20]. We set

(51)
if/min(* "1 "1 > 0,

otherwise,
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for any positive, deterministic and summable sequence u (un). By (51),/)1 is clearly of
full rank d2. Denote by n the modified WLS estimator of 0 where/)l is replaced by/)l in

0n. It immediately follows from (51) that

(52) 10n 112 , a.s.

Hence, since un o(1), the WLS algorithm is not modified for parameter estimation. We
first consider the modified ATC such that, for n >_ 0,

(53) Yn+l *0n(I)n.

We clearly have from (53)

(54) Yn+ Yn+ #n --[- n+

where

(55)

Therefore, the modified ATC is optimal if

(56) Z I1# 2 o(D a.s

THEOREM 5. For the model and the WLS algorithm (1) to (14), assume that (Al), (A3),
and (N) are satisfied. For a positive, nonincreasing and deterministic sequence c (cn)
such that Cn O(n), assume that we have ,112 o(o). For the tracking trajectory

Y (Yn), suppose that, for n >_ 0, Yn+ is .Un-measurable with Ily,ll 2 o(o) and

(57) Z I111 o() a.s.
k=l

If an f(log sn) with f E F and if S- O(an) then the modified ATC is optimal.
Moreover, consider the positive random sequence v (Vn) such that vn Cn + a- 1. Then
we also have

(5s) 112 O(Vn+l) a.s.,

(59)

(60) Z --tlY Yn
2 < +oc a.s.

n=l vn

Finally, n and are both strongly consistent estimators of[’ and wefind relations similar
to (59) with n or instead ofC.

Proof. The proof is given in Appendix D.
Concerning adaptive tracking, we now give the last but most important theorem of this

paper. It ensures both strong consistency for the WLS estimator and modified continually
disturbed control (CDC) optimality. We recall here that the following theorem is also true,
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without modification, if we assume that (A2) is satisfied. Before stating it, we assume in (51)
that the sequence (nun) is summable.

Consider a deterministic positive sequence , (,n), increasing to infinity, such that, for
n _> 1, ,n /n--I 1, (,) has the same behavior as (/n-1) and ,Xn O(n). Let be a

dl-dimensional exogenous noise adapted to F with mean 0 and covariance matrix A. Set, for
n _> 1, Xn V/, ,-ln. We use the CDC introduced by Bercu and Dutto [4] such that,
forn >_ 0,

(61)

It follows immediately from (61) that

(62) Yn+l Yn+l Xn+l #n + n+l.

THEOREM 6. Forthe model and the WLS algorithm (1) to (14), assume that (A1), (A3),
(A4), and (N1) are satisfied and that [’ is regular. For a positive, nonincreasing and de-
terministic sequence ct (ctn) such that cn O(n), assume that I1112 o(). For
the tracking trajectory y (Yn), suppose that Yn+l is U-p-s N ,n__s-measurable with
Ilynll 2 O(n)and

(63) Z IIll 2 o(n) a.s.

Moreover, assume that the exogenous noise satisfies (N1) with A regular. In addition,
suppose that is independent of , of the initial state o, and of the tracking trajectory(
y, and that 11112 O(c). Consider the positive random sequence v (v) such that

vn OZn + a 1. Assume that vn o(,n) and ,-1 O(a2). If an f(log sn) with f E F
and if s- O(a2n ), then

(64) I1112 o(,Xn), fn(a) o(1) a.s.,

(65) Z f(lg n)IIYn Yn X en 2 < +oc a.s.,
n=l

(66) ,k----l l(Yk= yk )*(Y y ) --+ A a.s.,

(67) IIC rll o(A) aoS.

Therefore, if ,n o(n), the modified CDC excited by X is optimal. Moreover, the WLS
estimator On converges almost surely to 0 and

( )(68) II0  +, 0112 O
,f(log n)

a.s.

Finally, and are both strongly consistent estimators off and wefind relations similar
to (67) with f’n or instead ofC.
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Proof The proof is given in Appendix E.
Remark. If assumption (N1) is satisfied with c > 2, then, by use of the conditional

Borel-Cantelli lemma, we can take cn r/ with 2c- < /3 < 1. We can also choose

an (log sn) -1-’r with 7 > 0. Therefore, if we take An n6 with/3 < 6 < 1, we obtain
the convergence rates r-6(log n) +’ for the strong consistency and n6-1 for the optimality.
In addition, if e and are Gaussian white noises, then, using again the Borel-Cantelli lemma,
we can take cn log n. On one hand, if we focus our attention on the strong consistency, we
can use the same choice as above and find the convergence rate r-6 (log n) +’r. On the other
hand, if we are interested in the optimality, we can take An (log r) 6 with 2(1 + 7) -< 6 and
we obtain the convergence rate r- (log n)6. One can realize that the attenuation A (An)
plays a prominent part, reducing the role of the weighting sequence a (an).

7. Survey on adaptive tracking. We now give a short survey on earlier related works
on adaptive tracking. We complete this section by comparing our work with previous similar
results.

Concerning the SG algorithm, Goodwin, Ramadge, and Caines [18] proved global con-
vergence and adaptive tracking control (ATC) optimality. In the scalar tracking problem,
Becker, Kumar, and Wei [2] established convergence to a random multiple of the parameter to
be estimated. If the tracking trajectory is sufficiently rich, Kumar and Praly [2 l] showed, in
the scalar case, strong consistency and ATC optimality. Caines [6], [8] realized that, in order
to enforce strong consistency, it is necessary to modify the ATC ofAstr6m and Wittenmark
and he introduced the CDC. In the scalar case, Caines and Lafortune [7] obtained the first re-
sults of CDC optimality and persistent excitation. For the same purpose, Chen [9], 11 chose
a weak hypothesis of excitation and using this assumption, Chen and Caines [10] proved,
in the scalar case, strong consistency and CDC residual optimality. In a multidimensional
framework and with a restrictive assumption on the noise, Chen and Guo 13] established both
strong consistency and CDC optimality.

Concerning the ELS algorithm, Solo [27] gave, in the scalar case, a persistent excita-
tion condition in order to guarantee strong consistency. Lai and Wei [23], [24] proposed
a weaker excitation condition to obtain strong consistency. For bounded noise, they used
a rather complicated control to obtain both strong consistency and CDC optimality. Under
the same condition but in a multidimensional framework, Lai and Wei [25] showed strong
consistency and gave an excitation transfer theorem useful in obtaining persistent excitation
results. Analogously, in a multidimensional framework, Chen and Guo [12] gave conditions
to obtain strong consistency. Then they used a rather complex control to prove both strong
consistency and CDC optimality with almost sure rates of convergence. Chen and Zhang 14]
established similar results in the multi-delay case. Recently Kumar [22] showed, for white
Gaussian noise and in a regression framework, the existence of an almost sure limit for the least
squares estimator, for almost all parameter values. Strong consistency and optimality results
followed. Sin and Goodwin [26] introduced the modified least squares (MLS) algorithm and
obtained results similar to those of Goodwin, Ramadge, and Caines 18]. Chen [9], 11 also
introduced an algorithm similar to the MLS and in a multidimensional framework he proved
strong consistency and CDC residual optimality.

Recently, Guo and Chen [19], [15] established the most important result concerning
adaptive tracking for ARMAX models. They found a solution to the twenty-year-old adaptive
tracking problem proposed by Astr6m and Wittenmark ]. In a multidimensional framework,
they proved both strong consistency ofELS estimator and CDC optimality. They also provided
almost sure rates of convergence. The key idea was an over-estimation of the ARMAX
regression vector norm.

With the WLS algorithm, we have also given a solution to the Astr6m and Witten-
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mark [1] adaptive tracking problem. We now compare our work to the results of Guo and
Chen[ 19].

One can remark that the WLS algorithm is similar to the ELS. The main difference is
the easy introduction of a random weighting sequence a (an) in relation (10).

To obtain strong consistency results, Guo and Chen [19] always required that the
driven noise e h.ad finite conditional moment of order > 2. In 4, we showed how to avoid this
assumption by the choice of an admissible weighting sequence. Moreover, it is easy to see
via (24) that the WLS estimator performs as well as that of the ELS for ARMAX parameter
estimation.

Furthermore, to obtain adaptive tracking results, Guo and Chen [19] proposed a mod-
ified ELS estimator. One can realize that they established CDC optimality by use of a rather
technical procedure. Our modification (51) is really simple. Moreover, via (26), we can easily
prove the CDC optimality. In addition, our results are also true without modification if the
continuity assumption (A2) on the distribution of e is satisfied. One can remark that such a
result has not been proved by Guo and Chen[ 19] with pure ELS estimator.

Finally, we have shown that the WLS algorithm is really easy to handle. We can choose
the weighting sequence or the attenuation as we want to privilege the strong consistency or
the optimality. One can also realize that our convergence rates are more precise. For example,
suppose that we focus our attention on the control optimality. If e is a Gaussian white noise,
we can take the attenuation An (log n)4. Then, we obtain from (66) a convergence rate in
power of log n. It improves the result of Guo and Chen [19] as they founded a convergence
rate in power of n.

8. Conclusion. Finally, as it was done for the ELS algorithm, we have shown that the
WLS algorithm has rather attractive properties. Under classical assumptions, we have proved
both strong consistency of the WLS estimator and CDC optimality. We have also established
almost sure rates of convergence. We can easily guess that the weighted estimation can be used
in many other frameworks. For instance, the adaptive tracking problems for linear ARMAX
models with time varying parameters or for functional ARMAX models remain to be studied,
following the choice of suitable weighting sequences.

Appendix A. We make use of the following two lemmas.
LEMMA 1. Set fn(a) an*(bnSl(a)(bn and 9n(a) an *(bnSll(a)dPn Then

(1-fn(a))-- (l+gn(a))- so 0<_ fn(a) <_ 1;

+

fn(a) <_ inf{1, log(det S(a))- log(det Sn_(a))}.

LEMMA 2. Assume that is a martingale difference sequence satisfying (5). For a vecto-
rial random sequence n) adapted to F, set

Then we always have

n

Mn+l Z
k=O
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We can easily proveLemma 1 using the same arguments as without the weighting sequence
a (an). Lemma 2 can be established by the use of a stopping time argument together with
the Kolmogorov’s inequality 17]. It can also be proved via the Burkholder, Davis, and Gundy
inequality 16], [28].

Proof of Theorem 1. For r >_ 0, set 0n 0n 0,n g, en, and v,
tr(*OnSn-(a)On), where S_(a) S. By Lemma 1, we can find the following relation
similar, without the weighting sequence a (a,), to the well-known equality due to Caines
[8], Chen [11], Duflo [17], Guo and Chen [11], [15], or Lai and Wei [25]"

(A.1)

Tb

n/ + Pr/ o -t- alla/ 2 + 2Z anf(a)lle+ 112
k=0 k=0

+2Re(Mn+l) 2Re(L,+I),

with an -*On(I)n-1 3n *0n(l)r _qt_ fn(g)n; and

" Pn+l 2=oakf(a)(1 fk(a)) + Ck+l[ 2,
M+ k=o ak *3kek+l,
Ln+l k=0 ak *ak+lgk+.

Moreover, since (A1) is satisfied, a C(R)Y and a (a) is positive and nonincreasing,
we can find a positive constant and an integrable random variable L such that

(A.2) 2Re(Ln+l) + L >_ (1 + l)Z ak ozk-+-i 2.
k=0

In addition, it immediately follows from Lemma 2 that

(A.3)

Therefore, recalling that 3n -a,+l fn(a)Cn+l, we obtain that either

(A.4)

or

Finally, by (A.1) and (A.2), we find that

Now, from (5) and (15) together with the monotone convergence theorem,

(A.7) E[af(a)"+’"2=o <+"
Then we obtain (18) from (A.6) and (A.7). Next, we also obtain (19) and (21) from (A.1), (A.2),
(A.7) and the passivity assumption. It remains to show (20) and (22). Let 0-*0
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be the prediction error at time n. By use of Lemma 1, we have (1 f7%(a))Trn 7%+1 -t-
fn (a)e7%+l. Hence, (21) and (A.7) imply

(A.8) E[-a7%(1-fn(a))2’lTrnl’2]n=o
Recalling (A. 1), we also find that

(A.9) E [sup Phi[7%_>1
<4-00,

(A.10) [af(a)(1-f(a))llzr121=o
and we clearly deduce (22) from (A.8) and (A.10). Furthermore, by the matrix inversion
formula of Riccati, we obtain

(A.11) *(b7%S(a)(bn (1 fn(a))2*dpnS-2l(a)(bn._

So if we set d dip 4- d2q 4- d r, we obtain, by Lemma 1,

(A.12) an.XminSn-l(a)*dPnS2(a)d27% <_ dfn(a)(1 fn(a)).

Finally, (10) and (14), together with (A.12) and (22), imply (20), completing the proof of
Theorem 1. []

Appendix B.
Proof of Theorem 2. Denote by s and ao the limits of the sequences s (s7%) and

a (an), respectively. To use relation (26) together with Kronecker’s lemma, we first have
to show that so +oc. If we assume that so < +ec, it follows from the assumption
s 0(a7%) that necessarily ao > 0. Hence, using (21), we have

(B.1)
n=0

If we set qn ’=o IIll 2 + s, we can easily see that

(B.2) q7% _< 2 II q 12 + 2sn,
k=o

so qo < +oc where qo denotes the limit of the sequence q (%). But we also have from
(6) that

(B.3)
k=0

and as e satisfies the LN, we get n O(qn). Finally, we lead to a contradiction so that
s +oc, ao 0. Moreover, we also have

(B.4) sn <_ 2 IIq 112 + 2qn.
k=0
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Then, by use of (21) together with Kronecker’s lemma, we find that

(B.5) II ’kll o(a-1)
k=0

and, as a- O(sn), we obtain sn O(q). In addition, from (6), we have

(B.6) q o liYll 2 + Ilgll 2 + IIll 2

k=0 k=0 k=0

Hence, assumptions (N) or (N2) imply that

(8.7) q O + IIg 2 + g 2

k=0 k=0

Recalling (1), we have U_ D-(R)B+A(R)Y D-(R)B+C(R)en, where R is the
shift-back operator. Then, using (B.7), we find that

(g.8) q_ 0 + I11

and so, as s O(q), we prove that

(B.9) s_-O n+ IIYll 2

k=l

By (26) and the assumption (36) for the tracking trajectory, we have

(n.10) 11Y1 o(s_,) + O(n).
k=l

Finally, using (B.9), we obtain that

k=l

From (26) together with onecker’s lemma, we conclude that the ATC is optimal. Moreover,
(26) immediately implies (37). We complete the proof using Corollary 3.

Appendix C.
ProofofTheorem 3. Using the same ideas developed by Bercu and Duflo [4] in the ARX

framework, we now prove the Theorem 3. We have already seen in Theorem 2 the ATC
optimality with

c,) I1112 o().

Set, for n O, tL (ty++ + te+,+, t+,+). Using the notation of the ET Lemma,
we obtain from (33),

p+s+l

<c.2) IIH. L. 2 II-k*
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Then it follows from (C. 1) and (C.2) that

(c.3) Z IIHk+’ Lk+, o(n),
k=0

Moreover, as y is strongly exciting with order p / s / 1, we have

(C.4) lim inf/min ( yp+S
n

k=0
kh-1

Furthermore, F is regular. Hence, if we assume that Yn+l is Un-p-8 N Un__8-measurable,
we find, by use of a classical excitation transfer property proved by Duflo 17] or Lai and Wei
[251, that

(c.5) Lk+l Lk+l > O.
T

k=0

Then (C.3) together with (C.5) imply

(C.6) liminf,min -1 tJk+l *Hk+l > 0.
T

k=0

Now, if we set

(C.7) Q + Q,
k=0

aQ <_ Q(a) < Qn.

Hence, by use of the ET Lemma, we find that n O(/min(n), which implies na
O(AminQ(a)). In addition, we have already proved that s O(n). Consequently, from
the assumption (asn)-’ O(a), we find that/minQn(a) /OO. Next, q O(n),
so log(/maxQn(a)) O(log(n)) and log(,maxQn(a)) o(/minQn(a)). Therefore, via a
well-known transfer property, we can conclude that na O(/minn (a)). Finally, the WLS
estimator is strongly consistent and from (24) we obtain the convergence rate given in (44).
Moreover, by use of (27), we also find that

(c.8)

Hence, we obtain, from Kronecker’s lemma,

(C.9) I111 o(a-l).
k=l

Finally, from (34) and (C.9), we obtain the convergence rate given in (42). In addition, we
immediately obtain (43) from (C.8). To complete the proof of Theorem 3, we now show that
IIq),ll 2 o(n). It will clearly lead to f(a) o(1)_. From (C.8), we have I1112
Then, (33) together with the assumption IlYn 2 o() imply I1/112 o(). Recalling (1)
and the causality assumption (A3), we have

Un D-I(R)t+A(I)Yn+I D-l(R)B+V(t)en+l,
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where R is the shift-back operator. Hence, we can see that [Ignl] 2 o(). Finally ]]tI/n][ 2
o(n) and from (21), I1112 o(), completing the proof of Theorem 3. []

Appendix D.
Proof of Theorem 5. From the causality assumption (A3), Caines [8] or Guo and Chen

19] proved that we can find a positive constant A < such that

(D.1)

where

(D.2)

Furthermore, we have from (25) that

(D.3) iill 2 o(a-1 .Af_ 11112).

In addition, (54) and (55) together with (D.1) imply

(D.4) IIY+, 2 O(ozn-t-, -[- O(I]Trll 2) + O(F+,).

Therefore, it follows from (21) and (D. 1)- (D.4) that

(D.5) I1+ 2 <_ o(+) + o(Z+),

where vn c + aX . Moreover, as F+ AF + IlYn+l 2, we obtain

(D.6)

for some positive constant # < 1. Finally F O(vn) and we obtain that

(D.7) ll(I)ll 2 O(vn+,).

Recalling (55), we also have

(D.8) }}GII 2 G 2}},rrll 2 -t-2ll*.,ll 2.

Hence, by use of (26) and (D.8), since u (u) is summable, we find that

(D.9) 11#’112 < +c.
=0

Therefore, as in the proof of Theorem 2, it follows from (D.9) that sn O(n). Finally, (56)
and (D.9) imply the modified ATC optimality. In addition, it immediately follows from (D.7)
that a + II(I,nll 2 O(vn+). Then, we establish from (25) that

(D.IO) Z I1"11 < +o.
n=O )n+

Finally, (54) and (D.10) together with Kronecker’s lemma imply (59) and (60), completing
the proof of Theorem 5. []



WEIGHTED ESTIMATION AND TRACKING FOR ARMAX MODELS 105

Appendix E.
Proofof Theorem 6. We prove Theorem 6 using the same approach as Bercu and Duflo

[4] in the ARX framework. The exogenous noise satisfies assumption (N). Then, as., .,-1 _< 1, we obtain, by use of Chow’s lemma,

(E.1) ZA(A, A_,)({ *{ A) < +.

But X A A_{, so (E. 1) implies immediately that

(E.2) A (X*X (k A_)A) < +.
n=l

Then, as A (k) increases to infinity, we obtain, by onecker’s lemma,

A.(E.3)
A =

Since A is regular, we immediately obtain from (E.3) that

(E.4) lim inf min k k > 0.

Moreover, as O(), we also have I1112 0(). Consequently, by use of (62)
together with the proof of Theorem 5, we obtain the first relation of (64). Therefore, since

v o(), we obtain, from (25),

(g.5) I112
Set, for >_ 0, t ,(tP+s+l + te+s+l + t+s+ te+s+l). Using the notation of the
ET Lemma, we obtain, from (62),

p+s+l

(g.6 I+, +1 2 I1-+ 2.
k=l

Then, from (E.5) and (E.6), we obtain

(g,7) 11 112
In addition, by (E.4), we also have

L*L > 0.(E.8) lim inf min
=1

Finally, (E.7), (E.8), and the ET Lemma imply O(minQn). Therefore, as in the proof
of Theorem 3, the assumption (a)-’ O(a)impliesa O(minS(a)). Hence,
we clearly obtain the second relation of (64). Moreover (68) follows immediately from (24).
Recalling (27), (55), and (64), as v o() and the sequence (n) is summable, we also
find that

(E.9)
r--0
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Then we clearly obtain (65) from (E.9). Finally, we obtain (66) and (67) from (62), (E.3), and
(E.5), completing the proof of Theorem 6. []
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NONINTERACTION AND STABILITY VIA INVERTIBLE FEEDBACK LAWS AND
SOME EXISTENCE CONDITIONS

S. BATTILOTTIt

Abstract. For a wide class of nonlinear systems with more inputs than outputs, the authors show that the
asymptotic stability of suitable dynamics and the asymptotic stabilizability via dynamic state feedback of suitable
systems are necessary to achieve noninteraction and stability via invertible feedback laws. These conditions generalize
some recent results obtained for the same class of systems. Some interesting existence conditions are also given, and
relationships with the above necessary conditions are identified.

Key words, noninteraction, stability, invertible feedback laws
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1. Formulation of the problem. We consider nonlinear systems

()
k f(x)+ Z gj(x)uj,

j=l

y h(x), 1,...,p,

where f and gj are smooth vector fields and hi are smooth real-valued functions. Moreover,
let xo 0 and assume that f(xo) 0 and dhr(xo),..., dhTp(xo) are linearly independent
vectors. By G(x) we denote the matrix (91(x)... 9,(x)), by u we denote (Ul u,)T and
by {7 we denote the distribution span{91,..., 9m} or, equivalently, span{G}. Let us denote
by kerdh the codistribution that assigns at each x the subspace of Nn {v E I (w, v)
0 w E span{dhi (x) } }, where (.,.) is the standard inner product of I, and let/C kerdh.
Moreover, we denote by Lg) the Lie derivative of the smooth function q along the vector
field 7-. Given smooth vector fields 7- and 7-2, we denote by [7-1,7-2] the Lie bracket of 7-1 with

7-2. For a given vector field 7- and covector field co we denote by L-co the Lie derivative of 7-

along co. The reader is referred to for an easy introduction to the above concepts. Also, in
what follows, we implicitly restrict our analysis to a neighbourhood of x0.

A distribution A is involutive if [T1, T2] C A for any T1, T2 A. A distribution A
is invariant under a vector field 7- if [A, 7-] C A, where [A, 7-] is the distribution spanned
by the vector fields Iv, 7-] and v, with v A. Let (f, 91,..., 9,lspan{gi I}}, with
I C { 1,..., m}, be the smallest distribution that is invariant under f, 91,. 9, and contains
span{gi I}. Moreover, let T0 (f, 91,..., 9,[span{G}). It is easy to show that 70 is
invariant under feedback laws u a(x) +/3(z)v, with/3(z0) invertible.

A distribution A is controlled invariant for (1) if [f, A]
j 1,..., m. A distribution A is a controllability distribution for (1) if it is involutive
and there exist a feedback law a(z) +/3(z)v, with/3(z) nonsingular, and a subset
I C {1,...,rn} such that A (f + Ga, G,...,G/3,lspan{g/3j j E I}), where/Tj is
the jth column of the matrix

The system (1) is said to be noninteractive if there exists a partition ui,..., ulp+, of the
input vector u, with I C {1,..., rn} and I c I {4} for j - i, 1,...,p + 1, such
that the ith output is influenced only by us with s Ii. Note that the inputs us, s Ip+l,
do not influence any output. The system (1) is said to be noninteractive with stability if it is
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noninteractive and locally asymptotically stable in x0 (in the sense of Lyapunov). If (1) is
not noninteractive with stability, we can try to modify its behaviour through suitable feedback
laws so as to achieve these properties, while preserving the affine structure of the system and
its equilibrium point. Toward this end, we consider dynamic feedback laws of the form

(2)
(,) + 8(, ),
(,) + (, w),

with a(0, 0) 0, 5(0, 0) 0. Moreover, for any (block) partition Vl,... Vp+l of the input
vector v let (/31 (x, w).../3p+l (x, w)) and (71 (x, w)... 7p+l (x, w)) be the corresponding
partition of fl(x, w) and 7(x, w), respectively. If nw 0, we obtain static feedback laws.
We say that a static feedback law u a(x) +/3(x)v is regular at x0 if the matrix/3(x0) is
invertible. Also, we say that a feedback law (2) is invertible if the system

(3)
(x, ) + (,),
f(x) + G(x)a(x, w) + G(x)/3(x, w)v,
(x, ) + (x, ), e

is invertible in the sense of Singh [2]. In the linear case, this amounts to requiring that the
transfer function matrix associated with (3) has rank m. This class of feedback laws has been
considered for the first time in the case of nonlinear systems in [3]. In what follows, we assume
that the open and dense set, on which a given feedback law is invertible, contains the origin
of the state space.

Next, we formulate the problem of achieving noninteracting control with stability via
dynamic feedback. To this end, first we consider the additional dynamics (the clever trick was
first introduced in [4] for linear systems)

where u are auxiliary inputs, and define the extended system

(4)

ic f (x) + G(x)u,
U

y h(x), 1,...,p.

If we set

XO
WO

a() OTt X ?’tw

ITt X
hT()

i-- 1,...,p,

where 0 and I are, respectively, the zero and identity matrices and the subscripts denote the
dimensions of these matrices, then (4) can be rewritten in the following form:

(5)
ff (x) + G(x)u,

yi- hT(x), i- 1,...,p.
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Moreover,

span(G}, " span{O/Ow}, 1C kerdh.
According to our r/otation, let

](x) f(x) + G(x)

J-

and denote by the coesponding closed-loop system (1), (2). If n 0, i.e., the feedback
law is static, the superscript "e" in the above notation will be omitted. Moreover, by stability
or stabilizability of a given system we mean stability and, respectively, stabilizability at the
origin of its state space.

LND (local noninteraeting control via dynamic state feedback). Find n and a

feedback law (2) such that e is noninteractive and has vector relative degree at x.
LNSD (local noninteraeting control with stability via dynamic state feedback). Find

n and afeedback law (2) such that is noninterative, locally asymptotically stable in
and has vector relative degree at x.

The requirement of vector relative degree at x ensures that at least one input u for some

I does influence the ith output (for a definition of vector relative degree see ]).
In [5] and, more completely, in [6], using a necessary condition proved in [7], the problem

ofnoninteracting control with stability has been completely solved for a wide class ofnonlinear
systems (1) with m p. This class consists of the systems (1), with m p, such that
noninteraction can be achieved via static state feedback laws, regular at x0, or, equivalently, the
systems that have vector relative degree at x0. A necessary and sufficient condition to achieve
noninteraction and stabili for this class of systems via invertible dynamic state feedback is
that a suitable dynamics 0 be asymptotically stable and certain systems , 1,..., m, be
asymptotically stabilizable via dynamic state feedback law. As shown in [7], the dynamics
is the nonlinear obstruction to achieve noninteraction and stability via dynamic feedback. In
the case of linear systems it is indeed a trivial dynamics. By combining the results contained
in [8] and [6], it is not hard to show that for a given nonlinear system (1), with m p,
noninteraction and stabili can be achieved via dynamic state feedback law if and only if
noninteraction can be achieved for (1) via dynamic state feedback law and noninteraction
and stabili can be achieved via dynamic state feedback law for a canonical system, which
has vector relative degree at the origin of its state space and it is obtained from (1) through
a canonical dynamic extension. This extension is canonical in the sense that any other
system, obtained from (1) and having vector relative degree at the origin of its state space,
can be obtained from the canonical extension of (1) through invertible feedback laws. This
impressively generalizes a well-known result for linear systems ([4] and [9]), which states
that for a given linear system noninteraction and smbili can be achieved via dynamic state
feedback law if and only if noninteraction can be achieved via dynamic state feedback law
for the system itself. Indeed, as can be easily proved, noninteraction and stabili can always
be achieved for the canonical dynamic extension, as defined in [8], of a given linear system.

In 10] the definition of Z0 and Z (in this case, the number of these systems is p) has been
extended to the case of nonlinear systems with block-paitioned outputs, for which noninter-
action can be achieved by means of static state feedback laws, which are regular at x0. These
systems are such that the controllability distributions ,..., p, where i is the maximal
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controllability distribution for (1) contained in fqj/Cj (see ]), are compatible or, equiva-
lently, there is a static feedback law u c(x) +/7(x)v, regular at x0, and a (block) partition
/3 (x),..., flp+ (x) of/3(x) such that 7" (f + Go, G/31,..., G/p+l [span{G/3i, Gp+ })
and span{G/3i, Gp+ } R. 6 for 1,..., p (note that here we abused the notation,
since G/3i is, in general, a matrix). This class of systems has been characterized from a
geometric point of view in 11 ]. If m p, the set of distributions 7’,..., 7p is the only
set of controllability distributions that is compatible. Moreover, in this case it is not hard to
show that the systems E0 and Ei, 1,..., p, can be uniquely (up to static feedback trans-
formation, regular at x0, and local changes of coordinates) associated to (1). If m > p this
uniqueness property is lost (for an idea of the proof, see [11]) and E0 and Ei, 1,..., p,
are uniquely (up to static feedback transformation, regular at x0, and local changes of coor-
dinates) associated to (1), once a set of compatible controllability distributions 71,...,
is chosen (not necessarily the maximal one). Many interesting interrelated properties can be
found among the systems E0 and Ei, 1,..., p, associated to the maximal set ],..., p,
and those correspondingly associated to a given set of compatible controllability distributions
l,..., 7p, but this will be pursued elsewhere. For clarity of exposition, we denote by E)
and ’, 1,..., p, the systems (uniquely in the above sense) associated to the maximal set

")*’]-’1 p"

In [10] it is also proved that for the above class of systems the asymptotic stability of
E, plus the exponential stabilizability of the systems E, 1,...,/9, and of a suitable
system Ep+ (which is trivial in the case m p), are sufficient to achieve noninteraction and
stability via dynamic state feedback law. More generally, for the same class of systems with
block-partitioned outputs, it is not hard to show that the asymptotic stability of E and the
asymptotic stabilizability via dynamic state feedback laws of the systems , 1,..., p,
are necessary to achieve noninteraction and stability via dynamic feedback laws, regular in
the sense of 13]. There is no apparent, relation between this class of feedback laws and the
well-known class of invertible feedback laws. Conversely, it is easy to see that the asymptotic
stability of and the asymptotic stabilizability of the systems , 1,...,p + 1, are
also sufficient to achieve noninteraction and stability via regular dynamic state feedback law.
Unfortunately, as shown by a counterexample in [13], the asymptotic stabilizability of E+
via dynamic feedback law is not necessary to achieve noninteraction and stability even via
invertible dynamic feedback laws. This fact, together with the generic nontriviality of
gives an estimate of how the linear case may differ from the nonlinear case. Indeed, for
linear systems, the asymptotic stabilizability of E+I is automatically guaranteed by its very
definition. Yet, for the class of systems for which Yp+l is trivial, we obtain a set of necessary
and sufficient conditions, which generalize the ones given in [6].

In this paper, for the class of nonlinear systems (1), for which noninteraction can be
achieved via static state feedback laws, regular at x0, we show that the asymptotic stability of
and the asymptotic stabilizability via dynamic state feedback of the systems E’, 1,..., p,
are necessary to achieve noninteraction and stability via invertible feedback laws (Theorem
4). This generalizes the result given in [7] (and, partially, the results given in [4] and [9] for
linear systems). Moreover, our result shows that (a) for the class of systems here considered
any invertible feedback law, which solves LND, is also regular in the sense of 13], filling the
gap between the class of invertible feedback laws and the class of feedback laws, regular in the
sense of 13]; (b) any invertible feedback law that solves LND can be expressed as the cascade
of a static feedback law, regular at x0, together with an invertible noninteraction feedback law
(see Definition 9).

A main difficulty of the problem solved in this paper is to show that the controllability dis-
tributions TZ e, {7, ,egp+l span{, gp+l }), 1,..., p, defined on ]’+’, project
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down to well-defined controllability distributions defined on n (see the proof of Theorem 4).
This is actually not needed when studying the problem of achieving noninteraction without
stability (in this case our result is apparently trivial, since decoupling can be achieved via
static state feedback by assumption), while it becomes essential when addressing the issue of
stability. Indeed, this fact allows us to derive stabilizability properties of systems defined on
the original state space from stability properties of systems defined on the extended state space.
The above property of projection is guaranteed by Proposition 2 and Lemma 3, which is based
on the algorithm (1 8). Among others, one consequence of our result is to connect explicitly the
invertibility of the feedback laws, which solve NLD, with a geometric property, given in terms
of the algorithm (1 8). Moreover, this algorithm gives a more general and intuitively geometric
version of the one given in 3]. We note once again that the class of systems considered here
can always be rendered noninteractive but not necessarily with internal stability. The main
result of this paper is to give necessary conditions for also achieving internal stability.

Some interesting existence conditions are also given (4). Among others, one result is
that if noninteraction and stability can be achieved via dynamic feedback laws, which are
possibly noninvertible, for each E { 1,..., p} there must exist a dynamic feedback law that
asymptotically stabilizes E’ on a suitable invariant submanifold Ad of the state space of the
system, resulting from E’ after applying this feedback law, and transversal to the submanifold

h- (0). This manifold depends, in general, on the decoupling feedback law, except in some
significant cases (one is the case in which we consider invertible feedback laws).

2. Some preliminary results. Before going through the technical details, we give some
basic assumptions. In a natural way, as long as we are interested in necessary conditions, we
will assume that (1) is locally asymptotically stabilizable at the origin. Let 2* be the maximal
controlled invariant distribution for (1) which is contained in fqj:/Cj, 72’ be the maximal
controllability distribution for (1) contained in Aj/C, Q* be the maximal controllability
distribution for (1) contained in 72" Ai=lP }-’ji 72j* and 720 be as above. These distributions
can be computed by means of standard algorithms ], which give a sequence of distributions.
If these distributions have constant dimension, we will say that 12[ (respectively, 72, Q* or
72o) are regularly computable at :co. We make the following assumptions.

(H1) dim 720 n;

(H2) the distributions 720, 12/*, 72’., 1,..., p, and Q* are regularly computable at x0;

(H3) the distributions 72", j 72, (j 72) fqG and :-’j (72 fqG) have constant dimen-
sion;

(H4) P

Assumption (H1) is standard, and, under assumptions (H1)-(H3), assumption (H4) is a
well-known necessary and sufficient condition to solve LND via static state feedback laws,
regular at :co ([1 1]). It can be easily shown that (H4) is equivalent, under the assumption
of constant dimensions of the distributions considered, to the fact that (1) has vector relative
degree at :co.

As in 12], we will use the following terminology. Let 7El,..., 72p be a set of controllabil-
ity distributions for (1), such that 72i C Nji ]j. Moreover, let Q be the maximal controllabil-
ity distribution for (1) contained in 72 fiP__.l -ji 72i (supposed to exist). We will say that
721, 72p is a regular set (in :co) if (a) the distributions Q, QN, j 72j, 72, (j 72j)A
and - (72 N ) have constant dimension. If a regular set 721,..., 72p is such that (b)

-’iP-- (72i ) , we will say that 72 72p is a regular solution (of LND). Indeed,
if the regular set 721,..., 72p satisfies (b), by standard arguments it can be shown that there
exists a static feedback law z c(z) +/3(:c)v, regular at :co, such that
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span{, p+ } T C/{7, 1,... ,p

(see [1], [11]-[13]). By Frobenius’ theorem, since j# 7, 1,...,p, is involutive

and invariant under ] and j, j 1,...,p + 1, it is always possible to find a change of
coordinates z(:c) ((Zl(:c))T... (Zp+z(:C))T)T such that the system , obtained from (1)
with u c(:c) + (:c)v, in the new coordinates has the form

]() + (), ,...
P

E’p-t-1 fp-t-l(Z1,’’’,Zp, Zp-t- 1) -- p-.t_l,j(Zl,...,Zp, Zp+
j=l

(6)
p-t-1

+ L+(,, + + +,(l,...,+
j=l

y h(z), 1, p,

with }-]-ji J span{O/Ozj j i} and Q span{O/Ozp+2}. In what follows, for
simplicity let z :c and v u. Moreover, we assume that (1) is already in the form (6).

Next, we define some suitable dynamics that are crucial in all the subsequent analysis.
First, let us introduce the following distribution. Let 2- be the Lie ideal generated by the
vector fields {[i, ad}{]j] k >_ O, i, j 1,...,p; j} in the Lie algebra generated by

f, ,..., p+l and let

(7) AMIX span{- - Z}.
The distribution (7) was first introduced in [10]. It is not hard to show that/MIX C J C J’i.
Moreover, for linear systems/MIX O. The distribution "/MIX nL is uniquely associated
to (1) and to the regular solution l,..., p, in the sense that its definition is invariant
under local change of coordinates and static feedback transformations, regular at :Co (see
[10]). Assume that the distributions/kMIx + Q, Ji +/kMIX and 7 N (7i +/MIX) have
constant dimension. In what follows, we will assume that a regular set satisfies these additional
assumptions.

By Frobenius’ theorem, for each E { 1,..., p} there exists a change of coordinates

T)T((x)) (())zi(x) (XT...XT__l XT+I ...Xp

such that

7 + span{O/Oz,, O/Oz, O/Ozj, O/Oz4, O/Oz },
"]Pi @ /MIX span{O/Oz,, O/Oz, O/Ozl, O/Oz; },

7 span{O/Oz,, O/Oz, O/Ozl, O/Oz},
( (’]"i -- /MIX) span{O/Oz, O/Ozl, O/Oz;},

Arx + Q span{O/Ozl, O/Oz;},
Q span{O/Oz;}.
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Note that in these coordinates the ith output function hi depends only on the coordinate(s) z.
Since AMIX + Q is involutive and invariant under ], l,..., p+l (see [10] for a proof)

and ](x0) 0, it makes sense to consider the restriction ]]/XMZX+ where /xMx+ is
X0 X0

the leaf (or, equivalently, the maximal integral manifold) of AMIX + Q passing through xo.
This vector field defines a dynamics evolving on/2xo +, which in z-coordinates is given
by

,o,Z5 Z4

Let us consider the subdynamics

(8) z4"i L(0,...,0,Z4i).

The dynamics (8) is trivial in the case of linear systems, since AMIx 0. The dynamics
(8), corresponding to the maximal solution ]’,..., p, has been referred to as E0 in the
introduction If m p, under assumptions (H1)-(H4), Q* 0, where Q* is the maximal
controllability distribution contained in 7E*, since otherwise the decoupling matrix of (1)
would not be invertible at x0 and, as a consequence, (1) would not have vector relative degree
at x0. Thus, if m p, the dynamics (8) coincides with E), as defined in [7] or, equivalently,
in [6].

Similarly, for each 1,...,p, it makes sense to consider also the restrictions

]l.xo+xx and +/XMX (note that by definition E 7i) These vector fields
--X0

define a control system evolving on x,+/xM’x expressed in z-coordinates by

z fz (0,..., O, Z1, O, Z3)
Z fzl (0,..., O, z O, z, z4)
Z; f (0,..., 0, z, 0, z, z4, z)

..,O, zI,O, z3)z,(0,+ z,(0,. u...,0, Z1,0, Z3,Z4)
,0, Z1,0, Z3, Z4, Z5),(0,...

Let us consider the subsystem

(9) + (o,...,0, z,0, z3) gz,

In the case of linear systems, (9) is a controllable system, since AMIx 0 and 7i is a
controllability subspace. Each system (9), corresponding to the maximal solution 7-4]’,...,
has been referred to as E’ in the Introduction.

Last but not least, we consider the system

(10) " (0, .,0,Z5 L. (0,..., 0, Z5) -t-- ]z,p+l Z5)tp+l,

which is obtained by considering the restrictions fl;-x02 and p+1/2x02 (note that p+ E Q).
The system (10), corresponding to the maximal solution 7,..., 7p, has been referred to as

Ep+l in the Introduction.
It can be easily shown that the dynamics (8)-(10) are uniquely associated to (1) and to

a given regular solution, in the sense that their definition is independent of static feedback
transformations, regular at x0, and local changes of coordinates.
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3. Noninteraction and stability via invertible feedback laws. Let us consider the sys-
tem (1) (which is assumed to be already in the form (6)) with T 7. Moreover, let

Azx be the distribution (7), defined correspondingly to the maximal solution 7],...,
As previously noted, the distribution AzX + Q* is uniquely associated to 7,..., 7p up
to local changes of coordinates and static feedback transformations, regular at x0.

(H5) The distributions A* Q*MX + R, +A* and*MIX n (’]- +AMIX) have constant
dimension.

In this section we prove that for the class of systems here considered the asymptotic
stability of E) and the asymptotic stabilizability via dynamic feedback law of each system

E are necessary to achieve noninteraction and stability via invertible feedback laws. To
this end, let (V)* be the maximal distribution that is contained in fqj4 K; and such that

[f, (V)*] c (V)* + and [, (V)*] c (’V)* + , with j 1,...,p + 1. This
distribution always exists, since, given two distributions V1 and V2 that satisfy the above
properties, "1 -- "2 also has these properties. Thus, the maximal distribution, which satisfies
the above properties, is given by the sum of all the distributions with such properties. As a
preliminary result, we prove the following lemma.

LEMMA 1. Under assumptions (H 1)-(H4), we have

(W)* v; +
where 12[ is thought ofas a distribution ofNn+n

Proof. Let (Ns), be the dual ofIS. For any smooth codistribution f/C (N)*, denote by
(f)+/- the distribution that assigns at each point p E ]R the subspace {v E It (w, v) 0,
w f(p) }. Let us consider the following sequence of codistributions

(11)

Using essentially the same arguments as 1, Lem. 6.3.2], it is not hard to show that, if there~ -(. and. andexists k _> 0 such that fi,k’ ,k’ +1 z,ki fi, N ()+/- have constant dimension

for all k, we have (V) Moreover, if ) fi,+l(ik’)+/- for some k > 0, then

f fh for all h > k
To prove the lemma, we will show that there exists k[ _> 0 such that .,, "i,k-e +1

V* +{7 where V* is thought of as a distribution of n+n and that (fi) +/-

have constant dimension for all k. For fi0 has constant dimension in a neighbourhood of x.~ is spanned at each x by the rows ofThe codistribution f0 ()+/- fo(X that annihilate
the vectors of {7(x). Since has vector relative degree at x, fi0 ({7) -L is spanned
by the covector fields dh, jt {1,...,i-1,i + 1,...,p}, such that (dh,,G)(x) -o.
Since L]dh dL]h. and Lodh dLoh, it follows that L](12o f? ()+/-)
Lf and L(-9ti0( )--Oforj 1,.. p+l. Suppose now that for

some k > 0 the codistribution i has constant dimension in a neighbourhood of x and that

r (e)_L is spanned by the covector fields dL h,, jt { 1,..., l, / 1,... ,p},
suchthat/dr. G\fhj, )(x)-OforallkzsuchthatO<kj <_max{k, rj-2}(rl,., rpis

: n (’)-L) Lf nthe vector relative degree of (1)) Similarly, we have Lf
and LO2 (fik- r ({7) -L) 0 for j 1,.. .,p + 1. Since E has vector relative degree



NONINTERACTION AND STABILITY VIA INVERTIBLE FEEDBACK LAWS 115

at x, the codistribution -i,k-]-I has always constant dimension in a neighbourhood of x)
(see [1 Lem. 5 12] for a proof). Clearly . +/-

,k+l ({7) is spanned by the covector fields

dLJh, j E {1,...,i 1,i / 1,...,p}, such that (dLfh,G}(x) 0 for all kj
such that 0 _< kj <_ max{k + 1, rjt 2}. The algorithm (11) stops for k k max{r}
-1, when ik; f"l (Ge) +/- -i,k~e +1 VI ({7) +/- and kjz rjz 1, 1,..., p. This, together

with the fact that (12[) +/- span{dhj,... ,dL)J-lhj j i} [1, Cor. 6.3.14], proves our

thesis. []

A consequence of the above lemma is the following proposition. Let c(x, w) and/3(x, w)
be partitioned, according to the (block) partitions of the input vectors u and v, respectively, as

c(x, w) (oz]C(x, w) %+T (x, W))T,

j X ’U) /j /pT+ j
T j- 1,...,p+l.

PROPOSITION 2. Under assumptions (H 1)- (H4) we have

(12) Bij(x) -O, j i, p + 1,

(13) Lo;eci(z) O, j 7 i, 7 p + 1,

(14) Lo;D/3ii(x) O, j 7 i, p + 1,

where D is an arbitrary composition of the Lie derivatives Lf and LO2 j 1,..., p + 1.

Proof Combine Lemma above with 13, Lem. ]. []

Now let us consider an invertible feedback law that solves LNSD for (1). By definition,
the system

(15)
(,)+ ;(, ),

gc f (x) + G(x)o(x, w) + G(x)(x, w)v,
(,) + (,),

with (1) given by :b f(x) + G(x)v, is invertible in the sense of Singh. From [14, Thm. 11 it
follows that there exists a dynamic feedback law such that the system, resulting from (15), is
noninteractive. In particular, if we assume for the moment that dim(span{O}(x)) > 1, from
(12) it follows that for each system

(16)
.(.) + z.(. ).

c f(x) + G(x)oz(x. w) + G(x)/(x. w)v.
.(x. ) + (x.

there exists an invertible dynamic feedback law such that the system, resulting from plugging
this feedback law into (16), is noninteractive. Let us consider the following auxiliary system:

(17)
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where yi is a vector of fictitious outputs and let ((i)T, XT, W)r Zi and z (0, 0, 0).
Moreover, if dim((span{i})(z)) mi and dim((span{})(z)) m, let

w))(x,
ifj i,

ifj

gp-t-1 ))’ span(die ).

With the above notation, we introduce the following sequence of distributions:

p+l
(18) S; [fi ker d S1] +3[ ker d SI] +S1.

j=l

Note that if the distributions S andS ker d have constant dimension for all k, then there
exists k[ 0 such that S} S for all k k. Moreover, Si* S} is the minimal

distribution that contains di and satisfies [fie, SiC. ker di] c Si* and [0}, Si*
ker di] c Si*, j 1,... ,p + (see also [151). Each distribution S is invariant under
static feedback transformations, which are regular at x.

We now proceed to illustrate how the algorithm (18) can be implemented in practice.
To compute S(, we first must compute Gi ker di. Let A;(x) ii(x). Moreover,

assume that A(x) has constant rank s in a neighbourhood of x and di(xi) has constant
rank in a neighbourhood of x (or, equivalently, that S ker d and S have constant
dimension in a neighbourhood of x). Moreover, let l be the number of columns of A(x).
It is always possible to find smooth matrices A;h(Xe) and B;h(Xe), h 1,2, such that (after
possibly permuting the columns of A;(x)) we have

A(x) (AI (x) A2(x)) A;61 (x) A, (x) AoBo2(x) 0x
and((x) 2(x)) is an invertible matrix for all x in a neighbourhood ofx. Moreover,
using (12)-(14), it is not hard to show that the matrices Bh(X), h l, 2, can be chosen in
such a way that

 o.(X o, j i,(19) L0;
where is an arbitrary composition of the Lie derivatives Lf and L2 j 1,..., p + 1.
Let

and

-iRo2 g Bo2,
-/1 01
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The distribution ie Y ker d is spanned by the vector fields T2 and the distribution S is
spanned by the vector fields T.

At the step (k + 1)th, k > 1, to compute $-1 we first must compute S V ker di. Let

A(xe) -(A_,,,(xe) Lf_,,:/3i(xe) L_,,:
Moreover, assume that A(xe) has constant rank s in a neighbourhood of x) and T(xie)
has constant rank in a neighbourhood ofx (or, equivalently, that $e N ker de and $e have
constant dimension in a neighbourhood of xe). In this case, it is possible to find matrices

Ah (xe) and Bh xe ), h 1,2, such that (after possibly permuting the columns ofA(x ))
we have

and (Bl (xe) Be(x)) is an invertible matrix for all x in a neighbourhood ofx. Moreover,
using (12)-(14), it is not hard to show that the matrices Bh(Xe), h 1,2, can be chosen in
such a way that

(20) LO; DeBh (xe) O, j i,

where/) is an arbitrary composition of the Lie derivatives L] and L9, j 1,..., p + 1.
Let

and

lk- 1,2]) Jk2,
/k-l,2]) Bkl

The distribution S V ker d is spanned by the vector fields T/2, since, as a direct conse-
quence of 12)-(14), (19), and (20), the only vector fields, which have the first mi components
possibly not identically equal to zero, are of the form TI [e, -i [fieThe or 2], with h
k and the first mi rows of (T , T_,e] ,2]) are identically

ieequal to A(xe). On the other hand, the distribution $+1 is spanned by the vector fields

T+ This completes the description of a possible implementation of the algorithm (18). We
note that the proposed algorithm (18) gives a more general and intuitive version of the one
given in 13].

In what follows, we assume that the distributions S and S V ker di, k >_ O, have
constant dimension in a neighbourhood of xe. In this case there exists indeed k’ > 0 such
that S S. Sie* and we will say that $ie is regularly computable at x The+1
fact that (17) can be rendered noninteractive via dynamic feedback law has some interesting
consequences in terms of Sie*. This is shown in the next lemma.
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LEMMA 3. Assume that $ie, is regularly computable at x. Then, $i, + ker dff
I+n+n for all xie in a neighbourhood of xioe.

Proof. Suppose that

(21) dim ((8i* + ker di)(xe)) < rni + n + nw.

We will show that this gives a contradiction. Assume first that dim(span{0i}(x)) 1. In this
case, reasoning as in [7], we can easily prove that each system (16) has relative degree at x
(with respect to ui). Without loss of generality, we can assume that (16) is in normalform (see

for a definition). From here it is straightforward to check that Si* +ker dff It+n+.
On the other hand, assume that dim(span{O}(x)) > 1. Following [14], from our as-

sumptions it follows that there exists a feedback law

(22)

such that the input-output behaviour of the system, obtained from plugging (22) into (17) and
denoted in what follows by E, is described by

k-1 rn(23) ()(zk) _vjk,

where the subscript (lk) denotes the number of derivatives with respect to time, ff is the kth
component of the output vector v is the jth component of the input vector v l > 0
andj E {1,...,m} with j =/= j8 for r, s 1,...,mi and r s. Let

-ie(xieand 9j r/i) be the jth column (block) of (i(xi, r/i). From (23), it follows that, after

possibly changing coordinates, E is in the form

for some (possibly vector-valued) smooth functions i and A and with output vector h equal
to (0,..., 0,_l) Now, denote by i, the minimal distribution that contains i and is
such that [f, S* ker dhi] c i* and [}, ,ie, ker dh] c ,* for j 1,..., p + 1,
and assume for simplicity that ,* is regularly computable at the origin of the state space (the
proof of the lemma can be repeated also after removing this assumption). By straightforward
computations, it can be seen that the distribution ,* is such that

(24)

((dh ,i*)(z) denotes the subspace ofIm spanned by the vectors (dh _i)(z), with _i E
,i,). On the other hand, it is not hard to show by induction that, if 7r is the natural projection
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7r((xie, /i)) xie and 7r,(x,n)its differential at (xi, z/i), we have 7r(x,n),i*(xi, 7i) C
$i*(Tr(x, z/i)). This, together with (24), would contradict (23). []

We are ready now to state the main result of this section. Let

7 (f, {7, gp-}-I Ispan{.,
Q (J%, ,..., gp+l Ispan{.;+l}}.

i= 1,...,p,

Moreover, let AeMIX be the distribution defined in the same way as in (7), but with f and

j, j 1,..., p + 1, replaced by f and 0, respectively.
THEOREM 4. Assume (H1)-(H5) hold. Moreover, assume that the distributions
1,...,p, are regularly computable at Zioe, the distributions 7, 1,..., p, and

are regularly computable at z, and that the distributions AeMX + 7, 1,... ,p, and

AX + Qe have constant dimension in a neighbourhood of z). If LNSD is solvable via
invertiblefeedback laws, then

(a) the dynamics E) is locally asymptotically stable at the origin,
(b) each system , 1,... ,p, is locally asymptotically stabilizable via dynamic

feedback laws.
Conversely, if (a) and (b) are satisfied and, in addition, E+ is locally asymptotically

stabilizable via dynamicfeedback laws, then LNSD is solvable via invertiblefeedback laws.
Remark 5. Conditions (a) and (b) require us to check the local asymptotic stability and,

respectively, the local asymptotic stabilizability of a suitable nonlinear system of the form
gc f(z) + G(z)u. For stability the reader is referred to the standard text [161. On the other
hand, many interesting results are available to check asymptotic stabilizability via static state

0f (X) of f (x), computed atfeedback. A first kind of test is given in terms of the Jacobian

z 0. If the pair (f (0), G(0)) is stabilizable (in the sense that the uncontrollable modes
are asymptotically stable) then the nonlinear system can be locally asymptotically stabilized

ofthrough a linear state feedback law ([ 18]). If some eigenvalues of -y (0) are not controllable
and have zero real part (critical case), the theory of center manifold can be used in some
simple cases to design stabilizing controllers ([ 17]).

An important class of nonlinear system, which can always be locally asymptotically
stabilized through static state feedback, is given by the systems that have relative degree and
are minimum phase ([ 18]-[20]).

On the other hand, it has recently been shown in [21 that a nonlinear system of the above
form can be asymptotically stabilized via smooth static state feedback if and only if there exist
a smooth function g)(z) such that the system is feedback equivalent to a strictly passive (with
respect to ), or, equivalently, to a system that has relative degree { 1,..., } and is minimum
phase.

Interesting results on state feedback stabilization have been also given in terms of control
Lyapunovfunctions ([22]-[29]). Necessary and sufficient conditions for state feedback stabi-
lization are available for two- and three-dimensional analytic systems ([30], [31 ]). Moreover,
stabilization via dynamic state feedback is considered in [29].

Proofof Theorem 4. The sufficiency part can be proved as in [10].
The necessity can be proved as follows. Let 7r be the natural projection 7r(z) x and

7r. be its differential at x*. Moreover, let Q* be thought of as a distribution of
Now let Bj, /2, /1, and s be as above and, if q dim(Q*(x)), denote by

(A mod(Q* + w))(z) the first n q components (respectively, rows) of a given vector
(respectively, matrix) A(ze). From (12)-(14), (19), and (20) it follows that

([f, -i + w))(x) Ti(x)(LR2 mod(Q* ai)(x)
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/k2] mod(Q*([g, - + ))(x) 7(x)(L2/3)(x)

Lemma 3 implies that the first mi rows of T7 (xie) are linearly independent for all xe in a

neighbourhood ofx T_l,2]) (
are identically equal to A(z
in a neighbourhood of and (R,, mod(Q* + ))(z) (z)A,,(ze). Since is

invariant under re, ,.. gp+l-e and from (19) and (20), it follows that [,Rk2-i ie and

,R2 i. We conclude that i(w(z)) ,( + Q*)(z).
From here, we can proceed as in [13, Thm. ]. For completeness, we give a sho sketch

of the proof. Reasoning as in [7] and using the above facts, we prove that w,(IX +Q +
Q*)(z) D (SlX + Q*)((z)) Since from (12)-(14)it easily follows that w,(x+
Qe + Q,)(Xe) C (SlX + Q*)((xe)) we conclude that ,xe(ix + Qe + Q,)(Xe)
(ASzx + Q*)(u(x)) Since f(x) is locally asymptotically stable in x;, it is

such also on the invariant submanifold
x0

Moreover, W,x(flCxMx+)(x)
Ax+(AMX + Q*)((x)) and from (13)it follows that a(x) 0 for x Cxg This,

together with w,(AIX + Q + Q*)(x) (ASlX + Q*)((x)), implies that E is an

invariant subdynamics of k fe(x) for x x5Ix+, which proves (a). Similarly,

using the fact that aj(x) 0 for x x7+a*x and j {i,p + 1} (as a consequence
of (13)), we prove that W,x( + AIX + Q*)(x) ( + ASzx)(W(x)) and, as a
consequence, (b).

Theorem 4 generalizes [7] in the casem p, since any regular noninteraction (in the sense
of [7]) feedback law, which solves LND, is also invertible. Indeed, using the results contained
in [7], it can be shown that the system (3), coesponding to a given regular noninteraction
feedback law, has vector relative degree at x (with respect to u). Moreover, Lemmas and 3
and Proposition 2 show that in the case of nonlinear systems (1) any invertible feedback law,
which solves LND, is also regular in the sense of 13].

It is possible to construct some counterexamples, which show that the dynamics
is not necessarily locally asymptotically stabilizable at the origin if LNSD is solvable (see
[13]). On the other hand, if Q* 0, similarly to [13], we obtain the following necessary and
sufficient condition.

COROLLARY 6. Assume (H1)-(H5) hold. Moreover, suppose that Q* O. If
(a) the dynamics 2 is locally asymptotically stable at the origin,
(b) each system E, 1,..., p, is locally asymptotically stabilizable at the origin via

dynamicfeedback laws,
then LNSD is solvable via invertible dynamic feedback laws. Conversely, assume that
is regularly computable at x, the distributions , 1,...,p, and Q are regularly
computable at x and the distributions + Ax, 1,...,p, and Azx + Q have
constant dimension in a neighbourhood of x. Then, if LNSD is solvable, (a) and (b) are

satisfied.

4. Some existence conditions. In this section we prove some conditions that must be
satisfied for the existence of a dynamic feedback law that solves LNSD for the class of
nonlinear systems (1) satisfying assumptions (H1)-(H4). We do not constrain the class of
feedback laws and this is quite a new result in the literature. The following theorem gives an
interesting existence condition, which, however, cannot be checked a priori. It simply assesses,
for each 1,..., p, the existence of a smooth submanifold, transversal to h- (0), that can be
rendered (locally) an asymptotically stable manifold for E. This manifold depends, in general,
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on the decoupling feedback law, except when, for example, 7r,(x,w) (7 + AMix)(X, w)
(7 + A*MX)(Tr(x w)) (this is the case when considering invertible feedback laws).

THEOREM 7. Assume (H 1)-(H4) hold. IfLNSD is solvable thenfor each system E there

exist a dynamicfeedback law u c(z, z, wi), @ (5(z, z, w), w n and, corre-

spondingly, a smooth invariant submanifold ((z, z, w) e n+M. (z, z, w)
0}, passing through the origin of the state space and transversal to the smooth submani-

fold ((z,z,w). n+n h(z) 0}, such that the system, resulting from with

u (z, z, w), 6(z, z, w), is locally asymptotically stable at the origin on.
Proof. Using (12)-(14), it is easy to prove that

(25)

where 7r,x is defined as above. Since LNSD is solvable, it follows that :b f(x) is locally
+xasymptotically stable in z. In particular, it is such for initial conditions lying on Z;x

(25) it follows that 7c, (f :7+AMIX)(z) C ( +tX)((Z)). This, togetherFrom

with the fact that f(z) O, implies that, in zi-coordinates, the component off]]+5x
0

along span{O/Ozj, O/Oz j {i,p + 1,p + 2}} is identically zero. The same holds for

the restrictions [I 7+,x and +zx since [,gp+ i Moreover, from9p+l
7+,x and j {i p + 1} The(12)-(14) it follows that j() 0 for all

dynamics, described on ff]+SlX by the vector fields fE7+a,,]7+51x and

+9p+ x, is clearly an invariant subdynamics of

(26)

E
jE{i,p-t-1}

,(o,. ,o,)
Oz,(o,... ,o,,o,4)

Oz, (o,..., o, i, o, 4, 4)
z, (o,..., o, , o, 4,4, 4)

0

0 w).OZj(0,...,0, Z1, ,Z3,Z4, Z5,

If we let A/[ X’]-t-//IX’ since (26) is locally asymptotically stable at the origin on 3A, it

follows that there exist a dynamic feedback law u ci (z, z, w),, and, correspondingly, a smooth invariant submanifold .M {(z, z, wi) +
(z,z, w) 0}, passing through the origin of the state space, such that the system,
resulting from E’ with ui c(z, z, wi), zb 6i(z, z, wi), is locally asymptotically
stable at the origin on 3//. Moreover, it is not hard to show that in a neighbourhood of

(27) 7Z + ker dh +.
Indeed, by definition of LNSD, the system ; has vector relative degree at z and it is
noninteractive. From [1, Lem. 3.3.1] and the definition of vector relative degree, it fol-

klows that for each {1,... ,p} there exists r such that LoLfh(x) 0 for all
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k < r LO? f
h (z)) : 0. Equivalently, if we define ad 7 as ad 7 7 and

1- -landad [7 [, ad- gi for all k _> 1, we have Lad9i h(x) 0 for all k < r

L -, h(x) O. Since by construction adr;-1-9i TCi, we obtain (27). This proves
ad]

that.M is transversal to the smooth submanifold {(z,z, wi) n+ni hi(z) 0}. []

Remark 8. If we consider invertible feedback laws, we obtain condition (b) of Theorem 4,
since in this case itcan be shown that 7r,x (T +AIx + Q*)(x) (T + A*Mix)(Tr(X)).

In 3 we remarked that the dynamics Ep+ is not necessarily locally asymptotically
stabilizable at the origin if LNSD is solvable. This fact accounts for an apparent gap between
necessary and sufficient conditions (Theorem 4). We might ask if something more can be
said by considering the dynamics (8)-(10), associated to some regular solution, which is not
necessarily the maximal one. A positive fact is that if the dynamics (8) is locally asymptotically
stable at the origin, each system (9) is locally asymptotically stabilizable at the origin via
dynamic feedback law and, in addition, (10) is locally asymptotically stabilizable at the origin
via dynamic feedback law, then LNSD is solvable. This can be proved exactly as in the case we
consider the maximal regular solution 7-],..., 7p. Are the above conditions also necessary to
solve LNSD? Toward partially answering this question, we first give the following definition.

DEFINITION 9. An invertiblefeedback law (2) is said to be a noninteractionfeedback law

if there exists a block partition J1,..., Jp+l of { 1,..., }, with Ji Jh {} for h : i,
such that (2) is of theform

and

L{1; Deozj,z (xe) --0,

D /3d,i(x) O,L -
where /) is an arbitrary composition of the Lie derivatives Lie and LO, j 1,...,
p+l. []

The definition of noninteraction feedback law was first given in [7] in the case m p.
We have seen that any invertible feedback law, which solves LND for (1), can be expressed

as the cascade of a static feedback law, regular at x0, together with an invertible noninteraction
feedback law. In the case of linear systems, the proof of this fact is extremely simple and
goes as follows. Let u Fx + .+, Hjvj, Kx / z_j=l Djvj, be a feedback law
that achieves noninteraction. By reasoning as in [16], it can be shown that 7r7-,...,
and 7rQ are controllability subspaces and that the set 7r7-,..., :rT is a regular solution.
After possibly a regular static feedback transformation, we can assume that there exists a
block partition J1,..., Jp+ of { 1,..., m}, with Ji Jh {} for h : i, such that
(.[span{/)d, jp+, }) and -7 span{/)j,/)j,+, } for 1,..., p (here we replaced
f(x) by _x andj (x) by/)j). Now, according to the partition J1,..., Jp+, let us partition

HT T T FT )T ForanyX 7- wehave:r(X)Hi as(HjT,i.., d,+,,i) andFas(Fj,.. J,+l
-p-t-1 [3jtFjtTr(X.)(we replaced ](x) by .x). Since Tr(X) 7r7 and+

/)d 7rT, we conclude that Fj, r(X.) 0 for :/: {i, p+ }. Moreover, since/)Hi
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and by construction span{/dh } N 7rR 0 for h - {i, p + } (here (x) has been replaced
by B), it follows that Hdi,z 0 for and : p + 1. This proves our thesis.

The subspace 7rQ is a controllability subspace contained in l j#, but it is
not the maximal one with such property. Indeed, if we take the subspaces R,...,p to be
linearly independent and such that R (this is always possible by the construction
given in [32]), we have wQ 0 but the maximal controllability subspace contained in

n *#R is This fact suggests the following approach to the case of nonlinear
systems. Consider the class of feedback laws that can be expressed as the cascade of a static
feedback law, regular at z0, together with an inveible noninteraction feedback law, with the
following additional propeay: for each system

(28)

and

(29)
.j.+. (x. (x.

where 7i(x, w) is the ith column block of 7(x, w) corresponding to the partition ,..., tip+l,
LND is solvable. This property corresponds, in the case of linear systems, to the fact that each
system (28) and (29) has a transfer function matrix with rank equal to the number of its rows
([33]). Using the results and proofs of 3, it is not hard to show that, if LNSD is solvable via
invertible feedback laws of the above class, we have

7r,x7(x) (f {TJ,,..., {TJ,+ Ispan{OJ,

7r,x Q(x) --(],{j,,...,{Tj,,+,lspan{{Tj,+,})(Tr(x)).
i-- 1,...,p,

Moreover, 7r.xc7,..., 7"f,xep is a regular solution. Now, ,let us consider the dynamics
(8)-(10), as defined in 2 with 7. 7r.x7-. and with Q replaced by 7r.x Q, which, in
general, is not the maximal controllability distribution contained in n=lp j# 7r.xje (for
this reason, the dynamics (8)-(10) in this case may depend on the feedback law, used to obtain
(6) from (1)). Using the same arguments of Theorem 4, it can be easily shown that, under
suitable regularity assumptions, the dynamics (8) is locally asymptotically stable at the origin
and each system (9) and (10) is locally asymptotically stabilizable at the origin via dynamic
feedback law. However, the problem of finding out if these conditions are also necessary to
solve LNSD (or a stronger version of it) via invertible feedback laws is still an open question.

Conclusions. For the class of nonlinear systems (1), for which noninteraction can be
achieved by means of static state feedback laws, regular at x0, it results that the asymptotic
stability of E) and the asymptotic stabilizability via dynamic state feedback of the systems
E’, 1,..., p, are necessary to achieve noninteraction and stability via invertible feedback
laws. These conditions, plus the asymptotic stabilizability of E+l via dynamic feedback
law, are also sufficient to solve LNSD via invertible feedback laws. Unfortunately, there is
an apparent gap between necessary and sufficient conditions, given by the distribution Q*. In
the case m p, this is not an issue, since (2* 0. Moreover, in the case of linear systems,
Ep+ is always asymptotically stabilizable by definition.
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Some interesting existence conditions have also been given. One result, among others,
is that if noninteraction and stability can be achieved via dynamic feedback laws, which are
possibly noninvertible, for each E { 1,..., p) there must exist a dynamic feedback law that
locally asymptotically stabilizes on a suitable invariant submanifold A/[ of the state space
of the system, resulting from E after applying this feedback law. If we consider invertible
feedback laws, we obtain a necessary condition of Theorem 4.

Acknowledgments. The author thanks Prof. A. Isidori for his constant encouragement.
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NONHOLONOMIC CONTROL SYSTEMS ON RIEMANNIAN MANIFOLDS*
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Abstract. This paper gives a general formulation ofthe theory ofnonholonomic control systems on a Riemannian
manifold modeled by second-order differential equations and using the unique Riemannian connection defined by
the metric. The main concern is to introduce a reduction scheme, replacing some of the second-order equations by
first-order equations. The authors show how constants of motion together with the nonholonomic constraints may be
combined to yield such a reduction. The theory is applied to a particular class of nonholonomic control systems that
may be thought of as modeling a generalized rolling ball. This class reduces to the classical example of a ball rolling
without slipping on a horizontal plane.
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1. Introduction. In this paper we consider the formulation of controlled classical non-
holonomic systems on Riemannian manifolds. As described in Vershik [1984], Vershik and
Fadeev 1981], Vershik and Gershkovich 1988], and Arnold 1988], one can divide the theory
of nonholonomic systems into two classes: variational systems derivable from a.Lagrangian,
and classical (mechanical) systems derivable from D’Alembert’s principle. The latter is nor-
mally used for describing mechanical systems, and our goal here is to introduce some aspects
of control into the theory at the general level of systems evolving on Riemannian manifolds.
This paper expands and extends some of the results announced in Bloch and Crouch [1992].

The classical nonholonomic systems have been considered by many others. We mention
some of the most important here: Cartan [1952], using the general theory of equivalence;
Weber 1986], using the Hamiltonian setting; Hermann 1982], using the Lagrangian setting
and Ehresmann’s theory of connections on jet spaces; and finally, Bates and Sniatycki 1993],
again using a Hamiltonian setting but introducing a theory of reduction under symmetry.

Although little work has been done on the role of control in such systems until very
recently, for example Yang 1992] and Bloch et al. [1989], [1992b], a lot of work has been
done on the kinematic problem, where the nonintegrable velocity constraints define nonlinear
(kinematic) control problems through the direct control of some of the velocities. Examples
of this work include Brockett and Dai [1993], Krishnaprasad and Yang [1991], Lafferiere
and Sussmann [1991], Montgomery [1990], and Murray and Sastry [1990]; see Bloch et al.
[1992b] for further references.

Our work sets out to show that reduction of the dynamic equations of classical nonholo-
nomic systems with external forces or controls can be expressed in a general Lagrangian
Setting, and that if symmetries are also present they can be incorporated into the same set-

ting. The reduction is effected by introducing a bundle structure, so that the reduced system
is defined by first-order differential equations in the fiber space and second-order differen-
tial equations in the base, defined through the Riemannian connection induced by a natural
Riemannian metric or kinetic energy. This approach is most closely aligned with the impor-
tant work of Koiller 1992], who considers the reduction process on a principal bundle, the
structure group of which is a symmetry group for the problem. These are termed nonabelian
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Caplygin systems. Our framework incorporates this setting as a special case, even though it
is an important case.

We illustrate our general prescription by introducing an extended example. We generalize
the case of a ball rolling on a flat plane with external forces parallel to the plane to push the ball,
as studied by Brockett and Dai 1993]. The generalization incorporates the well-known model
of a generalized rigid body, using a compact semi-simple Lie group, together with velocity
constraints, linking the generalized rotational motion to a generalized translational motion.
We call this system the generalized rolling ball. In the case that the ball is not symmetric
(i.e., has an inertia tensor not equal to a multiple of the identity), the nonholonomic velocity
constraints are not symmetries, and our reduction procedure generalizes that of Koiller 1988].

We also consider some controllability and optimality properties of the generalized rolling
ball in the symmetric case. The controllability result generalizes the local argument of Bloch
et al. 1992b], using a general controllability result on principal bundles. We also formalize a
minimum force control problem as the higher-order analogue of the minimum energy control
problem. In the holonomic case the minimum force control problem for second-order New-
tonian systems was studied in Noakes et al. [1989] and Crouch and Leite [1991a], [1991b].
These works treat higher-order variational problems on Riemannian manifolds. We outline
the modifications necessary to treat the nonholonomic case.

The outline of the paper is as follows. In 2 we give a general formulation of holonomic
control systems on Riemannian manifolds, and in 3 we give the formulation of nonholonomic
systems. In 4 we introduce the concept of symmetries and describe the general reduction
procedure based on the nonholonomic constraints and the constants of motion derived from
the symmetries. In 5, we have four subsections dealing with the control of the generalized
rolling ball, in which we describe some preliminaries on Riemannian structures on Lie groups,
the generalized rigid body, the generalized rolling ball in both body fixed and inertial axes,
and finally controllability and optimality questions.

2. Holonornie control systems and optimal control. In this section we give a brief
formulation of mechanical systems, without any velocity constraints, under the influence of
external forces. We broadly follow the formulation given by Hermann [1982]. We consider
the case of systems with "nonintegrable" velocity constraints in the following section.

Mechanical systems, in which the velocity constraints are integrable, are referred to here
as holonomic mechanical systems. These integrable velocity constraints yield constraints on
the configuration variables only, and thereby determine a manifold in which the configuration
variables are constrained to evolve (see Arnold [1978]). This provides the motivation for
considering holonomic control systems in the generality discussed below.

We let M denote a smooth (infinitely differentiable), n-dimensional manifold with a
Riemannian metric denoted/(., .). TM will denote the tangent bundle to M. The norm of a
vector Xp c TpM will be denoted by

IIX ll 
34 denotes the configuration space of a mechanical system, whereas T3//denotes the phase
(or state) space. The notion of an inertia tensor will be modeled by a bundle mapping

J TM TM,

such that J is the identity on M. Thus for each p C M we have a linear mapping

Jp TpM - TpM.

We assume that for each p, Jp is an isomorphism satisfying for each Xp, Yp TpM
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(i) l(JpXp, Yp)- l(Xp, JpYp),
(ii) l(JpXp, Xp) >_ 0 (= 0 if and only if Xp 0).

From J we may define another Riemannian metric on M by setting

(X, Y} tC(JX, Y)

for all vector fields X, Y on M. We refer to as the ambient metric and/’, ") as the mechanical
metric. The norm of a vector Xp TpM with respect to the mechanical metric will be denoted
by

The mechanical metric determines a unique Riemannian connection on M, denoted V, and
thereby determines a covariant derivative, denoted D/Ot. A mechanical system is determined
by its kinetic energy T TM R given by the expression

Tq-- dr’ dt

and the potential energy U M R given by an arbitrary smooth function on M. Denote
the cotangent bundle to M by T*M. An external force is modeled as a covector field F on
M, in general time varying. Thus, Fp TM for each p M. We define the momentum P
as a covector field along the trajectories of the mechanical system on M by setting

We define an holonomic mechanical system on M to be that given by the basic Newtonian
system of equations in T*M

(1)
DP

F dU.
Ot

For each smooth vector field W on M, we have along the motion of (1)

We deduce that

(2)
Ot Ot2 --0---

From the definition of kinetic energy and potential energy, equation (1) yields

(3) dq) d d
F - -U(q(t))+ -Tq(t).

We may rewrite the holonomic mechanical system (1) as a system of equations in TM
as follows. Let Ji, _< _< N be N _< n independent vector fields on M, and let ui(.),
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< _< N, be input or control functions (real valued functions of time). We then model the
force field F by setting

(4)
N

Let J* TM -- T*M denote the bundle isomorphism determined on fibers by

f;x, (x,, .)- .).

From equations (2) and (4) we may rewrite equation (1) in the form

(5)
ND2q

Ot2 Z u2(q)- Jq-’ dUq.
i--1

Equation (5) now represents a general holonomic mechanical system with inputs. From now
on we shall ignore the potential term in this equation, but it may be added without any extra
difficulty. When F _-- 0 (and U 0) equation (5) reduces to the geodesic equations on the
Riemannian manifold (M, (.,.))

D2q
--0.

Ot2

This flow is known to be an extremal of the variational problem (Milnor [1963]),

(6) minq if0
T

q(O)=qo,q(T)=qT

dq 2

We now introduce a natural optimal control problem for the system (5). First we define
a norm on fibers of T* M in the usual way:

(7) []Fq]] sup IF(Wq)
Iwll,o [Wq "

Note that we use the ambient metric in this definition. We introduce the minimum force
control problem as

(8) min [[Fq(t) 2 dt

subject to the dynamics DP F and the boundary conditions

dq dq
(9) q(0) q0, --(0) 0o, q(T) qT, -(T) (IT,

or equivalently we may specify Pq(O) and Pq(T). From (2) and (7) we obtain

1 q--O--ir, Wq D2q
I1  11-

Thus the cost functional (8) may be reformulated as

(10) min Jq dr.
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It is now natural to consider the formulation (5) of the holonomic control system. It is
convenient to assume a little more structure for the force field F defined in (4). We modify
the definition as follows"

N

(11) Fq(t) E ui(t)( q(t)Xi(q(t)), .),
=1

where X, _< _< n is an orthonormal base of vector fields with respect to the ambient
metric

(12) ]C(X, Xj) 6j, <_ i, j <_ n.

With the force field (1 l) the system (5) may be rewritten as

(13)
Dq

g

Ot j:lXi(q)ui(t)"
i=1

The orthonormality assumption (12) now implies that

N, Jq -- u(t).

It follows that for system (13) the minimum force control problem is defined by the cost
functional

(14) min
i=

i(t) dt

subject to the boundary conditions (9).
In the case N n this optimal control problem coesponds to the higher-order variational

problem posed by the functional (10) with boundary conditions (9). Similar higher-order
variational problems have been treated in various contexts, most notably as the minimum
curvature problem (Griffiths [1983], Jurdjevic [1991 ]), but recently they have occued in the
context of inteolation problems in Gabriel and Kajiya [1988], Noakes et al. [1989], and
Crouch and Silva-Leite [1991a], [1991b]. In the latter three works a simpler functional is
considered, namely

Dq
(15) min dt

The normal" extremals of such functionals satisfy an equation of the form

D4q (D2q Dq) Dq
)

Ot + Ot Ot 0,

where R is the curvature tensor associated with the connection V. It follows that for N n,
the minimum force control problem introduced above is a natural higher-order version of the
classical variational problem (6), which is often intereted as a minimum energy problem.

In the control literature another class of optimal control problem has received much
attention. It may be characterized by the cost functionals (14) subject to systems of the form

N

(17)
dq

vi2(q), (N < n), q M,d
i=1
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where J{ are independent vector fields on M and vi are control functions. Although these
problems are governed by first-order rather than second-order equations (13), the singular na-
ture of this optimal control problem, because of the fact that N < n, is of the same character as
that of the minimum force control problem when N < n. Brockett 1982] considered the con-
trol problem posed by (17) and (14) (see also Baillieul [1978]), and subsequently the analysis
has been taken up in the mathematics and control theory literature as sub-Riemannian geom-
etry. In the next section we reinterpret the class of systems (17) as kinematic nonholonomic
control systems (Remark 3).

3. Nonholonomie control systems. We now consider the formulation of controlled non-
holonomic control systems. Nonholonomic systems may be divided into two classes (see,
e.g., Vershik and Gershkovich [1988])--variational nonholonomic systems (dubbed vako-
nomic systems by Arnold [1988]) and classical (or mechanical) nonholonomic systems. In
either case the basic ingredients are "nonintegrable" constraints on phase space, defined by
m, m < n, one-forms on M, l,..., m, such that their span, over the smooth functions on
M, contains no nontrivial exact forms and in particular none of the forms l, w is exact.
These forms then define a smooth distribution H on M. For each p E M, Hp is the subspace
of TpM defined by

-o, < _<

We also stipulate that the distribution H is nonsingular, so that the dimension of the subspace
Hp does not vary with p, although the significance of this is not fully understood.

Variational nonholonomic systems are obtained in our context as solutions of variational
problems of the form

T dq 2

min dt

subject to

k -0, <_k<_m

and boundary conditions q(O) qo, q(T) qT.

This problem is solved in the usual way by introducing Lagrange multipliers #k and
solving the new variational problem defined by

min IT [ k=l

w --d-i -0, <_ k <_ m.

If we consider the kinematic system (17), in which the vector fields J are orthonormal
with respect to the mechanical metric

(2i,j)--6ij, l_<i, j_<m,

and we define n m independent dual one-forms w satisfying

cz(f() --0, <_ k <_ n-m, <_ < m,
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it follows that the variational problem described above coincides with the optimal control
problem posed by the cost functional (14), and subject to the kinematics (17). In this context
the reader should be aware of work by Kirshnaprasad and Yang [1991] and many others
including Brockett [1982], Baillieul [1978], Murray and Sastry [1990], and Lafferiere and
Sussmann [1991]. See also Remark 3 below.

Classical nonholonomic systems are not obtained from a variational principle in the usual
sense (see Remark 2 below), but from D’Alembert’s principle. The equations may be written
in the form

(18)
D2q

m

Or2 Z /iWi
i=1

(19) w -- -0, l_<k_<rn.

The vector fields W on M are determined through the identity

l<k<M

for any vector field X on M. The multipliers Ai are also uniquely determined from the
equations (18) and (19) as shown in Remark 2 below.

After our formulation of a holonomic controlled mechanical system (5), we define a
nonholonomic controlled mechanical system to have the form

(20)
D2q N

Or2 Z iWi--Z ii’
i=1 i=1

(21) cv - W,- =0, l_<k<_m.

At this point we do not impose any relation between rn and N.
We now summarize some remarks about the formulation (20).
Remark 1. After our general formulation of a holonomic system with external inputs as

equations in T* M, we may similarly define a nonholonomic system with external inputs as
follows:

(22)

DP

co - --0, <_ k <_ rn.

Differentiating the constraints we obtain

(23)

From equations (2) and (22) we obtain

D2q
-bU <_k<_rn,
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and so from (23) we deduce that

--0, < k < m.(24) Fq(Wk) + Pq Ot

Thus the force field F in a nonholonomic system (22) is not arbitrary but satisfies the constraints
(24). It follows that regardless ofN, orthe vector fields in the nonholonomic control system
(20), after solving for the multipliers ,, the resulting system has at most n m independent
control directions (as specified by vector fields that multiply the control functions u).

Remark 2. We note that although the system (20) and (21) may not arise from a variational
principle in the usual Lagrangian sense, it is a solution of an instantaneous variational problem
(Vershik 1984])

min
D2q
Ot

N

Ot2
i=1

subject to W, - 0, l<h<m.

This is made clear by differentiating the constraints, as in (23), yielding m affine constraints
in DZq/Ot2. The multipliers in (20) are the solutions of the following system of equations

(25) (W, Wj))U ui(Wa,2i), <_ k <_ m.
j--1

Oqt ’dr

Remark 3. We define the kinematic nonholonomic control system, corresponding to the
dynamic nonholonomic control system (20), (21), to be a system of the form

(26)
N

dq
vif(i(q)

dt
i=1

where vi are also control functions and 2i are vector fields spanning the distribution H. In
general 2i differ from Ji appearing in the dynamic equations (20), the particular choice
governed by physical consideration of the control mechanism. However, the general principle
governing the choice of and vi is that v control all of the independent components of the

dqvelocity N. For controllability analysis of the system (26), the assumption is made that the
distribution H is completely nonholonomic (see Vershik and Gershkovich [1988]), that is, the
involutive closure Hc of H satisfies

This is also an important observation in Brockett 1.982]. It is shown in Bloch et al. 1992b] that
under certain circumstances, controllability of the associated dynamic nonholonomic control
system (20), (21) follows from the assumption above.

Remark 4. Computing the derivative of the kinetic energy along solutions of the non-
holonomic control system (20), (21) yields

d dq dq dq
hiWi + -, uifi2idt 2 dr’ dt -"i=l i=

Thus
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where F is defined by (4). Because the same equation holds for the holonomic system
(equation (3) with U 0), it is clear that the constraints do no work, as is well known (see,
e.g., Neimark and Fufaev [1972]).

Example 1. We consider a penny rolling on the x-y plane with rotation angle 0 and
heading angle , as in Bloch and McClamroch [1989] and Bloch et al. [1992b]. We have two
controls, one that rolls the penny about its center of mass and another that turns it about its
vertical axis. The constraints are given by- ti cos ,- b sin 0.

Letting q (x, y, 0, )T, the dynamic equations of motion (20) may be written as

t121 - t222 -I- /1 W1 --]-/2W2

where 21 (0,0,1,0)r, 22 (0,0,0,1)r, W, (1, 0, cos , 0)T, and W2
(0, 1,- sin 0, 0)T. It easily follows that ,l (t) cos ), ,2 (t) sin ), and so the
resulting system is given by

_d(0 cos ), )- d (0 sin ), 2/- u,, - U2.

On the other hand, the kinematic equations are

0 vlX1 - vzX2,

where 2 (cos , sin , l, 0)T and 2: (0, 0, 0, l)T lie in the distribution H.
Example 2. We now consider the "Heisenberg" system (so called because its vector fields

generate the Heisenberg algebra)see Brockett [1982] and the work of Vcrshik et al. (see
e.., Vershik and Gershkovich 1988]). Here we have a system on R in the variables (x, y, z)
and subject to the constraint

: y2

We have controls in the x and y directions and wish to control the system in R. Letting
q (x, y, z) T, the natural dynamic nonholonomic control system (20) may be written as

uX + u:X: + AW,

where X (1, O, O), Xa (0, 1, O)T, and W (-y, x, 1) T. It is easy to see that in this
case

so that the dynamics become

(v, x:)/( + v + x:),

5 (1 -+- x2)ul - xyu2,

(1 + y2)u2 + xyu,

qS# yu xu2,

where (x, y) + y2 _+_ X2.
The corresponding kinematic system, as discussed in Brockett 1982] is given by

VlXl -- vzX2,where J (1,0, y)T, 22 (0, 1, --x)T.
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4. Symmetries and reduction. Symmetries in mechanics give rise to constants of the
motion (see for example Abraham and Marsden 1978]). In the Riemannian context isometries
are generated by Killing vector fields. Recall that Z is a Killing vector field with respect to
the mechanical metric if

(vz, Y) 0

dqfor all vector fields Y. Further, a sufficient condition for (Z(q), -d-i) to be a constant of motion
for a geodesic flow is that Z is a Killing vector field. For controlled nonholonomic systems
we have the following restatement of Theorem 6, p. 82 in Arnold [1988].

dqLEMMA 1. Sufficient conditionsfor (Z, ) to be a constant ofmotionfor the controlled
nonholonomic system (20), (21) are

(i) ZH,
(ii) Z Span {21,... ,2N} -l- (with respect to (., .)),

(iii) Z is a Killing vectorfield.
Proof As in equation (23) we have

d- -d[ Ot dt + Z’-o--
The first term is zero by (iii), and the second is zero by the expression for D2q/Ot2 in (20)
and (i) and (ii). []

Note that when M R and the metric/’, ") is independent of the coordinate function
xi, then 0/0xi is a Killing vector field.

Note also that if the uncontrolled nonholonomic system (18) is determined by constraints
(19) in which the vector fields W are indeed Killing vector fields, then equation (23) gives
(Wk, DZq/Ot2) O. It then follows from (18) that ,k 0, _< k _< m, so that the flow
of such a nonholonomic system is a restriction of the geodesic flow. This is illustrated in
Example 2.

It is often convenient to introduce a bundle structure in M, - M -- B, with fiber F,
dim. B r, and dim. F n r. This structure reflects the natural geometric structure
of the system induced by the constraints and must be compatible with the constraints in the
sense that

7r, Hp T(p) B for all p M.

Clearly this forces dim. H n m >_ dim. B r. Our aim is to reduce the controlled
nonholonomic system (20), (2 l) so that the evolution on the fiber is given by a first-order equa-
tion. To this end we introduce two further assumptions. Either Assumption or Assumption
2 follows.

Assumption 1. dim. H dim. B, that is, n m + r. In this case/2/ H clearly
defines a horizontal distribution on the bundle.

Assumption 2. dim. H- dim. B n m r s > 0, and there exist s linearly
independent vector fields Z,..., Z that satisfy conditions (i)-(iii) ofLemma 1. In particular,

(27) Z, - c const.

are constants ofthe motion for (20), (21). We define a distribution0 onM by setting X G/:/0
if

(w, x) -0 _< <_ m,
(Zk,X)-O _k_s,
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and assume that/2/o satisfies

(28) TpF N I2Io {0} for all p M.

Finally we define the r-dimensional affine distribution/2/on M by setting X E/2/if

<Wk,X>-O _< k_<rn,
(29) <Zk, X> c _< k _< s.

Note that Assumption 2 ensures that/2/o is a constant r-dimensional distribution on M,
and (28) ensures that H0 is a horizontal distribution on the bundle. If either Assumption or
2 holds, we have as a direct sum of affine spaces

TpM -/2/p (R) TvF for all p E M.

It follows that any vector field Y on M can be decomposed uniquely into components

With this structure we may decompose the velocity

dq oH + or 014fi, (1F TqF.
dt

In general 014 and 0F are not derivatives of functions q14 and qF on M, although in many
applications one can indeed identify such functions. From equations (21) and (29) we obtain

(w, 4) -(w, O/),
(z, 4) -(z, 4/) + ,

<k<_rn,
l<k<s.

Condition (28) allows us to solve these equations uniquely for c)

(30) (t f(q, oH).

Note that fF is affine in 014. From the original controlled nonholonomic system (20) we may
deduce equations of the form

(31) DOll f14(q, (t, u).Ot

Equations (30) and (31) provide a reduction ofthe 2n first-order equations (20), with constraints

(21), to n / r first-order equations, without constraints. Locally we can write 0H qB for
some trajectory qB (t) /3. In some cases we may be able to rewrite equations (30) and (31)
globally in terms of a trajectory q(t) (qB (t), q(t)), qB B, qF F.

The class of Caplygin control systems introduced in Bloch et al. [1992b] corresponds to

Assumption 1, in the case where M is a product M B x F, /3 R’, F R’-’, /’, "} is
the Euclidean metric, and the whole dynamics (30), (31) is invariant with respect to qF. A
global prescription for these systems is given in the form

(tv fF(q,
O" f(qU, 4, ),

where fF is affine in O.
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Another class of systems in which a global reduction is possible is the class of controlled
nonabelian Caplygin systems. The uncontrolled systems of this type were discussed in Koiller
1988]. We define a controlled nonabelian Caplygin system as a system (30), (31), in which M

is a principal G bundle M(G, 13) for a Lie group G, G acts by isometries on the mechanical
metric, H (in either Assumption or 2) is invariant under G in the sense that

Hg.p g,Hp, g E G, p E M,

and finally the vector fields Ji are G invariant

pM, <_i<_N.

The reduced system of equations can be written (locally) (by analogy with the work of Koiller)
in the form

{7-- fF(q,, (tB, g), g G,
(32) D(tB

Ot
fB(qB, (1B,U), qB 13 M/G,

where f is a G invariant vector field on G.
These reduced systems fall directly within the class ofcontrol systems on principal bundles

M(G, 13) studied by San Martin and Crouch [1984]. If D is a set of vector fields on M, we
say that D is projectable if for each X D there exists X on B such that 7r.X X o -.
We have the following result.

THEOREM (San Martin and Crouch [19841). Let M(13, G) be a connected principal
fiber bundle with G a compact Lie group and D a G-invariant, projectable family of vector
fields on M defining a control system D, which is accessible. Denote by D the system on
B defined by D’ 7r(D). Then D is controllable ifand only ifD is controllable.

We have the following corollary.
COROLLARY 1. Consider a nonabelian Caplygin control system with compact structure

group. Assume that the reduced system (32) is accessible and the system on the base is
controllable. Then the reduced system on M is controllable.

5. An example: The generalized rolling ball.

5.1. Background on Lie groups. In this section we briefly review some of the material
relating to the dynamical equations of the generalized rigid body. The material in the next
two sections may be found in books by Arnold [1978], Hermann [1977], Boothby [1975], etc.
Let G be an L-dimensional compact semi-simple Lie group with identity element e, and let
denote its Lie algebra. There exists a positive definite inner product on that we denote by
//’,’)), defined as a multiple of the Killing form. If X is an element of , then we can define
left and right invariant vector fields on M by setting

X L.X, X R.X,

where L and/g are the left and right translations on G by g E G.
Let Ad denote the adjoint mapping on ; if Ch G --+ G is defined by

h(9)- h-’gh- RhLh-,(9),

then

Ad h- Ch.
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Note that with this definition Ad is an anti-homomorphism Ad 9h Ad h Ad 9. Now we
have

Thus,

Xg Lg.X Rg. (Rg: L.)X-- Rg. (Ad 9-1(X)).

(Ad(33) X 9- X).
For compact semi-simple Lie groups, Ad g is an isometry of g, for every g (7, with respect
to the Killing form. Thus we have

(34) ((AdgX, AdgY)) (X, Y) ), X, Y E {j, 9 E G.

We may now define a bi-invariant Riemannian metric on G by setting

/C(X, Y) ((X, Y)) -/C(X,
The bi-invariance follows directly from (33) and (34).

If h(.) is a curve in G satisfying the equation

(35) h- z;, h(0) h a,
then

__d Ad h(t)YIt--0 -[Z, Y] zx
ad Z(Y).

dt

Note that the definition of Lie bracket on coincides here, under the identification of G with
TeG, with the standard definition of the Lie bracket

[W, V](f) W(V(f))- Vg(W(f))

for all functions f and G and vector fields W and V on G.
Applying (34) to Ad h(t) and differentiating, yields

((ad Z(X), Y)) + ((X, ad Z(Y))) O, X, Y, Z .
Let J be a positive definite linear mapping J --+ satisfying
(i) ((J(X), Y)) ((X, J(Y))),
(ii) ((J(X),X)) >_ 0(= 0 ifand only ifX 0).
We now define a right invariant metric on G by setting

iX;, Y[) (iX, J(Y))), X, Y .
We may extend J to a linear isomorphism Jo ToG --, ToG by setting

JY (JY), 9 c G,

It follows that

%)

for all vector fields V and W on M. Corresponding to the right invariant metric/’, ") there
exists a unique Riemannian connection V. Explicit formulas for V are given in Arnold 1978]
or Nomizu 1954]. Specifically, V defines a bilinear form on

(36) (X, Y) H VxY x{[X, Y] nt- J-I[x, JY] + J-’[Y, JX]}.
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27 is now extended to right invariant vector fields on G by setting

(Vx,Yr)(9) (27xY), 9 e G, X,Y E .
If J is a multiple of the identity, {., .) is the same multiple of K, and 27 reduces to

(37) VxY

For the purposes of our later analysis we prove the following result.
LEMMA 2.

(VxYZ)(9) (V’x Ad 9

where 27’ is the bilinearform on given by

V’xY- VxY- [X,Y].

Proof. Let X,..., Xz be a basis of , and write Ad 9-Y -= fk(9)Xk, where

fk are functions on G. Thus

(38)

L L

k=l k=l
d

X(f)(g) -f(R(h(t)))
t=o

where h(.) is a solution of (35). But

d
d- Ad (Rg(h(t)))-lY

Thus from (38) we obtain

d

t=o - Ad h-(t)Ad g-Y -[X, Ad 9-’Y].
t=0

(VxY)Z)(9) (Vx Ad 9-’Y- IX, Ad g-ly]).
5.2. Background on the generalized rigid body. In this section we briefly review ma-

terial on the motion of a generalized rigid body. This is modeled by geodesic equations on
a compact semi-simple Lie group G, with the right invariant metric defined by a positive
definite mapping J on as described in the previous section. We have two representations
of the velocity defined by a right invariant frame and left invariant frame. If X,..., Xz is a
basis for G, we set

(39)
L

i=l

(40)
L

i--1

The kinetic energy expressed in terms of the representation (40) is given by

T(g)- - d--’ dt - vX, vJX
i--1 =
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Thus the coordinates vi refer to the velocity with respect to a frame moving in the body,
whereas the coordinates wi refer to the velocity with respect to a frame fixed in inertial space.
(See also Arnold [1978, p. 323], but there the roles of left and right are reversed.) We have

L L

Hence, if we now assume that the basis X of is orthonormal

we obtain

L

wk Z/{X, Ad 9-1Xk))v.
4=1

We now obtain two representations for the acceleration, based on the left and right invariant
settings. First we obtain the representation based on (40). Differentiating, we obtain

L LD2g

i--1 j,i--1

L Li=l +(t)X vectors in , using the expressionSetting Vt =, vi(t)Xi and 0Vt/0t as
(36) gives the usual expression (see, for example, Hermann [1977])

(41)
Of2 -0 + J-l[Vt’JVt]

9

Now turning to the representation (39) we have the following result in which we write

(42)
L L

i--1 i--1

](9) Ad 9J Ad 9--1o

LEMMA 3.

(43)
D2g ( OWt )Oqt2 - + J(g)-l[wt,J(g)Wt]

g

Proof Differentiating the representation (39), we obtain

L LD2g

i=l ij=l

But VxjX V(Adg-,Xj)rX, SO using (36) and Lemma (2)_
Xi] + j-l[Ad --1 1XiVxjX- (-[Ad9 Xj, Ad g- 9 Xj,JAd g-

+ j-1 lAd 9-1Xi, J Ad 9
-I Xj]}g.
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Using the skew symmetry of the Lie bracket we get

/ (J- lAd g-Wt, J Ad g-Wt])r9

(OW +Ad 9d-Ad 9-[Wt, Ad 9dAd 9-Wt]
9

Now using the definition of J(9) we obtain the stated result in equation (43). []

5.3. The generalized rolling ball. In this section we describe a generalization of a ball
rolling on a flat table, in which we model the ball as a generalized rigid body described in the
preceding section. We take the configuration space to be given as M G RN, where G
is an L-dimensional compact semi-simple Lie group as in the previous sections with L > N.
We put two Riemannian structures on M; the ambient structure is defined by setting

]M(,) ((x, v)(v, w)) ;q(x,) + (v, w) e,

where (., .)E is the Euclidean structure on RN, and (Xg, V), (Yg, W) are vectors in TG
TxRu. The mechanical metric is defined by setting

((x v) ( w)) (x v) + (v, w)(g,x)

where (., .) is the right invariant mechanical metric on G, defined in terms of a positive definite
mapping J of g. The mechanical metric on M determines a Riemannian connection on M,
but the product structure defined by the metric enables us to rely on the connections defined
by the metrics (., .} and (., .}E on G and RN, respectively.

We wish to define a nonholonomic control system on M according to the prescription
given by the equations (20) and (21). For this example we suppose that m N, that is, the
number of independent control forces is equal to the number of kinematic constraints. The
nonholonomic control system is completely described by defining the input forces

(44) F- Z uidzi Z ui xi’"
i=1 i=1

where xi, < < N are coordinates in RN, and the constraints w, <_ k < N

(45) wk(( dgdt--’ dt -’ j2 X(g)
dt

rig dx) isthe ofthe inM, andX1, XL is orthonormalwhere , -37 velocity trajectory (9, x) an

basis for G, with respect to/(’, ")). Note that in the physical (three-dimensional) case L
3, N 2 (see Bloch and Crouch [1992b]) the constraints are

-’ J-lxf(g)
dt OX2 -’ J2’X2(9) + at OX

This follows from setting the velocity of the point of contact of the ball equal to zero and using
the fact that a three-dimensional rotation has a unique axis of rotation. Because this is not true
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in higher dimensions, the constraint (45) appears to be the natural generalization. The system
(20) and (21) now becomes

d2
(46)

dt2 x -/ + uk, <_ k <_ N,

NDg __E -1

dg
(47) ka- --, J-lXa(g) <_k< N.

THEOREM 2. The following are constants of motion for the controlled nonholonomic
system (46), (47).

(48) X (g), - N < k <_ L.

Proof. We show that the conditions of Lemma are satisfied.
(i) We must show that X, N < k _< L belong to the distribution H on M defined by

the constraints (45). This is equivalent to the identity

But this follows from the definition of the mechanical metric on G and the orthonormality of
the vector fields Xj.

(ii) We must show that the vector fields X, N < k <_ L are orthogonal to the control
vector fields O/Oxk. This follows trivially from the definition of the metric on M.

(iii) We must show that X, N < k <_ L are Killing vector fields with respect to the
mechanical metric on M, which reduces to the same problem for the mechanical metric on
G. Thus it is sufficient to show that

(W’, 7wX) 0, for all vectors W 6.

From Lemma 2 we obtain

(w
(JV 

{{W, -J[W, Ad g-lXa] + [W, JAd g-X] + lad g-Xa, JW]))

It follows directly from this result that along the trajectories of (46), (47) we have for
suitable constants c,,

(49) -,X(9) -ck, N<k_<L.

We may calculate the multipliers/ in (46) as was done in Remark 2. Differentiating (47)
and substituting for the second derivatives given in (46), we obtain

--,k + k J X,J XJ j + dr’ OJ x
j=l
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or

dg
(50) u d--[

D I N

O--J-’X ,k + E (lAd 9-’Xk, J-’ Ad
j=l

Define a matrix A with components given by

(51) Akj 6kj + ((Ad g-Xk, J-1Ad g-Xj)), <_ k, j <_ N.

The assumed positive definiteness of J ensures that A is always invertible, so that (50) defines
the multipliers ) uniquely in equations (46).

We now describe the two reductions of equations (46), (47), described in 4. We first
consider the reduction based on Assumption 1. In this case we take the base/3 G and the
fiber F RN. The N-independent constraints (47) ensure that dim. H (N + L) N
L dim. /3, as required. The reduction procedure described in 4 simply rewrites the second-
order equations on the fiber by the constraint equations (47). We may employ equation (50)
to eliminate the multipliers ,; however, we first employ a simple feedback control, defined
by

D I
N

(52) uk -, -J-Ix +E Ajzj, <_ k <_ N,

which defines j, 1 <_ j _< N uniquely. It follows that under this reduction and feedback the
system (46), (47) becomes

(53)
Vi’
ND2g E J-’xkOr2
k=l

l<k<N

We note that along solutions of (53), we have

dlldg dg I N

dr2 d--’ dt
k--1

compared with a similar computation for system (46), (47), given in Remark 4,

d [1 Idg dg} l(:b,:b}E]
N

d- - d--’ dt +- --E
k--1

Thus the work done by the force control in (53) simply changes the generalized rotational
energy and not the generalized translational energy.

Finally we may rewrite the reduced system (53) in terms of an "inertial frame" (39), as
described in the previous section. Using Lemma 3 to express the acceleration in terms of the
velocity Wt in equation (42), we obtain

b--w, <_k<_N,

OWt N

(54) 0---- + J(9)-l[Wt’J(9)Wt] E J(9)-’Xkk’
k--1
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d9
L

k:l

We now describe the reduction based on Assumption 2 in 4. In this case we take the base
/ RN and the fiber F G. We employ the L constraints (47) and (49) to determine the
velocity . Note that we employ all N velocity constraints and L N constants of motion.

To calculate - explicitly, it is useful to employ the expression for it in terms of an "inertial
frame" as given in equations (39). (47) and (49) can then be written as

: -w, _< k _< N
L

i=1

N<k<L.

From these equations we may define functions fj, N < j <_ L,

fj "RN G--R

by the following system of equations, using the positive definiteness of J.

N L

(55) Ck E((J(g)Xk,Xi))i + E ((J(g)xk,xi))fi(i,g), N-i- <_ <_ L.
i-1 i=N+I

d9It follows that we may rewrite the expression (39) for the velocity by substituting w, _< k _< N, w f(, 9), N + <_ k _< L. The remaining equations of the reduced
system are those for 5} in system (46). However, we employ feedback again, expressed in
vector form as

(56) (A I)u + e A,

where e is the N vector with components

l<k<N.

The control is defined uniquely by the invertibility of the matrix A defined by (51). The
resulting reduced equations have the form

(57)

Note that for this system we have

N
d 1{5 5:}E E "5/"
dt 2

k=l

Thus in this formulation the force control t in (57) simply changes the generalized translational
energy and not the generalized rotational energy.
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5.4. Controllability and optimal control. In this section we make some comments
about the problems associated with the controllability and optimal control of the reduced
models (54) and (57). We first comment on the controllability aspects. Clearly the system
(54) as written cannot be controllable, because of the constants of motion (49), which can be
reexpressed in the form

Reduction of the equations (54) by these constraints would be complicated to analyze, and
the reduction has already been performed in the system (57). A necessary condition for
controllability is accessibility (or weak controllability) (see Isidori [1989] or Nijmeijer and
Van der Schaft 1990]). However, as stated, the Lie algebra associated with the system (57)
is also complicated to analyze. We therefore content ourselves to the case where J I, in
which case it is easily deduced that both systems (54) and (57) reduce to the system

Ck Vk

(58) )k k,
N L

d- Z vkXlk(g) + Z ckX(g), <_ k <_ N.
k--I k--N+l

To analyze the accessibility and controllability of this system, we introduce some subspaces
of the Lie algebra . Let P be the subspace spanned by the vectors X1,..., XN, letF be the
subalgebra of generated by P and let In denote the ideal ofF generated by the subspace,
[P, P], of GF.

THEOREM 3. Assume that is a simple Lie algebra. Then the reduced system (58) is
controllable and accessible ifand only ifp and [P, P] # O.

Proof We first analyze accessibility of the system. It is sufficient to analyze the Lie
algebra of the system (58) as represented by the Lie algebra L on the vector space R2N

with generators

gk
OVk

k=l j--N+I

Because the elements of L depend only on v C RN, accessibility of (58) is equivalent to the
fact that L. R2N , where L is the subspace of R2N spanned by elements of L
evaluated at v. We construct a subalgebra L C L with the property that none of its elements
depend on v and such that L L0. Accessibility is therefore equivalent to L R2N .
(Because L does not depend on v, we may identify it with a subspace ofR2N .) Explicitly
we set L to be the subalgebra of L generated by the vectors {gk, [gk, f]; <_ k <_ N}. All
Lie brackets of generators 9k and f not in L vanish at v 0. It is easily verified that

0 0Z span Ov---; Oxk + Xk, <_ k <_ N; Ip }
Indeed, span {[[f, gj],[f, gi]]; _< j,i <_ N} [P,P]. NowL R2N x ifandonly
if IF , and so accessibility is equivalent to In G. Consider the situation in which

In C_ GF G. Thus Ip is an ideal of a simple Lie algebra G, so that Ip 0 or IF .
Because In 0 if and only if [P, P] 0, accessibility is equivalent to Gp and [P, P] = 0.

We now turn to controllability. We appeal to the result in Theorem 1. Specifically, we treat

system (58) as a system on a principal bundle G R2N, in which the system is G invariant and
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projectable. Because we have already assumed that G is compact and the projected system
on the base/3 R2u is a controllable linear system, controllability of the total system is
equivalent to accessibility of the system. []

We now turn to the question of minimum force control for the reduced systems (53) and
(57). First recall the minimum force control problem for the holonomic system (13) with cost
functional (14). The reduced nonholonomic system (53) with cost functional

min k(t)2 dt
u

i:1

may be considered as a generalization of the holonomic problem in which we consider the
nonholonomic constraints as defining motion on fibers of a bundle over the original holonomic
base dynamics. The optimal control minimizes force in the base as measured by the analogue
of equation (10)

In this setting the minimum force control problem for the nonholonomic system (53) may
be viewed as a direct generalization of the optimal control problems posed by nonholonomic
kinematic systems discussed at the end of 2 and Remark 3 of 3.

However, the constants of motion (49) for the system (53) make the optimal control
problem well posed only on level sets. Thus we consider instead the formulation (57) of the
reduced nonholonomic system. The remarks above may be applied equally to the minimal
force optimal control problem for this system in which the optimal control minimizes force
in the base/3 R2N as measured by the functional

T

(! !) dt(59)

while subject to the motion in the fibers F G described in (57). The difficulty in establishing
controllability results, except in the case where J I directs consideration at the system
(58). We show how to define the associated minimum force control problem as a constrained
variational problem.

Using the skew symmetry of the connection on G in the case J I (see equation (37)),
differentiating along trajectories of (58) gives

ND2g Z kX(g),
Ot2

k=l

so that the functional (59) may be rewritten as

(60) fo
T (D29 D2g) dt.-1 Ot2 Ot2

The constraints on the evolution of 9 may be expressed as

N L
dg

k--I k--N+l
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Setting Zt(9) -=l Sk(t)X(9), we obtain

(61)

Thus the minimum force control problem for the system (58) has been reduced to the variational
problem defined by the functional (60) subject to the constraints (61). Clearly, , _< k _< L
are Lagrange multipliers, and in fact , _< k <_ N are constants. In this setting the problem
now becomes a generalization of the one described in 2 for a certain class of holonomic
control problems, where the functional (15) coincides with (60). Although a full resolution of
the optimal control problem must consider exceptional (or rigid) trajectories (see Bliss 1946]),
tile nonexceptional trajectories may be analyzed as in Crouch and Silva-Leite 199 lb]. Indeed
it is shown there that the necessary conditions for nonexceptional trajectories of the problem
(60) subject to (61) are given by

D3Wt ( DWt ) DZt [zt wt] O
ot--5- +1 ot wt wt o--i- + -where Wt E=l wk(t)X (9), generalizing the expression (16)in the unconstrained case.

Crouch and Silva-Leite [1991b] show how to reduce these equations to the algebra {7, using a
well-known expression for the curvature tensor

A specific application of the results presented in 5 is given by the ball rolling on a

plane, as analyzed in Bloch and Crouch [1992a]. This corresponds to the case where G
SO(3), L 3, and N 2, and the conditions of Theorem 3 are automatically satisfied.
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THE MINIMIZATION OF SEMICONTINUOUS FUNCTIONS:
MOLLIFIER SUBGRADIENTS*

YURI M. ERMOLIEV, VLADIMIR I. NORKIN:, AND ROGER J-B. WETS

Abstract. To minimize discontinuous functions that arise in the context of systems with jumps,
for example, we propose a new approach based on approximation via averaged functions (obtained
by convolution with mollifiers). The properties of averaged functions are studied, after it is shown
that they can be used in an approximation scheme consistent with minimization. A new notion of
subgradient is introduced based on approximations generated by mollifiers and is exploited in the
design of minimization procedures.

Key words, impulse control, discrete events systems, averaged functions, subgradients, sub-
differentiability, stochastic quasi-gradients, epi-convergence

AMS subject classifications. 49J52, 49J55, 49J45

1. Introduction. It is not unusual to have to deal with optimization problems
involving discontinuous functions, for example: optimization problems involving set-
up costs or impulse controls (Bensoussan and Lions [5]), the control of discrete events
systems (Gong and Ho [14], Rubinstein [36], Ermoliev and Gaivoronski [9]), and con-
trol problems with pre- and post-accident regimes whose systems’ parameters do not
evolve continuously. Even a convex optimization problem is sometimes replaced by
one involving discontinuous penalties such as indicator or characteristic functions.
Problems defined in terms of marginal functions, expressing the dependence of the
optimal value of some subproblem (as in stochastic programming problems, for exam-
ple) on certain parameters are often discontinuous. To deal with such applications, a
number of efforts have been made to develop a subdifferential calculus for nonsmooth,
and possibly discontinuous, functions. Among the many possibilities let us mention
the notions due to Rockafellar [31], Aubin [3], Clarke [6], Ioffe [18], Frankowska [11],
Michel and Penot [25], and Mordukhovich [26] in the context of variational analy-
sis; those due to Warga [43] for subdifferentials obtained via certain approximating
scheme; those due to Demyanov and Rubinov [7] for quasi-differentiable functions; and
those due to Ermoliev [9] and Polyak [30] in the context of stochastic approximation
techniques for optimization problems.

Another approach to the differentiation of "nonclassical" functions, which eventu-
ally becaine known as the theory of distributions (in Russia, as the theory of generalized
functions), was developed in 1930’s by Sobolev [38] and Schwartz [37]. This technique
is in wide use in mathematical physics and related engineering problems. Although
one can find in the literature occasional reference to a connection between these two
approaches, the notion of differentiability in the sense of distributions is not used in
variational analysis or in the design of solution procedures for optimization problems
involving "nonclassical" functions. Probably one of the reasons for this is that in the
theory of distributions, (standard) flmctions defined on In are redefined as functionals
on a certain functional space. The same applies to their gradients.

*Received by the editors October 8, 1992; accepted for publication (in revised form) August 20,
1993. This work was supported in part by a grant from the U.S.-Isrnel Binational Science Foundation.

International Institute for Applied System Analysis, A-2361 Laxenburg, Austria.
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Department of Mathematics, University of California, Davis, California 95616.

149



150 YURI M. ERMOLIEV, VLADIMIR I. NORKIN AND ROGER J-B. WETS

In the development of a subdifferential calculus for (discontinuous) functions, we
appeal to some of the results of the theory of distributions, but our aim is to bring back
the algebraic manipulations to operations that can be carried out in R, in particular,
by assigning certain distributions to points in I{. More specifically, we associate with
a point z E P a family of mollifiers (density functions) whose support tends toward
z and converges to the dirac function 5(z- .). Given such a family, say {0, 0 E 1+ },
a "generalized" function associated with a function f pn --. I{ is then defined as
the clusters of all possible values generated by the pairings of f with 0. A set of
generalized gradients, here called mollifier subgradients, is defined in a similar fashion.

From another angle, we can also link this approach to a technique involving
"averaged" functions introduced by Steklov [39], [40] and Sobolev [38]. In the case of
continuous functions, these averaged functions converge uniformly to f, and it is then
related to an approach suggested by Warga [42]-[44] (see also Frankowska [12]).

For the gradients of averaged functions there are simple unbiased stochastic esti-
mators based on finite differences (some will be mentioned in our development). This
opens up the possibility of minimizing the original (discontinuous) function through
the minimization of a sequence of smooth approximating averaged functions. Such an
approach, initiated in 5, relies on the ideas inherent in stochastic quasi-gradient meth-
ods and dynamic nonstationary optimization as were used by Ermoliev and Nurminski
[10], Gaivoronski [13], Katkovnik [19], and Nikolaeva [27] in convex nondifferentiable
optimization; by Gupal [15], and Mayne and Polak [24] in the Lipschitz continuous
case; and by Gupal and Norkin [17] in the discontinuous case.

Section 2 introduces a notion of convergence for discontinuous functions and pre-
pares the way for a justification that averaged functions provide consistent approx-
imations from a minimization viewpoint. Section 3 is devoted to the properties of
averaged functions, and 4 introduces the notion of a mollifier subgradient based on
the approximation of a discontinuous function by averaged functions. Finally, 5 out-
lines some potential optimization procedures.

2. eh-convergence. Let f" lnJ I be a proper (f ec, f > -oc) extended
real-valued function with dom f- {x I{]f(x) < oc} the (nonempty) set on which
it is finite. Its epigraphical (or lower scmicontinuous) closure clef is given by

cle f(x) lim inf f(x’) inf lim inf f(x)

and its hypographical (or upper semicontinuous) closure clh f is

Clh f(x) limsup f(x’) sup limsup f(x’);

inf and sup are taken over all sequences z converging to z. The function cl f is lower
semicontinuous and clh f is upper semicontinuous.

For an arbitrary sequence of functions { f I{n t{, u G N }, we denote by
e-li f" its lower epi-limit, i.e.,

(e- li f’) (x)’- inf lim inf f" (x"),
X

and by h-ls f" its upper hypo-limit, i.e.,

(h-Is f’)(x) sup limsup f’(x’);
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here also inf and sup are calculated with respect to all sequences converging to x. It
is easy to see that e-li f" is lower semicontinuous and that h-ls f" is upper semicon-
tinuous (if necessary cf. [33] for more details); note that h-ls f" -e-li(-f’).

DEFINITION 2.1. Given a sequence of functions { f" 1n --, l,u E N }, a

function f" pn R is an epi-sublimit of the sequence {f’} if cl f <_ e-li f’. It is
a hypo-suplimit if h-ls f" _< cb f. If f is both an epi-sublimit and a hypo-suplimit,
we say that the sequence f" eh-converges to f.

We can view eh-convergence as an extended graph-convergence. With gph f’, the
graph of the function f’, eh-convergence implies that

Limsup,_ gph f" C { (x, a) E l x ll cl f(x) <_ a <_ clh f(x) }

where Limsup is the outer (superior) set-limit; for a sequence of sets C
consists of the cluster points of all sequences {u’} with u" C" for sufficiently
large.

A notion of eh-convergence (for functions with values in a function space) also sur-
faced in the study of the stability properties of integral functionals with discontinuous
integrands; cf. Artstein and Wets

3. Averaged functions. Averaged functions are defined relative of a specific
family of Inollifiers; our usage of the term mollifier differs somewhat from the standard
one in that we do not require that mollifiers be necessarily infinitely differentiable.

DEFINITION 3.1. Given a locally integrable function f" 1n --, IZt and a family of
bounded mollifiers { b0 t( --, I+, 0 l+ } that satisfy

bo(z) dz -1, bo { 1 o(z) >0} C B with 0 as O O,supp z po po

the associated family { fo, 0 E R+ } of averaged functions is given by

fo(z) ]n f(cc z)2o(z) dz /i f(z)bo(x z) dz.

For example, the family of mollifiers could be of the following type" let be a density
function with supp bounded, ao 0 as 0 O, and

A mollifier is thus a probabilit density function defined on I but the family {o}
must possess some specific properties. We can also ezpress fo as a convolution

fo-- f *o.

Sobolev [38] introduced "averaged functions" in his study of generalized func-
tions (distributions) that could serve as solutions of certain equations in mathematical
physics; he also required that the mollifiers 0 be of class C. In terms of the theory
of distributions, fo(z) is the value of the distribution f at 2o(cc- .), x playing the role
of a parameter.

THEOREM 3.2. Let { fo,O + } be a family of averaged functions associated
with a locally integrable function f 1 , and suppose that z --, z as 0 O. Then

cl f(z) <_ liminf fo(z) <_ lim sup fo(z) <_ clf(z).
olo olo
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Consequently, the averaged functions fo eh-converge to f.
Proof. It will suffice to prove the first inequality, the second one is evident and

the proof of the last one is similar to that of the first, eh-convergence is an immediate
consequence of this string of inequalities.

By definition of lower semicontinuity, for all x E In and c > 0 there exists V, a
neighborhood of 0, such that f(x z) >_ cl f(x) for all z E V. For 0 sufficiently
small, supp0 c V and then

f(z z)o(z) dz f(x z)o(z) dz > ;
> (c1 f(x) ) / o(z)dz.

cl f(x z)o(z) dz

Hence, lim inf0 o fo(x) >- cl f(x)- e. The proof is completed by letting
COROLLARY 3.3. Let f 1n R be continuous, and let {fo,O R+} be an

associated family of averaged functions. Then the averaged functions fo converge con-
tinuously to f, i.e., fo(xo) f(x) for all x x. In fact, the averaged functions fo
converge uniformly to f on every bounded subset of Rn.

Proof. The proof is evident.
When the function f is not continuous, we cannot expect to have continuous

convergence of the averaged functions to f. But that is also more than what is
required. For our purposes, we only need to establish that the averaged functions
converge to f in a sense that will guarantee the convergence of minimizers and infima.
This is precisely what is accomplished by epi-convergence.

DEFINITION 3.4 (Aubin and Frankowska [4], Rockafellar and Wets [33]). A se-
quence of functions { f 1 -+ R, N} epi-converges to f In - R at x

(i) liminf__+o f’(x’) > f(x) for all x" -+ x;
(ii) lim.-+oo f’(x’) f(x) for some sequence x" x.

The sequence {f’}.eN epi-converges to f if this holds for all x Rn, in which case
we write f e-lm

Clearly, if f is the epi-limit of some sequence, then f is necessarily lower semi-
continuous. Moreover, if the f" converge continuously, and a fortiori uniformly, to f,
they also epi-converge to f.

For example, if (x, y) g(x, y)" pn 1. - R is (jointly) lower semicontinuous
at (, ) and is continuous in y at 9, then for any sequence y" -+ , the corresponding
sequence of functions { f" g(., y),. N } epi-converges to f g(., ) at

THEOREM 3.5 (Attouch and Wets [2]). /f the sequence { f" R -- R, t N }
epi-converges to f" R ---+ R at all x D C Rn, then

lim sup. (info f’) < info f,
lim inf. (infK f" > infK f,

V 0 C Ftn open,

VK C I compact,

and
Vx" --, x" [f’(x) _< inf f" + e,, e 0, ==, x argmin f.

Epi-convergence of the averaged functions fo to f will be guaranteed by the fol-
lowing property of f.

DEFINITION 3.6. A function f" 1:[ ---, R is strongly lower semicontinuous at
x, if it is lower semicontinuous at x and there exists a sequence x -- x with f
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continuous at x" (for all ,) such that f(x") --, f(x). The function f is strongly lower
semicontinuous if this holds at all x.

Roughly speaking, strong lower semicontinuity excludes the possibility of discon-
tinuities at isolated points. If we think of (x, f(x)) as the state of a system, strong
lower semicontinuity means that this state can always be reached by following a path
along which the evolution of the system is continuous (with no jumps). If x is "time-
dependent", then although we may expect sudden changes from one state to another,
either before or after the jump, the evolution will be continuous, one doesn’t expect
instantaneous jumps followed by an immediate return to normal regime.

THEOREM 3.7. For any strongly lower semicontinuous, locally integrable function
f Rn R, and any associated family { fo, 0 E P+ } of averaged functions, we have
that f e-lm fo, i.e., for any sequence 0" 0, f e- lm

Proof. Pick any x. For condition (i) of Definition 3.4, simply appeal to Theorem
3.2. For condition (ii), proceed as follows: The strong lower semicontinuity of f at x
provides a sequence x" --, x such that f(x") --, f(x) with f continuous at x". From
Corollary 3.3, it follows that for all , fo(x") f(x"). Given any sequence 0k --, 0
as k oc, we need to come up with a sequence xk such that fok(xk) ---, f(x). But
this follows from the following observation: The set S := { f(x")l, E N } is contained
in Liminfk S where S := { fok(X")] N }; Liminfk S consists of all limits points
of all sequences {c}keN with c Sk. Since Liminfk S is closed and f(x) clS,
it follows that f(x) Liminf S, and that means that there exists c f(x) with
ak E S. These points a are the fo (x) we were looking for.

Theorem 3.7 tells us that if we have to minimize the function f, the averaged
functions fo could be used in a consistent approximation scheme, i.e., that implies the
convergence of the minimizers. However, before we follow this route, we would have to
make sure that their properties make them amenable to minimization by existing--or
possibly, modified--algorithmic procedures. The remainder of this section is devoted
to the continuity and differentiability properties of averaged functions, in particular
for the class of Steklov (averaged) functions.

DEFINITION 3.8. Given a locally integrable function f 1n - R, the Steklov
(averaged) functions are defined as follows: For a > O,

f (z z)(z) dz,

where
1/c
0

if max1 n Izil <_ oz/2;
otherwise.

Equivalently,
i r
ozn 2x1--/2

dye.., dy f(y).
Jx /2

This class of averaged functions was introduced by Steklov [391 in 1907, and used
by Kolmogorov and Frchet for compactness tests in p. In the context of smooth
optimization, they were used by Katkovnik [19], Nikolaeva [27], Gupal [15] and [16],
and Mayne and Polak [24].

The next proposition records the well-know fact that Steklov functions are locally
Lipschitz continuous.

PROPOSITION 3.9. For locally bounded and integrable functions f R I{, the
associated Steklov functions f are locally Lipschitz, i.e., on each compact set K C In,
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the function f is Lipschitz continuous on K with Lipschitz constant

-(2n/c) sup f(x), whereKs’--{x+zlxEK, max Izil_<a/2}.
xEK i--l,...,n

Differentiability of average functions, however, cannot be guaranteed in general,
unless the mollifiers 0 are sufficiently smooth or if f itself has a sufficient level of
continuity.

PROPOSITION 3.10 (Sobolev [38], Schwartz [37]). Let f 1 --, P be locally
integrable. Whenever the mollifiers o are smooth (of class C1), so are the associated
averaged functions fo with gradient

v o(x) I( )v o(x

PROPOSITION 3.11 (Gupal [15]). For f :R 1 continuous, the Steklov (aver-
aged) functions f are continuously differentiable, and their gradients are given by

where ei is the th unit coordinate vector.
This gradient can also be expressed as

/____ f_-1/2 .{_-1/2 .{_-1/2Vfa(x) Eei dl di-1 di+l dn ,a(x, ),
i=1

where

1
[f(xl + OZI,... ,Xi--1 -t- Oi--l,Xi -t- "O,Xi+l Jr- 0i+1,... ,Xn -- n)f X + OZ X -1 -1- O X - Ct X + -}- Ozi+l, X -t-

This means that Vfo(x) is the expectation of the random vector ,(x,), where
(1,’" "n) is a random vector whose elements are independent and uniformly dis-
tributed on [-, ]. In other words, )(x,() is an unbiased estimator of the gradient
of f,.atx.

Remark 3.12. Although in the case of discontinuous functions f we cannot "reach"
differentiability for Steklov functions, it is always possible to do so if the averaging
process is repeated a second time. This follows immediately from Propositions 3.9
and 3.11. Given a locally integrable function f :R - R, let

f,,(x) Z(x z),(z) dz

f. d, f.. dz f(x- y- z)(y)(z)
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with the densities b and b as in Definition 3.8. We can also express this as an
expectation,

fz(x) E{f(x oz{ fir/)}

with t and r random vectors whose elements are independent and uniformly dis-
tributed on [-5, ]" The gradient can be calculated from Proposition 3.11. We have

drl drli-1 drli+ dr]n o43(x, , 77)

where, with z

Again, ,(x, t, r/) is an unbiased estimate of the gradient Vf(x) with , r/random
vectors whose elements are independent and uniformly distributed on [-5, ]" [q

Remark 3.13. Let us also record an important relationship between the estimates
of the gradients of averaged functions and stochastic gradients. We consider the
following averaged functions:

fo(X) ---g iR f(z) (x z) dz fa f(x Oz)2(z) dz
0

with f locally integrable, is a density function with compact support and such that
Vp is Lipschitz continuous. Then the gradient of fo,

’ ()0n’+l
f(z)V X-o z

dz

is locally Lipschitz with constants proportional to 1/0n+l. The random vector (cf.

1
)o,/x (x, , ) z f(x O +/1)- f(x O) ]

is a stochastic quasi-gradient of fo at x (Ermoliev [9]), where t is distributed in
accordance with the density function , and r/is a random vector whose elements are

independent and uniformly distributed on [-1, 1 ]. To see this, note that

where O(z, O, A) is locally bounded.



156 YURI M. ERMOLIEV, VLADIMIR I. NORKIN, AND ROGER J-B. WETS

Observe also that if ( is distributed in accordance with the density function 0
and r/is a random vector whose elements are independent and uniformly distributed
on[-1, 1], then

1
ko,/x(x,,,r) S[ f(x + Ar) f(x )]r

is a quasi-gradient for the averaged function fo, i.e., it provides a, possibly biased,
estimate of the gradient of fo as calculated in Proposition 3.10.

Remark 3.14. To complete this analysis of averaged functions, let us point out
that the class of averaged functions that we have introduced is based on convolutions
with mollifiers that have bounded support. We could however have worked with a
more general class, including mollifiers with unbounded support, and still obtain a
convergence result similar to that of Theorem 3.2; in fact, not just eh-convergence,
but most of the results in this section. Let { p0 I:C + R+, 0 E R+ } be a class of
integrable functions such that f po(z)dz 1. Suppose that the function f :R + R
and the {0} are such that fo f * o is well defined (on Rn) and that for all 5 > 0,

f
lim0*0 1 If(z)lo(x-z)dz=O, uniformly in x, lim0 0 1 po(z)dz=l.

1>5 Jlzl<5

To see that the functions fo still eh-converge to f, note for all x E R and c > 0 there
exists V, a neighborhood of 0, such that f(x z) >_ cl f(x) for all z G V and that
for x x as 0 0, for all 5 > 0 and 0 sufficiently small,

fo(x) f f(z)o(x z) dz + f
> (ale f(x) ) f y)o(z) dz

1<_5 2

f(z)po(x z)dz

and hence liminf0 0 fo(x) >- cl f(x) (after letting e,0). For example, let be the
Gaussian density function, i.e.,

1
e-lvl.

Consider the following family of functions:

X,-Y) dy,fo(x)- ff(Y) ( 0
0>0.

Suppose that If(x)l <_ "yl +-y2lx[w3 with yl, /2, "y3 positive constants. Then the
functions fo eh-converge to f as 0 0 and each functions fo is pf class C. We have

Vfo(X) On+2 f(x OZ) f(x) ]Z(Z) dz;

passing differentiation under the integral sign is justified by the theory of tempered
distributions, cf. Schwartz [37]. Thus the random vector )0(z,(), defined by

1
Ao(x,) --0[ f(x 0) f(x) ]
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with t a Gaussian random variable (density ), is an unbiased statistical estimator of
Vfo(z).

4. Mollifier subgradients. We are going to exploit the fact that averaged func-
tions determine an epi-convergent family of approximating functions, and that rather
explicit expressions can be obtained for their gradients, to define a new notion of sub-
gradient based on a family of mollifiers. In the next section, these subgradients are
used to design minimization procedures aimed, in particular, at the minimization of
discontinuous functions.

DEFINITION 4.1. Let f Rn ---, R be locally integrable and let {f" := fo., u E N}
be a sequence of averaged functions obtained from f by convolution with the sequence
of mollifiers { " := 0- R R+, u E N } where O" 0 as oc. Assume that the

mollifiers are such that the averaged functions f" are smooth (of class C1), as would
be the case if the mollifiers " are smooth. The subgradient set of C-mollifier of f at
x is

Ocf(x) := Limsup,__.{ Vf’(x’) lx" --, x },

i.e., the cluster points of all possible sequences {Vf’(x’)} such that x" x. The full
mollifier subgradient set is

O, f(x) U c9f(x),

where ranges over all possible sequences of mollifiers that generate smooth averaged
functions.

The set Of(x) of -mollifier subgradients is closed, and in general, depends on
the choice of the sequence {’} used in its construction. The full mollifier subgradient
set cgqf(x) clearly does not depend on any particular choice of mollifiers. The sets

O,f(x) and Of(x) are always nonempty if the function f is almost everywhere smooth
and its gradient is locally bounded on the set where it exists (as in Corollary 3.3, but
applied here to Vf).

DEFINITION 4.2. Let f R ---, R be locally integrable and let {f" := fo., N}
be a sequence of averaged functions obtained from f by convolution with the sequence

of mollifiers { " := 0- R R+, u N } where O" 0 as , --, ec. Assume that the

mollifiers are such that the averaged functions f" are smooth (of class C1), as would
be the case if the mollifiers " are smooth (of class C1). The C-mollifier subderivative

of f at x in direction u is

f(x; u) h-ls (f’)’(x; u) sup limsup (f’)’(x’; u),

where (f’)’(x; u) is the derivative of f at x in direction u; sup is taking with respect
to all sequences x" x. The full (-)mollifier subderivative of f at x in direction u
is

f, (x; u) sup f; (x; u),

where ranges over all possible sequences of mollifiers generating smooth averaged
functions.

Henceforth, when referring to f we always assume that it is locally integrable and
that {f" } is a sequence of smooth averaged functions obtained from f by convolution
with a sequence of mollifiers { ’, N }.
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PROPOSITION 4.3. The ga-mollifier subgradient mapping x - Of(x) is outer
semicontinuous (closed graph) and f is upper semicontinuous. Also

f (x; u) >_ sup{ (g, u) lg E 0f(x) },
f,(x; u) >_ sup{ (g, u) [g Of(x) }.

Proof. The proof follows directly from the definitions.
PROPOSITION 4.4. The function u f(x; u) is sublinear, i.e., f(x; .) is convex

and positively homogeneous. The set-valued mapping

x G(x)"- {g Rn]<g,u} f,(x;u), u Rn }

is closed-, convex-valued.
Proof. Since the functions f" are smooth, we have

(f’)’(x’; ul / u2) (f’)’(x; ul) + (f’)’(x’; u2).

Taking lim sup on both sides over all sequences x" -- x yields

Similarly, the positive homogeneity of f (x; .) follows from the linearity of the deriva-
tives of the functions (f’)’ (x; .). The assertions about the set-valued mapping G
follow directly from the sublinearity of f(x; .). [

PROPOSITION 4.5. We always have

con 0f(x) C he(x) := { e -< f;(x; e },

where con denotes the convex hull. If G,,(x) is bounded, then conO,f(x) GVo(x).
Proof. We begin with the inclusion. To any g Owf(x), there corresponds a

subsequence {,} C {-} and x --+ x such that Vf’,(x) -- g. Since (f-k)’(Xk; U)
(Vf’ (x), u), it follows that

(g,u) lim (Vf’(xk),u) lim (f’)’(xk;u) <_ f(x;u).
k--,

Thus Of(x) C G(x) and the convexity of G,(x) then yields con Of(x) C G(x).
Suppose now that G(x) is bounded. If h G(x) \ con Of(x), i.e., G(x) 2

con Of(x), then by the separation theorem for convex sets, there exists such that
(h,) > (9,} for all 9 conOf(x). But f.(x;g) >_ (h,) and, passing to a subse-
quence whenever necessary, there exists x" x so that

f’(x’) g Of(x)

and

Thus, we would have

clearly contradicting the existence of such an h. [

Remark 4.6. The approach laid out here could be used to define subdifferentials
of higher order. For example, if the mollifiers 0- are of class C2, then the resulting
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averaged function f" are also twice continuously differentiable. With 72fu(x) the
Hessian of f" at x, we could define the second-order C-mollifier subhessian of f at x
as

Of(x) := Limsup,__.{ V2f’(x) x" --, x },

i.e., the cluster points of all possible sequences {Vf’(x’)} of matrices with x" --, x.
The function

n 0
f(x" H):= limsup(V2f’(x") H) -limsup Ex x"

j
OXiOXj

i, "=

f(x)hij

could be called the second-order -mollifier subderivative of f in direction H. The
mapping x H Of(x) is closed, the function f(x; .) is upper semicontinuous, and we
have

conOf(x) { H E l Hu <_ f(x; U), VU ln2 }.

The next theorem justifies a minimization approach based on mollifier subgradi-
ents.

THEOREM 4.7. Suppose that f R --, R is strongly lower semicontinuous and
locally integrable. Then, for any sequence {} of smooth mollifiers, we have

0 Ocf(x) whenever x is a local minimizer of f.

Pro@ Let z be a local minimizer of f.
sufficiently small, define

For V a compact neighborhood of x

:V---,R with(z)=f(z)+lz-x]2.

The function achieves its global minimum (on V) at x. Consider also the averaged
functions

Ja, 
where /(z,z) flY-z- xl2(y)dy. From Theorem 3.10, it follows that the
functions " are continuously differentiable and Theorem 3.7 implies that they epi-
converge to on V. Suppose achieves its minimum at some point z V. It
follows from Theorem 3.5 that z - x, and thus

V99v(z") Vf’(zv) + V’(x, z’) O.

Hence
Vf’(z,) -V’(x,z’) 0

and consequently as 0 Ocf(x). fl

Although it is not really part of the objectives of this development to obtain
expressions that can be manipulated by classical means, the following example might
nevertheless help render more concrete some of the results and operations discussed
so far.

Example 4.8. Consider the function

z+l ifz<0,
f(z)- Ix-l) if z>_0,
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and the family of mollifiers {0, 0 > 0}, with

(1/403)(z + 20)2 if z E [-20,-0],
(1/403)(202.z2) ifzE [-0,0],o(z)
(1/403)(z 20)2 if z [0, 20 ],
0 otherwise.

This is a family of smooth mollifiers and f is strongly lower semicontinuous. This
means that the averaged functions fo are smooth (Proposition 3.10), and that they
epi-converge to f (Theorem 3.7). Assuming that 0 < 1/4, from the formula for the
gradient of fo in Proposition 3.10, we have

x7fo( )

-1
(1/603)[ x3 + 3(1 + 20)z2 + 3(1 + 40 + 402)x

+ (1 + 60 + 1202 + 203)]
(1/603)[-x3 3x2 + 3(202 1)x + 602 1]
(1/603)[ X3 -4- 3(1 20)X2 d- 3(1 40 + 402)x

+ (1 60 + 1202 203)]
1

(1/203)[--Z2 --40Z + 202(0- 2)]
(1/203)[x2 + 202(0- 1)]
(1/203)[-x2 + 40x + 20(0 2)]

1

if x < -1- 20,

ifx [-1-20,-1-0),
ifx [-1-0,-1+0),

ifx [-1+0,-1+20),
if x E [-1 + 20,-20),
if x [-20, -0),
if x [-0, 0),
if x [0, 20),
if x > 20.

functions converging uniformly to f on V, we refer to

Owf(x) N N U
j=l 5>0

as the set of Warga-subgradients of f at x (cl denotes closure).
PROPOSITION 4.9. For f :R --, P be continuous on V a neighborhood of x and

{fh’, k N} a sequence of smooth functions converging uniformly to f on V, then

Owf(x) Limsup__,oo{ Vf(x) ]Vx -+ x }.

The point z -1 is a local minimizer, and z 0 is a global minimizer. In both of
these cases, 0 E Of(z) as asserted by Theorem 4.7. Observe also that in the "convex"
portions of the function f, the mollifier subgradient coincides with the subgradient
from convex analysis; Remark 4.12 indicates that this is always the case when f is
convex. Cl

In the remainder of this section we explore the relationship between the mollifier
subgradient and some other subgradients notions.

For function f: 1 1 continuous on a neighborhood V of z, Warga [42]-[44]
defines subgradients of f at z as follows: Let {f, k N} be a sequence of smooth

-1 if x < -1,
[-1, 1] ifx- 1,

Of(x) 1 if x (-1, 0),
[-oc, 1] ifx- 0,
1 ifz >0.

Letting 0 0 leads to the following expression for the mollifier subgradient associated
with the family {0, 0 > 0}:
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Consequently, when f is continuous, Owf(x) coincides with Ovf(x) if in the construc-
tion of Owf(x) the fk are averaged functions generated by the sequence of smooth
mollifiers

Proof. Let
D(x) Limsupa_o{ Vfk(x) IVxk -- x }.

Let us first show that D(x) c Owf(x). Let g E D(x) be such that, passing to a

subsequence if necessary, 9 lim Vf(x) for some specific sequence x - x. We
have to show that for all j and > 0,

g E Gj,5(x) cl [ U Vfk(Y)1
Obviously, if k >_ j and Ixk -x <_ 5, then

Vfk(x) Gj,e(x).

Since Gj,6(x) is closed, each cluster point of the sequence {Vfk(x)} belongs to
Gj,6(x). Hence, 9 Owf(x) and D(x) C Owl(x).

To prove the converse inclusion, we must show that for each point g in Owf(x)
we can find a sequence x x such that Vf(x) 9. By definition of 0u/ for all j
and > O, g Gj,6(x). Let us choose a sequence 5j 0 as j oc. Since g Gj,6 (x)
for all j,

gecl{Vfk(y) k>j, ly-xl <Sj}.

Thus in this set, there exists an element gJ Vfa(yJ) such that 19j -91 < 1/j.
Clearly, yJ --. x, kj oc and 9j 9, so that 9 D(x) and Owf(x) C D(x).

The equality between the Warga- and the C-mollifier subgradient sets then follow
from the formula we just proved, and the definition of p-mollifier subgradients.

In variational analysis, the Clarke subderivative of a function f I t{ is

1
(dcf)(x; u) limsup [ f(y + Au) f(y)]

y--,x,) O

with the limsup calculated with respect to all sequences y x, ,, O.
generalized (Clarke) subgradients is

The set of

Ocf(x) { g In (g, u) <_ dcf (x; u), V u l }.

This notion was proposed by Clarke [6] for locally Lipschitz continuous func-
tions; for lower semicontinuous functions this notion needs further adjustments (con-
sult Rockafellar [31]).

PROPOSITION 4.10. For f I{ 1 locally integrable, we have f(x;.) <_
dcf(x;.). If f is also continuous, then f(x; .)= dcf(x;.).

Pro@ By definition of dcf(x; u) it follows that for an arbitrary e > 0, there exist

51,52 such that whenever lY- xl < 5 and

1- f(y + An) f(y)] < dcf(x; u) + .
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Let f be the averaged function obtained as the convolution of f and the mollifier
Consider the finite differences

1
f, An) f’ /R 1

A.(y, u, A) (Y / (Y)] [f(y z / Au) f(y z)]p(z) dz.

If lY xl < (1/2, / < (2/2, and Izl _< 51/2, then

A,(y, u, ,k) < (dcf(x; u) + e) flzl<el/2 ’(z) dz.

Thus for y close enough to x,

(f’)’(y; u) lim/,(y, u, ,) <_ (dcf(x; u) + e) ]
), o J lzl <e /2

.(z)dz

from which, after letting e 0, it follows that f(x;u) <_ dcf(x; u).
We next set out to prove the reverse inequality, assuming that f is continuous.

Let x --, x and 0 be such that

1
dcf(x; u)- ino, -ff. f(x + .k,u)- f(x’) ].

From Corollary 3.3, we know that when f is continuous, the averaged functions f"
converge uniformly to f on some neighborhood, say V, of x. Thus, with e. A./u,
we can always find k. such that

sup If(Y) fk (Y)I < -"yEV

Now from the Mean Value Theorem follows the existence ofy := x" +-.u, -. E 0, .
such that

1
fk.(x" / A.u) fk.(x’) (fk),(y,; U).

Thus for sufficiently large, with x" E V and x" + A.u V, we have

f(x + .k,u) f(x’) fk,(x + ,,u) fk(x’)
+ [f(x + A,u) f,(x + A.u)] [f(x") fk(x’)

< A,((fk.)’(y’; u)/ 2/).

Taking lim sup with respect to u yields

dcf(x; u) < limsup (f-)’(y; u) <_ f(x; u),

which completes the proof.
THEOREM 4.11. If f" R l:t is lower semicontinuous and locally integrable,

then
con Oc f(x) C con O, f(x) C Ocf(x).

If, in addition, f is locally Lipschitz continuous, then

conOf(x) Oqf(x) Ocf(x).
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Proof. The relationship between Of(x) and Ovf(x) yields the first inclusion,
and the second inclusion follows from the preceding proposition. If f is locally Lips-
chitz, then also the averaged functions f" are equi-Lipschitz and Of(x) is bounded.
Equality then follows from Propositions 4.5 and 4.10.

COROLLARY 4.12 (Gupal [15]). If f is locally Lipschitz continuous, then for all
0 and x -- x, all clusters points of the sequences {Vf (x)} belong to Ocf(x).
Remark 4.13. For the sake of completeness, let us also record the fact that for

convex functions f :1n --, I, any C-mollifier subgradient is equal to the subgradient
of convex analysis without any need of taking convex hulls. More precisely, we have

Df(x) Of(x) { g E In f(z) >_ f(x) + (g, z xl, ’ff z I }.

As is well known, convex functions of gradients can be characterized in terms of the
expression on the right, cf. [32], for example. In view of the preceding theorem, it will
thus be suificient to show that if g Of(x), then g is also included in 0f(x). Let us
consider the function

P(Y) f(Y) + lY xl 2 f (x) (g, y zI.
The function > 0 and attains its minimum (= 0) at x; due to the strict convexity
of , x is a unique minimizer of . Let

() f( z)-(z)dz

f.(y) + ’(x, y)- f(x) (g, y- x -/R (g’ zlb’(z)dz

be the averaged functions associated with by convolution with b’; here ’(x, y)
flY- z- xl2’(z)dz. The averaged functions " uniformly converge to on some
neighborhood V of x (Corollary 3.3). Due to the strict convexity of , for u sufficiently
large, the averaged functions h" have a (global) minimizer on V, say y’. Moreover,
y" -- x, since x is a unique minimizer of e-lm" (Theorem 3.7). The averaged
functions ’, f, and/3"(x, .) are smooth (Theorem 3.10), and thus

VcZ’(y’) Vf’(y") + Vy/3’(x, y’) g,

v(x, v) f Vl- z xl()dz (- x) 27,
f, z(z) dz.

From the conditions imposed on the mollifiers ’, it follows that y" 0, and hence
y’(x, y’) O, and

Vf’(y) g vy/’(x,y’) g asuc,

which means that g Of(x), as claimed.

5. Numerical procedures. Let us consider the problem of minimizing a strongly
lower semicontinuous a on X, a compact subset of I. Let

1 ifx X;lIx(x)=
0 ifxCX.
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Then, instead of the original problem, we could work with one of the following uncon-
strained problems involving discontinuous penalty functions:

minimizef(z) := (x)lIx(x)+ /(1 llx(x))

or

minimizef(x) := p(x) 1Ix (x) + 3’(1 1Ix (x))d(x, X),
where d(x, X) min{ Ix YI: Y X } and -y is sufficiently large.

If the function o is bounded on X and /> sup{l(x)l x X}, all local minima
of qo on X are also local minima of the function f.

Assuming that f is also strongly lower semicontinuous, in view of Theorems 3.7
and 3.10, we can always find a sequence of smooth averaged functions f" (generated by
mollifiers {b’}) that epi-converge to f, and by Theorem 4.7, the condition 0 E Ovf(x*
is necessary for a point x* to be a local minimizer of f

Let us now consider some optimization procedures for f making use of the ap-
proximating averaged function f’.

Method 5.1. Suppose a sequence {x" } of global minimizers of f" can be calculated.
Then, according to Theorem 3.5 any cluster point of such a sequence is a (global)
minimizer of f.

However finding global minimizers of the f" could be quite complicated. Let us
thus consider the next method.

Method 5.2. Here a sequence of approximating solutions {x’} is built in accor-
dance with the following rule. Each function f" is minimized--initiating the procedure
at x’-l--until a point x" is found such that IVf’(x’)l _< e,, where e, 0; the starting
point x is chosen arbitrarily. In this method, if 2 is a cluster point of the sequence
{x’}, then by the definition of Owf(2), passing to a subsequence if necessary,

lim Vf’(x") 0 E O>f(c).

Moreover, this would also mean that 0 Ocf(2) (Theorem 4.11), i.e., dcZ(x; u) >_ 0
for all u Rn.

This approach requires estimates of IVf(x)l during the iteration process. In
general, this could be computationally expensive involving the calculation of multi-
dimensional integrals. We can however, produce these estimates in parallel with the
optimization process by a well-known averaging procedure (el. Ermoliev [8]): Let

(i) x, z be chosen arbitrarily in Rn;
(ii) x+l x pz, k O, 1,. .;
(iii) zk+ zk rk(zk ,k(xk)), k O, 1, .;

where x approximates argmin f’, z are averaged estimates of V/’(x), A,(x) are

stochastic (finite-difference unbiased) estimates for Vf’(x) such that their mathe-
matical expectation E{A.(x)} Vf’(xk) (see the observations that follow Proposi-
tion 3.11), and pk >_ 0 and r > 0 are sequences such that

Ep-c’ EP <c’ lira p/wk-O.
k=0 k=0

PROPOSITION 5.3 (Ermoliev [8, theorem V.S]). If the ,sequences {xk}, {zk} are

almost surely bounded, then almost surely

lim Iz Vf-(x)l O, and x ----+ {x Vf’(x) 0}.
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Thus in Method 5.2, we can proceed with the minimization of each f until the
estimate zk of the gradient of Vf(x) satisfies the condition

Method 5.4. A sequence of approximate solutions x is generated by the following
rule:

(i) x E I is chosen arbitrarily;
(ii) x+i =x-pA(x), u=0,1

where ,.(x’) is a stochastic (finite-difference unbiased) estimator for f’(x’) with
expectation E{).(x’)} Tf’(x,) (see the observations following Proposition 3.11
and Remark 3.12), and p. >_ 0 is a deterministic sequence of multipliers.

This method combines ideas from the method of stochastic quasi-gradients with
those of dynamic nonstationary optimization techniques, see Ermoliev and Nurmin-
ski [10] and Gaivoronski [13]. The following theorem is an example of the possible
convergence results.

THEOREM 5.5 (Gupal and Norkin [17]). Suppose the gradient estimates arc those
in Example 3.12, i.e., A,(x) A.(x,c, r/), the sequence {x’} belongs to some com-

pact set, and p, >_ O, a, satisfy the conditions

p)9<c lim a- lim c-c+l=0"-
u=l u=l

Then, almost surely, the sequence {x’} admits a cluster point x* such that 0
Owf(x*).

Example 5.6. Let us consider the following minimization of a probability function:

f (x) P g(x, w) >_ 0].

We can express f as a mathematical expectation

f (x) f ]I{g(x,)_>0}(w)P(dw).

Since the function ]I{.} is discontinuous, the function f will in general, not be differ-
entiable. To estimate f(x) and its "gradient," Tamm [41] and Lepp [21] proposed the
use of Parzen-Rosenblatt kernel-type estimates [29], [35]:

1
P(d) dr

r + g(x,)
f(x) 7

VL(x)- 7
where is some symmetric density function on [-oo, oo]; more recently Marti [23]
has suggested a similar approach to deal with reliability constraints in structural
optimization. The function f can also be written as

where

(g(x,)) P(dw),

T
]I{t+r>O}(T).) (-T-- ) dr.
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Thus Ce is an averaged function (with base function 1[{.20}). Instead of the original
function f, we have a sequence of approximating functions fs constructed (indirectly)
by means of averaged functions. Tamm [41] in the differentiable case, and Norkin
[28] in the continuous nondifferentiable case, provided conditions under which fs con-
verges uniformly to f, and they proposed methods, similar to Method 5.2, to minimize

f making use of the approximating functions fs. Lepp [22] and Roenko [34] analyzed
stochastic iterative methods, like Method 5.4, for the minimization f when it is dif-
ferentiable, using statistical estimates for Vf(x).
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ON A GENERALIZATION OF A NORMAL MAP AND EQUATION*

JONG-SHI PANGt AND JEN-CHIH YAO$

Abstract. The class of normal maps was recently investigated by Robinson and Ralph in
connection with the study of a variational inequality defined on a polyhedral set. In this paper
a generalization of such a map is considered, and the associated generalized normal equation is
studied. The latter provides a unified formulation of several generalized variational inequality and
complementarity problems. Using degree theory, some sufficient conditions for the existence of a zero
of a generalized normal map are established and the stability of a generalized normal equation at a

solution is analyzed. Specializations of the results to various applications are discussed.

Key words, nonsmooth equation, complementarity problem, variational inequality, degree
theory, stability analysis
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1. Introduction. In the past two decades, the finite-dimensional variational in-
equality (VI) and nonlinear complementarity problem (NCP) have been studied exten-
sively; a survey of results and applications can be found in the review article by Harker
and Pang [10]. Since the early work of Eaves [4] and others, it has been known that
the VI defined on a closed convex set is equivalent to a certain nonsmooth equation.
Recently, Robinson [25], [26], [27] introduced the class of normal maps to describe
such an equation and derived various properties of these maps when the underlying
set is a convex polyhedron. Subsequent work can be found in [21], [22].

Motivated by several extensions of the VI and the NCP, we introduce a general-
ization of a normal map. Using degree theory, we establish some existence results for
a generalized normal map to have a zero and discuss their applications. We also apply
a recent sensitivity theory for parametric nonsmooth equations [20] to investigate the
stability of a generalized normal equation at a given solution.

The rest of this paper is divided into three sections. The next section introduces
the generalized normal equation and discusses its applications. In the third section,
we derive the existence results using degree theory. Finally, in the fourth and final
section, we study the stability of the generalized normal equation at a solution.

2. The generalized normal map and equation. Let f and g be two given
mappings from Rn into itself. Let K be a nonempty closed convex set in Rn. The
generalized normal map (GNM) associated with the triple (K,g, f) is defined to be
the mapping h R - R where

h(x) g(x) IIK(g(x) f(x)) for x Rn,

and IIK is the projection operator onto K under the Euclidean norm. When K is

polyhedral and g is the identity map, then h becomes the normal map associated with
the pair (K, f). Incidentally, the latter is not quite the same as Robinson’s normal

Received by the editors December 22, 1992; accepted for publication (in revised form) August
20, 1993.

Department of Mathematical Sciences, Johns Hopkins University, Baltimore, Maryland 21218

(msc_wjp(C)jhuvms.hc:.jhu.edu). The research of this author was partially supported by National
Science Foundation grant DDM-9104078 and by the National Science Council of Taiwan during his

visit to the National Sun Yat-Sen University in the summer of 1992.
Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804,

People’s Republic of China (yaojcmath.nsysu.edu.tw). The research of this author was partially
supported by National Science Council grant NSC 82-0208-M-110-023.

168



ON A GENERALIZATION OF A NORMAL MAP AND EQUATION 169

map as defined in [251, which is/(IlK(m)) + -IlK(x); with an abuse of language and
no particular harm as far as the VI is concerned, we have extended the usage of the
term "normal map" to include the special case of the GNM with 9 being the identity.

Associated with the GNM h is the generalized normal equation (GNE):

(1) h(x) =0.

The major objective of this paper is to derive some sufficient conditions for the solv-
ability of this equation and to study its stability at a solution. The derived results
will be specialized to various applications that can be modeled by such an equation.

As mentioned before, our consideration of the GNM was motivated by several
generalizations of the VI and NCP. We now explain the latter problems. To begin,
we note that a vector x is a zero of the GNM h defined above if and only if x satisfies
the following conditions: (i) g(x) E K, and (ii) for all y E K,

(y g(x))Tf (x) >_ O.

Hence, by defining the set-valued map T as follows:

T(z)=z-g(z)+K forzeR,
we deduce that x is a zero of h if and only if x satisfies: (i) x T(x), and (ii) for all
v T(x),

(v x)TI(x) > O.

The latter is a quasi-variational inequality (QVI) defined by the pair (T, f); see [2].
Conversely, associated with an arbitrary QVI (T, f), where the set-valued map T is

given by

() r(x) ,(x) + I

with m being a (point-to-point) map from R into itself and K a closed convex set
in R, is the equivalent generalized normal equation (1) corresponding to

Hence we see that the generalized normal equation provides a compact representation
for a QVI with the map T having the special form (2).

As we can expect from the well-known relation between a VI and a complemen-
tarity problem, when K is a cone, the generalized normal equation associated with
the triple (K, g, f) is equivalent to the following complementarity problem:

(3) g(x) e K, f(x) e K*, g(x)Tf(x) O,

where

t* {y tn" yTx >_ 0 for all x K}

is the dual cone of K. The proof of this equivalence is standard and left to the reader.
A special case of the latter complementarity problem is the implicit compleInentarity
problem (ICP), which corresponds to the case where 9(z) z- re(z) and K is the
nonnegative orthant [18]. In turn, an interesting instance of the ICP is the case where

(4) g(x) min(gi(x) i-- 1,...,m)
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with each gi being a mapping from Rn into itself and "min" is the componentwise
minimium operator; this instance corresponds to what has been called the (finite-
dimensional) order complementarity problem that has received an increasing amount
of attention in the literature in recent years [1], [8], [11], [12]. Note that the mapping
g in (4) is in general not F-differentiable even if the individual functions {g}-i are.

It is interesting to note that with f(x) 0 for all x, (1) reduces to the feasibility
problem

() 9(x) e K.

Some of our subsequent results are concerned with this special case.
It should be pointed out that in general, when the mapping g is a bijection,

then the corresponding generalized normal equation can be turned into a nonsmooth
equation defined by a normal map. Indeed, in this case, it is easy to see that (1) holds
if and only if

U-- nK(u-- f o g-(U)) O

where u g(x). This equivalence clearly fails when g is not surjective. Hence, when
considering the GNM associated with triple (K,g, f), we avoid assuming that g is
surjective.

There is substantial literature on various generalizations of the VI; see [31], [32].
A large portion of this literature is concerned with the derivation of existence results
for these problems. These results are established by means of either a fixed point
argument or some minimax theory. With the exception of only two articles [14], [8]
that deal with the ICP and the order linear complementarity problem, there is no
study on the sensitivity of the QVI or the complementarity problem (3). The primary
goal of this paper is to derive some new existence and sensitivity results for the latter
problems based on the framework of a generalized normal equation.

The tool to be employed in our study is degree theory [15], [17]; hence our ap-
proach to the derivation of existence results (in the context of the generalized VIs)
is different from the previous approaches. There are two basic motivations for using
degree theory in a study of this kind. One is that degree theory is known to be
a powerful tool for establishing existence results. (As a matter of fact, this theory
was created for this purpose by L. E. J. Brouwer.) The second is that several recent
studies [5], [6], [7], [8], [9] suggest that the same theory is useful for dealing with
various sensitivity and stability issues of variational inequalities and complementarity
problems. Our present research extends these studies and treats some similar issues
for the generalized problems.

3. Existence results. For the discussion in this section we make use of some
basic results from degree theory. Those readers who are not familiar with this theory
can consult two references [15], [17] for a review of these results and other related
background material.

By means of the homotopy invariance property of the degree of a continuous

mapping, we can very easily state a general principle for the derivation of existence
results to a system of nonlinear equations. With reference to (1) where h is continuous,
it suffices to exhibit a continuous homotopy H" [0, 1] x Rn

--* R with the property
that there exists a bounded open set ft C_ Rn satisfying the following properties:

(a) the degree of H(0, .) at 0 with respect to t, denoted deg(H(0, .),ft, 0), is
defined and nonzero;
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(b) 0 H(t, 0) for all t E [0, 1] with 0 denoting the boundary of a set; and
(c) H(1, z) h(x) for all z E a with the overline denoting the closure of a set.

If such a homotopy can be identified, then there exists a scalar e > 0 such that for
any function h that is continuous in ft and satisfies

d(h, sup  (x)ll <
xf

the system

h(z) O, x

will have a solution. Note that the conclusion asserts not only the solvability of (1)
but also that of all slightly perturbed systems.

Consequently, the task of proving the existence of a solution to (1) has been
reduced to the identification of an appropriate homotopy H. In the sequel, we give
two basic results of this nature that are specific to a GNM.

THEOREM 3.1. Let K be a closed convex subset of 1n, and let f and g be two
continuous functions from Rn into itself. Suppose there exist a continuous function e

from R into itself and a bounded open set ft in R such that
(i) deg(k, ft, 0) is defined and nonzero where

]g(X) g(X) YIK(g(x e(x)) for x

x 0lg-I(K) )
(ii) = f(x) + #e(x)

_
(K g(x))*

#>0
Then there exists a solution to the system

g(x) YIK(g(x) f(x)) O,

Pro@ Assume that the GNM

h(x) g(x) IIK(g(x) f(x))

has no zero in ft. Consider the homotopy defined by

H(t,x) g(x) IIi;(g(x) tf(x) (1 t)e(x)).

Assumption (i) implies that condition (a) of the homotopy principle is satisfied. Note
that our assumption about h implies that H(1, .) cannot have a zero on Oft. Suppose
H(t,x) 0 for some t (0, 1) and Z E Oft. For this vector x, we then have g(z) K
and

(y- g(x))T(tf(x) + (1 t)e(x)) > 0

for all y G K. Dividing by t > 0 in the last inequality yields a contradiction to
assumption (ii) with # (1 t)It.

The main point of the above result is that the solvability of (1) can be inferred
from that of the GNE associated with the triple (K, g, e) under the stated assumptions.
Presumably, the auxiliary function e is simpler than f, and the associated GNE is

simpler than (1) as well. In the event that such a function e can not be identified
easily, the next result might be useful.

THEOREM 3.2. Let K be a closed convex subset of R, and let f and g be two
continuous functions from R into itself. Suppose there exist a continuous function e

from R into itself, a vector a K, and a bounded open set ft in R such that
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(i’) deg(e- a, t, 0) is defined and nonzero;
(ii’) with 7t(x)- g(x) + (1 t)(e(x) g(x)), we have

te (0,)
:=> (1 t)(e(x) a) + tf(x)

_
(K 7t(x))*.

Then the conclusion of Theorem 3.1 holds.
Proof. It suffices to use the homotopy

H(t, x) tg(x) IIK(t(g(x) f(x)) + (1 t)a) + (1 t)e(x)

and apply the same argument as in the proof of the previous theorem. The details
are omitted.

Presumably, the difference between the two theorems is that in the former, as-
sumption (i) is more restrictive, whereas in the latter, assumption (ii) becomes more
so. In the sequel, applications of both results will be illustrated. We begin with a
corollary that can be derived from either one of the two results.

COROLLARY 3.3. Let K be a closed convex subset of Rn, and let f and g be two
continuous functions from R into itself. Suppose there exist a vector a E K and a
bounded open set Ft in Rn such that

(iii) deg(g- a, Ft, 0) is defined and nonzero;
x Og-(K)

(iv) f(x) / #(g(x) a) (K g(x))*.
p>O

Then the conclusion of Theorem 3.1 holds.

Proof. It suces to take the function e to be g in Theorem 3.2.
The next result gives a sufficient condition for assumption (iv) to be satisfied.
COROLLARY 3.4. Let K be a closed convex subset of R’, and let f and g be two

continuous functions from R into itself. Suppose there exist a vector a K and a

bounded open set in R such that
(iii) deg (g- a, Ft, O) is defined and nonzero;
(iv’) (g(x) a)Tf(x) >_ 0 for all x e O 21 g-(K).

Then the conclusion of Theorem 3.1 holds.

Proof. We verify assumption (iv). Let x 0 21 g-I(K) and let # > 0. Then
g(x) a because of the well-definedness of deg(g a, Ft, 0). Hence

(a g(x))T (f (x) + #(g(x) a)) < 0

by assumption (iv’). Consequently, (iv) follows. S
We should point out that in the case where the set K is the Cartesian product of

a finite number of sets of lower dimensions, say,

(6) /( IIqN_lKq,

where each I(q is a closed convex set in Rnq, then Corollary 3.4 remains valid if
condition (ivt) is replaced by the weaker assumption

(V) maxl<_q<_N(gq(X --aq)Tfq(X) 0 for all x G OFt 2/9-1(K).
Before discussing some general conditions on the triple (K,g, f) that will en-

sure the satisfaction of the assumptions in the above results, we give a simple one-

dimensional example to illustrate the last corollary.
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Example. Let

x
g(x) xS + l,

x E R,

and/( [0, x). We claim that if f is any continuous function with f(t) >_ 0 for some
t > 0, then the generalized normal equation associated with the triple (K, g, f) has
a solution in the interval [0, t]. Since K is a (one-dimensional) cone, the discussion
in 2 shows that this equation is equivalent to the complementarity problem (3). By
an elementary argument, the reader can easily verify that the latter problem must
have a solution. We now prove this simple fact using Corollary 3.4. Take a 0 and
ft (-t, t). Clearly, the only zero of g is x 0 and g’(0) 1. Hence deg(g-a, f, 0)
1. Trivially, we have Oft C g-l(K)- {t} and g(t)f(t) >_ O. Consequently, the two
assumptions of Corollary 3.4 are satisfied and the desired conclusion follows.

3.1. Some known results. The theorems established above are general enough
to include as special cases many well-known existence results from diverse applications.
The discussion that follows serves to illustrate this point. As we shall see, such familiar
results as the famous Farkas lemma in linear programming are amenable to a degree-
theoretic treatment. In the next section, we derive some new existence results for
various special problems.

We begin by considering the case where K Rn. This, of course, corresponds to
the classical problem of finding a zero of the function f (note that g plays no role).
For this simple case, we obtain a solvability result for a system of nonlinear equations
that is reminiscent of the famous Leray-Schauder fixed-point theorem [15], [17].

PROPOSITION 3.5. Let f be a continuous function from R into itself. Suppose
there exist a continuous function e from R into itself and a bounded open set in
R such that deg(e, ft, 0) is defined and nonzero, and for all x O and all # > O,

f (x) / pc(x) O.

Then f has a zero in

Pro@ It suffices to apply Theorem 3.1 with K Rn and g arbitrary.
Our next application concerns the famous Farkas lemma, which states that the

system of linear inequalities

(7) Az- b, z >_ O,

where A R"n and b Rm are given, has a solution if and only if the implication
below holds:

(8) ATx 0 =: bTx
_

O.

The nontrivial part of this result is the "if" part. Normally, the proof is based on the
theory of linear inequalities. In what follows, we show this using Theorem 3.2.

PROPOSITION 3.6. Suppose (8) holds. Then (7) is consistent.

Proof. Let K be the convex cone in R" generated by the columns of the matrix
A. Then K is closed. This is a well-known fact in the theory of linear inequalities;
for the sake of completeness, we give an elementary proof, which proceeds as follows.
Take an arbitrary vector y K. Then there exist sequences of vectors {vk} C R"
converging to zero and {zk } C_ R_ such that y + vk Azk; moreover, for each k,
we may choose zk with the property that the columns of A corresponding to the
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positive components of zk are linearly independent. The sequence {zk} must have a
convergent subsequence with a nonnegative limit. Thus, y E K.

It suffices to show that the given vector b belongs to K. Let g(z) be the constant
function equal to b and let f(z) be the zero function; take e to be the identity flmction
a 0 and take ft to be any open ball (in R") with center at the origin. Assumption
(i) in Theorem 3.2 is clearly satisfied because the degree of the identity map is
equal to one. Suppose assumption (ii’) is violated. Then for some t E (0, 1) and
x 0f Cl 7-1 (K), we have

Since K is a convex cone and 7t(x) K, it can easily be shown that x K* and
xTTt(x) O. The former implies ATx >_ 0; hence, by assumption, we have bTx >_ O.
Now, writing out 7t(x), we deduce

0 xTTt(x) xT(b + (1 t)(x b)) txTb + (1 t)xTx > O,

where the last inequality holds because x c9 and t E (0, 1). This is a contradiction.
Consequently, Theorem 3.2 applies and the desired conclusion follows.

Our third result concerns the VI that corresponds to the case where the fllnction
g is the identity. The following is one of many existence results for this problem; we
have chosen it partly because of its generality among such results and partly to pave
the way for subsequent generalization to the QVI.

PROPOSITION 3.7. Let K be a closed convex set in R and f a continuous

function from R into itself. Suppose that there exists a vector a K such that the
set

(9) {x K (x a)Tf(x) < 0}

is bounded (possibly empty). Then there exists a solution to the VI defined by the pair
(K,f).

Proof. It suffices to employ Corollary 3.4 with g being the identity map and ft
being an open bounded set containing (9). Cl

3.2. New existence results. In this section we derive some new existence re-
sults for the QVI and ICP. We start with one that concerns the feasibility problem
(5) and extends Proposition 3.6. The assumption to be imposed is similar to the one
in Proposition 3.7; the proof is similar to that of Proposition 3.6.

PROPOSITION 3.8. Let K be a closed convex cone and g a continuous function
from R into itself. Suppose that the set

< 0)

is bounded (possibly empty). Then ]-l(K) i8 noneTrtpty.
Proof. Let f be an open ball with center at the origin and containing the set (10).

Take e to be identity map a 0 and f to be the zero function. We verify that the two
assumptions in Theorem 3.2 are satisfied. It suffices to verify the second one. Assume
the .contrary. Let t (0, 1) and x 0a C 7-1(/) be such that x (K- 7t(x))*.
Using the cone property of K we can easily show that x K* and xTTt(x) 0. Since
x 0f and f contains (10), it follows that xTg(x) >_ O. As in Proposition 3.6, we
can see that this contradicts the equation xTTt(x) O. [3
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It is possible to establish a version of the above result that does not require K to
be a cone. Indeed, if K is a closed convex set containing a vector a such that the set

{X E tn (X- a)T(g(x)- a) < 0}

is bounded and if g is continuous, then g-l(K) is nonempty. We omit the proof of
this statement since it is similar to that of Proposition 3.8.

In the rest of this section we derive some specialized existence results for a gen-
eralized normal equation. These results are extensions of their counterparts for the
(standard) VI. In principle, many existence results for the latter problem (see [10])
can all be extended to the present context. In the sequel, we choose to focus on the
class of generalized normal equations with monotone pairs (g, f). A motivation for
this choice is so that we can discuss the uniqueness of a solution to the generalized
normal equation. The following definition makes the monotonicity concept precise.

DEFINITION. The function f is said to be
(i) monotone with respect to g on the set K if

g(x),g(y) IC (f(x)- f(y))T(g(x)- g(y)) >_ 0;

(ii) strictly monotone with respect to g on the set K if

[g(x), g(y) I4, and x y] (f(x) f(y))T (g(x) g(y)) > 0;

(iii) strongly monotone with respect to g on the set K if there exists a constant
c > 0 such that

g(x),g(y) K (f(x) f(y))T(g(x) g(y)) >_ cllx yll 2.

If f and g are both atone functions, say, f(x) a + Ax and g(x) b + Bx, and
if K Rn, then f is monotone with respect to g if and only if the matrix ATB is

positive semidefinite, and f is strongly monotone with respect to g if and only if the
same matrix is positive definite. If A is nonsingular, ATB is positive (semi-)definite
if and only if BA-1 is; a similar statement holds if B is nonsingular. More generally,
if K Rn and f(g) is a (nonlinear) bijective map, then f is (strictly, strongly)
monotone with respect g if and only if go f-l(fog-) is (strictly, strongly) monotone
in the usual sense.

The above concept of monotonicity for a pair of affine functions is closely related
to a certain generalized P0-property for a finite family of square matrices of the
same order. The latter was introduced by Wilson [29] and its application to nonlinear
networks was discussed in various articles in [30]. The recent paper [28] gives a renewed
look at these matrix-theoretic properties and studies their role in some generalized
linear complementarity problems.

PROPOSITION 3.9. Let I( be a closed convex subset of Rn, and let f and g be two
continuous functions from R into itself with g being injective. Suppose there exist a

vector u g-l(K) and positive scalars a and L such that for all x g-1 (K) with

Ilxll >_ , IIg(x)- g(u)ll _< Lllx- 11. If f is strongly monotone with respect to g on

K, then there exists a unique vector 2 satisfying

(11) g(x) IIK(g(x)- f(x)).
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Proof. Let a 9(u) E K and c > 0 be the constant associated with the strong
monotonicity of f with respect to g on K. Let ft be a bounded open set such that
for all x E Oft, we have Ilxll >_ c and

Since g is injective, it follows that deg(9-a, a, 0) +1 (see [15]). We verify condition
(iv’) in Corollary 3.4. Let x Oft C g-(K). We have

(g(x) a)Tf(x) (g(x) g(u))T(f(x) I(U)) + (g(X) g(u))Tf(u)
> Cl]X-- U]] 2 L]]f(u)llllx- ull > 0

by the choice of
with the desired property. It remains to establish the uniqueness of . Suppose x is
another such solution. Then we have

(g(x’) g(Yc))Tf(2) > 0 and (g() g(x’))Tf(x’) >_ O.

Adding these two inequalities and using the strong monotonicity assumption imme-
diately yield

We can see from the above uniqueness proof that in general if f is strictly mono-
tone with respect to 9 on K, then there can exist at most one solution to the gen-
eralized normal equation (11). Another noteworthy remark is that if f is strictly (in
particular, strongly) monotone with respect to 9 on the whole space R, then both

f and g must be injective (on R). Consequently, if we assume that f is strongly
monotone with respect to 9 on R (and not just on K), then we may remove the
injectivity assumption on 9 in the above theorem as it would become redundant.

The existence conclusion of Proposition 3.9 remains valid if the strong mono-

tonicity assumption on the entire set K is weakened to the strong monotonicity with
respect to the vector u. Indeed, from the above proof, we see that if for all x 9-1 (K)
with I[x]] sufficiently large,

(f(x) f(u))T(g(x) g(u)) >

then perhaps with a larger set ft, Corollary 3.4 is still applicable; hence the existence
of a solution to (11) follows. Note that with this weakened monotonicity assumption,
the uniqueness of is no longer guaranteed.

Taking into account the remark following the proof of Corollary 3.4, which con-
cerns the case of a set K with a Cartesian product structure, we may derive an

analogous existence result for the complementarity problem (3) where K is the non-

negative orthant. The proof is similar to the one above and consists of verifying
condition (v). We do not repeat this verification.

PROPOSITION 3.10. Let f and g be two continuous functions from R into itself
with g being injective. Suppose that there exists a vector u satisfying 9(u) >_ 0 and
there are positive scalars c and L such that for all x with g(x) >_ 0 and ]lxll >_ c,
IIg(x) g(u)] _< LIIx- ull. If there exists a scalar c > 0 such that, for all x with
g(x) >_ 0 and Ilxll sufficiently large,

(12) max (fi(x) fi(u))(gi(x) gi(u)) >
l<i<n

then there exists a vector satisfying

(13) g(x) > O, f(x) > O, g(x)Tf(x) O.
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We have mentioned that in 2 that for a generalized normal equation associ-
ated with the triple (K, g, f), the case where g is bijective corresponds essentially to
Robinson’s normal equation. In what follows, we give an example of a one-dimensional
function 9 satisfying the assumptions of the above proposition (see also Proposition
3.9) that is not surjective.

Ezample. Let

1 e
g(x)

l +ex’ x E R.

Since Ig(x)l <_ 1, g is not surjective. It is easy to verify that g is injective and satisfies
Ig(x)- g(O)l < Ixl for Ixl _> 1.

When g is the identity map, (12) reduces to the assumption that f is a uniform P-
function ([16]). As mentioned in the Introduction, the order complementarity problem
(in a finite-dimensional vector lattice) is an instance of the problem (13) where the
function g is of the special form (4). When f and each function gi in the latter
equation are all affine, this order complementarity problem has recently been studied
extensively by Gowda and Sznajder [8]. Among other things, they give a necessary and
sufficient conditions for such a generalized order linear complementarity problem to
have a unique solution "for all constant vectors" in terms of a consistent determinantal
sign property (see also [26], [21]). In the Appendix we show how the latter property
is related to (12) specialized to certain piecewise affine functions f and g.

The final result in this section concerns a weakening of the strong monotonicity
assumption in Proposition 3.9. In its place, we assume that f is monotone with
respect to g on K. We also need two other assumptions, one of which involves the
following concept.

DEFINITION. A function g R R is said to be proper with respect to a set
D if for every bounded subset S of D, g-1 (S) is bounded.

In the next result, "int S" and "0+S’’ denote, respectively, the interior and re-
cession cone of a set S.

PROPOSITION 3.11. Let K be a closed convez set in R, and let f and g be
continuous functions from R into itself with g being injective. Suppose there ezists

a vector u g-l(K) with f(u) int(0+K) *. If f is monotone with respect to 9 on

K and g is proper with respect to K, then (11) has a solution.

Proof. Let a g(u). We claim that the set

{x g-l(/(): (g(x)- a)Tf(x) < 0}

is bounded. Assume the contrary. Then there exists an unbounded sequence {x
g-(K) such that (g(x) -g(u))Tf(x) < 0 for each k. Since f is monotone with

respect to g on K, we have

(g(x) g(u))Tf(u) < 0

for each k. Since g is proper on K, the sequence {g(x)} is unbounded. Without loss
of generality, we may assume that the normalized sequence {(g(x
converges to a limit v that must belong to 0+K \ {0} because {g(x)} c_ K and
g(u) K. Moreover, we have vTf(u) <_ 0; but this contradicts the assumption
that f(u) int(0+K) *. This establishes the claim stated at the beginning of the
proof. Invoking Corollary 3.4, we easily deduce the desired conclusion of the proposi-
tion.

Remark. When K is a cone, the assumption on the vector u is a "strict feasibility"
condition for the complementarity problem (3).
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4. Sensitivity analysis. In this section we derive some sensitivity results for
the parametric generalized normal equation

(14) H(x,p) := G(x,p) IIK(G(x,p) F(x,p)) O,

where G, F R x/i --* /n and K is a closed convex subset of Rn. In this problem,
x E R is the primary variable and p E R is the parameter. At a given value p*,
a zero of the function H(.,p*), say x*, is known. We are interested in analyzing the
behavior of this solution when p is perturbed around p*. The tool we employ for this
analysis is the recent results in [20]. We divide the discussion into two cases. The first
case assumes no particular differentiability assumption on the functions F and G and
no special structure on K; whereas in the second case, the set K is assumed to be
a polyhedron and the functions F and G are assumed to have some differentiability
properties.

4.1. The nonsmooth case. In this case we assume that the functions G(.,p*)
and F(.,p*) have continuous first-order approximations at x* [24]; specifically, we
assume that there exist continuous functions g and f such that g(x*) G(x*,p*),
f(x*) F(x*, p*), and

lim
G(x,p*)-g(x)

=0, and lim
F(x,p*)-f(x)

=0.

Clearly, the function

(15) h(x) g(x) IIK(g(x) f(x))

is then a first-order approximation of H(.,p*) at x* by the nonexpansiveness of the
projection operator. Moreover, h is continuous. By imposing a certain strong mono-
tonicity assumption on the pair of approximating functions (g, f) at the vector x*, we
may derive the following stability result for the solution x*.

THEOREM 4.1. In the above setting, suppose that the functions g and f are
locally Lipschitzian at x* and that there exist an open neighborhood V of x* and
positive scalars ct and such that (i) g is injective in V and (ii) for all x V and all
p sufficiently close to p*,

(16) (f(x) f(x*))T(g(x) g(x*)) >_ cllx x’l] 2,

and

max(llF(x,p F(x,p*)ll, IlG(x,p) G(x,p*)[[) <_ llp p*ll.

Then x* is an isolated zero of H(., p*); moreover, there exist a scalar L > 0 and open
neighborhoods U of p* and W of x* such that for all vectors p U, the system

H(x, p) O, x W

has a solution and for any such solution x,

Ilx x* <_ Lllp p* II.

Proof. Without loss of generality, we may assume that f and g are Lipschitzian
in V. According to the results in [20], it suffices to verify three things: (i) x* is the
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only zero of h in V, (ii) the inverse function h-1 is pseudo-upper Lipschitzian at 0
relative to x*, and (iii) the index of h at x* is nonzero. The "isolated" requirement (i)
is easy by (16) and the uniqueness proof in Proposition 3.9. To show (ii), it suffices
to verify that there exists a constant A > 0 such that if h(x) y and x E V, then

IIx x* < AllYlI. Let x be any such vector. Then we have g(x) y e K and

(u g(x) + y)T(f (x) y) >_ 0 for all u K.

Since g(x*) K, we derive

(g(x*) g(x) / y)T(f(x) y)) >_ O.

On the other hand, we also have

(g(x) y g(x*))Tf(x*) >_ 0

because g(x)-y K and h(x*) O. Adding the last two inequalities and rearranging
terms, we obtain

(g(x) g(x*))T(f(x) f(x*)) <_ --yT(f(x*) f(x) + g(x*) g(x)).

Hence, since x V, by (16), the local Lipschitzian assumption of f and g at x*, and
the Cauchy-Schwartz inequality, we can easily deduce the existence of the desired
constant A. Finally, we need to verify that the index of h at x* is nonzero. For this
purpose, we consider the homotopy

/(t, x)"= th(x) + (1 t)(g(x) g(x*)).

We claim that for all t E [0, 1], x* is the only zero of 7(t, .) in V. When t 0, this
is true by the injectiveness assumption of 9; as noted above, the same is true when
t 1. Consider a t G (0, 1) and suppose (t, x) 0. Then we have

t-l(g(x) (1 t)g(x*)) II/((g(x) f(x)).

By an algebraic manipulation similar to the one used above, we can easily deduce
that x x*. This establishes our claim. By the homotopy invariance property of the
degree, we deduce that

deg(3’(1,-),V’ O)= deg(y(O .) V’ O)

where V is any open neighborhood of x* contained in V; the right-hand degree is

equal to :i:l by the injectiveness of g. This completes the proof of the theorem.
We note that similar to several previous results, if K is a Cartesian product of

the form (6), then (16) can be weakened to

max (fq(X) fq(X*))T(gq(X) gq(X*)) > allx x*ll 2,
l<_q<_N

and the same conclusion of the theorem still holds. Conditions such as this last one

and (16) are rather strong; in the next section we see how they can b’e weakened under
a structural assumption on K and a differentiability property of G and F.



180 JONG-SHI PANG AND JEN-CHIH YAO

4.2. The differentiable and polyhedral case. Consider the parametric equa-
tion (14) where K is a polyhedron and the functions G(., p*) and F(., p*) have Frchet
derivatives at x*. In this case, the approximating functions g and f can be taken to
be

g(x) G(x*,p*)+VxG(x*,p*)(x-x*) and f(x) F(x*,p*)+F(x*,p*)(x-x*).

Moreover, instead of using the function given in (15) as a first-order approximation
for H(.,p*) at x*, we may use

(17) h(x) VxG(X*,p*)(x- x*) IIL((VxG(X*,p*) VxF(X*,p*))(x- x*)),

where L is the critical cone of K at G(x*,p*)- F(x*,p*). We refer the reader to [19],
[24] for an explanation of this cone and a demonstration of why the latter function h
is a first-order approximation of H(.,p*) at x* in this case (recall that H(x*,p*) 0).
As a matter of fact, this function h is also the B-derivative of H(., p*) at x* (see the
cited references for details). With L being a polyhedral cone, h is a piecewise linear
function. Hence h-1 is necessarily pseudo-upper Lipschitzian by a result of Robinson
[23]. Consequently, the second requirement (ii) in the proof of Theorem 4.1 is easily
satisfied. We now address the other two requirements (i) and (iii). The equation
h(x) 0 corresponds to the following generalized linear complementarity problem on
the cone L:

VxG(X*,p*)(x- x*) E L, VF(x*,p*)(x- x*) L*,

(x x*)TVxG(X*,p*)rVxF(Z*,p*)(x x*) O.

Hence x* is an isolated zero of h if and only if the following system has v 0 as the
unique solution:

(18) xG(X*,p*)v e L, xF(X*,p*)v e L*, (VxG(x*,p*)v)TxF(X*, p*)v O.

We now come to the final requirement (iii). We claim that (a) if (18) has v 0 as
the unique solution, (b) if the matrix VxG(x*,p*) is nonsingular, and (c) if

(19) xG(X*,p*)v e L :==> vTxG(X*,p*)TxF(X*,p*)v >_ O,

(under (b), (c) says that the matrix VxF(X*,p*)(xG(x*,p*)) -1 is copositive on
the cone L), then the index of h given by (17) at x* is nonzero. Indeed, by the
nonsingularity of xG(X*, p*), the aifine mapping

a(x) xG(X*,p*)(x- x*)

has an index at x* equal to the sign of the determinant of VxG(X*, p*) that is nonzero;
moreover,

/(t, x) th(x) + (I t)a(x)

is a homotopy connecting h and a, and 7(t, ") has x x* as the unique zero for all
t [0, 1]. Consequently, the index of h at x* equals that of a at x*.

Summarizing the above discussion, we present a stability result for the parametric
equation (14) under the special assumptions on K, F, and G. Since we have already
verified the three conditions stated at the beginning of the proof of Theorem 4.1, the
proof of the following result is essentially complete.
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THEOREM 4.2. Let K be a polyhedron in R and H be defined by (14). Suppose
H(x*, p* 0, F(.,p*) and G(.,p*) are Frgchet differentiable at x*, and there exists
a constant ,2 > 0 such that for all (x, p) sufficiently close to (x*, p*),

Assume further that the Jacobian matrix VxG(x*,p*) is nonsingular, (18) has v 0
as the unique solution, and (19) holds. Then the same conclusion of Theorem 4.1 is
valid for (14).

5. Appendix. In this appendix we relate the strong monotonicity condition (12)
to a consistent determinantal sign property of matrices. The latter property has
been used by several authors [13], [8] to characterize the global homeomorphism of
a piecewise affine mapping and the global solvability of a generalized order linear
complementarity problem. We are not concerned with these characterizations here;
instead, we provide some matrix-theoretic criteria for the satisfaction of (12) when
the functions f and g are the componentwise mininum of certain ane mappings.

DEFINITION. Let (A 1 m) be a family of m square matrices of order n.
A representative matrix of this family is an n n matrix B whose th row is that of
one of the Aj.

The following lemma is concerned with the case of two matrices.

LEMMA 5.1. Let A and B be two square matrices of order n. The following
statements are equivalent.

/a) All representative matrices of the pair (A, B) have the same nonzero deter-
minantal sign.

(b) All matrices of the form D1A+D2B, where D1 and D2 are nonnegative diag-
onal matrices with (D)i + (D2)i > 0 for all i, have the same nonzero determinantal
sign.

(c) Both A and B are nonsingular and BA- is a P-matrix.
(d) There exists a scalar c 0 such that

max (Az)(Bz) >_ cllzll
l<i<n

for all vectors z E Rn.
Proof. (a) =v (b). Clearly, (a)implies that det A is nonzero. Moreover, by a

suitable renaming of the matrices A and B if necessary, it suffices to show that the
determinant of a matrix of the form A + DB where D is an arbitrary nonnegative
diagonal matrix has the same sign as det A. In turn, the latter can be proved by
induction on the number of nonzero diagonal entries of D. The key inductive step
follows rather easily from (a) and the fact that the determinant of a matrix is a linear
function of any given row.

(b) (c). Clearly, (b) implies that both A and B are nonsingular. Suppose
that BA-1 is not a P-matrix. Then by a sign reversal property of a P-matrix [3,
Thm. 3.3.4], it follows that there exists a nonzero vector u such that

ui(BA-u)i <_ 0 for all i.

By letting A-u z we obtain

(Az)i(Bz)i <_ 0 for all i.
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Hence defining

0 if(Bz)-0, { 1 if(Bz)-0,
and (D2)ii- (Az)i(D1)ii

1 if (Bz),i 7 O, (Bz)i if (Bz)i O,

and letting D1 and D2 be the respective (nonnegative) diagonal matrices, we see that
D1 + D2 is a positive diagonal matrix and

(DIA + D213)z O,

which contradicts the nonsingularity of the matrix DA + D.B.
(c) = (d). The above proof already reveals this implication (using the character-

ization of a P-matrix in terms of the sign reversal property).
(d) = (a). Let us call two representative matrices C and C2 of the pair (A, B)

complementary if for each i, {ith row of C, ith row of C.} {ith row of A, ith row of
B}. Clearly, if C1 and C2 are any two complementary representative matrices, then

max (Cz)i(Cz)i > cllzll
l<i<n

for all z. This implies that all complementary representative matrices are nonsingular
and C2C is a P-matrix. Hence, any two complementary representative matrices
have the same (nonzero) determinantal sign. It remains to show that any representa-
tive matrix has the same nonzero determinantal sign as A. For this purpose, we first
show that if C is the (representative) matrix obtained by replacing one row of A with
the corresponding row of B, then det CA-1 is positive. Without loss of generality,
we may take this to be the first row. Then it suffices to show that (B1A-) > 0,
where B is the first row of B. Let z be the first column of A-1. Then Az is the first
coordinate vector. Hence, by (d), we have

o <  llzll max (Az)i(Bz)- (BA-I),

as desired. To complete the proof, we use an inductive argument. Suppose that C
is a representative matrix with k(> 2) rows coming from B (which we take to be
the first k rows) and the remaining n- k rows from A (which therefore are the last
n- k). Let C be the representative matrix whose first k- 1 rows come from B and
the remaining n- k + 1 rows from A. By an inductive hypothesis, the determinantal
signs of C and A are the same. Let C be the complementary representative matrix
of C. Clearly, C is obtained from C by replacing its kth row with that of C; hence
the proof of the case k 1 implies that C and C have the same determinantal sign.
The inductive proof is now complete. [J

We now generalize the above lemma to a family of matrices.
PROPOSITION 5.2. Let (A1,... ,Am) be a family of square matrices of order n.

Consider the following statements.
(a) All representative matrices of this family have the same nonzero determinan-

tal sign.
(b) All matrices of the form j= DjAj, where Dj are nonnegative diagonal

matrices satisfying -.j=(Dj)ii > 0 for all i, have the same nonzero dcterminantal
sign.

(c) All representative matrices of the family (Aj j 1,..., m) are nonsingular
and BB is a P-matriz for any two such representative matrices B1 and B..
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(d) For arbitrary vectors (al,...,a") and u, there exist scalars c,c > 0 such
that for any two subsets J1 and J2 of {1,..., m},

max (f(z) f(u))(g(z) g(u)) >_ cllz ul] 2
l<i<n

for all vectors z E R with Ilzll >_ c, where

f(z) min(Ajz + aj j e J1), g(z) min(Ajz + aj j J2).

It holds that (a)w (b): (c) = (d).
Proof. (a) = (b) ::v (c). The proofs of these implications are easy extensions of

the corresponding proofs for the case of m 2.
(c) (a). Fix B1 A. It then follows that all representative matrices have the

same determinantal sign as A.
(c) (d). According to Lemma 5.1 and by the fact that there are only finitely

many representative matrices, it follows that there exists a constant Cl > 0 such that
for any two representative matrices B and B2, we have

max (Bz)i(B2z) >_ cl Ilzll 2l<i<n

for all vectors z. For the functions f and g as given in (d), it is clear that we have

(f(z) f(u))i(g(z) g(u)) (Ajlz)(Aj2z) + a linear term in z + a constant,

where the two integers j J and j2 G J2 depend on z, u, and i. Let B1 and B be
the representative matrices with the ith row equal to that of Ajl and Aj2, respectively.
Then we have

max<i<(f(z) f(u))(g(z) g(u))

>_ maxl<i<(BlZ)(Bz) + a piecewise linear function of z

_> ClllZl[ + a piecewise linear function of z.

From this, the existence of the constants c and c follows easily.
Note that in the last proposition, the reverse implication (d) (a) is not claimed.

At this time, we are not certain whether this will hold, hence the omission. Finally,
we mention that many results related to the ones given in this Appendix can be found
in [29], [30], [28].
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NONLINEAR H OPTIMIZATION: A CAUSAL POWER SERIES
APPROACH*
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Abstract. In this paper, using a power series methodology a design procedure applicable to
analytic nonlinear plants is described. The technique used is a generalization of the linear H
theory. In contrast to previous work on this topic ([Indiana J. Math., 36 (1987), pp. 693-709],
lOper. Theory Adv. Appl., 41 (1989), pp. 255-277], [SIAM J. Control Optim., 27 (1989), pp. 842-
860]), the authors are now able to incorporate explicitly a causality constraint into the theory. In
fact, it is shown that it is possible to reduce a causal optimal design problem (for nonlinear systems)
to a classical interpolation problem solvable by the commutant lifting theorem [Harmonic Analysis of
Operators on Hilbert Space, North-Holland, Amsterdam, 1970], [The Commutant Lifitng Approach
to Interpolation Problems, Birkhuser, Boston, 1990].

Key words, nonlinear systems, H optimization, causality, commutant lifting theorem, inter-
polation theory, Volterra series
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1. Introduction. In this paper, we continue our work on finding a suitable,
implementable nonlinear ,extension of the powerful linear H design methodology. In
what follows, we will just consider discrete-time systems, even though the techniques
elucidated below carry over to the continuous-time setting as well.

Our approach is based on previous work ([14], [15]) in which we considered sys-
tems described by analytic input/output operators. A key idea here involved the
expression of each n-linear term of a suitable Taylor expansion of the given operator
as an equivalent linear operator acting on a certain associated tensor space, which
allowed us to iteratively apply the classical commutant lifting theorem in designing a
compensator. (Our class of operators includes Volterra series [9].)

More precisely, in such an approach we are reduced to applying the classical

(linear) coInmutant lifting theorem to an H2-space defined on some D (where D
denotes the unit disc). Now when we apply the classical result to D (n >_ 2),
even though time-invariance is preserved (that is, commutation with the appropriate
shift), causality may be lost. Indeed, for systems described by analytic functions on
the disc D (these correspond to stable, discrete-time, one-dimensional (1D) systems),
time-invariance (that is, commutation with the unilateral shift) implies causality.
For analytic functions on the n-disc (n > 1), this is not necessarily the case. For
dynamical system control design and for any physical application, this is, of course, a

major drawback for such an approach. (The compensators we obtained were "weakly
causal" and causal approximations were discussed.)

Hence for a dilation result in H2(Dn) we must include the causality constraint
explicitly in the set-up of the dilation problem. It is precisely this problem that moti-
vated the mathematical operator-theoretic work of [16] and [13], which incorporated
Arveson theory [1] into the dilation, commutant lifting framework.
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While the general method explicated in this paper is based on a causal exten-
sion of the commutant lifting theorem, for the purposes of the operators and spaces
that appear in control we will give a direct simple method for finding the optimal
causal compensators. In fact, we will show that the computation of an optimal causal
nonlinear compensator may be reduced to a classical interpolation problem.

We now briefly outline the contents of this paper. In 2, we define causality and
time-invariance as applied to analytic mappings. We show in particular that while
in the linear case, time-invariance and boundedness imply causality, this is not true
in general in the nonlinear setting. In 3, we formulate the causal optimization prob-
lem to be studied. In 4, we discuss the Fourier representation of certain Hilbert
spaces, a technique that we apply throughout the paper. In 5, we prove the main
theoretical result of this paper in which we show how to reduce a causal optimization
problem to a problem solvable via the classical commutant lifting theorem [25]. This
is summarized in a computational algorithm in 6 and 7. Sections 8 and 9 are then
concerned with our formulation of the nonlinear generalization of the H sensitivity
minimization problem, which is then solved via a causal iterative commutant lifting
method in 10. Section 11 is devoted to a natural control interpretation of our op-
timization procedure, while 12 is connected to computational aspects of our work,
namely a nonlinear notion of rationality that reduces our work to finite-dimensional
skew Toeplitz calculations. We illustrate our methods with an example in 13, and
finally in 14, we make some concluding remarks.

We conclude this section by noting that there have been other approaches to
nonlinear H. These include a nonlinear commutant lifting theorem [3], [4], and a
very promising nonlinear game-theoretic approach [7] as well as a nonlinear version
of Ball-Helton theory [6], and the recent work in [26].

Once again, we will just consider discrete-time systems in what follows.

2. Causal analytic mappings. In this section, we will define the class of non-

linear input/output operators that we will study in this paper. To do this, we will
first need to discuss a few standard results about analytic mappings on Hilbert spaces.
See [3], [4], [14], [15], [21] and the references therein for complete details.

Let and denote complex separable Hilbert spaces. Set

{g Ilgll < to}

(the open ball of radius ro in about the origin). Then we say that a mapping

Bro () 7-/is analytic if the complex function (zl,. zn) ((zlgl +... + zngn),
is analytic in a neighborhood of (1, 1,..., 1) E C as a function of the complex
variables zl,..., zn for all 91,..., 9 E G such that Ilgl +... + gull < to, for all h
and for all n > 0.

We will now assume that (0) 0. It is easy to see that if : Br (6) -. 7-/ is

analytic, then admits a convergent Taylor series expansion ([21, p. 97]), i.e.,

(g) ql(g) -1- O2(g, g) _t_... hi_ On(g,’’’, g) -1-’’’,

where G x... x --. 7-t is an n-linear map. Clearly, without loss of generality we
may assume that the n-linear map (gl,’", g,) --* (91,..., gn) is symmetric in the
arguments 91,...,gn. This assumption will be made throughout this paper for the
various analytic maps which we consider. For a Volterra series, is basically the
nth-Volterra kernel.
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Now set

n(gl @ @ gn) (n(gl,...,g’n)-

Then qn extends in a unique manner to a dense set of (R)n (R)... (R) (tensor
product taken n times). Note by (R)n we mean the Hilbert space completion of the

algebraic tensor product of the ’s. Clearly if qn has finite norm on this dense set,
then 0n extends by continuity to a bounded linear operator qn (R)n 7-/. By abuse
of notation, we will set 0n qn. (Recall that an n-linear map on G x G x x G
(product taken n times) becomes linear on the tensor product (R)n. For details about
the construction of the tensor product, see [2, pp. 24-27].)

We now recall the following standard definitions.
DEFINITION 1. (i) Notation as above. By a majorizing sequence for the analytic

map , we mean a positive sequence of numbers an n- 1, 2,... such that IIO ll <
for n >_ 1. Suppose that p limsup an1/n < oc. Then it is completely standard that
the Taylor series expansion of 4) converges at least on the ball Br(G) of radius r 1/p
([21, p. 971).

(ii) If admits a majorizing sequence as in (i), then we will say that 4) is ma-
jorizable.

Let H(Dn) denote the standard Hardy space of CK-valued analytic functions
on the n-disc D (D denotes the unit disc) with square integrable boundary values.
We set H H}(D) and and H2 H12. We denote the shift on H}(Dn) by S(n).
Note that S(n) is defined by multiplication by the function (zl... z). On Hc we set

S(1) U (U is given by multiplication by z).
We now consider an analytic map with 7-/- H. Note that

(1) H @... @ H H)(R)n Hi(Dn) with K kn,

where we map l(R)...(R)z(R)...(R)l (z.intheithplace) to zi, i- 1,...,n. Clearly,
S() corresponds to U(R)n under this identification.

We will identify 0n as a bounded linear map from H(D) --. H via the canon-
ical isomorphism (1). Then we say that 0 is time-invariant if

(2) CnS(n) UCn Vn >_ 1.

(We will also say each qhn is time-invariant.) Equivalently, this means that U oU
on some open ball about the origin in which is defined.

Now set

S) 1.n) := I- Sn j 1, n

Note

Then we say that is causal if

lg(J)(3) P(J)n P(J)On (n), j >_ 1, n > 1.

(We also say each Cn is causal.) Equivalently, 0n H2K(Dn) H is causal if for
F(Zl,... ,Zn) e H(Dn),

inF(zl,...,zn)- E Fil inzi’ ...Zn, n(F)(z) E fmzm’
il,...,in>_O m>_O
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each f, only depends on

{Fi i 0 <_ i,...,i < m}.

This means that for

F(z, z) E Fi z z
max{il in}>_rn

we have that

(4)

We would now like to discuss the relationship between time-invariance and causal-
ity. For simplicity, we assume k 1, i.e., we work with single-input/single-output
(SISO) systems. Let 05" H2 --+ H2 be linear and time-invariant (i.e., intertwines with
the shift). Then it is easy to see that 05 is causal. Indeed, CU U implies

umu* ncumu*’ U. U*. umcu* n
U-U,-
CU U*-,

which immediately implies

p(m) (/sp(rn) p(m) dp Vm_>l,

that is, is causal.
In the nonlinear setting however, time-invariance may not imply causality. As a

concrete example, let o (H)(R) H be a linear operator such that U(R)o oU,
defined by

(o(f v))(z) := (fm+ f +
rn--O

where

f(z)-- fz, g(z) gz.
m-=O m--O

Now set

(f) o(f (R) f), f H2.

Then is an analytic, time-invariant map. (In fact q5 is a homogeneous polynomial
of degree 2.) But is not causal. Indeed,

(P(1)(f))(z) 2flf0 + fg, z D

(P(1)c(ef))(z) f3, z D.

Thus p(1)(f) P(1)c(Pf), for example for f(z)"- 1 + z for z E D. (Note that

under the identification (1), P corresponds to p(1)(R) p(1).)
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3. Causal optimization problem. One of the key techniques in this paper will
be to reduce a nonlinear generalization of the H sensitivity minimization problem
to a series of linear causal optimization problems. (This will be done in 8-10 below.)
In this section, we will formulate this new causal problem.

As above, we let S(n) denote the unilateral shift on H(Dn) given by multiplica-
tion by (zl zn). Since Hc(D) will be fixed in the discussion we will let S S().
As above, U will denote the unilateral shift on H given by multiplication by z, and
O E Hk will be an inner k x k matrix-valued H function (i.e., a k x k inner matrix
with entries H scalar functions). Finally W’He(D) --, H will denote a causal,
time-invariant bounded linear operator (in the sense of (2) and (3) above).

We can now state the causal H-optimization problem (COP): Find

:= inf{llW- COil’ O’ H(D) --’ H, O causal, time-invariant}.

Moreover, we want to compute an optimal, causal, time-invariant Qopt such that

(6) IIw OQoll.

If we drop the causality constraint the solution to problem (5) is provided by the
classical commutant lifting theorem [25]. With the causality constraint, the solution
to (COP) is abstractly provided by a causal commutant lifting theorem [16], [13].

In this paper, based on this work we will provide a simple solution to the problem
(COP) without directly referring to the operator theoretic results of [16] and [13]. In
fact, we will show how to directly reduce the computation of cr to a classical interpo-
lation problem handled by the ordinary commutant lifting theorem, a computational
procedure for which was given in [14] and [15]. We will also describe how to get the
corresponding optimal parameter Qopt.

Our technique will be based on a reduction theorem stated in 5. To formulate
this result, we will first discuss the Fourier representation, which we do in the next
section.

4. Fourier representation. In what follows we must use the Fourier represen-
tation of elements of Hc(D). We refer the reader to [25] for all the details.

We first precisely define all the relevant spaces. First we denote by

the Hilbert space of all column vectors

f(z) [fl(z), f:(z),. f(z),. .]’,

(’ stands for tranpose) such that

(8) Ilfll IIf ll
i=1

is finite. (11 is our generic symbol for a Hilbert space norm (2-norm) as well as the
induced operator norm. So for example in (8), it stands for the usual norm on H}
as well as the associated norm on g2(H}).) Thus g(Hc is a vector-valued Hardy
space. Indeed, if f(z) is given by (7), then we may write

(9) f(z) E az’’
m--O
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where each a. is an infinite column vector with components in CK, and

Clearly,

an _.[f}n)(0) (0)’’’,..

Conversely, if f(z) E e(H:) is given in the form (9) for

a, [arnl, amj, ]’

then f(z) can be written in the form (7), i.e.,

f(z) [f (z), fj(z),. .]’,

where

fj(z)- E a’J z’"
m=0

In what follows, we will either use representation (7) or (9). The context should
always make the meaning clear.

Next we let Se "gg(H) -+ g(H) denote the unilateral shift defined by multi-
plication by z. Then the Fourier representation of H(Dn) is given by the (linear,
bounded) operator

which is defined by

( .-q, H:(Dn) e(H:),

(10) E zn
r--O

where

f(z) "-(F(Zl,Z2,...,Zn))
Fm,m,... ,m

[i’m,...,m,m+l
.Fm,...m+ l,m+

Frn+i ,mq-i2 ,mq-i,n

F(Zl :an) E FJl ""J’ zn’
jl

and (il,...,in) E I, for

(11) I, :- {(i1,..., in): i1,..., in O, min{il,..., in} 0}.

"’), ifWe order the set In in the following manner We have (il,...,in) < (il,...,
max{i,..., in} < max{il,..., i’}. Thus

k>O
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where

I(k) := {(i1,..., in) E In" max{il,..., in}

Each I(k) is then ordered by the lexicographical order.
Note that we are taking f(z) in the form (9) in the above representation More-

over, note that

H(D) { F(z,..., z)
We can also write

()

where

(1)

and (i1,... ,in) In.

jl jn>_O jl jn>_O

f(z) [f0,...,0(z), f0 (Z),..., fil in (Z),...]l,

m--0

Next, it is easy to see that q’H(Dn) --+ e2(H) is an isometry. Indeed, using
(10), (12), and (13), we have

II(f)ll- Ilfll
E Ilfil inll 2

il,...,inIn

IIl/ /nll
il ,iEI

IIf ,112

A similar computation shows that the adjoint of (I) is also an isometry, so that
is an unitary operator. We next show that

(14) (I)S-

Indeed, we see that

(I)q(F) (I)(zl znF(zl,..., Zn))

Z{i+l(I)( E YJl ,J’
jl jnk0

E zm+l
rn--0

=ze(F)

Fm,...,m,m+l
Fm m+l,m+l

Fm+i ,m+i2 re+in
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By (14), we see that if W’H(Dn) --, H is such that WS UW, then the
operator Wq* g2(H)---, H satisfies

(w*)s ws* u(w*);

that is, W* intertwines the shifts S and U. Consequently, it is standard (see, e.g.,
[12], or [25, p. 277]) that W(I)* is represented by a row vector

(5) [W0 0(z), W0 l(Z),..., Wil i, (z),...],

for (il,... ,in) E In. Specifically, for any

f(z) If0 0(z),f0 l(Z),-.’,fil in (Z), ’]t E

we have

(16) (Wq* f(z) w, .,,(z)f ,(z).

We will write that

(17) W(I)* [W0 0(z), W0 (z),..., Wil i. (z),...],

in the sense expressed by (15) and (16).
We would like to make this representation a bit more precise now. Note that the

action of W* is determined by its action on

ker S; {a F(H)’a is a column vector with components in cK}.

(This follows from the fact that

j=0

and that W* intertwines the shifts Se and U.) Thus we need only to compute the
action of W on

q)* ker S; {F(z,..., zn) H2K(Dn) F(z, Zn) Fil inZll Zn

(See (11) for the definition of In.) By linearity,

, ,,W(zi z;).

So by (10) and (16) we have

(18) W(I)* [W0 0(z),W0 l(Z),...,Wi in(Z),’’’],

where

(19) w (z) W(z[...z,, (il,...,in) Zn.
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The above discussion used only the time-invariance for W. In the next propo-
sition, we will write down an explicit expression for the row vector of (18) and (19)
associated with W(I)* in case W is causal.

PROPOSITION 4.1. Let W" H(Dn) --. H be time-invariant. Then W is causal
if and only if

Wil in(z zmax{il i’}WC in (z) V(il,... ,in) E In,

where W in (z) e Hki( (the space of k K matrix-valued H functions).
Proof. By definition, for all (il,... ,i,) e In with max{il,... ,in} -m, and for

all v Ck, we have by the causality condition (4) that

( g’u*’)w ((z? zo)) ( uu*)w (z) o.

Thus

(20) Wil in (Z)--" ZmWl in (Z) Zmax{i i}Vl i, (z) ’(il,..., in) e In,

for some W i (z) e HkeCxK, as required.
By the above discussion (in particular, Proposition 4.1), we see that for W, as

in the (COP) problem (5), we have

cr inf{llW (911 S UQ, Q causal, time-invariant}
inf{llW(I)* -OQO*II (Qo*)s g((?o*), Q causal, time-invariant}

2 2--inf{llW 111 w (H) H, W1 W,
QI [q0 0(Z), ZqO I(Z),..., zql 1,0(Z), ZqO 9.(Z),...]}.

From now on (unless explicitly stated otherwise), we will just work with the
operators W1,Q1 "g(H) H. Essentially, via the unitary equivalence (I), we
are identifying the spaces H(D) and g2(Hc ). In particular, we identify W with

W1 W(I)*, and Q with Q1 Q(I)*. For simplicity of notation, we will denote

W- W1, Q-Q1.

The context should always make the meaning clear.
We now translate the notions of causality and time-invariance for an operator

W" g2(H) -- H. We will say that W is time-invariant if WSq UW, that is,

w- [w0 0(z),W0 (z),...,w (z),...].

Moreover, we say that W is causal if the operator Wq H(D) -- H is causal,
which means (see Proposition 4.1) that

w [w o(Z),w (z),...,w ,o(),w .(z),...],

for some

{Wl in (Z) Hkx K (i1,.. in) In}.

Motivated by the above discussion, for W g2(H]() -- H time-invariant and
causal, we introduce the operator

Wc =r’a [W;C, ...,0 (z), W;C, ...,l(Z), Wit,...,1,0c (z) W;c, ...,2 (z), ...]
(21) [Wo o(z), Wo (z)/z,..., Wl 1,0(z)/z, Wo 2(z)/z2,...].
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We conclude this section by noting that to solve the (COP) problem (5), we can
equivalently solve the following problem: Given W’f2(H) H time-invariant
and causal as above, find

(22) a- inf{llW- OQII QS UQ, Q causal}.

Thus we must solve the optimization problem (COP) on the Fourier transformed
operators. This we will show how to explicitly do via a reduction theorem in the next
section.

5. Reduction theorem. In this section, we formulate and prove our main result
which will allow us to reduce the computation of a causal dilation to an ordinary one
based on the classical commutant lifting theorem, i.e., interpolation in H. In what
follows ,/(7, T/i, >_ 1 will denote (complex, separable) Hilbert spaces.

To prove the result we will need two elementary lemmas.
LEMMA 5.1. Let A" 1C 7-i be a bounded linear operator, and let T and S* be

isometries on TI and 1C, respectively. Then

IITASll- IIAII.
Proof. By hypothesis, T*T I, and SS* I, and so

-IIA*AII- IIA*T*TAII
-II(TA)(TA)*][- ]]TASS*(TA)*II

(TAS)(TAS)* [ITASII 2,

as required. V1

LEMMA 5.2. Let

A- [A,A,...]’@Hi--+ ,
i=1

where

Further, let U[ be an isometry on Tli for >_ 1. Then

[IAI]- II[A,A2,...]II ]][AIU,A2U2,...]]].

Proof. Note that

[A1U1, AeUe, AnUn, .] [A1, A2, An,...]

U1 0 0
o g. o

0 o U

However, if we set S := @=1 gi, by hypothesis S* is an isometry on @ili, and so
by Lemma 5.1, we are done. gl
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THEOREM 5.3 (Reduction theorem). Notation as above. Then

(23) cr inf{[[W-OQ[[}: QS UQ, Q causal}
(24) inf{ll [W0 0(z) Oq0 0(z), z(Wo (z) Oq0 (z)),..

[0 o(z),...,, o(z),...] ((H), H), (,...,in) n}
(25) inf{]lWc OQ[I: QS UQ}.

(Vot
spaces and/C, (7-/,/C) denotes the space of bounded linear operators from to
lC.)

Proof. The second equality (24) follows from Proposition 4.1. To prove the third
equality (25), it is enough to prove that for any causal, time-invariant operator

[COO 0(Z), COO (Z),..., COil in (Z),...],

we have Ilftl[ Ilftll. (See (21) above.)
Now since

IIll- ess sup{l][COo o(),wo l(),...,COi, i,, (), .111" ]] 1},
IIc]l- ess sup{ll[0 0() 0 1(),...,g1 (),...]11"11 1},

we need to prove that for any fixed E OD that

0 1(),’’’

However, by Proposition 4.1,

COil in () COil in ()max{il in ICK

where IcK is the identity on CK. Hence by Lemma 5.2 with i Cg and Ui
cmax{i, in ICK (i >_ 1), we are done.

6. Algorithm for computation of a. We would like to summarize the above
discussion with a high-level algorithm for the computation of the optimal causal per-
formance or, and corresponding causal optimal interpolant Qopt in (5) and (6).

First, using the notation of Theorem 5.3, let us denote

(26) ao "-inf{llWc- OQII’QS- UQ}.

(See equation (25).) Then Theorem 5.3 guarantees that

(7" O.o.

This means that a causal optimization problem can be reduced to a classical general-
ized interpolation problem in H.

We can summarize the procedure as follows:
(i) Let W,O be as in (5). (Thus W H(Dn) ---, H here.) We compute

inW(z...zn where (il,...,i) E I,. By (18) and (19), we get

W(I)* -- [Wo 0(z), W0 l(Z),..., Wi in (z),...],

and then by (20) we obtain the row matrix

[w0 0(),wg (z),...,w (z),...].
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(ii) The row matrix represents an operator (see (17)) l/Vc Z(H) -- H. Let
II H -- H O OH denote orthogonal projection. Using skew Toeplitz
theory ([8], [17], [20]), we can compute the norm of the operator

(27) A(W, (9) := 1-IWc.

This norm is a, the optimal causal performance.
(iii) Using the classical commutant lifting theorem and skew Toeplitz theory, we

can compute the optimal dilation Bc" g(H2K) --* H of A(W, 0). Recall this
means that

We can then write

B W OQo,t,.

Then from (21), we can find the optimal causal dilation

B Wg2* OQoptp*.

Note that B and B are related as in (21), and similarly for Qopt,c and Qopt*
Qopt H(Dn) H is the optimal causal interpolant, i.e.,

o- [IW Ooptll.

In the next section, we will give an explicit procedure for the computation of
(opt in the SISO case.

7. Maximal vectors and optimal dilations. We use the notation of the pre-
vious section. We want to show how to compute the optimal dilation for

A A(W,O)" g(H) H2.

(We are only considering SISO systems here.)
Our discussion will be based on [15], which generalizes a well-known result of

Sarason [24]. We recall that a mazimal vector of A, ho 0, is a vector such that
Aho All ho II.

Given h E g(H),

h

we write

h* I/t1, 2,...1.

Moreover, we set

T 1-IU[H2 OH,
where II H2 -- H2 OH denotes orthogonal projection.
unilateral shift on H2, and S denotes the shift on g(H2).

With this notation, we can now state the following result.

As above, U is the
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PROPOSITION 7.1. Notation as above. Let A f2(H2) ---, H2 0 OH be as
above (so that AU TA). Suppose moreover that that A has a maximal vector ho.
Let Bc f2(H2) -- H2 be the minimal intertwining dilation of A, i.e., IIBc A,
BcU SB, and I[A[I IIBII. Then if we let ) := IIAII 2, we have that

Proof. We sketch the proof following [15]. First, given ho E H, we represent ho
as a column vector with components by, j > 1 as above. Let

Then we have that

(o)(Z) (z)(z)
j>_l

(for z E D), and

I[ll- ess sup Ib()l "11- 1
j=l

However,

Thus IIAholl 2 -IIholl, and since HBho Aho, we have that Aho Bho. Next
note that

Ibj(et)l ,X
j>_l

almost everywhere, and

27r

dt O.

(This follows from the fact that Allholl IlBholle.) Using the Cauchy-Schwarz
inequality, the expression under the integral sign is nonnegative. Thus

j>_l
1 (")h(*)l
j_>l

j>_l j_>l

almost everywhere, which implies that

j>_l
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almost everywhere, and

almost everywhere for all j >_ 1, and for some function E H2 satisfying

Aho Bho .
Thus for

Bc(eit) [5l(eit), b2(eit),...]

we have

B(et)Aho(et) Aho(et)

almost everywhere, as required.
Remarks. (i) As remarked above, from the optimal dilation Be, we can solve for

Qopt,c via

Bc Wc OQopt,c.

The optimal causal interpolant is then derived as described as in the last section.

(ii) In some cases it may be more convenient to derive the optimal dilation from
a maximal vector of A*. A similar proof to the one just given shows that

A’h1
hi

where h E H2 O OH is a maximal vector for A*.

8. Nonlinear Control Problem. We will now describe the physical control
problem in which we are interested. In our treatment that follows, we will add the
causality constraint to the results of [15], and thereby derive a physically realizable
nonlinear optimization procedure. First, we will need to consider the precise kind of
input/output operator we will be considering. As above, H denotes the standard
Hardy space of C-valued functions on the unit disc. We now make the following
definition.

Then we say an analytic input/output operator " H --. H is admissible if it
is causal, time-invariant, majorizable, and (0) 0. We denote

Ct {space of admissible operators}.

Since the theory we are considering is local, the notion of admissibility is sufficient
for all of the applications we have in mind.

We now begin to formulate our control problem. Referring to Fig. 1, P represents
a physical plant that we assume is modeled by an admissible operator. In our problem,
we are required to design a feedback compensator C in such a way as to attentuate
the effect of the filtered disturbances (filtered by the "weight" W) d. The unfiltered
disturbances v are assumed to have energy (i.e., 2-norm) bounded by some fixed
constant. This leads to following kind of mathematical problem. See [14] and [15] for
more details.

Let P, W denote admissible operators, with W invertible. Then we say that the
feedback compensator C stabilizes the closed loop if the operators (I + P C)- and
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V

FIc. 1. Standard feedback configuration.

C o (I + P o C) -1 are well defined and admissible. We can show that C stabilizes the
closed loop if and only if

(29) C-Oo(Z-poO)-1

for some 0 E (Jz. (See [14], [15] and the references therein.) Note that the weighted
sensitivity (I + P o C) -1 o W can be written as W P o q, where q 0 o W. This
is precisely the operator relating the disturbance v to the output y. (Since W is
invertible, the data q and 0 are equivalent.) In this context, we will call such a q,
a compensating parameter. Note that from the compensating parameter q, we get a
stabilizing compensator C via the formula (29).

As in [15], the problem we would like to solve here is a nonlinear version of the
classical disturbance attenuation problem. This corresponds to the "minimization"
of the "sensitivity" W- P o q taken over all admissible q. To formulate a precise
mathematical problem, we need to say in what sense we want to minimize W P o q.
This we will do in the next section, where we will propose a notion of "sensitivity
minimization" which seems quite natural to analytic input/output operators. For the
linear case of sensitivity minimization see [10], [18] and the references therein.

9. Nonlinear sensitivity function. This section follows very closely the set-up
of [15]. However, now we explicitly put in the causality constraint.

We begin by defining a fundamental object, namely a nonlinear version of sensi-

tivity. We should note that while the optimal H measure of performance is a real
number in the linear case [18], the measure of performance that seems to be more nat-
ural in this nonlinear setting is a certain function defined in a real interval. This new
kind of performance criterion is one of the keys concepts developed in [14] and [15].
See also 11 for a further analysis of the physical meaning of our nonlinear sensitivity
function.

To define our notion of sensitivity, we will first have to partially order germs of
analytic mappings. All of the input/output operators here will be admissible. We
also follow here our convention that for given E Cz, Cn will denote the bounded
linear map on the space r-r2(R)n H(D) (with K k) associated to the n-linear
part of , which we also denote by (and which we always assume without loss of
generality is symmetric in its arguments). The context will always make the meaning
of 0n clear.

We can now state the following definition.
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DEFINITION 2. (i) For W, P,q E Ct (W is the weight, P the plant, and q the
compensating parameter), we define the sensitivity function S(q),

for all p > 0 such that the sum converges. Note that for fixed P and W, for each
q Ct, we get an associated sensitivity function.

(ii) We write S(q) S((l), if there exists a Po > 0 such that S(q)(p) < S(O)(p)
for all p [0, Po]. If S(q)

_
S(O) and S(O) S(q), we write S(q) - S(O). This mcans

that S(q)(p) S()(p) for all p > 0 sufficiently small, i.e., S(q) and S(O) are equal
as germs of functions.

(iii) If S(q)
_

S(O), but S((t) ; S(q), we will say that q ameliorates 0. Note that
this means S(q)(p) < S(O)(p) for all p > 0 sufficiently small.

Now with Definition 2, we can define a notion of "optimality" relative to the
sensitivity function.

DEFINITION 3. (i) qo CZ is called optimal if S(qo) S(q) for all q
(ii) We say q Ct is optimal with respect to its nth term qn, if for every n-linear

On C we have

S(ql +’" + qn- + qn + qn+l ...)

_
S(ql +’.. + qn-1 + (In + qn+ -4-’’ ").

If q Ct is optimal with respect to all of its terms, then we say that it is partially
optimal.

10. Iterative causal commutant lifting method. In this section, we discuss
a construction from which we will derive both partially optimal and optimal compen-
sators relative to the sensitivity function given in Definition 2 above. As before, P
will denote the plant, and W the weighting operator, both of which we assume are

admissible. We always suppose that P1 (the linear part of P) is an isometry, i.e., P1
is a k x k inner matrix-valued H function. (P1 corresponds to O of 6.)

We begin by noting the following key relationship:

(w P o q)l W1 E E Pj(qil (R)"" (R) qi) V1 >_ 1.
l<_j<__l il+...+ij=l

Note that once again for admissible, 4), denotes the n-linear part of qS, as well as

the associated linear operator on H(Dn).
We are now ready to formulate the iterative causal commutant lifting procedure.

Let II" H H 0 PIH denote orthogonal projection. Using the above (see (27))
we may choose ql causal such that

IIW1 Pq IIA(W-,,

Now given this q, we choose a causal q2 such that

[[W2 P2(qJ. @ q) Pqll IIA(W . P2(ql @ ql)), _)11,

Inductively, given ql,..., %-1, set

(a0)
2<_j<_n i +...+ij-=n

Pj(qi (R)’" (R) qi
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for n _> 2. Then we may choose qn such that

(31)

Note that in each step of the procedure, the new "weight" 1 is determined
by the n-linear part Wn of the original weight, and the optimal causal parameters
chosen previously (namely, ql,...,qn_l). The "plant" P1 remains fixed throughout
the procedure. Thus if P1 is rational, the iterative causal commutant lifting procedure
takes place on the finite dimensional space H P1H, and may therefore be reduced
to finite matrix computations. This will be illustrated with an example in 13.

The following facts can be proven just as in [14] and [15], to which we refer the
reader for the proofs. (See in particular [15, pp. 849-853].) First the causal iterative
commutant lifting procedure converges:

PROPOSITION 10.1. With the above notation, let q(1) := q + q2 +’" Then
q() C.

Next given any q Ct, we can apply the causal iterative commutant lifting pro-
cedure to W P o q. Now set

Then we have the following result.
PROPOSITION 10.2. Given q E Ct, there exists (1 Ct, such that S(t) Sc(q).

Moreover (t may be derived from the causal iterated commutant lifting procedure.
Moreover, as in [15] we have the following results.
PROPOSITION 10.3. q is partially optimal if and only if S(q) - Sc(q).
THEOREM 10.4. For given P and W as above, any q is either partially

optimal or can be ameliorated by a partially optimal compensating parameter.
Finally we have the following result.
THEOREM 10.5. Let P and W be single-input/single-output admissible operators.

If the linear part of P is rational, then the partially optimal compensating parameter
qopt constructed by the iterated causal commutant lifting procedure is optimal.

The proof of this last result is based on the uniqueness of the optimal interpolant
in the case when k 1, and when the space H2 O PIH2 is finite-dimensional. In fact,
the conclusion of Theorem 10.5 remains valid under the hypotheses that the operators
IIWj, j >_ 1 and IIPi, >_ 2 are compact (and k- 1). See [15].

11. Control interpretation of iterated lifting. We would like to mention
here what we believe to be a very natural way of looking at the optimization procedure
discussed above. For convenience, we will only treat SISO systems here.

We refer again to Fig. 1. We consider the problem of finding

(32) # := inf sup I1[(I + P o C) -1 o W]vll,
c I111<

where we assume all the operators involved are admissible. Thus we are looking
at a worst case disturbance attenuation problem where the energy of the signals v is
required to be bounded by some prespecified level 5. (Of course in the linear case since
everything scales, we can always without loss of generality take 5 1. For nonlinear
systems, we must specify the energy bound a priori.) Again with the assumptions
made in 8, we see that (32) is equivalent to the problem of finding

(33) # inf sup II(W- P o q)ll,
NCt Ilvll<
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The iterated causal commutant lifting procedure gives an approach for approxi-
mating a solution to such a problem. Briefly, the idea is that we write

W-Wl +W+...,
P-PI +P2+’",

q=ql +q2+’",

where Wj, Pj, qj are homogeneous polynomials of degree j. Note that

(34) #5=6 inf IIW1-Plq[[+0(52
qHo

where the latter norm is the operator norm (i.e., H norm). From the classical
commutant lifting theorem we can find an optimal (linear, causal, time-invariant)
ql,opt E H such that

(35) /t5 (IIW1 Plql,optl] + O((2)

Now the iterative procedure gives a way of giving higher-order corrections to this
linearization. Let us illustrate this now with the second-order correction. Indeed,
having fixed now the linear part ql,opt of q in (33), we note that

W(v) P(q(v)) -(W1 Plql,opt)(v)
W2(v) P2(ql,opt(V)) Plq2(v) -t- higher-order terms.

Regarding 12, P2, q2 as linear operators on H2 (R) H2 - H2(D2, C) as above, we see
that

sup II(W P o q)(v) (w Plqx,opt)l] IIW Plqll + 0(6),
Ilvll_<

where the "weight" 17V2 is given as in (30). The point of the iterative causal commutant
lifting procedure is now to pick an optimal admissible q2,opt, and so on.

In short, instead of simply designing a linear compensator for a linearization of the
given nonlinear system, this methodology allows us to explicitly take into account the
higher-order terms of the nonlinear plant, and therefore increase the ball of operation
for the nonlinear controller.

12. Rationality. A nice feature of the iterated procedure described above is
that if we start out with rational data, then we derive compensating parameters at
each step that are also rational. Thus the whole procedure is amenable to digitable
implementation in such cases. Let us briefly review the notion of rationality in this
context. See [14] for all the details.

Let W" H}(Dn) -- H be time-invariant and admit the row vector representa-
tion

W(I)* [Wo o(z),Wo l(Z),...,Wi ;in(Z),’’’], (il,’’’,in) e In.

Then we say that W is rational if there exists a numerical polynomial q(z) 0 such
that

q(z)[Wo o(z), Wo l(Z),..., Wi i,, (z),...]
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is a row of matrix-valued polynomials of bounded degree. Moreover if W is causal,
we say that W is causal rational if

IT0 0(z), w3,

is rational in the above sense.
The following result may be derived exactly as in [15, (see Thm. 8.7)].
THEOREM 12.1. Notation as above. Suppose that the linear part of the plant is

rational. Then the class of causal rational input/output operators is preserved under
the causal iterated cornrnutant lifting procedure.

Hence for this important class of systems, we are reduced to rational finite-
dimensional operations in carrying out our optimization procedure.

13. Example. In this section, we will give an example of our nonlinear design
procedure. In what follows below, we set HD2 := H2(D2), the space of C-valued
analytic functions on the bidisc D2 with square integrable boundary values. We should
note that this example was first worked in [15] without the causality constraint that
we impose now.

We let

1-z
W(z)=

and P P +P2 where P is the operator given by multipication by z2 (in the discrete
Fourier domain), and

P2(F)-
=1

for F E HD ’ H (R) H. More precisely, as we explained above, we can regard a

bilinear map P2 on H x H as a linear map on H (R)H, and then we identify H (R)H
with HD. (The identification is given by z (R) 1 --. Zl and 1 (R) z z..) Notice that
in the discrete-time domain, P. is just discrete Fourier transform of the "squaring"
map, i.e., given the square integrable sequence {an}, we have that P. is the Fourier
transform of the mapping {an} - {a}. Thus it is clear that P is causal.

We now apply our procedure to the weight W and the plant P. By slight abuse of
notation, we let W H H2 denote the operator defined by multiplication by W,
and let II H H O PIH2 =: H1 be orthogonal projection. We set Ao := IIWIH1.
Note that H1 C, and that via this isomorphism, we have the identification

However,

[1 1]A*oA - 14

from which we get that IIAoll (v/- + 1)/2, and that a maximal vector ho (i.e., a
vector such that IIAoholl- IIAollllholl 0) is given by
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where/ (x/- 1)/2. Using then the Sarason formula [24], we can compute that
the optimal compensating parameter is

ql
2(1 -/z)"

Of course, the above computation was based on standard linear H-optimization
theory. We now want to show how to get the optimal causal second-order compen-
sating parameter.

For F E HD let

j,k=O

Note that the action of the operator (see (30))
4

on F is determined by its action on

+ +
j=l k=l

Thus to compute the row vector representing -fV, we need only compute

j=l

2 I=1 m0 n0 min{j,k}=0

(()m(,)/( ).
min{j,k}=0

We identify as above an operator a’H(D) H and its Fourier transformed
vio de*. e () .

Therefore (under this identification),

[1 ,, .,,...1,
1 z

-’= 1-z
"]

and

11211- II.,ll 2.4195.

Set A II(-l2,c), where II He H 0 zH H(z) - C2 denotes orthogonal
projection. Note that the compressed shift T on H(z) C is given by the truncated
Toeplitz operator

T- 0 O]1 0
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Using skew Toeplitz theory ([8], [17], [20]), we compute the norm of A and the cor-
responding optimal vector. Accordingly, we let r(z)’- 1- 2z. Then for p > 0, and
for

we compute that

(2/- 1)p2’

r(T)(p2Ic AA*)r(T)* p2r(T)r(T)* -(1 + 2 E/)Ic
i--1

-1 3-

IIA[I is given by the largest p such that the latter matrix is singular. Thus we see that

[H(-l/,c)]]- ][A][ 1.8079,

which is the optimal causal performance. If we drop the causality requirement, then
we get that

IlII(-e)l[ 1.4314.

(Of course, with the additional constraint the norm of the optimal dilation increases.)
Let

( 1 /yo(Z) l / 1+ z E H(z2),

so that we may regard

[1]yo- 1+-
under the identification H(z2) - C2. Then it is easy to compute that

r(T)(llAIlelc AA*)r(T)*yo O.

Therefore r(T)*yo is a maximal vector of A*. But from the previous section (see
(28)), the optimal dilation Bopt,c of A is

A*r(T)*yo
Bopt,

(T)*o
(3-A)z+l [1 / /,/ /

(1 + )z + 1

Thus the optimal causal dilation Bopt of (-2) is

(a- )z + 1 zot (1 + ) + 1
[’’’ ]

The optimal causal interpolant q2 is derived from

4
P(q q) z:q -Bot,
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which gives that

(A 3)/32
[1,/z /3z, 2z2 .].q2

(1 32z)((1 + 1/3- A)z + 1)

Now set q(2) := ql --q2, the optimal second-order compensating parameter, and

0(2) := q(2)W-1. The resulting controller is given by C(2) 0(2) o (I P o 0(2)) -1.
Note that it is not necessary to explicitly compute C(2), since it can be implemented
in a feedback loop with components P and 0() as in [27].

14. Concluding remarks. In this paper, we have given an iterative approach
for the construction of optimal causal compensators for input/output operators de-
scribed by analytic mappings. Our procedure generalizes weighted sensitivity H
minimization in a straightforward natural way. Hence, it may be regarded as a

weighted nonlinear inversion procedure.
In contrast to our previous work using power series approaches ([3], [4], [14],

[15]), we can now guarantee causality a priori. Moreover, the computation of a causal
compensator can be reduced to classical dilation theory, and in fact the skew Toeplitz
techniques of [8], [17], and [20] provide an explicit computational methodology.

The example which we have worked out here, has been given just for the purpose
of illustrating our procedure. We plan to work out a more complicated and realistic
problem, the details of which will be given in an upcoming report.
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MODEL UNCERTAINTY IN DISCRETE EVENT SYSTEMS*
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Abstract. Earlier work concerning control of discrete event systems usually assumed that a
correct model of the system to be controlled was available. A goal of this work is to provide an

algorithm for determining the correct model from a set of models. The result of the algorithm is
a finite language that can be used to test for the correct model or notification that the remaining
models cannot be controllably distinguished. We use the finite state machine model with controllable
and uncontrollable events presented by Ramadge and Wonham.

Key words, discrete event systems, system identification
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1. Introduction. A discrete event system (DES) is one that responds to dis-
tinct events occurring at asynchronous times [7]. Examples of such systems include
computer networks, manufacturing systems, and other dynamic systems that require
high-level coordinated control. There has been some success recently in developing a
theory for the control of such systems (see [13] and the references therein). Most of
this work has assumed that an accurate model for the system of interest is available.

The motivation for this work is the desire to control systems in the presence
of uncertainty in the model of the system and environment in which the system
operates. Part of this work is an extension of learning and inference theory [6], [2],
[16] to the domain of discrete event systems. This work is also related to recent results
concerning the determination of a system model when certain assumptions are made
about the model and type of experiments [14], [15]. In both the learning theory and
system determination work, an assumption is that all events are controllable. The
uncontrollability of certain events figures prominently in this work. The approach
taken in this paper is similar to the approach used for system identification in [17] in
that any model that is falsified is dropped from consideration as a correct model.

There are many different types of uncertainty that might occur in a system model.
To discuss such uncertainties, a model representation must be chosen. In this work,
we investigate uncertainty in a deterministic finite state machine. An example of such
uncertainty is an uncertainty in the transitions of a system that can be described as a

state that has a single event specified as providing transitions to at least two different
resulting states; however, only one of the transitions is actually present in the system.
Other examples are discussed in 3. Such uncertainty results in multiple models of
the system that might potentially be correct. The goal is to specify conditions and
algorithms that enable the identification of the correct model in a finite number of
transitions despite the presence of uncontrollable actions. In particular, an algorithm
provides either notification that no more models may be controllably distinguished or
a finite distinguishing language that can be used to remove an incorrect model.
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Section 2 describes the method used to model the plant and the relevant con-
trollability results. Section 3 gives some examples of how a set of potentially correct
models for a system might arise. Section 4 describes the concepts and techniques used
to identify a correct model from a given set of models. Section 5 provides example
applications of the results.

2. Description of the model. We use the deterministic finite state machine
as a model for system behavior. In what follows, only the main features of the finite
state machine model related to this work are covered in a condensed manner. A more
complete development related to the finite state machine model can be found in [5],
[9]. More complete descriptions of the controllability and related results can be found
in [13], [3], [11].

2.1. Finite state machines and regular languages. A finite state machine
is represented by either a four or five tuple. Specifically, if M is a finite state machine
(FSM), then we write M (Q, A, 5, q0) or M (Q, A, 5, q0, Q,), where

Q a finite set of states,
A a finite set of transition labels or events,
5 the transition function, 5"Q x A ---, Q,
q0 the initial state, q0 E Q, and
Q, the marked states, Q, c_ Q.

The transition function 5 is, in general, a partial function" 5(q, a)! denotes that the
transition event a is defined from state q. The marked states signify a subset of the
state set that is used to determine acceptance of a given string. A string is accepted
if the machine executing the string stops in a marked state.

A finite state machine, P (Q, A, 5, q0, Q,), can also be represented as a directed
graph M (Q, T), where Q and T are the sets of nodes and arcs, respectively, or
states and transitions in this instance [1], [4]. Q is the set of states in the machine
and T C_ Q x A x Q is the set of transitions. If ql, q2 E Q and 5(ql, a) q2, then one
denotes the transition by the three tuple (ql, or, q2).

A* is used to denote the set of all finite sequences of symbols from the alphabet
A. A language is a set of strings of elements from an alphabet. If u A*, then lul
denotes the length of u, u(j) denotes the jth element of the string, and the set pr(u)
denotes the set of all strings that are prefixes of u, i.e. for u A*

pr(u)- {s e A*ls- u(1)...u(k),0 < k _< lul}.

The notation s _< u is used to denote that s is a prefix of u. Note that the empty
string is the length zero prefix of all strings. The concept of prefix can be extended
to a language in the following manner. The prefix closure of a language L is defined
by

L- {w A*lSu L w <_ u}.

We use the notation s ppr(u) or s < u to signify that s is a proper prefix of u,
i.e., that s _< u and s u. This concept is extended to a language, L C_ A*, in the
following manner:

ppr(L) {s e A*lSu e L" s < u}.

For this work, we restrict our attention to the class of regular languages that is a

strict subset of the class of formal languages. A basic result relates regular languages



210 STANLEY YOUNG AND VIJAY K. GARG

and finite state machines" a language L C_ A* is regular if and only if it is generated
by a finite state machine [9]. Language L,(M) is the language marked or recognized
by machine M (Q, A, 5, q0, Qm) if

w E L,(M) :> 5(qo, w) E Q,,

where 5 is extended in the usual manner, 5"Q x A* -+ Q. A language L(M) is the
language generated by machine M if

w L(M) ev 5(qo, w)!.

The product machine is a single machine that can be used to represent the syn-
chronous behavior of two original machines. If machines M1 (Q1, A, 51, ql,o, Ql,rn)
and M. (Q2,A, 52, q2,0, Q2,n) have the same event set A then the product of the
two machines is denoted

where

M M2 (Z, A, (5,1, zo, Z),

Z Q1 x Q2 and zo (q,o, q2,o),

and

5,1((ql,q2) or) { (51(q1,cr),52(q2,a)) if defined
undefined otherwise,

Zm-Ql,mQ2,.

The languages generated and marked by the product machine have a specific relation
to the languages of the machines from which they are composed. If MII MIlIM2
then

L(MI, L(M1) A L(M2) and Lm(MII Lm(]tl) A Lm(M2).

2.2. Control of discrete event systems. The event set A can be partitioned
into two sets Ac and Au, representing controllable and uncontrollable events, respec-
tively. A language K is controllable with respect to language L if

K.Au c L

_
K,

where a.b denotes concatenation and is often denoted by ab. A supervisor for a plant,
modeled with finite state machine P, where L L(P), is a map

f L--- 2A,

which specifies a set of inputs enabled by the supervisor that can be applied as a

function of the string in L of events that the plant has previously executed. The closed-
loop system consisting of a supervisor f and plant P has the closed-loop behavior
denoted by Lf, and is defined as follows.

1. Lf,. wgr Lf if and only if w Lf, gr f(w), and wa L.
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A supervisor f is complete with respect to a given plant P, with L L(P), if
all uncontrolled actions of the plant are respected, i.e., if z E Lf and z(Tu E L, then
z(7u LI, where (7 A and LI is the closed-loop behavior as discussed above. The
following result is a basic theorem relating these concepts.

THEOREM 2.1 ([12]). For nonempty K C L, there exists a complete supervisor

f such that LI K if and only if K is prefiz closed and controllable.
The region of weak attraction, as discussed in [3], [11], can be directly related to

distinguishing different machines. The region of weak attraction for a specified set of
states can be described informally as the set of states from which the system can be
controlled so as to enter the set of specified states in a finite number of transitions.

The region of weak attraction 2M (G) for a machine M (Q, A, 5, q0), or in graph
notation, M (Q, T), and a specified subset of states G c Q can be determined by
the algorithm in [3]. For a specific calculation of the region of weak attraction of a
given set of states G, the transitions used in its construction are denoted by
This algorithm builds the region of weak attraction starting from G. Each iteration
of the algorithm adds states to the region defined in the previous iteration. A state
is added to the region of weak attraction only if there is an event (7 that describes a
transition into the region defined in the previous iteration and there does not exist an
uncontrolled event to a state not in the region defined by the previous iterations of the
algorithm. The transition labeled by this (7 is added to Ta(G) as are the uncontrolled
transitions from this state. The states in fM(G) are well defined; as discussed in [3],
the transitions chosen for Tn(G) are not necessarily uniquely defined. The algorithm
is guaranteed to terminate by the finite state description of the machine. An efficient
algorithm in [11] computes the region of weak attraction in O(IQI. IAI) time.

The characteristics of the region of weak attraction are most easily described by
certain conditions on the directed graph that describes the finite state machine. Let
the machine be described by the graph M (Q, T) with G c_ Q. The region of weak
attraction satisfies three main criteria as described in the following proposition.

PROPOSITION 2.2 ([3]). M’- (fM(G),T(G)) C_ (Q,T) if and only if
(1) M’ is G-connected,
(2) M is realizable,
(3) M’-G is acyclic.
A graph M (Q, T) is F-connected if F C_ Q and from every state in Q there

exists a path to a state in F. A subgraph M’ (Q’, T’) c_ (Q, T) is realizable if

(((ql, (7, q2) e T) A (ql Q’) A ((7 E A)) =v ((q, (7, q2) T’).

A realizable subgraph includes all uncontrollable arcs that are defined from any state
in the state set of the subgraph.

If the initial state q0 for the machine M is in the region of weak attraction, i.e.,
q0 G M(G), then we also define a machine based on the region of weak attraction

Ma(G), where Ma(G) is formally defined by the tuple:

Ma(G) (Q, A, , qo, G).

And ((ql, (7) q2 if and only if (ql, (7, q2) is an arc defined in the construction of the
region of weak attraction, i.e., (q1,(7, q.) Ta(G). With Ma defined, the language
recognized by the resulting machine is denoted by L(Ma(G)). As mentioned above
and in [3], Ma(G), and hence L(Ma(G)), is not unique.
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3. Model uncertainty. Uncertainties in the plant model provide a set of models
that are potentially correct models of the plant. Each model in this set is obtained
by assuming that the uncertainty results from a specific lack of knowledge about the
structure of the plant.

Example 3.1. Consider an automatic guided vehicle system guided by wires in
the floor of a manufacturing facility. The model of the guidance system may contain
errors. Each error will produce an uncertain model of the correct system. For instance,
two branch nodes in the wiring may be combined into a single node in the model, an
extra branch may be in the model that is not installed in the plant, or the model may
be lacking a branch that is installed in the plant. Each of these errors generates an
uncertain model that can be used to define a set of potentially correct models.

Example 3.2. Model (A) in Fig. 1 gives an example of a system with uncertainty
in the transitions. For this transition uncertainty, there is a single state q0 in the
model that has "b" transitions defined to k different states, ql,...,qk; yet, in the
actual system, only one of these "b" transitions is defined.

Vl a,b Vk k

V
(A) (B)

FIG. 1. Model for transition uncertainty. (A) Model with transition uncertainty. (B) One of
the possibly correct models.

Example 3.3. Assume that the set of events that a system can accomplish is
known and that there is a known upper bound on the size of the state space. Using
these two assumptions, we can construct all possible models for the system. After all
unique models have been constructed, a technique is required to generate tests that
can distinguish the correct model.

4. Distinguishing between models. We present deterministic techniques that
provide an easily checked condition and an algorithm for correctly removing inconsis-
tent models from consideration and identifying the correct model.

Certain concepts will provide a unified framework for the development that fol-
lows. For the following definitions, we assume that there are models M (Q, A, 5, q0),
M1 (Q1, A, 51, ql,0), and M2 (Q2, A, 5., q2,0) that have states ql E (1, q2 E (2
and an event a A.

DEFINITION 4.1. Given M1 and M2, the predicate different(z, w) holds if

((1 (ql, W)! / --(2 (q2, W)!) V ((1 (ql, W)! /k (2 (q2, W)!),

where

z=(ql,q2) and w A*.

This predicate depends on both the state in the product machine and the string chosen
to differentiate the states that make up the product state.
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Example 4.1. For the machines defined in Example 3.2, let Mi and Mj be
the possible models that have the b transition defined to states qi and qj, respec-
tively, different((qio, qjo),bvj) holds, whereas different((q0,qj0),b) does not hold,
where (qi0, qjo) is the product initial state.

In the following AAB denotes the symmetric difference of the two sets A and
i.e., A/B- (A U B)\ (A B).

DEFINITION 4.2. A string w is a distinguishing string for languages Lx and L2

(w LAL).

DEFINITION 4.3. A string w is a minimally distinguishing string for languages
L and L2 if

(w e LxAL2) A (ppr(w) C_ L L2).

A minimally distinguishing string is minimal in the sense that no substring is also a

distinguishing string.
DEFINITION 4.4. A nonempty language L is a distinguishing language for Lx and

L2 if w L implies that w is a minimally distinguishing string for L and L2. Hence,
a string in a distinguishing language is one that uses the last event to distinguish
between L and L2. Note that, in general, there is not a unique distinguishing language
for two machines M and M2.

Example 4.2. Let L a* and L a’b* be two languages that describe the
behavior of two possible models of a black box machine. For these languages, LUL2
a’b* and L L a*; consequently, L/L2 a*b*b. For a distinguishing language
L to satisfy (ppr(L) C_ L L2), we must have that L C_ a*b.

Observe that if the machine executes the final b, then L2 is the correct language,
and if not, then L is the correct language.

For languages generated by a state machine, we have the following result.
PROPOSITION 4.5. Let L1 and L. be languages generated by the machines M1

and M2. There exists a distinguishing language L for LI and L2 if and only if

(Bw E A*" different(z0, w)), where Zo -(ql,0, q2,0).

Proof. Let w E L. Since w L1/kL, we immediately have that different(z0, w)
holds. == Let w be the string that satisfies different(z0, w). From the definition of
different(.,.), there is some v L1 N L2 such that v < w and a r A such that
v(r L1 I L2 and vcr 5 w. Set L {vcr}. It is clear that L is a distinguishing
language for L1 and L..

Example 4.3. For the machines in Example 4.1, different((qo,qjo),bv) holds;
consequently, there is a distinguishing language, L bvi + bvj, where a + b {a, b}.

4.1. Distinguishing between two models. Assume that machine M has an

uncertainty that causes the set of potentially correct models to consist of the models
M1 and M2. We assume that one of these models is correct. The models are specified
by the following tuples:

M1 (Q1, A, 51, q,o) and /VJ2 (Q2, A, 52, q2,0).

The languages generated by these models are referenced by L(M) and L(M.). We
also refer to the standard synchronous product machine:

Mll M1 M2 (z, A, 511, z0).
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The set of states in the product machine that can be used to controllably distin-
guish the two models is defined in the following manner.

DEFINITION 4.6. G is the controllably distinguishing set of states for M1 and
M2if

G- {z E Z (a E A" different(z, a))A (-au Au" 511(z, a)!) },
where M1 JIM2 (Z, A, 511, z0).

A particular event that can be used to distinguish two states is called a controllably
distinguishing event. Hence, an event cr is a controllably distinguishing event for z if
different(z, or) holds and there is not an uncontrolled event cr defined in the product
machine from z.

Example 4.4. For the machines given in Fig. 2, let A {b}. The controllably
distinguishing state set is (7 { (ql, q), (q2, q) }. In this example, the set of controllably
distinguishing states is the entire product space.

M M2 M 111M2
FIG. 2. Machines for controllably distinguishing state set calculation.

Example 4.5. Consider the same machines as Example 4.4, but let Au {a}. In
this instance, the set of controllably distinguishing states is G {(qg., q)}.

To controllably distinguish states in the product machine, a string must be found
which leads to a state in G. Note that G is a superset of states that can be used
to distinguish states in the product machine and reached from the initial state. This
inclusion is a result of defining G to be all states in the product machine that have
controllably distinguishing events defined without consideration of reachability con-
straints.

Proposition 4.7 states that there is a finite controllable method for distinguishing
between two finite state machines if and only if the.initial state of the product machine
is in the region of weak attraction of the set of states that can be used to distinguish
between the two machines.

PROPOSITION 4.7. Let I (Q1, A, 51, ql,o) and M2 (Q2, A, 52, q,o), be two
machines. There exists a finite language L that satisfies

1. L is controllable with respect to L(MI) A L(Mg.),
2. L is a distinguishing language for L(M1) and L(Mg.),

if and only if

where
1. z0 (ql,0, qg.,0),
2. G is the controllably distinguishing set of states, and
3. ftM IIM (G) is the region of weak attraction of G in MI IIMg.. for M1 and Mg..

Proof. We will demonstrate a language L that satisfies Definition 4.4 with
respect to L(M1) and L(M2), and is controllable with respect to L(M1)CI L(M2).
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Since z0 E ftMlllM2 (G), we can define a machine Ma(G), as discussed in 2.2, and
let L.(Ma) be the language marked by this machine with G as the marked states.
Define X C_ A such that if t E L.(Ma) then there exists a X to satisfy the definition
of G, i.e., that (511(z0 t) z) A (z G) := -Sll(z, a)!. Such a symbol is defined for
every string in Lm(Ma) by the definition of G. Further define L L.(Ma)X by
tr G L if t L.(Ma), z 5ll(z0, t), and a is a controllably distinguishing event for
z.

We must show that this language is finite, satisfies the definition for controllability,
and satisfies the definition of a distinguishing language.

1. L finite:

(ftMI (G), Ta (G)) G acyclic
{property of ftM(G)}

no cycles in Ma -G

=:]s L.(Ma) Isl >_ Iftzviii
L finite.

2. L controllable with respect to L(M1)VL(M2)" Let (Zfl, T) (fMl, (G), Tu(G))
and assume that (t L) A (a At) A (ta L(M1) V L(M2)).

t L A z0 E FtMI, (G)
= {L L. (Mfl).X and definition of L.(Mfl) }

tt(zo, t) Zfl
=v {t L(M L(M2), M (G) realizable, z 6tt (zo, t) }

z’ zfl :(z, a, z’) Ta
{definition of L(Ma)}

taGL.

Hence L is controllable with respect to L(MI)A L(M2).
3. L non-empty"

z0 e ftM (a)
=> {Ma is G-connected}

v A* :511(z0 ,v) G
= {definition of G and X}

t va A* t L.(Mfl).X

L T/=O.

4. ppr(L) C_ L(M1) A L(M2)"

L- L.(Ma).X

ppr(L) L(Ma)
{definition of Ma and MII }

ppr(L) C_
{property of regular languages and FSM}

ppr(L) c_ L(M) L(M).
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5. L c_ L(M)/L(M2)"

(t E L) A (t vcr)
= {definition of G and L}

z 511(z0, v)
=> {definition of G and X},

different(z,
=, {definition of G}

t L(M1)/kL(2kI2).

The last three items combine to show that L satisfies the conditions for being a
distinguishing language.

---: Let (V, T) denote the graph representation of the product machine MIlIM2.
Consider the subgraph (V0, To) of (V, T) obtained by running all strings in L on (V, T).
Define (Vo,To) by

Vo {z Q x Q2 (w L" 5ll(zo,w) z)},
TO {(Zl,O’, Z2) e T" (w e L (5ll(zo,w z) A (wcr e L))}.

Any state in the product machine reached by a string in the closure of L is included
in V0 and any transition traversed by a string in the closure of L is included in To.
Since L is finite and ppr(L) C_ L1CLe, it is clear that (V0, To) is well defined and that
a simple algorithm will generate this subgraph.

Consider the states reached by string in L/A. (Recall that L/A denotes strings
in L with the last symbol removed.) The following lemma follows easily from the
definition of a distinguishing language and controllability.

LEMMA 4.8. With L as assumed in the statement of the proposition,

Vw L/A" 511(zo,w) G

where zo and G are as defined in the statement of Proposition 4.7.
The following lemma provides the realizability of (V0, To) with respect to (V, T)

and A.
LEMMA 4.9. (V0, To) is realizable with respect to (V, T) and At.
Proof. Let Zl (II(Z0,W) where w ppr(L), (zl,a, z2) T, and cr E A.,. From

these facts, we must show that (Zl,Cr, z2) To. Note that from the construction of
V0, we have that w ppr(L) implies that z V0.

(Zl, a, z) T

511 (zo, wet)!
{L controllable with respect to L C L}

wa ppr(L)

(z,a,z) To.

By Lemma 4.8, (Vo, To) is G-connected. By Lemma 4.9, (Vo, To) is realizable. If
there are no cycles in (Vo,To), then by Proposition 2.2 we have that zo E FtMIlIM. (G)
as desired.

If there are cycles, more work is required. The idea is to disable a cycle and
show that the remaining subgraph is still G-connected and realizable. Since (Vo, To)
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is a finite graph, there are only finitely many cycles; consequently, after disabling all
cycles, we have a subgraph remaining that is G-connected, realizable, and acyclic. By
Proposition 2.2, we have that z0 E ftMIlIM.(G) as desired.

Now we must show that cycles may be removed while retaining the connectedness
and realizability of the subgraph (V0, To).

We start by classifying all transitions in To. A transition is included in class C if it
must be included in To for controllability reasons, i.e., if the subgraph would lose the
realizability characterization by not having a specific transition, then that transition
is included in C. Hence,

e c e To A e

A transition is included in class T if it must be included in To for reachability reasons,
i.e., if a node would no longer be G-connected without the presence of a specific
transition, then that transition is included in 74. Hence, (zl, a, z.) E 74 if and only if
there does not exist a w A* such that there is a path labeled by w from Zl to G in
the subgraph (V0, T0), where w(1) = a.

Assume that there is a cycle in (V0, To). If there is a transition (Zl, a, ze) on the
cycle that is not in i2 U 74, then we can clearly remove this transition and retain the
G-connectivity and realizability. This fact follows from the facts that any transition

(Zl, or, z.) not in g U 74 is controllable and there is another path in the subgraph from
Zl to G that does not use the transition in question.

Hence, if we can remove all cycles by deleting transitions that are not in C U 74,
then we are done.

Assume that there is a cycle remaining that only has transitions in g U 74. Let
(zl, or, z2) be a transition on this cycle. From the construction of the subgraph (Vo, To),
we have that there is a string s ppr(L) such that 511 (z0, s) Zl. The following lemma
provides the crucial result.

LEMMA 4.10. Let L and C U74 be as above. If there is a cycle that has transitions
only in C U T, then there are strings of arbitrary length in L.

Proof. Let z A* be the labels of the transitions on this cycle, i.e., 511(Zl, x)
Zl. Let m Ixl. Let zi denote the state immediately preceding label x(i), i.e.,
(zi,x(i),z+l) is a transition on this cycle. Note that Zn+l Zl.

From the controllability of L with respect to L1 N L., Lemma 4.8, and the fact
that every transition on the cycle is in C U 74, it is clear that sx(1) ppr(L). The
same result holds for each i, i.e. for all i" 1 <_ <_ m" sx(1)...x(i) E ppr(L).
Hence, sx, ppr(L), implying that sx* c_ ppr(L). This last statement contradicts the
finiteness of L; consequently, there can be no cycle consisting only of transitions from
CU/. n

As a result of Lemma 4.10, any cycle in the subgraph can be removed while
retaining G-connectivity and realizability. Hence, the conditions of Proposition 2.2
are satisfied and we get that z0 E ftMlllM2 (G). F1

Based on Proposition 4.7, we define a predicate that is true if two machines can

be distinguished as described in the proposition.
DEFINITION 4.11. Given machines M1 andMe, where M1 (Qi,A, 5l,ql,o) and

Me (Qe, A, 52, qe,o), the predicate disting(M1, Me) holds if (q,o, q,0) E FtM, IIM2 (GI,),
where

(cr A: different((ql, qe), a))
11,2 (ql, q2) E ll X 21 A /e
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If two machines satisfy this predicate, then the machines, or their languages, are said
to be controllably distinguishable.

The following corollary provides the application of Proposition 4.7 to resolving
an uncertainty that gives two potentially correct models. If z0 E MII(G), then
a supervisor corresponding to the machine represented by the graph created by the
algorithm that generates the region of weak attraction can be built that will constrain
the behavior of the unknown system such that an incorrect model can be identified in
a finite number of transitions. (See [13] for details on how a machine representation
of a supervisor is used to control a plant.)

COROLLARY 4.12. Let M1 and M2 be two models, such that one of them correctly
models the plant M. Let MII MIlIM2, z0 (ql,0, q2,0), and G be the controllably
distinguishing set of states for MI and M2.

zo M,, (G) if and only if the correct model can be chosen in a finite number of
transitions.

Proof. " By Proposition 4.7, if z0 FtMI,(G), then there exists a finite
nonempty controllable language L such that any string in the language can distin-
guish L(M) and L(M2). By Theorem 2.1, a supervisor f can be constructed such
that Lf L; hence, the plant can be controlled so as to execute strings from L. Since
one of the models correctly models the plant, ppr(L) C_ L(M), and any proper prefix
of a string t in L can be executed by the plant. Since L c_ L(M1)AL(M2), the last
symbol in the string will either be executed or not depending on whether M M or
M- M2 and which model has t defined in its language.

==" By Proposition 4.7, if z0 M,,(G), then we can construct a string of
arbitrary length that the plant can execute such that no supervisor may disable events
such that an inconsistency is observed.

The complexity of this approach is governed by the necessity of considering the
product machine for M1 and M2 to determine the distinguishing language. This
operation requires O(IQIIQ21) operations. In this paper, the dependency of the com-
plexity on the size of the event set A is assumed to be a constant factor; hence it is
not included in the expression for the order of complexity. As shown in 5.1, this is a
sharp bound on the complexity.

4.2. Distinguishing multiple models. The technique for distinguishing be-
tween multiple models with a reset capability available is an extension of the tech-
nique used to distinguish between two models. The strategy is to construct a product
machine from two models in the set of models that results from considering all pos-
sible permutations of the uncertainties. Then, from this product machine, calculate
the region of weak attraction for the set of controllably distinguishing states for these
two models as described in Corollary 4.12. By using the machine generated by the
region of weak attraction as a supervisor for the plant, at least one of these models
can be removed from the set of possibly correct models by controlling the plant to
enter a state that is a component of one of the product states in the set of controllably
distinguishing states. Then, after at least one of these models has been eliminated as
a possibly correct model, reset the plant and start the procedure over with another
pair of models. Note that it is possible that neither of the models that are chosen
is the correct model for the system; hence, the plant might generate a string that is
not defined in either of the models used to generate the supervisor. In this case, both
models are removed and the procedure continues by choosing another two models.
This procedure continues until all uncertainties have been resolved or until no pair of
models can be found that satisfy the conditions of Corollary 4.12.
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We denote each possible model as Mi (Qi, A, 5i, qi,0, Qi,,), where 1,... ,k,
and k is the initial number of models from which the correct model is to be chosen.
We denote the initial set of all possible models by So. Using the notation given,

So {Mli 1,...,k},

where each model is in minimal canonical form [5], [9].
The following algorithm specifies the procedure given above. P denotes the actual

machine or the plant which is to be correctly modeled.

ALGORITHM 4.1.

Input:
So as given above.

Output:
Sn {MI no additional uncertainties can be resolved}.

Algorithm:
p=0.
While (ISpl > 1) A (Mi e Sp A Mj e Sp disting(Mi, My)):

Calculate MIIM (Gi,j).
Use M(Gi,j) as supervisor for P.
Determine which model is still a possibly correct model and which
model is not consistent with the plant.
Sp+l Sp\ { models which have been determined to be inconsistent
with plant }.
Reset the plant.
p=p+l.

End while.
End of algorithm.

In the worst case, the product for every pair of models would need to be calculated
to check for pairs that satisfy z0 E tM,, (G,j). Since there are k models in S, this

calculation of products results in an algorithm with O(k21QI 2) complexity.
A slight modification of the proposed algorithm is to simulate, on all models in

the strings that result from using M(Gi,j) as a supervisor for the plant. Using this
technique, any model that cannot successfully simulate the activity of the plant can
be eliminated from consideration and need not be considered in any future pairing.

This modified approach also has worst case complexity of O(k21QI 2) since there
is no guarantee that more than one model will be eliminated on each iteration. Also
the actual complexity to accomplish the simulation results in an additional O(klQI 2)
term in the operation count. These counts are a result of the following reasoning.
Each calculation of M,, (G) adds a IQ21 term to the count. There are at most k2

pairs that must be calculated, hence, the O(k2]Q2]) term in the count. To simulate
any test string on all remaining potential models, O(klQl) operations are necessary;
hence, this term is added to the count retaining an overall complexity of

To demonstrate the correctness of the algorithm, several points must be addressed:
insuring that only bad models are removed from S, that the order of choosing models
for the test disting(M, Mj) does not affect the output, and that there is no other
technique which might produce a smaller set of potential models.

4.2.1. Only bad models removed. The first point is easily addressed. A
model is removed if it is inconsistent with the plant. An inconsistency arises from
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either the plant executing a transition that is not in the model, such as an uncontrolled
transition, or the plant not executing a transition that is defined in the model, such
as from a state at which a single controlled or uncontrolled transition is defined in
the model but is not executed by the plant. Hence, only "bad" models are removed
from the set used to keep potentially correct models. Note that a consistent model
will not be removed from this set.

4.2.2. Order does not affect the result. The second point is more subtle.
A priori it appears that the order of testing models might be significant. That is,
there might be some incorrect model A that, when combined with another incorrect
model B, generates a test string that provides that model B is removed, but that
when model B is combined with the correct model a test string cannot be generated.

That the order does not matter follows from the following proposition. Proposi-
tion 4.13 states that if a pair of models, M and My, satisfy zo E ftMllM (G,j) and
if Mi is removed from the set of possibly correct models, then the correct model M
and Mi satisfy zo MllM((Ti,c). Hence, if model Mj can be used to remove kli,
then model M can be used instead.

In the statements of the following propositions, the language generated by model
Mi, which is usually denoted by L(Mi), is denoted by Li. In the proof of Proposi-
tion 4.13, a language L is used to link the fact that the initial state is in the region
of attraction of each of the product machines. The conditions on L are very similar
to the conditions for a distinguishing language for Mi and My; however, the fact that
neither li nor My might be the correct model requires that slightly different char-
acteristics describe how My can be used with Mi to generate a supervisor that will
cause Mi to be removed from the set of possibly correct models. In the following,
denotes the correct model, zo,i,j is the initial state of k/Ii lIMj. zo,i, is the initial state
of MIIM. G,j is the set of controllably distinguishing states for MIIMj. G, is the
set of controllably distinguishing states for _li

PROPOSITION 4.13. If Zo,i,j MIIMj(Gi,j) and Mi is removed from the set of
possible machines, then zo,i,

Proof. Consider the language L marked by the supervisor generated by
and used to remove Mi. By the assumptions in the proposition statement, this lan-
guage generates tests that are used to remove Mi from the set of potentially correct
models.

We first describe some characteristics that this language satisfies.
LEMMA 4.14.
(a) L controllable with respect to Li Lj L,
(b) L C_ (Li/L) (Lj L),
(c) ppr(L) c_ L Lj L, and
(d) L is finite and nonempty.
Proof. The controllability of L with respect to LiCLj follows from the construction

of ftMllM (G,j) and the fact that fM(G) is realizable. That L is controllable with
respect to LiCLjCLc, follows from the fact that all prefixes of the closed-loop behavior
are necessarily constrained to Lc.

The strings that occur in the distinguishing language generated by ftMllM (Gg,j)
consist of the following types:

(1) strings that occur in the plant, Mi, and Mj, i.e., Li N Lj L,
(2) strings that occur in the plant and Mj but not in M, i.e., L Lj C L,
(3) strings that occur in M and Mj but not in the plant, i.e., L C L C Lj, and
(4) strings that occur in the plant but not in Mi and Mj, i.e., L Cl (Li Lj).
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For this supervisor to cause Mi to be removed from the set of possibly correct
machines, the strings that occur in all three must be in the prefix of strings that will
cause Mi to be removed. Hence, ppr(L) c_ L C? Lj C Lc.

For this supervisor to cause Mi to be removed from the set of possibly correct
machines in a controllable fashion, we claim that only the strings in (2), (3), and (4)
above can occur as strings in the language. (See shaded areas in Fig. 3.) No other
string can occur and still allow Mi to be removed from the set of possibly correct
machines. Any other string would not allow M to be removed.

L

L

FIG. 3. Parts of languages that allow removal of M.

From this observation we have that

L C_ (Lc A Lj C L) U (L Lj C Li) U (L. (Lj L)c)
L C_ ((Lj L)fl L) ((Lj C L) Lc) (L (Lj

which gives Lemma 4.14(b).
The finiteness of L is a result of the fact that [MilIMj(Gi,j) is acyclic. That L is

nonempty is a result of the fact that M is removed, i.e. at least one event must be
used to determine that Mi is not correct. Cl

We now use this language to demonstrate that zo,,c E MilIMc (Gi,c). We demon-
strate this fact by verifying that L satisfies the requirements of Proposition 4.7 for
Mc and Mi.

1. L finite and nonempty:

L is finite and non-empty by hypothesis.

2. L controllable with respect to L CLi" From the definition of L, we have that
(t L) =v t L ppr(L).

(tat Lc C L)

t (Li L)
== { (b) and (c)}

t ppr(L)
= { (a) and (c) }

L controllable w.r.t. Li L.
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3. L C_ Lc/kLi"

L c (LALc)rh (Lj U L)

L c ((Lj L) C L) U (L (Lj U L)) LJ ((Lj C L) L)

L C_ (L ;h Lc) LJ (L C L) U (Li r3 LC)

L C_ (L Ch L) U (Li Ch L)

L C_ L/kLi.

4. ppr(L) c_ L N Li"

ppr(L) c_ L Lj Lc

ppr(L) c L C Li

Since L satisfies the requirements for Proposition 4.7 with respect to Mi and
we immediately have that zo,, E MillM(Gi,c). [

Proposition 4.13 provides that the order does not matter when choosing which
pair of models to use to generate the next test. When combined with the first point,
that only "bad" models are removed, we have that it is sufficient to test bad models
with the correct model, which will never be removed from the set of potentially correct
models.

4.2.3. Optimal complexity of Algorithm 4.1. Now we address the question
of whether some other procedure might be used to generate a smaller set of potentially
correct models.

PROPOSITION 4.15. Algorithm .1 provides a minimal set of potentially correct
models. (Minimal in the sense that there does not exist another technique to control-
lably remove more models than are removed by Algorithm 4.1 from the set of potentially
correct models in a finite number of transitions.)

Proof. Let S be the set of potentially correct models output by Algorithm 4.1.
If ISI- 1, then we are done, i.e., S- {M}.
If ISI > 1, then we know that since the test disting(M, My) is not satisfied for

any pair of models in S and consequently

Vi, j M,Mj S" zo,,j

_
In particular, we know that

(1)

Assume that there is some other technique that controllably removes Mi M
from S. To remove Mi, a test must cause Mi to reach a state at that an inconsistency
with the plant arises. This state in Mi is a component to a state in Gi,c, otherwise by
controllability constraints Mi cannot be removed by this test. By (1), we know that we
can construct a behavior for Mi that never enters G. Hence, we have a contradiction
and there cannot be any technique that can controllably generate a smaller set of
potentially correct models. [
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4.2.4. Resolving uncertainty without reset. To resolve uncertainty without
a reset capability, a slight modification must be made to the algorithms given pre-
viously. The modification consists of updating the models still under consideration
to reflect any actions that the actual plant has taken. This update is manifested by
modifying the model descriptions so that the initial state has a dependence on events
that have already occurred.

Hence, the old model M {Q, A, 5, q0, Q,} is modified to incorporate the string
s, which the plant has executed to this point and denoted by M(s) {Q,A, 5, qs(s),
Q}. Note that only the initial state needs to have this dependence. The other
components of the model do not need to be modified.

Note that for this modification, all models must be updated to determine if the
new initial state after a test string has been executed is in the region of attraction
for the set of distinguishing states. However, the actual region of attraction does not
need to be recalculated because the states that can be attracted to the distinguishing
states do not change with each test string; only the initial state changes.

The need to simulate the test strings does not increase the complexity of the
algorithm. In the worst case, this algorithm could require that O(k2) regions of weak
attraction be calculated to find enough test strings. Hence, this algorithm also has
O(k21QI) complexity.

5. Examples.

5.1. Optimality for single transition uncertainty. This example demon-
strates that resolving a single uncertainty has complexity at least as great as that of
creating the product machine for the two potentially correct models. This complexity
arises from the fact that the product machine is used to generate the set of control-
lably distinguishing states and hence the minimally distinguishing language. For this
example, z is the event for the uncertain arcs and Au {a, c, d}. Figure 4 illustrates
the two possible transition functions for the machine.

c d

b b b

FIG. 4. Set of models for which product method is optimal.

Following the procedure specified in Proposition 4.7, we create the product ma-

chine (Fig. 5) and calculate the states G that can be used to distinguish qll and q21

and the region of weak attraction for G.
From the graph representation of the transition function for the product machine,

we can determine that

G {qlm,2n, q0,11 q0,1rn, q0,21,..., q0,2n, }-
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d d d

a

FIG. 5. Product machine for system for which product method is optimal.

From Fig. 5, we observe that the only state in the current G that can have q0,0 in
the region of weak attraction is qlm,2n; hence, we will limit our calculations for a new
set G {ql,c,2n}. Some of the iterations of the algorithm to calculate the region of
weak attraction are given:

Vo--- {qlm,2n}
Vl Vo I..J {qlm,2(n--1)}

gn Vn-1 [-J {q1(rn-1),21}

Ym,n Yrn,n-1 [..J {qo,o}.

Hence, by Proposition 4.7, since z0 E ftM,. (G), the two states q11, q21 are controllably
distinguishable, and the uncertain arc can be resolved. Observe that ql,,2n E G
and that there is a string z(cnadna)m that can occur uncontrollably before reaching
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qlm,2n; hence, to resolve the uncertainty, every state that can be reached in the
product machine from the initial state might be visited. This fact demonstrates that
resolving this uncertain transition requires O(mn) operations.

To resolve the uncertainty, construct a supervisor with finite state machine repre-
sentation as shown in Fig. 5 and run the unknown plant and supervisor as a closed-loop
system. (See [13] for more detail on this procedure.) A distinguishing language for
this example is L z(cnadna)’a.

5.2. Finiteness of languages in Proposition 4.7. This example demonstrates
the requirement for finiteness in Proposition 4.7.

Let L1 (av)* and L. (a(u + v))* be the languages for two possible models
where a E A and u,v E Au. See Fig. 6 for the machine representation for these
languages.

V V

M 2
V

Mlll M 2

FIG. 6. System to demonstrate requirement for finiteness.

For this example, if L (av)*au, then L is controllable with respect to L1 N L2,
L C_ L1/kL2, and ppr(L) C_ L1 L2 as required for a language that can be used to
distinguish L1 and L2 as described in Proposition 4.7; however, the initial state of
the product machine is not in the region of weak attraction of the set of controllable
distinguishing states, which is empty in this example.

6. Conclusions. In this paper we have presented a model of uncertainty related
to the transitions of systems modeled with finite state machines. We developed a test
for determining whether or not such uncertainty can be controllably resolved. The
test using a region of weak attraction calculation also provides an algorithm for con-

structing a supervisor which can resolve the uncertainties. An example demonstrating
the opiimality of the deterministic approach for a single uncertainty is provided. Also,
an example is given which demonstrates how the controllability and finiteness require-
ments are both necessary for Proposition 4.7. This approach to choosing the correct
model can be applied in any situation that has a set of models from which the correct
one should be chosen.
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Several possibilities exist for extensions to this work. One possibility is to expand
the model used to describe a discrete event system to one that can describe a broader
category of systems, such as a Petri net [8] or algebraic [10] models. Another direction
of current interest is the influence that different uncertainty models have on the control
and stabilization of systems modeled with discrete event system formalisms. This
influence incorporates the effect that limiting the behavior of a system to a desired
constraint language would have on correctly controlling the system and resolving any
uncertainty in the model. A further extension is to consider how the addition of
unobserved events affects the problem described in this work.

Acknowledgments. The authors thank Ratnesh Kumar, Steve Marcus, Alex
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this paper.
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ANALYSIS OF COSTATE DISCRETIZATIONS IN PARAMETER
ESTIMATION FOR LINEAR EVOLUTION EQUATIONS*

c. R. VOGELt AND J. G. WADES

Abstract. A widely used approach to parameter identification is the output least-squares formu-
lation. Numerical methods for solving the resulting minimization problem almost invariably require
the computation of the gradient of the output least-squares functional. When the identification prob-
lem involves time-dependent distributed parameter systems (or approximations thereof), numerical
evaluation of the gradient can be extremely time consuming. The costate method can greatly reduce
the cost of computing these gradients. However, questions have been raised concerning the accuracy
and convergence of costate approximations, even when the numerical methods being used are knovn
to converge rapidly on the forward problem.

In this paper it is shown that the use of time-marching schemes that yield high-order accuracy on
the forward problem does not necessarily lead to high-order accurate costate approximations. In fact,
in some cases these approximations do not converge at all. However, under certain circumstances,
rapidly converging gradient approximations do result because of rapid weak-star-type convergence
of the costate approximations. These issues are treated both theoretically and numerically.

Key words, parameter estimation, evolution equations, costate method

AMS subject classifications. 35R30, 49D07

1. Introduction. In this paper we analyze temporal discretizations of the costate
method for computing gradients in the output least-squares approach to parameter
estimation. This analysis applies to initial value problems of the form

(1.1) /t(t) A(q)u(t) + f(t), 0 < t < tF,

(o) o.
Here A(q) is a bounded linear operator on a Hilbert space H, and the inner product
on H is denoted (., ")H. The dot over u indicates differentiation with respect to t. We
will refer to u as the state variable and to (1.1) as the state equation. We assume q lies
in set QAD of admissible parameters contained in a normed linear "parameter" space
Q. Throughout the paper we assume that the map q -, A(q) is Gateaux differentiable
in the operator norm.

In applications of interest, (1.1)is a finite-dimensional (i.e., dim(H) < x)ap-
proximation of a time-dependent partial differential equation (PDE). An important
example is the diffusion equation

(1 2)
Ou

(t,x) V. (q(x)Vu(t,x)) + f(t,x) x e t, 0 < t < tF,
Ot

u(t,x) --O,x E Ot, 0 < t <
u(t, x) o, x .
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In these situations, dim(H) can be arbitrarily large.
In general we assume that the solution u lies in the "state space"

7{ L2(0, tF; H),

which is a Hilbert space with inner product

(1.3) ({ f, g }} (f(t),g(t)}tidt.

As in Banks and Kunish [3], we assume the existence of an "observation space" Z,
which is a Hilbert space with inner product (< .,. }}z, and an "observation operator"

Given an observation z of u, we wish to estimate the parameter q. In the output
least-squares approach to parameter estimation, q E QAD is selected to minimize the
functional

Zc (q) def 1
 llC (q)- z[l +

where u(q) is the solution to (1.1). Here the scalar c is a positive regularization
parameter and N’2(q) is a regularization functional whose purpose is to stabilize the
minimization. Usually, N’(q) is a norm or seminorm on Q.

Computational methods to minimize T (q) typically require gradients or gradient
approximations. For example, assuming a discretization of the parameter of the form

,q

0i)i,
i=1

we often (see, for example, [3, V.6]) approximate the components of the gradient
using finite differences, e.g.,

(.) [vr(q)]
T(q + -pi) T(q)

for - a small scalar. Note that in the limit as - 0, the ith component of VT (q) is
the directional (i.e., Gateaux) derivative of T(q) in the direction Pi. When dim(H)
and nq are large, gradient approximations based directly on (1.5) are extremely ex-

pensive, requiring nq + 1 evaluations of the functional T, and hence, rtq - 1 solutions
of the evolution equation (1.1).

An attractive alternative is the costate approach [3, V.5], [7], which is described
in its continuous form in 2. In sharp contrast to the (n + 1) state equation solutions
needed for the finite difference method (1.5), the costate method requires the solution
of only two evolution equations, the state equation and the "costate" or "adjoint"
equation, followed by nq -inner products.

Unfortunately, computational experience with adjoint approximations in param-
eter estimation for certain evolution equations has been puzzlingly disappointing.
For example, the authors of [4] concluded that this approach was unsatisfactory be-
cause "... it was extremely difficult to obtain accurate search directions with gradients
computed in this manner." Also, in [2] the authors suggest the costate method for a

certain class of damped elastic systems and explain how it may facilitate the efficient
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use of gradient-based methods such as conjugate gradients or BFGS. They also report
having used it in some of their numerical experiments. However, in none of the spe-
cific examples upon which they report did they use this method. Subsequent private
communication with two of the authors revealed that they encountered unexpected
difficulty with the costate approach. Later commenting on this, in [1] Banks states
that "... we experienced so much difficulty with the costate based gradient methods
that we abandoned them

Similar difficulties have been encountered in optimal control settings. In [5], which
dealt with computational methods for control systems governed by delay differential
equations, the authors observed that certain spline approximations to the solution of
operator Ricatti equations failed to converge strongly. In a subsequent work [6] it was
carefully shown that the underlying difficulty was lack of strong convergence of the
adjoint approximations.

In this paper we focus on the temporal discretizations of the costate system in
least-squares parameter estimation. Since the costate method of computing VT(q)
requires the solution of two evolution equations plus nq inner products, two impor-
tant components of any numerical scheme for approximating the gradient are (a) the
scheme for approximating the solution of the evolution equations (which we assume is
a time-marching scheme), and (b) tile numerical quadrature scheme. If both of these
are, say, th-order accurate, then one would reasonably hope to attain th-order
convergence of the gradient approximations. However, if the observation operator
C involves pointwise evaluation in time, then certain subtleties arise and we may
observe unexpectedly poor convergence of tile gradient approximations. Perhaps the
most striking examples we present involve the fourth-order Runge-Kutta (RK4) time-
marching scheme. We show that if RK4 is used in conjunction with Simpon’s rule
(which is fourth order) for numerical quadrature, then the gradient approximations
fail altogether to converge. We show that in fact these RK4/Simpson’s approxima-
tions converge with second-order accuracy to the (3/2) times the true gradient! More
positively but perhaps equally surprisingly, we prove that RK4 together with the
second-order accurate "trapezoidal" quadrature rule yields fourth-order convergence!

The underlying reason for these strange phenomena is that when 2 involves point-
wise evaluation in time, the costate equation is an evolution equation with Dirac-delta
functions in the forcing term. For this reason, the costate approximate solutions do
not converge strongly. However, in some cases they do exhibit high-order convergence
in the weak* topology of the dual space of C".

These considerations are similar in spirit to the work reported in [6]. In tile in-
troduction of that paper, the authors state "We feel that many distributed paraIneter
control systems are such that ’standard’ ...schemes might lead to numerical diffi-
culties" when used in optimization schemes, and "we hope that the reader will be
motivated to think about similar problems for more complex distributed parameter
systems." While that paper addresses the optimal control problem, it is nonethe-
less relevant to us to the extent that output least-squares parameter estimation is

mathematically similar to optimal control.
Banks [1] has suggested that nonconvergence of costate approximations can also

occur in parameter estimation because of a lack of convergence of the spatial dis-
cretization. For example, in systems such as (1.2), we must discretize with respect to
each component of z as well as with respect to t. Then a result needed for the costate
approximations is essentially weak* convergence to the dual semigroups. These con-

siderations suggest directions for future work, but we do not pursue them here.
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In 2 we discuss the costate method for the continuous problem, apart from any
temporal approximations. In 3 we introduce a fairly wide class of time-marching
schemes for (1.1) and a corresponding costate approximation scheIne. We then an-

alyze these approximations in some detail, making certain assumptions about the
properties of the time-marching scheme, the observation operator, and the various
operator discretizations. Section 4 contains some numerical examples that illustrate
the results of the analysis. In 5, several alternative approaches that avoid the diffi-
culties mentioned above are presented. Our conclusions are discussed in 6.

2. The continuous costate approach. As stated in the introduction, typical
implementations of the output least-squares approach to parameter estimation require
gradients of the functional T(q) given in (1.4). Most of the effort in obtaining this
gradient lies in computing the gradient of the least-squares functional

(2.1)

where u u(t; q) solves the state equation

(2.2) A(q)u(t) + f (t), 0 < t <
O.

Since the gradient of T(q) can be obtained by computing directional derivatives,
we focus throughout on the computation of the directional derivative of T at q in the
direction p. This is given by

(2.3) 8pT(q) de__f lira
T(q / 7p) T(q)

"r--*0 T

The residual is defined by

(2.4) r=Cu-z,

and hence,

(2.5) pT(q) I( r, C@u }} z.

The solution u u(q) to (2.2) is given in terms of the "solution operator" ,S(q) by

(2.6) u(t) [$(q)f](t) dej eA(q)s f(t s)ds.

In terms of $(q), we have

5pU $(q) (@A(q)) u.

Thus

6pT(q) (( r, C$(q) 6pA(q) u }} z.

Taking adjoints of C and S(q), we obtain

5pT(q) (( y, 6pA(q) u )}n,
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where y is the solution to the "costate equation"

The operator S*(q) is given, for 9 E T/, by

[$*(q)9](t) e

The differential equation that y satisfies is

-A* (q)Sg(t s) ds.

-9(t) A* (q)y(t) + (C* r)(t),
v(t.) O.

0 < t < tF,

Since this equation has a final condition instead of an initial condition, it is useful to
note that it is equivalent to

(2.9) b A* (q)[/ + J(C* r),

y- J).

Here J is the "time reversal" operator on 7-/defined by

(2.10) (Jf)(t) f(tF t).

The costate approach to computing VT(q) then consists of the following four
steps.

The continuous costate method.
(i) Solve the state equation (2.2) for the state variable u u(q).
(ii) Compute the residual r -Cu(q)- z.

(iii) Solve the costate equation (2.9) for the costate variable y.
(iv) Compute the directional derivatives of T in directions p (cf. (1.5), where

p=i) by

(2.11) 5pT(q)

Note that this approach requires the solution of only two evolution equations, the
state equation (2.2) and costate equation (2.9), as opposed to the (nq + 1) evolution
equations of (1.5). Moreover, if A is linear in q (as is the case with the approximations
of (1.2), for example), then SpA(q)= A(p), so that the implementation of step (iv) is
straightforward. Finally, we note that to complete the computation of VT(q) it is
necessary to compute the gradient VA/’2(q) of the regularization functional, but this
is usually trivial.

3. Analysis of discrete approximations.

3.1. The discrete approximations. Usually in solving (2.2) numerically, we
use some sort of finite-difference or time-marching scheme (TMS). In this section, we
pose and analyze a rather natural algorithm for computing costate approximations
based on a given TMS and the continuous costate method described above.

For a given n, let

t k=0, to <t <... <tn-tF
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denote a specified mesh on [0, tF], and define hk def= tk+ln
discussions of asymptotic rates of convergence, we define

]hi
def

max h.
0<k<n-1

-t. For later use in the

is the approximation to the state variable u at t.Alsd, let u {u }=0, where u
which is obtained using a particular TMS with this mesh. If we denote {f(t)} by
f, then we may express this approximation by

un (q) +-- TMS(t, A(q), fn).

This approximation is then used in a minimization scheme for T(q) in the param-
eter estimation problem. Corresponding to the continuous least-squares functional in
(2.1), define

]I.Z,Tn(q) ]lCnun Z
2

Here z’,/g, and Cn are discretizations of z,/g, and (7, which are discussed in detail
below. If the minimization scheme requires directional derivatives (i.e., gradients),
then a seemingly natural approach ([3, V.5]), which we call the "discretized costate
approximation," based on an obvious discretization of the continuous costate method,
suggests itself.

The discretized costate approximation.
(i) Compute un(q) by

u(q) +-- TMS(t’, A(q),

(ii) Compute the residual rn Cnu(q)- z.
(iii) Compute yn by

n _ jn(tF tn),
n +__ TMS(Ttn, A,(q), jn(C,)r),

Here, Jn is the approximation of J (cf. (2.10)) given by

(3.3) [jn fn]k f-k
and (12") is an approximation to the adjoint of C :7-/-+ Z.

(iv) Approximate directional derivatives in directions p by

(3.4) @T(q) ,. 5pT’- de2 (( yn, (6pA(q)) un(q)

Here, {( .,. }}t is a discretization of the continuous inner product (1.3).

The convergence of 5pTn to (pTn depends on factors such as the convergence
of the time-marching scheme TMS on the forward problem, the convergence of ap-
proximations C to the observation operator C, and convergence of the discrete inner
products (( .,. ))t and (( .,. ))z to the continuous inner products (( .,. }/ and (( .,. })z,
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respectively. To carry out a convergence analysis, we first carefully state the discrete
version of the problem.

Define T/n by

For f c C([0, tF]; H), we define Pnf _n by

(3.5) [Pnf]k f (t’),

and for fn {f}=o and 9 {9}=0 in 7-/n, the inner product is

n

(3.6) (( in, gn ))7_t, deZ W(f, g)H,

k=0

where {w}=0 is a given sequence of weights. The purpose of these weights is to
facilitate the definition of (( .,. )), in such a way that it well approximates
Accordingly, we assume, essentially without loss of generality, that there exists an

M < independent of n, for which

n

n<M1(3.7) w
k=0

This forms the basis for the following lemma.
LEMMA 1. If a sequence {fu} n has the property that for some constant

>0,

then

max
0<k<n

We also denote by ((.,. }}En the inner product that, loosely speaking, uses the
standard Euclidean inner product for the time component. Specifically,

(3.8) ((fn,gn }}E, de__f (f’,g’}H.
k=0

This inner product will be used below in adjoint computations. The two inner prod-
ucts are related by

(3.9) (( f,, gn }}, ((.l/Vn fn, gn }}E,
--((fn,’}/ngn}}E,

where I/V is the diagonal operator on 7-/n defined by

[142nf]k wk f.
We assume that the time-marching scheme TMS is of the form

(3.10) n-$n(q)nn(q)Pnf
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where Sn(q) is defined by recursion, for g E _n, by

[(q)]0 0,

(3.11) [,-qn(q)g]k+l B(q)[Sn(q)g]k + hkgk

for some bounded operator Ba(q). Expressed in terms of components,

(3.12) +1 Ba(q)u + h[Tt(q)Pnf]k, k O, 1,..., n- 1.

See 4 for specific examples.
We make the following assumptions on the TMS.
(A1) The TMS is stable [10], i.e., there exists M2 > 0 such that for 0 < j <_ n,

J

II (q)ll

The terms in this product are ordered from left to right with decreasing indices.
(12) For some constant u > 0, B(q) ea(q)hk + CO(Ihl /1).
(11) With u as in (A2), for any f E C([0, tel; H) we have

lf0h eAsf(tk+ S)ds + O(Ih[ ")[Tn(q)Pnf]k

(A4) In the state equation (2.2), the forcing function f lies in C"([0, tel; H).
The following theorem is then readily established.
THEOREM 1. If (A1)-(A4) hold, then

]lun(q) Pnu(q)llT_t (.9(Ihl’).

def nProof. Defining e uk(q) u(t; q) u(q) [Pnu(q)]k and using (12)-(14),
(2.2), and (3.12) we obtain

(3.13) B(q) + O(Ihl/1)k+l

From this we can use (A1) and induction to show that

max IIIIH O(Ihl)
O<k<n

The theorem now follows from Lemma 1.

3.2. The rate of convergence of the gradients. We now address the conver-

gence of the (state) directional derivative approximations 5pT to 5pT. The results
obtained in this subsection will be used later in proving convergence of the discrete

costate approximations 5pT to 5pT.
We assume the existence of operators Q Z Zn, for which

(3.14) zn---Q, nz.

Also, note that Cn _n .__, z_.n. We make the following assumptions on the relation-
ships between Q,, Cn, and the inner product approximations.

(A5) For r/,

(A6) For v



ANALYSIS OF COSTATE DISCRETIZATIONS 235

We now consider the convergence of the directional derivatives. From (2.5) and
(3.1),

@T(q) 5pT(q) ((r,Cn@u(q) }}z-,- ((r,C@u(q) })z
=el + e2 + e3,

where

(3.16)
(3.17)
(3.18)

el ((rn Qnr, Cnp’U,n(q) I1,

If (A6) holds, the rate of convergence of el is directly determined by the rate of
convergence of solutions to the forward problem, while that of ea is assured under
(A5). The rate convergence of e2 is determined by how fast

Taking directional derivatives in the component form of the recursion (3.12),

(3.19) 6pt+ Bk(q)6pU + (SpBk(q))u + ht[SpT’(q)Pnf]k.

On the other hand,

hk
eAsfu(t+l) enhku(tr)+ (tk+ S)ds,

so taking directional derivatives gives

h

(3.20) p2t(t_t_l) eA(q)hkpt(tr) nt- ((peA(q)hu) t(t) -I- (p en(q)s f(tr+l 8)d8.

Comparing (3.19) and (3.20), one can show the desired convergence provided the
directional derivative operator 5p preserves convergence rates and smoothness in t.
More precisely, we assume

(A2’) @B(q) 6peA(q)h + O(Ihl+1).
(p f:k eA(q)sf(tk+l 8)d8 + O(h]’)(A3’) 6p[Tg(q)Pf]

(A4’) If v(-; q) C([0, tF]; H), then 5pV(.; q) C([0, tF]; U).
We then obtain the following analogue of Theorem 1.
THEOaEM 2. If assumptions (A1)-(A4) and (A2’)-(A4’) hold, then

]]pu(q)- PSpu(q)]] O(]h]).

Proof. For notational convenience, we suppress dependence on q. First we show
that each 1[SpullH is bounded independently of k or n. Applying (3.19) recursively,

k

ptk+ (IIj:OBj) (ptr + E (II/k=J+lui) gj’
j=0

where

gy 5pBjU + h [SpTPfly.
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From assumption (A1),

o<_j<_n-lmax Ilgj[[H)
But for each j, by assumptions (A2’)-(A3’) and Theorem 1,

IlgjllH IIpjlIIluIIH + hjll[SpTnPnf]jllH

<_ hj IIpAII sup Ilu(t)llH + p eAsz(tk+l s) dSllH + O(Ihl)
0<t<tF

The integral term in the above inequality is bounded independently of j as a conse-
quence of assumption (A4’).

Next, define ekn def. ptkn_ 5pU(t)= 5pU- [PnSpU]k. Subtracting (3.20) from
(3.19);

cn n (Bk eAhk n
+ B + ), +6B( (t)) + (5B 5,e")(t)

(3.21) +h p[TZn(q)P,f] -p eAf(t+ s) ds

n’s the result of Theorem 1, and the assumptions,From the boundedness of the 5pU
all the terms on the right-hand side of this equation are O(Ihlu+l), except the first
term. Thus this equation has the form (3.13), and the same argument used in the
proof of Theorem 1 applies. V1

From (3.15) we obtain the following result.
THEOREM 3. Under assumptions (A1)-(A6) and (12’)-(14’),

pTn(q) 6pT(q) I- O(]h[’).

Proof. Referring to (3.16), from Schwartz’s inequality and the definitions of r, rn,
and zn,

IlCnllllpnll (llClllln Pnlt + II(CnP

The first term within the above parentheses is (9([h[’) by Theorem 1, while the
second is O(Ih] ") by (16). The ]]SpUlltn are bounded by Theorem 2. Consequently,
jell-- O(Ihl).

Similarly, from (3.17), Theorem 2, and assumption (A6),

I.1 (llOCll, + IIz*llz) (llC’llll- P,ell, + ]I(CnP-
O(Ihl).

Finally, from (3.18) and (A5), 131- O(Ihl)

3.3. Continuous-time versus discrete-time observations. In the following
subsection we analyze the convergence of the costate approximations. In this subsec-
tion, we make some preliminary considerations toward that end, leading to a specifi-
cation of two distinct classes of observation operators C.
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For brevity of notation, we set

(3.22) de_f (pA)u E ,
Cn de__f (bpA)un 7_ln.

From (2.11) and (3.4)we obtain

(3.23) de__f E1 + E.
As a consequence of Theorem 1, the boundedness of 6pA, and the fact that operators
6pA and Pn commute, we have

If the sequence {lly ll  ] is bounded, then Schwartz’s inequality and (3.24) imply
that IE O(hl’). But {]lyll} is bounded if levi 0. Hence, the rate of
convergence of the costate approximations to the directional derivatives depends on
the rate at which E 0.

From (2.9) we see that

(3.25) y JS(,)JC*r,
where the operator S(,) has a representation

(S(,9)(t) ea(q*9(t s)ds.

Similarly, from (3.2)

yn__ in_on qpn jn(c,)nrn(,)’-(,)

Here, S,) and T,) are the operators that are obtained if A is replaced by A*(q) in

the formation of Sn and n; cf. (3.10), (3.11). The operator (C*) Z n is an

approximation to the adjoint of C Z. For now we select (C*) (C) *, the
adjoint of the operator C Z. A different choice might be made on the basis
of the discussion in 5.

Since the costate vector y is given in terms of an evolution equation with C*r as
the source term (and a similar statement is true for the approximations), we find it

convenient to specify C further. This facilitates analysis of the convergence of lE2. It
commonly happens in applications that C inherits a type of tensor-product structure
from the state space L2(0, t; H). In particular, we assume the existence of a

bounded "spatial observation operator"

(3.27) C: H Z,

where Z is a Hilbert space related to as described below. We distinguish two cases
that are of practical importance.

3.3.1. Observations continuous in time. In this first case, the observation
operator C is "continuous in time." It is defined in terms of a space Z and a bounded
operator C H Z that acts at each t by

t)e z, O<_t <_tF.
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In this case,

z-c((o,t,);z), z’
k=0

and Cn 7-/n -+ Zn is defined by

(3.28) [,nfn]k f[ k O, 1 n

In addition, we define Qn and the inner product approximation in a manner analogous
to (3.5) and (3.6)"

[Q,] (t), k O, 1,...,n,

k=0

Note that in this case, the validity of assumption (A5) is determined by the
quadrature weights w, which also determine the accuracy by which {(-,. ))n approx-
imates (( .,. }). Assumption (A6) is trivially satisfied in this case since CnPn QC.

From (3.28) and the definition of the adjoint,

[c*](t) c*(t),
[(c")*<] c*,

O _t _tF,
O<k<n.

The residuals r and r appearing here are given by

(t) c(t) z(t),
c (t).

3.3.2. Observations discrete in time. In the second case we assume that
the observation operator C consists of some spatial observations taken at m discrete
points Ti, 1,..., m in time. Accordingly, we assume a discrete observation space
Z of the form

m

For simplicity we assume that, given the set of temporal observation points {-i }, the
time-marching grid t is always chosen so that {Ti} C tn, so that there is always an

injective map

t {1, 2,...,m} {0, 1,2,...,n}

such that for f E C((0, tF]; H) C and f E -1n,
def

(3.29) [Cf] Cf(tn()),
def(3.30) [cnfn]i Cf,n(i).
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In this case, since the observation space is already discrete, we define

(3.31)

and

,n Z, {n I the identity on Z,

i=1

In this case, assumption (Ab) is always true since Zn Z. Also, (A6) is always
true since, as in the continuous-time observation case, CnPn Q,C. (This is true
since we have assumed that {-} c tn.)

From (3.29) and the definition of the adjoint, we find that C* N T/is given,
for r- {ri}=l E Z, by

m

(3.32) [C*r] (t)
i=1

where 5(.) denotes the Dirac delta function. The discrete analogue of is

[(c*)nr]k --[(C)*r]k E --1 C*r5(),k, 0 < k < n,
Wk

i=1

where 5,k denotes the Kronecker delta function for integer pairs.

3.4. The rate of convergence of the costate approximations. As discussed
in 3.3, immediately following (3.23), it suffices to consider the convergence of the term

IE21 to zero. We address the simple case, that of continuous-time observations, first.
In this case, th-order convergence of E2 results if the observed data z is smooth
enough.

THEOREM 4. If (A1)-(A6) and (A2’)-(A4’) hold and if the data z lies in
c ([0, z),

(3.33) Ilyn Pny[ln O([h[").

Proof. From (3.25)and (3.25),

Ily PnyllT_t

_
IlJnlll]q(n,)T2(n,)llllJn(cn)*rn PnJC*rlltn

(3.34) +ll(Jn$(,)n(,)Pn PJS(,))JC*rllu.
Note that J, C, and C* each preserve smoothness with respect to t. From the smooth-
ness of z and the smoothness of u (which follows from (An)), JC*r C’+I([0, tF]; H).
Applying Theorem 1 with JC*r in place of the forcing function f and A* in place of
A, and noting that

(3.35) PnJ Jnpn,

(3.36) ]lgnl 1,

the last term in (3.34) is O(lhl). Also, by (A1) and (A3), l[S()n()ll is bounded

independently of n. From (3.35) and (3.36), it suffices to show

II(C) *r PC*rl]t
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However, [(Cn)*rn] -[P,C*r]k C*C(u- u(t’)), so this follows from Theorem 1
and the boundedness of C and C*.

With the result of this theorem and an assumption that the quadrature weights
are chosen correctly (cf. (3.6)), we obtain costate convergence.

COROLLARY 1. If the hypotheses of Theorem 4 hold and if

(3.37) I(( PAY1, PAY2 }}7-t (( gl, 002

for any gl and g2 in C’([0, tf]; H), then

I,SvT ,5,TI- O(Ih ").

Pro@ Theorem 4 implies that the sequence {llllr } is bounded. From the dis-
cussion immediately following (3.23), it suffices to show that E2 O(Ihl). However,

+1<< P,P>> << , >>1.

The first term is O(Ihl -) by Theorem 4. Since y and are sufficiently smooth, the
second term is C0(Ihl) by (3.dr). n

We next address the case of discrete-time observations. In this case, C*r is given
by a linear combination of Dirac delta functions, i.e., (3.32). Since this is the forcing
term in the costate equation, the question of how fast (if at all) 5pT (pT is rather
delicate. In particular, the smoothness of C*r played a crucial role in the proof of
Theorem 4. However, in the present case, C*r is not smooth at all; it only exists as
a distribution. Thus the proof of Theorem 4 (and hence, Corollary 1) is not valid in
this case.

On the other hand, the convergence in (3.33) is stronger than what is actually
needed. It is essentially a statement of strong, or pointwise, convergence in . From
(3.2a), we see that a sort of weak* convergence would be sufficient. Rewriting E2 as

(3.38)

and noting that E Cu+l([0, tF] H), we need only establish th-order weak* conver-
gence of Py to y in the dual space of C’+1([0, tF]; H).

There are seemingly natural situations in which this weak* convergence does not
apply, and a number of subtleties arise in our exploration of these matters. These will
be discussed shortly. There is, however, one class of problems that we fully analyze
here. It covers a variety of second-order methods with uniform meshes tn.

THEOREM 5. Assume that
(a) Assumptions (A1)-(A4)hold;
(b) In (A2)-(A4) we have .- 2;
(c) The observation points ri all lie in the interior of (0, tF).
(d) The partition tn is uniform, in the sense that hk h d_f tF/n for 1 < k < n;
(e) The quadrature weights wk in equation (3.6) are given by wo hi2 wn and

wk h for 1 < k < n- 1 (note that these weights correspond to the "trapezoid rule"

for numerical quadrature);
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(f) The operators Bk in terms of which n is defined (cf. (3.11)) are the same

for all k; there is an operator B for which

(3.39) B B, 0 _< k _< n- 1;

(g) The operator T may be written, for g E Tln, as

(3.40) [ng]k Rog + Rlg+l, 0 <_ k <_ n- 1,

(3.41) [TCng] Rogn.

(Note from (3.11) that the last component, Innfin, plays no role in the TMS. Our
purpose in defining it this way here will become clear below.)

(h) The operators B, Ro, and R1 are all rational functions of d(q).
Then

15 T 5 TI

Proof. As in Corollary 1, it suffices to show IEg.I- O(h2). This leads us to the
study of (( yn,p }}nn" From (3.26), we see that

(3.42) n jn(c,)nrn Pn))’H

We take adjoints in the inner product on the right-hand side of this equation, and the
main effort in this proof lies in the subsequent simplification. In particular, our goal
is to show that

(3.43) (( jnsn(,),]-(,)n jn(c,)nrn, Pnd/) }}7-/ (( rn, cnsn’,npn( }}z.

We now proceed with the details. First note from (3.9) that

(( yn, Pn 117-I (( ]nyn, Pnq }}E

However, since [P4)]0 (0) 0 and [yn]n 0, from Theorem 5(e) we obtain

(3.44) (( yn, Pnb 117-t h (( yn, Pnb lie

Referring to (3.42) and (3.44) and noting that jn jn equals the identity, we obtain

(3.45)

h(( (cn)*rn (jn jn n jT(,) J S(,) Pn )}E

h(( (n)*rn, (gn(T(n,))Tgn)(jn((n,))Tjn)
where .T denotes the adjoint with respect to the En-inner product defined in (3.9).
We have used here the fact that jn is self-adjoint with respect to (/"," lien.

Next we assert that

(3.46) j($(,))Tj Sn,
n )Tjn__,i-,n.(3.47) J(n(,)
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From (3.11), (3.39), and (3.40), the operators Sn and ?.n have the following block
Toeplitz matrix representations:

0
I
B

B9.

(3.48) Sn h Ba

0 0 0 0 0 O
0 0 0 0 0 0
I 0 0 0 0 0

B I ". 0 0 0 0

B2 B "’. 0 0 0 0

Bn-3 Bn-4 "’. B I 0 0
Bn-2 Bn-3 B2 B I 0

and

(3.49) ,n

/ Ro R1 0 0 0 0

0 R0 R. ". 0 0 0

0 0 0 "" t:0 RI 0

0 0 0 ". 0 Ro R1
\ 0 0 0 0 0 0 Ro

The blocks are operators on H. The operators $ff,)and T,)have an identical block
Toeplitz form, except B, R0, and/il are replaced by their H-adjoints. From consid-
eration of these block matrix representations, the action of jn, and the En-adjoint,
we can verify that (3.46) and (3.47) hold. Thus (3.45) simplifies to

(3.50) (< , Pn >>n h<< (C)*r nSnpn >>E
Thus the question arises as to how much Sn and ’S differ. Since B, R0,

and R are rational functions of A(q), they commute with each other. This and
computations based directly on (3.11) and (3.40) reveal that, for arbitrary g ,

k-1

[nng]k --(0 + BR1)( Bk-l-jgj ) + RoBk-lgo + lgkh
j=l

for 0 k n,
k-1

h
j=l

forOkn-1,
--1

--l [nng]n RO (E Bn-l-JgJ ) + RBn-lg"h
j=l

These results may also be obtained directly from the matrix representations (3.48)
and (3.49). Thus the commutator d Sn nsn is given by

--Bkgo for 0 k n- 1,

j= -Jgy for k=n.
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Equation (3.51) holds for any g E 7-/n. In the case of present interest, namely
(3.50), the role of g is played by Pn, and [P]0 0. Thus from (3.50) and (3.51),
we have

n--1

-h2( [(Cn)*rn]n’ I1 E ][n-J)(tJ)
j=l

However, the observation points Ti are all less than tF and yet occur at mesh points--
see the discussion leading up to (3.30). Thus [(C’)*r’] 0, and the last term in this
equation drops out. Also, since [snTnpn]O 0 and [(cn)*r] 0, we obtain from
Theorem 5(e)

<< (on) *rn, sn[npn
((rn, cngnTnpn

Combining this with (3.42) yields (3.43).
Now, r rllz O(Ihl e) by Theorem 1. By reasoning similar to that in the

proof of Theorem 1, since is smooth, we also have IIsnTinpn-PnSIlnn O(Ih12).
Consequently, the right-hand side of (3.43) may be replaced by {{r, CnP,S)}z to
within second order. Using this, the definition of E2 in (3.23), and the fact that
{( Y, )} (I r, C8 }}n, we find that

Now the result follows from assumption (A6). a
A result similar to Theorem 5 can be obtained for certain fourth-order methods

(including Runge-Kutta) on a uniform mesh, provided that the forcing function f is
zero at t 0 and provided that appropriate quadrature weights are chosen. Surpris-
ingly, these weights correspond to second-order quadrature rather than fourth-order
quadrature.

THEOREM 6. Assume that the forcing term f satisfies f (O) -O, and that

(a) Same as Theorem 5(a).
(b) In (A2)-(A4) we have - 4;
(c) Same as Theorem 5(c).
(d) Same as Theorem 5(d).
(e) Same as Theorem 5(e).
(f) Same as Theorem 5(f).
(g) The operator may be written, for g 7-I and 1 <_ k <_ n 2, as

[7g]k R-lgk-1 + Rogk + Rgk+ + R2gk+2

with R-1 I2 + O(h).
(h) S(h).
Then,

lSpTn 5pT O(h4).
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Proof. For given g E yn, [7ng] is defined for all k > 0 but [7ng]0 is unspecified.
Define gn by

(3.4)

Rogo + Rig1 + R2g2 for k 0,
[7g] for 1 _< k _< n 2,[7g] R-lgn-2 + Rog-I + Rlg for k n- 1,

R-lg,-i + Rog, for k- n.

Note that T -J= 7n (because (A3) is satisfied by Tn and not necessarily by Ten), but
that (7n- TCn)(gn)*r 0 in n by (c). Therefore we may replace R. by T in

(3.26). Since the block matrix representation of 7 is Toeplitz, by following reasoning
similar to that leading to (3.50) in the proof of Theorem 5 we obtain

As in the proof of Theorem 5, we now consider the extent to which T and Sn
fail to commute. Our goal here is to show that nPn C9(h4), where

n dej --nsn snnn"

Then we may invoke reasoning similar to that in and following (3.52). With

we have

(3.56)

From (3.11), (3.54), and the fact that 05(0) 0, we find after lengthy but straight-
forward computations that for 0 <_ k <_ n- 2

(3.57) [gP] (t?).

Also, from the definitions of Sn, ,]-n and and from (A3), we find that for 1 <_ k <_ n,

hjk-:t (/:l(t)q-/2(t)

h
eAsdp(t 8)ds) zv O(h4).

Substituting these into (3.56) yields, for 0 < k < n- 2,

h
ea(t s)ds + O(h4)

The integral term in this equation is approximated to within fourth-order accuracy
if we replace (t) with its second-order Taylor polynomial rr(t) about t 0 (this follows
by arguments used to show fourth-order convergence of Simpson’s rule)"

eA*(t s)ds eAsr(t s)ds + O(h4).
h
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Now, re(t) can be evaluated at tp ih for -1,..., 2, so that we can use assumption
(A3) to make the substitution- gAs(tlZ 8)d8 /_lTl’(-h)-- -0T’(0) + l(h) + 2x(2h).

However, f(0) 0 by hypothesis, so that u’(0) 0 ’(0), which means that
(t) t2" (0)/2. Thus

1 h h2

h

Also, (t) and (t) can be replaced by (t), and (t), respectively, to within
third-order accuracy in (3.58). This yields

h3k-l(2

_
)"(0) + O(h4)

However, BR R-1 +O(h) by Theorem 6(g) and the fact that B I+O(h) (which
is true by (A2)). Thus we arrive at

h4 k-1,,(0) + O(h4),[gp] T
and so we have shown that for 1 k n- 2,

(3.69) [ap] [ann] + O(h).

Using this, (3.55), and reasoning similar to that in (3.53) we obtain

(( v, })u + (4).

It is also natural to ask what happens if we use a fourth-order TMS with a
fourth-order quadrature scheme, such as Simpson’s rule. We show that the gradi-
ent approximations thus computed fail to converge, although their directions in the
space Q converge. In particular, the RK4/Simpson costate approximations converge
quadratically to (3/2) times the true gradient.

COROLLARY 2. Assume that all of the hypotheses of Theorem 6 hold except (e),
and assume further that

(e’) The quadrature weights are those arising from Simpson’s rule, so that

(3.60) n n def h
diag(1 4 2 2 4 1)imp

(i) The limit n is taken by repeated doubling of n. Precisely, there is an

integer no such that each n equals n02 for some positive integer 1.
Thg

leT (a/e)eTI O(h).

By arguments similar to those used to obtain (3.55), we find that

( yn, gn}} ( (On) rn, nnmpgn}}E
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where An is as in (3.54). Define

def
V 8 WimpPn,

de__f 8nWrapP0,

where )rap is the weight matrix corresponding to the trapezoidal rule:

n h diag(1/2, 1, 1,..., 1, 1/2).

We show that ][ v[[ V(h), which implies that

(3.61) (( yn, Pn >>, h<< (cn)*Tn, nSnpn )>E + O(h2).
We show by induction that ]] v[[nn O(h2). We note first that o v0. So

we assume that for some k 1 we have

_
vk_ + O(h2). We note from (3.11)

that for any k- 1,...,n- 1,

vk+ BV_l + h B(t_)w_ + (tk)w

Here, {w} are the Simpson weights--the diagonal entries of WSmp" Thus,

+

om the definition of Wmp, the smoothness of , and the fact that B I + O(h),
it follows that the second parenthesized term above is equal to h(2h(t) + O(h) ).
Also, by (A2) we have B + I 2B + O(h). Using these observations and the
definition of @rap and dividing by 2, we thus find that

By the induction hypothesis, vk_ -1 +O(h), so we may replace vk_ by 5-1 on
the right-hand side of this equation. The resulting expression is then, by definition,
the formula for . Thus we have

+ +
Since it is also true that

(k+l -- k-1 )/2
we obtain +1 v+l + O(h2) and hence also v + O(h2). Thus (3.61) holds.
We may then use the reasoning leading to (3.59) to obtain

(3.62) (( yn,p))t h(( (Cn)*rn, snnPn ))E + O(h2).

Next we turn our attention to (C)*rn
def

g. Referring to (3.3) we see that g
depends linearly on {1/w}. We show that if the Simpson weights are replaced by
the trapezoidal weights, then the result--call it --satisfies g (3/2). Indeed, this
follows easily from Corollary 2(i) by which we are guaranteed that (i) is even for
all 1,..., m, so that the Simpson weights wk satisfy w(i) (2/3)h for all
1,...,m. However, (2/3)h is simply (3/2) times the n(i)th trapezoidal
weight. Thus the right-hand side of (3.62) is equal, to within O(h), to (3/2) times the
right side of (3.55). Thus the result of Theorem 6 applies, and we obtain the desired
result. [2
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4. Numerical examples. To illustrate the results of the previous section we
focus on a spline-based Galerkin approximation (with fixed dimensionality) of the
diffusion equation (1.2) in one space dimension and tF 1, and directional derivatives
for the corresponding least-squares functional (2.1). Accordingly we take (0, 1),
and for fixed N > 1 take as basis functions {bi}/N= the usual piecewise linear "hat"

def
functions on a uniform mesh. With the nodal points xi i/(N + 1), these are given,
for 1_< i_< N, by

1 x xi_ for x [xi_, xi),
bi(x) N + I I xi+l x forxE[x,xi+),

0 otherwise.

We seek approximations u of the solution of the diffusion equation (1.2) as linear
combinations of these basis functions, i.e.,

N

t)
i=1

For fixed t we denote the coefficient vector {ui(t)} simply by u(t). An N-dimensional
linear system of the form (2.2) is obtained for u from the standard Galerkin method
by requiring that u(x, 0) 0 and

fo o1( On dbifi(x, t)bi(x) dx -q(x)-x (X, t)-x (x) + f(x, t)b(x) dx.

In our implementation, the integrals on the left-hand side of this equation are encoded
exactly, and the ones on the right-hand side are approximated using the trapezoid rule.

We report results below for six numerical experiments. In each of these, N 3.
Thus H is the subspace of L2(0, 1) consisting of continuous functions on [0, 1] that
equal zero at the endpoints and are piecewise linear with interior nodes at X

and x - One of the experiments is an example of "continuous time, x2--
observations," and the rest are based on "discrete-time observations." In each of these
cases, the spatial observation operator C, as in (3.27), is the same. It is defined as

and x_ 2pointwise evaluation of functions in H at the points x- 5 5"
The function q(x) and the perturbations p(x) are represented as linear splines on

the mesh (N 3) described above. Perturbations p are elements of H; specifically,
they are zero at the endpoints and can vary at any of the xi, 1, 2, 3.

Thus the q-dependent linear evolution equation is given by Mfi A(q)u + f,
where

1 4 1M- 014

( -(qo + 2qx +q.) (q -t-q.) 0
A(q) 8 (ql - q2) -(ql + 2q2 + q3) (q2 + q3)

0 (q2 + q3) -(q2 + 2qa + q4)

and f(t) {f(xi, t)}i3=1
The "data" z are generated by carrying out the approximations as outlined above,

with

q(x) 1 + e-20(-1/3)e
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approximated by its linear spline interpolate. The source term f(x,t) is chosen so
that the solution of u(x, t) of (1.2) is u(x, t) x(1 x)te-t. Then the directional
derivatives (2.3) and their approximations (3.4) are investigated based on q(x) 1.

Three of the experiments are based on nonuniform meshes tn. To explain how
these meshes are generated, it is sufficient that we explain how the vectors {ha} are

generated. To highlight the dependence on n here we denote these vectors by h(n),
and the individual h-values by hn). To generate nonuniform h(n) we begin with a

given n and create a uniform mesh by setting h() tF/n. Then with a given "mesh
ratio" r satisfying 0 < r < 1, the "mesh refinement scheme" for generating h(2n) from
h() is

2) h()2a-1 (1 r)
(2n) rh()2k

yields refined meshes which are each uniform. Thisfor k 1,...,n. The choice r
is clearly not true for any other choice of r.

We examine the convergence properties of costate approximations using four dif-
ferent time-marching schemes in (3.2). For the state equation (2.2), these methods
are as follows.

CN. The trapezoidal, or "Crank-Nicholson," method

ua+ (I- Aha/2)-( (I / Aha/2)ua / hk(fa / fa+)/2 ).
RK2e. The explicit second-order Runge-Kutta method

ua+ (I + mha + (Aha)2/2)ua + ha((I + dha)fa + fk+)/2.

where

RK2i. The implicit second-order Runge-Kutta method

(I- Ahk + (Ah)/2)-l( ua + h((I- Aha)fa+ + fa)/2

RK4. The explicit fourth-order Runge-Kutta method

Uk+l Uk / (K1 / 2K2 + 2K3 + k4)/6,

I1 ha(Auk /
K. ha( A(ua + K/2) + fa+/2 ),
K3 ha( A(ua //42/2) / fa+l/2 ),
K4 ha( A(ua + K3) / fa+l ).

To express the RK4 method in a form compatible with Theorem 6(g), we first obtain
a fourth-order accurate approximation of fa+/2. This we do by evaluating at (t +
t+1)/2 the cubic polynomial that interpolates (t+i, fa+i),-1 < < 2. For a uniform
mesh, this yields

B I + Ah + (Ah)2/2 + (Ah)3/6 + (Ah)4/24,

? -c I _l + + + (I +

C1
def 1

-(I + Ah/2 + (Ah)2/8),

C2 d I + Ah + (Ah)/2 + (Ah)3/4.
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We carried out a rather extensive numerical investigation, using the MATLAB
software package [9] on a Sun Sparcstation 2 and a DECstation 5000/200. In all cases,
we compare the costate approximation 5pT to centered-difference approximations
(SpTn)FD. These are computed by evaluation of the expression under the limit sign
in (2.3) with T replaced by Tn, and with - v. The value of e (called "eps" in
MATLAB) is the machine-dependent constant defined as the smallest integer-power
of 2 for which "1 +e > 1" is true. On the Sparcstation 2, e 2.52 2 x 10-16, so that
numbers are represented up to sixteen decimal places. The choice of T V/ in the
finite difference computation reflects a desire to strike a balance between discretization
error and roundoff error. By heuristics in [8, pp. a-32], we expect that
thus computed should agree with the correct value of 5pT up to roughly half of the
sixteen decimal places.

By the result of Theorem 3, the true gradient of the discrete functional @T
converges with full accuracy to 5pT(q) (under the assumptions (A5’) and (A6’), of
course). Since ((pTn)FD equals 5pT to within eight digits or so, the triangle inequal-

ity implies that the rate of convergence of 5pT to 5pT is correctly indicated by the

rate of convergence of 5pT to (SpT)FD as long as the relative difference of these
two quantities is larger than about 10-s.

For each of the six experiments, then, we tabulate the relative error

max(4.1) Elhl l<i<rn

5pTn (SpTn FD

for the four methods as Ihl varies. From these results we then estimate the actual
rate of convergence # based on the assumption that Eih Clhl.

Case 1. Observations are continuous in time, and the meshes are non-uniform
with refinement ratio r 1/3. The trapezoidal quadrature rule is used for the
inner product for the three second-order methods, and Simpson’s rule is used for the
RK4 method. See Table 1.

TABLE

Ihl CN RK2e RK2i RK4
6.67e-3 1.6e-6 2.6e-4 2.0e-4 2.9e-6
4.44e-3 5.2e-7 7.8e-5 6.8e-5 2.1e-7

2.7 2.7 2.7 6.4

Case 2. This experiment is motivated by Theorem 5. We take observations dis-
crete in time on uniform meshes. The quadrature weights, as in (3.6), are those
arising from the trapezoidal rule. The results are presented in the Table 2. The three

TABLE 2

Ihl
1.Oe-2
0.5e-2

CN RK2e RK2i RK4
8.8e-10 8.7e-5 6.9e-5 3.9e-6
1.3e-9 2.0e-5 1.8e-5 9.1e-7

* 2.1 1.9 2.1

Runge-Kutta methods appear to be converging at a second-order rate, as predicted
by Theorem 5. Crank-Nicholson costate approximations agree with the forward-
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difference approximations to within nine decimal places--roughly the expected accu-

racy of (SpTn)FD. In fact, for uniform meshes, 5pTn as computed by the Crank-
Nicholson method ezactly equals 5pT (neglecting roundoff error). We outline a proof
of this assertion. The recursion formula (3.12) for u $7P, takes the form

(4.2) u+ B(q)u + hR(q)(fk + fk+)

with

R(q) I- A

e(ql +

Then,

5pR(q) hR(q)(SpA(q))R(q),
5pB(q) hR(q)f5.pA(q)) B(q) + I).

Using these in (3.19) leads to

(p+l-- B(q)pit. - hR(q)(SpA(q))(u + lt_t_l).

Referring to (3.22) and (4.2) we see that this last equation is just the recursion formula
for (pUn snTn)n. Thus

However, by reasoning similar to that which led to (3.43), the right-hand side of this
equation can be rewritten as

jn(c,)npn(( rn, cnsnlpnn }}Z ({ Jns(n,)P(,) }}’H

which by (3.4), (3.22), and (3.26) is the same as 5pTn. Thus 5pT 5pTn, so that
the numerator in (4.1) is nonzero only to the extent that (SpTn),D : 5pTn. This
explains the Crank-Nicholson column in Table 2.

Case 3. This example is the same as Case 2 but with nonuniform meshes, gen-
erated with r 1/3. In this case we have no theoretical basis on which to expect
convergence, and indeed Table 3 suggests that convergence is not obtained.

TABLE 3

Ihl CN RK2e RK2i RK4
6.7e-3 1.6e-3 2.7e-2 1.9e-2 9’8e-3
4.4e-3 1.6e-3 2.4e-2 2.0e-2 4.2e-1

0 0.3 -0.1 -9.6

Case 4. We conjecture that in some cases, even though the meshes t may be
nonuniform, high-order convergence can still be achieved provided that the meshes
are "locally uniform" in the sense that for a given n, all of the hk’s "near" a given
observation point Ti are constant. More precisely, there is a positive integer a and a
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TABLE 4

Ihl CN RK2e RK2i RK4
6.7e-3 5.8e-5 6.2e-3 2.2e-3 9.8e-3
4.4e-3 2.5e-5 2.1e-3 1.2e-3 4.2e-1

0 2.0 2.7 1.5 0.6

real for which t+ -t whenever ((i)- or) < k <_ ((i)+ a), where re(i) is
from (3.30).

In this example we repeat the experiment reported under Case 3, but took steps
to ensure that the refined meshes were "locally uniform" with 1.

Table 4 suggests that high-order convergence can sometimes be obtained on "lo-
cally uniform" meshes. However, we do not pursue this idea further.

Case 5. Table 5 presents an example illustrating Theorem 6. The forcing term f
in the state equation is changed so that f(0) 0. The RK4 method is used together
with the quadrature weight matrix )Trap arising from the trapezoidal quadrature
rule. These weights appear in Theorem 6(d). The mesh refinement is uniform.

TABLE 5

Ihl RK4
1.0e-2 6.5e-8
0.5e-2 3.4e-9

0 4.3

Case 6. Table 6 illustrates Corollary 2. We repeat experiment shown in Case
5 but using Simpson’s rule instead of the trapezoidal rule, and we compare 5pT to

TABLE 6

Ihl RK4
1.0e-2 3.1e3
0.5e-2 6.7e-4

0 2’2

5. Alternate approaches. Throughout the preceding sections we have dis-
cussed the use of the "discretized costate approximation" and have attempted to
illustrate the delicacy of that procedure when pointwise (in time) observations are
involved. There are at least three other possible approaches that also merit consider-
ation when pointwise observations are involved, which we now briefly discuss.

The strategy pursued in 2 and 3 was to take the discretization of the adjoint
system; that is, to first derive the costate method for the continuous problem, and
then to discretize the resulting equations and integrals. An alternative to this would
be to use the adjoint of the discrete system. While this approach is straightforward
when applied to boundary value problems, certain complications may arise in the
implementation for evolution equations, particularly when time marching schemes
are used for temporal discretization.

In particular, from the definition (3.1) of the discrete least-squares functional we
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have

rn, n5pTn(q) (( pun I}Zn.

From the expression for components of 5pUn in (3.19) and the definition (3.11) of
Sn(q), we see that

ptn(q) n(q),n(q; p),

where n(q; p) is given by

1
(5.1) (q;p) 2 [5"7n(q)Pnf] + (5B)u.
Thus

5pTn(q) (( (,.n) (cn),rn,.n(q;p) }lZn

The advantage of this approach is that it will yield exact values for the directional
derivatives of Tn. Hence in numerical attempts to minimize T for any fixed n it
would be ideal. However, it involves the use of .n(q; p) as given in (5.1), which may
require significant amounts of additional mathematical effort, code complexity, and
computational execution time. These disadvantages may be negated in whole or in
part for certain special cases if the expression for .n(q; p) can be simplified. Such
simplification occurred with the Crank-Nicholson method for uniform time meshes,
as described in Case 2 of 4. However, we do not pursue this approach further here.

Another alternative [3, V, (5.30)-(5.32)] is to retain the strategy of discretizing
the continuous adjoint system, but to transform the costate equation (2.9) so as to
increase the smoothness of the source term. This can be done by the introduction of
two new variables and given by

(t) de [J(C*r)] (s) ds

and

(t) def (t) (t).

Then, satisfies

(t) A* (q)(t) + A* (q)(t),
=0.

The idea is that since is piecewise constant (as opposed to J(C*)r, which is a linear
combination of Dirac delta functions), it should be easier to obtain accurate numerical
solutions of y by first approximating as given here.

We briefly explored this idea numerically. We repeated the relevant numerical
examples, which are Case 2 and Case 3 of 4. In both cases, all four of the TMSs
were used to approximate instead of y, and then we set yn n + . In each of
these runs, we observed linear convergence of the directional derivatives; e.g., was
approximately 1 in each case. Obviously, for uniform time meshes (as in Case 2) this
represents a loss of accuracy, while for nonuniform meshes (Case 3) it is a definite
improvement.
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One other alternative is to consider modifying step (iii) of the discretized costate
approximation along the following lines. Instead of attempting to integrate $ over the
whole interval (0, tF) in "one shot" with the TMS, we should treat each subinterval
(-i-l,-) separately, using the fact that Jn(C*)nrn is zero in the interior of these
subintervals and that y has jump discontinuities at 7. Correspondingly, the quadra-
ture in (3.4) must be modified. Although the implementation is more complicated,
analysis along the lines of the proof of Corollary 1 above then applies. Consequently,
for sufficiently smooth state-variable forcing functions f, full accuracy of the TMS
and the quadrature will yield full accuracy of the costate approximations.

6. Summary and conclusions. While the costate method offers potentially
dramatic time savings when computing gradients in parameter estimation problems
for time-dependent systems, we have indicated that care must be taken when using this
approach. We have shown both analytically and numerically that the use of convergent
time-marching and quadrature schemes in seemingly reasonable combinations can
yield surprisingly poor results.

The difficulty lies in the fact that the forcing term of the costate equation may
be very non-smooth, so that the assumptions under which the TMS and quadrature
scheme converge are violated. In the description of the discretized costate approxima-
tion in 3.1.1, we assumed that the TMS is used in step (iii) as a "black box" without
regard to the smoothness (or lack thereof) of Jn(C*)nrn; see (3.2).

The costate implementation that we have analyzed involves discretization of the
(continuous) costate equation using standard time-marching schemes. Due to its
simplicity, this approach is very desirable when the resulting gradient approximation
has the same order of accuracy as the particular time-marching scheme. We pre-
sented conditions that guarantee this. Some of these conditions are straightforward.
For instance, several popular second-order time-marching schemes yield second-order
gradient approximations provided a uniform time mesh is used in combination with
(second-order accurate) trapazoidal quadrature. Other conditions are less obvious (cf.
Theorem 6). We also demonstrate that certain "reasonable" implementations yield
gradient approximations that fail to converge at all, e.g., fourth-order Runge-Kutta
time-marching on a uniform time mesh combined with (fourth-order) trapazoidal
quadrature. Finally, several alternative (though less simple) costate implementations
were presented.

REFERENCES

[1] H. T. BANKS, Computational issues in parameter estimation and feedback control problems for
partial differential equations, Physica D, 60 (1992), pp. 226-238.

[2] H. T. BANKS, J. ,. CROWLEY, AND I. G. ROSEN, Methods for the identification of material
parameters in distributed models for flexible structures, Mat. Apl. Comput., 5 (1986),
pp. 139-168.

[3] H. T. BANKS AND K. KUNISCH, Estimation Techniques for Distributed Parameter Systems,
Birkhiuser, Boston, MA, 1989.

[4] H. T. BANKS AND I. G. ROSEN, Numerical schemes for the estimation of functional parame-
ters in distributed models for mixing mechanisms in lake and sea sediment cores, Inverse
Problems, 3 (1987), pp. 1-23.

[5] H. T. BANKS, I. (]. ROSEN, AND Z. ITO, A spline-based technique for computing Riccati operator
and feedback controls in regulator problems for delay equations, SIAM J. Sci. Stat. Comput.,
5 (1984), pp. 830-855.

[6] J. A. BURNS, K. ITO, AND G. PROPST, On nonconvergence of adjoint semigroups for control
systems with delays, SIAM J. Control Optim., 26 (1988), pp. 1442-1454.



254 C. R. VOGEL AND J. G. WADE

[7] G. CHAVENT AND P. LEMONNIER, Identification de la non-linearitd d’une gquation parabolique
quasilindaire, Applied Math. Optim., (1974), pp. 121-162.

[8] J. E. DENNIS AND R.. B. SCHNABEL, Numerical methods for unconstrained optimization and
nonlinear equations, Prentice Hall, Englewood Cliffs, 1983.

[9] MATLAB, The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, South Natick, MA.
[10] R. D. RICHTMYER AND K. W. MORrON, Difference Methods for Initial Value Problems, John

Wiley, New York, 1967.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 33, No. 1, pp. 255-273, January 1995

(1995 Society for Industrial and Applied Mathematics

012

BOUNDARY STABILIZATION FOR THE VON K/RM.N
EQUATIONS *

JEAN-PIERRE PUEL AND MARIUS TUCSNAK

Abstract. The boundary stabilization of a nonlinear plate model is studied. The equations
used take in consideration the in-plane accelerations and the rotary inertia of the cross sections.

Applying linear feedbacks, the authors obtain the exponential decay of the energy.

Key words, semilinear evolution equations, feedback boundary control, Lyapounov functionals
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1. Introduction. We consider the stabilization problem for the coupled in-plane
and transversal vibrations of a nonlinear plate. As far as we know, all previous work
on nonlinear plate vibrations is based on models neglecting the in-plane accelerations
(e.g. [1], [3, Chap. 5], [6] for boundary stabilization problems). This assumption leads,
for star-shaped domains and suitable boundary conditions, to the existence of an Airy
stress function, which considerably simplifies the equations.

The goal of this paper is to investigate the boundary stabilization of the complete
set of yon Krmn equations, as they are given, for example, in [3, p. 19]. This model
can be applied for domains that are not star-shaped, but it has the inconvenience that
the nonlinear terms are not well defined in the energy space. This feature makes the
proof of global existence results more delicate. To our knowledge, the only mathe-
matical result concerning this plate model are the global existence theorems proved
in [11, Part 1] (for weak solutions) and [10] .(for strong solutions).

For the one-dimensional corresponding rod problem, the uniform stabilization was
studied in [7], which inspired our work.

The paper is organized as follows. In 2 we formulate the initial and bound-
ary value problem and we discuss the feedback boundary controls. For the sake of
completeness, in 3, we outline the proof of the main global existence theorem (the
complete proof is given in [10]). Section 4 contains the stabilization results. In 5
we give an energy identity, fundamental for the proof of the stabilization theorem,
which is given in 6. Our method is based on the fact that the system we consider is

obtained by coupling in a nonlinear way the equations of two-dimensional (2D) linear
elasticity and of a linear Kirchhoff plate. This is why we apply the technique proposed
in [2], [3, Chap. 4], [4], and [7], which is based on the construction of appropriate Lya-
punov functionals. The desired differential inequalities are obtained as a consequence
of the energy identity proven in 5, by the use of multiplier techniques. The ideas and
computations we used are similar to the one contained in [5].

The results contained in this paper were announced in [9].

*Received by the editors March 26, 1992; accepted for publication (in revised form) September
10, 1993.

Ecole Polytechnique, Centre de Mathmatiques Appliques, 91128 Palaiseau Cedex, France,
and Universit de Versailles.
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2. Statement of the problem. Let Ft c R2 be a bounded regular domain,
Q Ft (0, c), F OFt, Fo C F, F1 F- Fo, Ei Fi (0, c), i 0, 1. We suppose
that Fo N F1 . Let $ be the set of all fourth-order symmetric tensors on R2 and
C E $ defined by

E
C[e] d(1 #2)[#(tre)Is + (1 #)e] Ve E S,

where Is is the identity of S, d is the density, E is Young’s modulus, and # is Poisson’s
the tensor C satisfies the followingratio of the material. IrE > 0 and 0 < # <

condition:

(2.1) C[e]. [] A01l s, where A0 > 0.

We consider f" R2 - S, defined by f(x) x (R) x. With this notation the dynamic
von Krmn equations can be written in the following form:

(2.2) u"- div{g[e(u) + f(Vw)]} 0 in Q,

(2.3) w" "yAw" + DA2w div{g[e(u) + f(Vw)]Vw} 0 in Q,

OW
(2.4) u-0, w= 0---0 onE0,

(2.5) C[e(u) + f(Vw)]u g on

(2.6) D[Aw + (1 #)BlW] -Ms on El,

(2.7)

[ox, oB] o,, o
D

Ou + (1 #) as -’)’--u- -tie(u)+ f(Vw)]u. Vw --sM h on 1,

(2.8) (0) ?0, ?if(O) 1, w(O) WO, wt(O) W1, in ,
In the above equations u (ul,u2) is the plane displacement, 7 > 0 is a constant,

lieu + (Vu)T] w is the transverse displacement, D represents the flexural()
rigidity of the plate, /2 and s are the outward unit normal and tangent, respectively,
to the boundary. The operators B, B2 are given by

Ow Ow 02w

02W
B2w (/221 /2) OXl OX2

02w 02w )
The quantities g, h, M,, and M are the boundary controls of the system. They
correspond, respectively, to the tension in the plane of the plate, the effect of transverse
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shear force, the bending moment around the tangential vector to F, and the twisting
moment about the normal to F.

Let {u, w} be a classical solution of (2.2)-(2.8). The total energy of the plate is
given (cf. [3, p. 18]) by

E(t) {]lu,(t)l[ 2 + []w,(t)]l 2 + [IVw,(t)l[ 2 + a(w(t), w(t))
+ (C[(u(t))+ f(Vw(t))], (u(t))+ f(Vw(t)))},

where II" II and (., .) represent the norm, respectively, the inner product, in [L2(t)] k

kEN and

(2.9)

A simple calculation, based on the integration by parts formula,

(2.10) D f(A2w)dX a(w’) D jfr {[Aw + (1- #)Blw]Oou
[OAWou OB2w]}Os+ (1-#) j dr,

shows that

(2.11) E’(t) g.u’ Ms---u + -sM, + h w’ dr.

Let x0 E R2 and re(x) x xo. We suppose that F0, F1 have the property

(2.12) m(x).u(x) <0, ifxEr0; m(x).u(x) >_0, ifxErl.

If we put

(2.13)
0
Os

with Cl > 0 we get

(2.14) E’(t) --Cl JfF (Tit" /])(t’2 -- W’2 --IVw’12)dr _< 0,

i.e., the total energy is nonincreasing. However, this type of feedback law does not
seem to give the exponential decay of the energy, even in linear plane elasticity (see
[4] for the details). This is why, following [4], we set

0U2
g -c(m..)u’ c Os

Otl|N where c2 > 0
Os ]
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(2.15) Ms cl (m. u)
Ow’ 0

M. + -(...)’ + (...) a J
The advantage of this feedback law is that, in our calculations, the classical energy
density, W(u)- 1/2C[e(u)]. e(u) will be replaced by

(Ou OueW(It) W(lt) nc 52
OXl Ox2

0Ul 0U2 /
which, for c2 > 0, c2 small, satisfies the condition

(2.16) W(u) > co[Vu] 2, with c0>0.

Define

(2.17) (t) E(t) + -1
On Ou2

dXdt.
Ox Ox

Using the formula

(2.18)

Ou 0 Ou2 0 " dX,
OX10X2OX2 0Xl OX2 0Xl

we get, with the feedback law (2.15),

(2.19) E’(t) -c (m..)(u’ + w’ + IVw’l)dr <_ 0.

It will be proved in 6 that the feedback law (2.15) uniformly stabilizes the system
(2.2)-(2.8), in the sense that E(t) -- 0 as t oc in an exponential way, on each
bounded set E(0) < M of initial data. On the other hand, it is easy to check that, for

c2 small enough, E(t) is equivalent to E(t), in the sense that

(2.20) K-1E(t) _< E(t) <_ KE(t) t >_ O,

for a suitable constant K > O. In this way, the uniform exponential decay of the
original energy functional will be established.

3. Existence of solutions. In this section we outline the proof of a global
existence result for the problem (2.2)-(2.8). The complete proof is given in [10]. We
begin by introducing the following function spaces:

OW
W {w He(t)[ wit -. Iro -o}; v- { HI()I wlr -0}; H L2().

U- {it E [Hl(f/)]21 ulr --0},- [L2(Ct)] 2.

Let {u, w} be a classical solution of (2.2)-(2.8) with the feedback law (2.15), i.e.,

u E C(0, T; [H2(a)] 2) N Cl(0, T; [Hl(a)]2), w e C(0, T; H4 (t) 7) C(0, T;
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If we take the inner product in [L2(t)] 2 of (2.2) with e U and of (2.3) with e W,
by the use of (2.6)-(2.8) and(2.15) we get

[(u’, 05)]’ + (C[(u)+ f(Vw)], ())

+ c2
Oxl Ox. Oxe Oxl

+ c (m. ,). dr O,

Ox Ox Ox x dX

VCeU,

(3.2) [(w’, ) + 7(Vw’, V)]’ + a(w, ) + (C[(u) + f(Vw)]Vw,

+ c (. ,)( +. e)ar o e e w.

DEFINITION 3.1. We say that {u, w} is a strong solution of (2.2)-(2.8) with the

feedback law (2.15) if

e c(o. ; [H:()] U) C(0. T; U). w E C(0, T; H3() N W) g 61 (0, T; W),

and they satisfy (3.1), (3.2), and (2.8).
DEFINITION 3.2. We call {u, w} a weak solution of (2.2)-(2.8) with the feedback

law (2.15) if

u e C(O, T; U) C(O, T; w C(O, T; W) N C (0, T; V),

and they satisfy (3.1), (3.2), and (2.8).
The fbllowing theorem is the main result of this section.
THEOREM 3.1. Suppose that c2 is small enough and that u, u, w, w satisfy the

conditions

(3.3) u [H2(t)] 2 A U, u U,

(3.4) w G H3(t)N W, w E W,

(3.5) C[(u) + f(Vw)], + Cl (/ft. plt -k- c2
\ 08 0s

0 on rl,

Ow
(3.6) D.[Aw + (1 #)Bw] -c (m .u)---u on 1.

Then there exists a unique global strong solution {u, w} of (2.2)-(2.8).
Sketch of the proof.
Step 1. The first step consists of the following local existence result.
LEMMA 3.1. Suppose that c2, u, u, w, w satisfy the assumptions of Theorem

3.1. Then there exists To > 0 such that problem (2.2)-(2.8) admits an unique strong
solution for any T < To. Moreover, one of the following assertions holds:

(A1) To x;
(Ae) im-o(ll(t)ll + II’(t)ll-. + II(t)ll. + IIw’(t)ll.) .
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Idea of the proof. We first prove some well-possedness results for the linearization
of (2.2)-(2.8). More precisely, we consider the following initial value problem:

(3.7)

(3.8) u(0) uo, u’(0) u in a,

where

and

fl (t)" ft - S Vte [0, T),

(3.9) [(w’, ) + f(Vw’, V)]’ + a(w, )

+ 1 (.. )( +.)ar + (f.(t), re) o v w,

(3.10) w(0) w, w’(0) w,
where

f.(t) a --, R Vt > o.
The key point is to construct the operator generating the semigroup associated to
(3.9) (see also [5, 4.2.1]). We present here the method we used to overcome this
difficulty. The following two lemmas, which are proved in [10], are very important for
our approach.

LEMMA 3.2. For any w W there exists at most one couple (y, h) V x H1/2 (F)
such that

o v e w.(3.11) a(w, d2) (y, ) + h’(Vy, V) + h--u
LEMMA 3.3. Suppose that (3.11) holds for some (w,y,h) e W x V x H1/2(I’l).

Then we have the regularity property w Ha(2). Moreover, there exists a constant
C > 0 such that

(3.12) I111() <- C( llll/-/, (a) + hll,,/. (r,) ),

and the relation D[Aw + (1 #)Blw] h, holds in H1/2(F1).
Let us now introduce the space

(3.13) :D(A) -{w e W such that it exists (y,h) e V x H/2(F1),

satisfying a(w, p) (y, p) + 3’(Vy, Vp) + h-g-udr, W
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By Lemma 3.3 we know that ID(A) C H3(f) r W. On the other hand, for w fixed, by
Lemma 3.2 we know that y and h in (3.13) are unique. This allows us to introduce
the operator

(3.14) A :D(A) ---, V, Aw y.

We also define the operator B" W V by
(3.15)

(By, ) + 7(V(By), V) Cl ] (m. )yCdF + el JfF (m. v)-s--sdFOy0

where the second integral is taken in the sense of the duality H1/2 (rl), H- 1/2 (F1).
Now consider the space

/?(.,4). --{ (W)y ’D(A) xW, s. t.

D[Aw + (1 ,)BlW] --C1 (?Tt" /2)Oy }onr

and define the operator

(3.16) .,4 (W)_y ( Aw-y+ By ) V (W)y :D(.A).

By using Lemma 3.3 we can easily obtain (see [10]) that the operator -4 defined
by (3.16) generates a strongly continous semigroup in W x V. The well-possedness
result for (3.9), (3.10) is now obtained by noting that (3.9), (3.10) are equivalent to
the following initial value problem in W x V:

Z +.AZ + F O,

where

and f2 is defined by

z(o)- zo,

(f(t), ) + (vf.(t), v) (f(t), re) v e w,

and by using classical results on semigroups (see [8]). The linear estimates allow us to
apply a fixed point technique. As the nonlinear terms in (2.2)-(2.8) are not Lipschitz
in W x V, we must work in the space [H2(f)] 2 C g x U x H3(Ft) N W x W, suggested
by Lemma 3.3. The local character of the solutions comes from the fact that even in
this more regular space the nonlinearities are only locally Lipschitz. B

Step 2. The second step consists in proving the following estimates.
LEMMA 3.4. Suppose that (, w) is a strong solution of (2.2)-(2.8) defined on

[0, T). Then there ezists a constant Mr depending on T such that

II"(t)ll + II’(t)ll, + IIw"(t)ll/1 + IIw’(t)ll/. < Mr Vt e [0,T).
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LEMMA 3.5. uppose that (u,w) is a strong solution of (2.2)-(2.8) defined on
[0, T). Then there exists a constant MT depending on T such that

As for the proofs of Lemmas 3.4 and 3.5 we only mention two ideas.
(a) To prove Lemma 3.4 we take the derivative of (3.1), (3.2) with respect to time

and we choose u", p w" in the resulting equations. By the use of the divergence
structure of the nonlinearities and of some Gagliardo-Nirenberg inequalities, we obtain
that the expresion

1]utt 12 U(I (t)l +11 (t)ll/l+llw"(t)lli +
is uniformly bounded with respect to t varying in any compact set.

(b) For the proof of Lemma 3.5 we use Lemma 3.4 combined with the elliptic
estimates provided by Lemma 3.3.

Step 3. It is now sufficient to note that, by Lemmas 3.4 and 3.5, the assertion
(12) in Lemma 3.1 cannot hold. As a consequence we obtain that (A1) takes place
so any local solution can be extended to a global one. l

As a consequence of Theorem 3.1 we easily obtain global existence of weak solu-
tions of (2.2)-(2.8) (for a complete proof see [10] or [11, Part 1]).

THEOREM 3.2. Suppose that

U0 E U, U E /, W0 E W W E V.

Then there exists at least one weak solution of (2.2)-(2.8).
Remark. The solutions provided by our proof of Theorem 3.2 are weak limits of

a sequence of strong solutions. We also remark that the uniqueness of weak solutions
is an open problem.

4. The stabilization results. Our main results assert that strong solutions of
(2.2)-(2.8) satisfy the following energy estimate.

THEOREM 4.1. Let {u, w} be any strong solution of (2.2)-(2.8), with the feedback
law (2.15) and let B > O. Then there exist constants K > O, and co w(B) > 0 such
that the following estimate holds, provided that E(O) <_ B:

(4.1) E(t) <_ Ke-tE(O) Vt >_ O.

We can hope that estimate (4.1) might be extended for weak solutions of (2.2)-
(2.8). We can easily check that any sequence of strong solutions that is bounded in
the energy space converges weakly to a finite energy solution (cf. [10], [11, Part 1]).
However, due to the lack of Lipschitzianity there is no uniqueness result for weak
solutions, so we cannot assert that any weak solution can be obtained as above. This
is why the next stabilization result considers only the weak solutions that can be
approached by a sequence of strong solutions. By using the lower semicontinuity of
the energy functional we obtain the following result.

THEOREM 4.2. Suppose that b, u, u1, w, w satisfy the assumptions of The-
orem 3.2. Then, among the weak solution’of (2.2)-(2.8), there exists at least one
satisfying the energy estimate (4.1).

The rest of our paper is devoted to the proof of Theorem 4.1. We begin by noting
that any strong solution of (2.2)-(2.8) satisfies a slight generalization of (3.1), (3.2).
More precisely, we have the following result.
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LEMMA 4.1. If {u, w} is a strong solution of (2.2)-(2.8), with the feedback law
(2.15), then the following relations hold:

(4.2) [(u’, )]’ + (C[e(u) + f(Vw)], e())

+ C2
OXl OX2 OX20Xl OX20Xl

4- C [ jfF rrt l u d/)dF]
r C[e(u)],. CdF 0 V e [Hl(t)] 2,

Ox Ox2
dX

(4.3) [(w’, ) + ?(Vw’, V)]’ + a(w, )

4, (C[(u)4. f(Vw)]Vw, re)- D awdro

+ fr (’ )( + 7. 7)ar 0 H(a), lro 0.

Proof. Let us first note that, for (u,w), the strong solution of (2.2)-(2.8), the
relation (3.1) implies that (3.2) holds in C([O,T],L2()). This is why, by taking the
scalar product of (2.2) with E [Hl(gt)] 2, we easily obtain that (u, w) satisfy (4.2).
On the other hand, according to (2.10) (see also [3, p. 71]), the relation

(4.4)

holds for any w E H3(gt) and G H2(gt), where the last integral may be interpreted
as the duality between H1/2(F) and H-/2(F). As w, w’ satisfy (2.6) and (2.15) from
(4.4) we get

(4.5)

+ (m. + W’.

D(1 p) O’dF + C1 (m..)w’- Os J
for any

oH2(f’t), lro lro

From (3.2) and (4.5) it follows that u, w satisfy the following relation:

(4.6)

) 4- "y(Vw", re) ./ V(Aw) VCdX 4, (C[e(u) 4- f(Vw)]Vw,

-D(1-u) 0,
(") Cdr-0,
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for all o --0’ G H2()’ ll-’ Ou Iro
and the last two integrals may be interpreted as the duality beetween H1/9(F) and
H-1/2(F). It is obvious that, by density, (4.6) still holds for E Hl(t), lro 0. In
particular (4.6) is true for E H2(ft), lro 0. This implies, by using once again
(4.4) and the relation Blw 0 on Fo, that (4.3) holds.

In the next section we shall give an energy identity that plays a fundamental role
in proving Theorem 3.1.

5. The energy identity. For u ft --, R9 we denote by Vum the product, of
the matrix Vu with the column vector rn R2. The following result will be essential
for the proof of the stabilization result.

LEMMA 5.1. Let {u, w} be a strong solution of (2.2)-(2.8), (2.15) and let t > O,
a R. Define

p(t)--] tt" [Vt?Yt- (2OZ- 1)t]dX- c1(2oz- 1) fr (rn. u)u2dF
2

+ [w’(m Vw) + /Vw’ V(m Vw)]dX a /a(w’w + /Vw’ Vw)dX

Cla fr (m. ,)(w’ +:2

Then we have

(5.1) p(t) p(O) + 2a u’2dXds

+ (o + 1) w’2dXds + ag/ IVw’ladXds

+(1- (,

zt (0102 0ul OU2 ) dXdsc2(2a 1) Ox Ox2 Ox Oxl

+ c[()]. ((.

c (m..) Ox Ox2

+ (m. u)(Aw)2dFds

D 2

OU10U2 dFds
Ox2 0x

{Ow)
2 Ow 02w
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+ 2(1 #) O-lXe dFds 1 (m. u)u’. (Vum)drds

Cl (?Tt. u)[w’(m. 7w) + Vw’. V(m. Vw)]dFds.

Proof. We set um- u, with arbitrary , in (3.1) and integrate that
equation over (0, t). For the first term we have

i j u" (um u)dXds

u’. (Vum- flu)dXl u’. (Vu’m flu’)dXds.

We notice that

(5.3) u’ (Vu’m)dX u-xj mjdX

1i. o e L2 mJ-xj(U)2dX -7 (m..)u’2 + u’2.

Taking in consideration (5.2), (5.3)we have

(5.4) u" (Vum flu)dXds u’. (Vum-

(m..)u’dFds + fl + 1) u’2dXds.

For the following terms we note that

Let us make the notation

(5.6) tO t it t Vt?Tt fl?.t dX tic12-Ltfr(m.v)udF.
As a consequence of (3.1), (5.5), and (5.6) we get

p (t) p (0) + (fl + 1) u’2dXds

f(OuiOu20ulOU2)dXdsC2fl OXl OX2 OX2 0Xl
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We now set m. Vw- aw in (3.4) and integrate over [0, t]. We obtain

where

(5.9) C(Vl, V2) J(VlV2 + ")/VVl" Vv2)dX,

(5.10) b(v, v2) C1 fF (?Tt. /)(VlV2 nt- VVl" Vv2)dF.

The relation

allows us to write in a more convenient way the sum of the first two terms in (5.8),
that is,
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We note that, according to [3, p. 81],

(5.12) a(w, m Vw) =a(w, w)

+ x + \o + o
Ow

dr.+ 2(1- )
OxOx2

Taking in consideration the boundary conditions we obtain

(5.13)

2

+-2(1-#) Ox dr

The relations (5.12) and (5.13)imply

(5.14) a(w, m

(1 -c)a(w, w)- - (m. ,)(Aw)dr

+
k Ox + Ox ] + " ox ox

+(1-u) o;g r.

Let p2(t) c(w’, m. Vw) cc(w’, w) b(w, w). The relations (5.8), (5.11), (5.14)
imply that

As p(t) pl (t)+ p2(t) from (5.7) and (5.15), with/3 2c- 1, we obtain
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(5.16) p(t) p(O)

+ [(/ + 1)u’2 + (a + 1)w’2 + aylVw’]2]dXds

+(-) (,

52 OXl OX2 [ dXds

c (m..)(Ox Ox Ox Ox)drds
+ (m. )C[<(u)]. (u)dXds + (m.

o

+ k0
Ow Ow ( Ow

drds+ "o o ( .oo
Let us consider the terms containing both and w from the left side of (.16). We
note that

( c[( + (].(x + ooex,
where ai(e(), f(Vw)) {C[e()+ f(Vw)]}ij, i,j 1, 2. or the other coupled term
we have

(.S) ./{C[()+ l(w)lw} (m. w-

( {c[( + I()]}. I(vex + 000ex
To have a good coupling of (5.17) and (g.18) we use again the condition 2- 1.
Then (5.17), (g.18)give

(. [c[( + I(l[-(-
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/. 02t
+ Jf aij

Oxkxj
-}-

By using in (5.19) the identity

02Ui
aij

OXkXj

we obtain

+ of{c[e(u) + f(Vw)]Vw}. V(m. Vw cw)dX

-2(1 -c) f{c[e(u)+ f(Vw)]. [e(u)+ f(Vw)]dX

Ow Ow )OXj OXiOXk
mkdX.

--)m
OXj OXiOXk

1
-div{C[e(u)+ f(Vw)]. [e(u)+ f(Vw)]m}

-C[e(u) + f(Vw)]. [e(u)+ f(Vw)],

/.
(5.20) ./o C[e(u) + f(Vw)], e[Vum (2o 1)uldX

+ ./{C[e(u) + f(Vw)]Vw}. V(m. Vw aw)dX

./(1 2a)C[e(u) + f(Vw)]. [e(u) + f(Vw)]dX

1 fr C[e(u)]. e(u)(m, u)dX+-
1 fr C[e(u)+ f(Vw)]. [e(u)+ f(Vw)](m, u)dX.+

Now the conclusion (5.1) follows from (5.16) and (5.20). [3

6. Proof of the stabilization results. We begin this section by noting that
p(t) has another important property given by the following lemma.

LEMMA 6.1. For all M > 0 there is a constant Co > 0 such that p(t) <_ CoE(t),
for all t >_ O, where E(t) is defined by (2.17) and u0, u1, w, W are such that E(O) <_ M.

Proof. We obviously have

Ox + <- -5-gx +

which implies that

le(u)12dX

Oxi Oxj
+ 2

Oxi Oxj

a

1 Ow Ow< 2 [e(u) + f(Vw)]2dX + ll-x II,()llxx ll4

< 2/a[e(u) + f(Vw)]2dX + Clllw115 (a)"

Here we also used the imbedding Hi(a) C L4(f) and the energy inequality (2.14).
The last inequality, (2.1), the H2 coercivity of a(w,z), and the fact that E(t) is
nonincreasing imply

I(u)12dX KoE(t) + K1ME(t),
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with Ko, K1 positive constants. From (2.17), the above inequality, the continuity of
the trace mapping "y HI() L2(F), and Korn inequality, we obtain the following
estimate:

(m. ,)udr < K I(u):dX K3E(t),

with K2 and K3 two positive constants. In a similar way we can prove that there is
a positive constant Ka such that

,. [-(- )]ax

As the other terms in p are obviously dominated by E(t) and (according to (2.20)) by
E(t), the conclusion of the lemma easily follows.

We can now give the proof of the stabilization result.
Proof of Theorem 3.1. We set a G (0, ) in (5.1) and by taking the derivative we

obtain

.fo 2au’ + (a + 1)w’ + ay]Vw’2(.1) p(t)

+C2(1- )(0}01 0202 0102 02)dxOl
( (, ( c[(l +/(]. [( + f(]ex

1( ,(, ,
/ (. ,),,. (W)dr (,,. V),
JF

where

C[()+ f(V)]. [() + f(V)]l.gr(, ) }
Ou 0u2 0Ul 0u2

dF+ c (m ,)( Ox Ox Oz
D

We obviously have

(02W)
2 02WO2W 02W

dF.+ +2.0x Ox2 t-2(1-#)
OxOx2

(6.2)

Pr(u, w) > - C[e(u) + f(Vw)]. [e(u)+ f(Vw)](m. ,)dr

fF (01 /t2 0tl 0it2 ) dl-C2 (?Tb" l])
OX2 OX2 0Xl

+ + + ’Ox Ox
By applying (2.1) and the inequality

y2 for all x y R(z+y)>Sx
1-5

2(1- #)
OxlOx2

and 5 E (0, 1),
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we obtain

_1 jf C[(u) + f(Vw)]. [(u) + f(Vw)](m. )dr
2

A05 Jfv (m’u)[f(Vw)]2dF VhE(0,1)>_ A05 (m. u)le(u)12dF
1 6

As the trace mapping from H2() to HI(F) and the imbedding H1/2(F) C L4(F) are
continous, the inequality above and (6.2) imply that there is a constant K5 > 0 such
that

K55

Let us now choose 5 E (0, 1) such that

K55 > 1-a
(6.4) 1 a

1 6 -----"
We note that, for b small enough (with respect to 5), (6.4) implies

(6.5)

Pr(u, w) >_ K5 IVul2(m .)dr la(w, w)

where K6 > 0. From (6.1), (6.4) and (6.5) it follows that

.[o + + 1)w2 +

+ c(1 2) Oz Oz Oz Ozl
1-a

2
a(w, w) -(1 26) C[e(u) + f(w)]. [e(u)+ f(w)]dX

1
( )(, ,+ + + ]V’l)dV v(,)

1 [ (. )’-(W)dV (’,. V),
JF

where

+ 2(1 t-t)
OXl OX2

(6.7)

+ g k Ox + Ox J + 2p Ox Ox +2(i-p) 0 dr.
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We also note that for every r > 0 we have the estimates

(6.8)

Vr > O,

JF OfF Cl?]fFC1 (m. u)u’2dp + (m. u)(um)2dF.(6.9) Icl (m. .)u’. (Vum)dF < - --Taking in consideration (2.19), (6.8), and (6.9) it follows that

(6.10) -c (m. ,)u’. (Vum)dP- b(w’, m. Vw) <_ --- (t)

r b(m Vw, m Vw) Vr > O.-1- 517 (m t,)(Vum)dr + -We also note that

(6.11) Clg] f (?Tt" t,)(Vum)dr < CvVr (u w)
2 jp

with C1 > 0. By using the fact that 0 < # < 1/2 we obtain

(6.12) b(m Vw, m Vw) _< C2[a(w, w) + Vrl (u, w)].

From (6.6)-(6.12), it follows that there is a constant k > 0 such that

For r small enough relation (6.13) becomes

(6.14) 7, (t)p,(t) < (t)-

1
+ (m./2) (/,12 - w12 -}-"yl7wtl 2) rl-’l (, w).

We now introduce a Lyapunov functional obtained by slightly perturbating E in the
direction of p. Let F(t) E(t) + ep(t). From (6.14) we obtain

(6.15) (t)F’(t) <( N)E,(t)
f (. )(, , )er 1(, ).+ - + -Jl’- "fIWI[2 "

But, for /< 1,

E’(t) -a (rn. .)(u’ + w’ + IVw’l)dr
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so (6.15) becomes

--C1 JfF (Yt. /2)(’2 - W’2 --lVw’le)dr,

(6.16)

2

We now choose e in such way that e <_ 4c1//(Cl + f/) which implies that the inequality
e/2- cl (1 -e/2r/) _< -e/4 also holds. In this case (6.16) becomes

(6.17) (t) <_ } Er (u, w),

W’2 le)dr Vrl (u, w) From (6.17) wewhere Er(u, w) frl (m. )(u’2 + + 7lVw’ +
obtain

ke,(t)(6.18) F(t) <_--
We note now that (2.20), (6.18), and Lemma 6.1 easily imply (4.1).
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AN EXTENSION OF PONTRYAGINS PRINCIPLE FOR
STATE-CONSTRAINED OPTIMAL CONTROL OF SEMILINEAR
ELLIPTIC EQUATIONS AND VARIATIONAL INEQUALITIES*

FRIDIRIC BONNANS AND EDUARDO CASAS:

Abstract. This paper deals with state-constrained optimal control problems governed by semi-
linear elliptic equations or variational inequalities. By using Ekeland’s principle, a minimum principle
of Pontryagin’s type under some stability conditions of the optimal cost with respect to the state
constraints is derived.

Key words. Pontryagin’s principle, boundary control, semilinear elliptic operators, optimality
conditions, state constraints

AMS subject classifications. 49K20, 35J65, 35J85

1. Introduction. There exists a vast literature devoted to Pontryagin’s princi-
ple for optimal control problems governed by ordinary differential equations or evo-
lution partial differential equations, but very few papers have considered the case of
elliptic equations. A simple case corresponding to a linear equation was studied by
Lions [19]. More recently, the authors derived Pontryagin’s principle for semilinear
monotone elliptic equations in [7]. Here we extend the results of the last work by
letting the existence of pointwise state constraints generalize some preliminary results
of Bonnans [3], [4]; in [8] we considered, assuming continuity of the data, the case
of boundary as well as distributed control and obtained a "symmetric" formulation
of the optimality system involving boundary and interior hamiltonians. See Bonnans
and Casas [5] for a different approach to the optimality conditions of state-constrained
control problems.

The difficulty of deriving the optimality conditions for control problems associ-
ated with variational inequalities is well known; see the works of Mignot [20], Mignot
and Puel [21], and Barbu [2]. Zheng-Xu He [18] obtained the optimality conditions
for state-constrained problems governed by variational inequalities, and Bonnans and
Tiba [9] proved Pontryagin’s principle for control problems of semilinear elliptic vari-
ational inequalities. Here we will derive a principle of Pontryagin’s type for state-
constrained control problems of semilinear elliptic variational inequalities.

In this article we prove Pontryagin’s principle as follows: with the aid of Eke-
land’s principle, we introduce a family of control problems without state constraints
for which some approximate solutions converge toward the optimal control of the
initial problem; we derive the optimality conditions for the problems of this family
by using some results on problems without state constraints that generalize those of
Bonnans and Casas [7] and Bonnans and Tiba [9] and finally pass to the limit. In
order to apply Ekeland’s principle we need to assume some stability conditions of the
optimal cost with respect to small perturbations of the feasible state set. We distin-
guish two different stability conditions, called weak and strong, respectively. Under

Received by the editors October 1, 1992; accepted for publication (in revised form) September
24, 1993.
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a weak stability condition we derive the optimality conditions in a nonqualified form,
while the strong stability allows us to prove a qualified Pontryagin’s principle. The
weak stability condition has been used by Casas [13] to prove the convergence of the
numerical approximations of state-constrained control problems.

The paper is organized as follows: in the next section we formulate the control
problem associated with a monotone semilinear elliptic equation, and in 3 the state-
ments of the weak and strong Pontryagin’s principles are presented; in 4 we give
some technical results used in 5 and 6 to prove the theorems stated in the third
section; finally 7 is devoted to the control of variational inequalities.

2. Setting of the problem. Let gt be an open and bounded subset of Rn, n
_

1,
with a Lipschitz boundary F. Given a nonempty bounded set K C R", m

_
1, and

f" f R K --, R we consider the following boundary value problem:

Ay f(x,y(x),u(x)) in
(2.1) y 0 on F,

where

Ay-- E Ox (aj(X)Oxy(x)),
i,j=l

aj E C0’1() and

(2.2) A > 0 such that aj(x)j

_
AII2 R, Vx .

i,j=l

We recM1 that C’(), with a (0, 1], is the space of all continuous functions in
that satisfy the HSlder condition

sup < +.
Ix -x l

Given two measurable functions L" x R x K R and g" x R R, for
every > 0 we formulate the control problem

[ min JtY, U) f L(x, YtX),utx))dx
(y, u) satisfies (2.1), u(x) e K a.e. x e and g(x, y(x)) Vx e .

We will make the following assumptions on the functions defining the problem
(Ps)" g G C( x R); g, L, and f are continuously differentiable with respect to the
second variable for every (x, u) x K; and there exist functions M1 L(),
s > n/2, and s k 2, M2 G L(), and increasing monotone verifying for every
(x,y,u) R K

(2.3)

If(x, O, u)l + Of (x,y,u)

_
M1 (x) --[-

IL(x, O, u)l + OL(x,y,u) < M (x) + v(l l),
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We will say that a control u Rn is feasible if u(x) E K a.e. x E t and the
mapping (x, y) (f(x, y, u(x)), L(x, y, u(x))) is measurable in t R. The set of
feasible controls, is denoted by U. In this set we define the distance, called Ekeland’s
distance, as

d(, ) ,({x : (x) (x)}),

where rn denotes the Lebesgue measure. Adapting the proof of Ekeland [16] to our
case it is easy to check that (/C, d) is a complete metric space (the only difference
is that we have to check the feasibility of the limit of a Cauchy sequence, which is
immediate from the definition and the fact that a limit of measurable functions is
measurable).

Under the previous hypotheses and thanks to the boundedness of /(, we can
deduce the following theorem.

THEOREM 2.1. There exist constants C1 > 0 and c (0, 1) such that for every
u C equation (2.1) has a unique solution yu H() N C’(-) satisfying

(2.4) IlY’,IIH](U) + IlYul[co,() C1.

 nappin e d) e
Before proving this theorem we state the following lemma.
LEMMA 2.2. There exist a (0, 1), C2, and C3 such that for every a, b LS(t),

a(x) >_ O, the problem

(2.5) { y
+ ay b inon F’

has a unique solution y H(t)N C,() verifying

This result follows from classical estimations in the spaces C’() (Gilbarg and
Trudinger [17] or Stampacchia [22]); see Bonnans and Casas [7] for details. Now we
prove Theorem 2.1.

Proof. The first part of the theorem is also proved in Bonnans and Casas [7]. Let
us prove the continuity of u -- Yu. Let {uk}-i C K: be a sequence converging to
u U, i.e., d(uk, u) ---, O. Denote by Yk and y the states corresponding to uk and u,
respectively. From (2.3) and (2.4) we deduce the existence of M > 0 such that

b(x) f(x, y(x), u(x)) f(x, yk(x), u(x))

satisfies

If(x, ya(x), u(x)) f(x, ya(x),
1/s

Now applying the mean value theorem we get for some function Ok t ---, (0, 1)

Ofix +Ok(y y) u(x))(y y)-bA(y ye) -y y
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Therefore, from Lemma 2.2 and using (2.3) we obtain

IlY- YklIH]() + I[Y- Yk[[CO,(-) <-- M’llbllLS() -- O,

which completes the proof.
Remark 2.3. In order to use Lemma 2.2 in the above proof we have to check that

Of (x, y(x) + O(x)(y(x) y(x)) u(x))

is a measurable function. Although O(x) itself might be nonmeasurable, this is true
because by definition of 0 as

of(x, (x) + ()((x) (x)), (x))

f(x, y(x), u(x)) f(x, yk(x), u(x))
if y(x) yk(x)

(x), (x) (x).u(x)) if

We finish this section by proving a lemma that will be used several times in this
paper. First let us introduce some notation. In the sequel M() will denote the space
of real regular Borel measures in , which is identified with the dual space of C0(),
the space formed by the real continuous functions defined in and vanishing on F.
Let A* denote the formal adjoint operator of A"

A*y 0 (aj(X)Oxy(x)).
i,j=l

LEMMA 2.4. For every function a L(), with a(x) 0 a.e. x , and
every Borel measure e M() there exists a unique solution in W’a(), for all
< /( ), ofo

A*p
y-O onF.

Moreover there exists a constant M > 0 independent of a such that

(.s) ]].() M,]],().

Proof. The existence and uniqueness in W’() of solution p of the above Dirich-
let problem is well known; see Stampacchia [22] or Casas [12]. Let us prove (2.8). Let
t be the conjugate of a, l/t+ 1/a 1, thus t > n. For every W-’t()
(W’())’, the equation

A +
=0 onF

has a unique solution in H() C0(), and proceeding as in [7, Lemma 3.2], there
exists M > 0 independent of a such that
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Hence

p dx p(A + aq)) dx ) d#

which proves the desired inequality.

3. The weak and strong Pontryagin’s minimum principle. In this section
we present the statements of the weak and strong Pontryagin’s principles. First let
us introduce some notation and definitions.

DEFINITION 3.1. We will say that problem (Pe) is weakly stable on the right if

(3.9) lim inf(Ps,)= inf(Ps)

and weakly stable on the left if

(3.10) lira inf(5,) -inf(5).

(5) is said to be strongly stable on the right (respectively, left) if there ezist > 0
and r > 0 such that:

(3.11) inf(P5) inf(P5,) _< r(5’- 6) g6’ [5, 6 + el,

respectively,

(3.12)

If (Ps) is weakly (respectively, strongly) stable on the left and on the right, it will
be called weakly (respectively, strongly) stable.

Sufficient conditions for the weak stability were given by Casas [14] under ad-
ditional regularity hypotheses on the functions L and f. In particular, if they are
continuous with respect to the third variable, L is convex with respect to the same

variable, K is convex and closed, and (Po) has a feasible pair (y,u), then (Ps) is
stable on the right for every > 0. In spite of these results, in general it is difficult
to establish the stability of a problem, mainly the strong stability. However most
of problems (Pe) are weak and strongly stable. More precisely, we get the following
proposition.

PROPOSITION 3.2. Let us denote by 50 a real number such that (P6o) has at least
one feasible pair (y, u). Then for every 5 >_ 50, except at most a countable number

of them (respectively, a set of zero measure), the problem (P6) is weakly (respectively,
strongly) stable.

Proof. If we define " [50, +oc) ---, R by (5) -inf(Ps), then is a decreasing
monotone function and therefore is continuous (respectively, differentiable) at each
point except at most a countable number of them (respectively, a set of zero measure).
Finally it is obvious that the continuity (respectively, differentiability) of at 5 implies
the weak (respectively, strong) stability of (Ps).

Given a number c > 0, we define the Hamiltonian associated to (Ps) by

H(x, y, u, p) aL(x, y, u) + pf(x, y, u).

If c 1, we simply write H instead of H1.
theorems.

Now we can formulate the following
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THEOREM 3.3 (Weak Pontryagin’s principle). Let be a solution of (Ps) in
(C, d), with Yj its associated state. If (Ps) is weakly stable on the right, then there

n and -fi E M(fl) such thatexist- > O, e W’ (fi) for every a <

(3.13) + IlgllM(a) > 0,

OL
A*p- -yOf (x, y(x) (x)) + ---, (x(3.14)
-0 on F,

(x,y(x), +

(3.15) ](z(x) g(x,y(x)))dfi(x) <_ 0 Vz Co(t) with z(x) <_ Yx

and for every v K

(3.16) Ha(x,9(x),(x),p(x)) <_ H-(x,(x),v,(x)) a.e. x e .
Moreover if there exists a Lebesgue measurable set o C , with rn(o) m(), of
such a kind that one of the two following conditions is satisfied

(H1) for each y Co(t) and Vv K the set of Lebesgue points of the functions
x ----, f(x, y(x), v) and x L(x, y(x), v) contains o,

(H2) the functions L and f are continuous with respect to the third variable for
every x o,

then

(3.17) Ha(x, y(x), (x), p(x)) min Ha(x, y(x), v, p(x)) a.e. x
vEK

THEOREM 3.4 (Strong Pontryagin’s principle). Under the assumptions of Theo-
rem 3.3 and assuming that (Ps) is strongly stable on the right, there exist

and-fi M() satisfying (3.14)-(3.16), or (3.17)if the conditions (H1) or (H2) hold,
with - 1.

A first version of these theorems (with stronger hypotheses) was given by Bonnans
in [3] and [4]. Since we will use penalization techniques to prove these theorems, the
stability on the right is the proper condition to obtain the desired result. However
the Slater condition, which is a stability condition on the left, is the usual hypothesis
to derive the optimality conditions (different of Pontryagin’s principle) in a qualified
form; see Bonnans and Casas [6]. Weak stability on the left also was the assumption
in [13] to prove the convergence of the numerical approximations.

4. Hamiltonian formulation of the cost variation. In this section we gen-
eralize some results of [7] that we will use later. Let us denote by h" R ---, R
and R ---, R two functions satisfying the condition that is of class C and h
is continuous, differentiable with respect to the second variable and y0h EC( R).
Now we consider the functional

v(x)) dx).
We are interested in studying this type of functionals because it plays an important
role in the proof of Pontryagin’s principle, the second term being particularized later
to some penalization of state constraints. As in the previous section

H(x, y, u, p) L(x, y, u) + pf(x, y, u).
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In the first part of this section we will assume that the following regularity con-
dition holds:

(4.18) < M(x) + (11) Y(x, y, u) R K,

with M3 E LS(f).
Let u, v E be two controls and yu and yv the associated states. From the mean

value theorem it follows that there exist the intermediate states 9, ), and satisfying

(J h(x, y,(x)) dx) (/a h(x, y(x)) dx)
+’ h(x, (x)) d (x, (x))( (x) (x)) dx,

Off (’, yv, v) f (., yu, v) / _-d-(’, ), v)(y, y),
ay

OL
L(., y,, v) L(., yu, v) + _-d-(’, 9, v)(y yu),

ay

with (x), $(x), (x) lye(x), y.(x)] Vx Ft. Since y and yv are bounded, it follows
that , ), and $ also are bounded. Now we define the intermediate adjoint state p,
as the solution of

(4.19)
of(. , v)p,. + o ,d*p, oy -5- (" l v)+ fa h(x, 9)dx) (x 9)

p, 0 onF.

Note that if u v, then ), ) ) y and p,v p is the adjoint state associated
to u. Let us verify that (4.19) is well posed.

LEMMA 4.1. If (4.18) holds, then equation (4.19) has a unique solution pu,
H() n C’(-) that moreover satisfies

(4.20)

Proof. The proof is a straightforward consequence of Lemma 2.2 and inequalities
(.3).

Now we have the following Hamiltonian formulation of the cost variation.
PROPOSiTiON 4.2. Assume that (4.18) is satisfied, and let u, v lC and p,v be

the intermediate adjoint state associated. Then

](y, v)- J(y, u)+ [H(x, yu(x),v(x),p#(x))- H(x,y,(x),u(x),p,(x))]dx.

Pro@ We have

3(y, v) 3(y, ) f[L(x, y(x), (x)) L(x, yu(x), u(x))]dx
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+ jf [L(x, y(x), v(x)) L(x, y (x), v(x))] dx

+ (fa h(x, y(x)) dx) (J h(x, y(x)) dx)
From (4.19) we deduce

L(x, y(x), v(x)) L(x, y(x), v(x))] dx

+ (] h(x, y(x))dx) (/ h(x, y(x)) dx)
,9(x), v(x))(y,(x) y(x)) dx

(/ ) / Oh
(x (x))((x) (x)) dx+’ h(x,(xl)dx

f [ Of (x (x) (x))p,A*p, 0-- (y y)dx

j / Of (x $(x) v(x))p,,(y y)dxA(y y)p,dx- -y

f If(x, y(x), v(x)) f(x, yu(X), u(x))]p, dx

+ ] [f(x, y(x), v(x)) f(x, y(x), v(x))]p, dx

] If(x, y(x), v(x)) f(x, y(x), u(x))]p, dx,

which proves the proposition.
PROPOSITION 4.3. Assume that (4.18) holds, and let {v}_ C ] be a sequence

converging to u in the topology defined by Ekeland’s distance. Then the states and the
adjoint states associated yk yv and pa pu, converge to y and pu, respectively,

Ho (a) C0,- (fi).
Proof. The convergence yk --, y follows from Theorem 2.1. The convergence of

{pa} follows from the continuity of v p, H (gt) C’(Ft), which can be
proved arguing in a similar way to the proof of Theorem 2.1.

Given a point x0 E t, we will denote

Wk(Xo) {X E : [IX--X0[[ _< l/k}
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and mk(xo) m(wk(zo)) -1. We will say that a sequence {vk} in K: is a spike pertur-
bation of u E/ around x0 associated to v E K if

if x k(Xo),
otherwise.

PROPOSITION 4.4. Assume that (.18) holds, let v be a spike perturbation of
u around xo associated to v K, and let yk be the associated state. Then for every
u e h: there exists a set t(u, v) C , with m(f(u, v)) m(), such that

lira mk(xo)[Y(yk, v) Y(Yu, u)]
k----

H(xo,y(xo),v, pu(xo))- H(xo, Yu(Xo),u(xo),p(xo)) Vx0 t(u,v).

Proof. From Proposition 4.2 we have

2(,) 2(, ) (xo) [H(x, y(x), v,pk(x)) H(x, y(x), u(x),p(x))] dx,

where pk P,-k converges to p,, in H(ft)C’l C’() as stated in Proposition 4.3.
Then

3(,) 2(,) f(xo) [H(x,y(x),v,p(x)) H(x,y(x),u(x),p(x))]dx

f(x, yu(x), v)(p(x)-p(x)) dx + f(x, yu (x), u)(x)(p(x) -pk(x)) dx.

Let Ft(u, v) be the intersection of the Lebesgue points of the following mappings"

x f(x, y(x), v),
x ---, f(x, y(x), u(x)),
x H(x,y(x),v,p(x)),
x --- H(X,u(X),(x),()).

Then m((u, v)) m(f). Now using the uniform convergence of pk -- p,, it follows
that for every x0 E (u, v)

f (x, yu(X), v)(p(x) pk(x)) dx

Analogously

< m(xo) If(x, y(x), v)l dxllp PalIL(a) --* O.

’m(xo) f(x, yu (x), u(x))(p(x) pk(x)) d
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If(x, yu(x), u(x))l dxllpu PkllL(a) - O.

Therefore we deduce that

lim mk(xo)[(y, v) (y, u)]

f
lim ma (x0) ]
k- Y.k(xo)

[H(x, y (x), v, pu(x)) H(x, yu(x), u(x), p(x))] dx

H(xo,(xo), v,(xo)) H(xo,,(xo), (x0),(0)),

which concludes the proof.
The last proposition allows us to deduce easily Pontryagin’s principle for control

problems without state constraints. In fact it is enough to suppose that E K: is a
stationary point to derive a minimum principle.

DEFINITION 4.5. We say that - is a stationary point of the control problem

min (y, u)(P) (y, u) satisfies (2.1) and u(x)

lim inf
(,)o d(u,)

2(, )- 2(,) > o.

Obviously, every local solution in (C, d) is a stationary point. Now we can prove
the following proposition

PROPOSITION 4.6. Let us suppose that (4.18) holds, and let be a stationary
point of (P). Then for every v K

H(x,(x),(x),p(x)) <_ H(x,(x),v,p(x)) a.e. x ,
where and are the state and adjoint state associated to -. Moreover, if condition
(H1) or (H2) is verified, then - satisfies Pontryagin’s principle:

H(x,(x),(x),p(x)) minH(x,(x),v,(x)) a.e. x
vEK

Proof. The first part of the proof is an immediate consequence of Proposition 4.4;
it is enough to remark that d(vk,) <_ mk(xo) -1. To derive Pontryagin’s principle
under condition (H1) we use the fact that the set Vt(,v), defined in the proof of
Proposition 4.4, contains the intersection of Ft0 and the set of Lebesgue points of the
functions:

x f(x, y(x), (x)),
x H(x,y(x),(x),p(x)).

Indeed the continuity of p and condition (H1) imply that ft0 is a subset of the Lebesgue
point set of the functions:

x f(x,y(x), v),
x H(x,-(x), v, (x)).
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Therefore

H(x, y(x), (x), (x)) <_ H(x, y(x), v, p(x)) gx to and gv K.

Then

H(x,(x),(x),(x)) minH(x,-(x),v,p(x)) Vx o.
vEK

In the case of (H2), let us take a sequence {vk}_-i dense in K and al
Cft(g, vk). Then

H(x,-(x),(x),(x)) <_ H(x,y(x),va,(x)) Vx [t and Vk.

Finally the continuity of the Hamiltonian with respect to the control and the last
inequality imply Pontryagin’s principle in the points x E f0 Cl fl. 71

We now get rid of the regularity hypothesis (4.18).
PROPOSITION 4.7. Let be a local solution of (P). Then the conclusions of

Proposition 4.6 remain true without hypothesis (4.18).
To prove this proposition we will use Ekeland’s principle.
TH,Oa,M 4.8 (Ekeland [16]). Let (E,d) be a complete metric space, F E

R U {+oc} be a lower semicontinuous function, and let e E satisfy

F(e) <_ inf F(e)q-e2.
eGE

Then there exists an element- E such that

_< <_

and

F([) <_ F(e) + ed(e,[) Ve E.

Now we proceed to prove Proposition 4.7.

Proof. The idea is to regularize L and to check that g is an approximate solution of
the regularized problem. Using Ekeland’s principle we get some optimality conditions
as in Proposition 4.7 and finally pass to the limit in these optimality conditions and
get the desired result.

The regularization is as follows. By Proj we denote the projection onto the
segment [-I/e, +I/el, i.e.,

Proj(t) max{-1/e, min{t, +l/e}}.

We define

(0L )p(x, t, u) Proj -y (X, t, u)

and

L(x, t, u) L(x, O, u) + (x, t, u) dr.
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We can now state the problem

(P)
min (y, u)=/ L(x,y(x),u(x))dx+c (/a h(x,y(x))dx)
(y, u) satisfies (2.1), u(x) e K a.e. x e ft.

We claim that inf(P) -- inf(P) when e 0. To prove this it is enough to check
that

(4.21) IJ(y, u)- 2(y, u)l r Vu K and (y, u) satisfying (2.1),

with r 0 when e 0 and r independent of u. Indeed, if ue satisfies that
J(y, u) inf(P) + a, y being the state associated with u, then by, (4.21)

liminf inf(P) liminf(Y(y, u)-e) liminf(j(,)- r)- inf(P)
e0 e0 e0

and also

limsup inf(P) limsup J(,) limsup[(,)+ r]- inf(P),
e0 e0 e0

which proves that inf(P) inf(P), as desired. Now let us check that (4.21) holds.
Indeed

L(x, y, u) L(x, y, u) (x, t, u) (x, t, u) dt.

Let M > 0 be such that [y(x)[ M whenever (y, u) is solution of (2.1) and u e .
Then

/; f+M OL
(x t, u(x)) dt dxI(, ) (, )1 (x, t, (x))

J-M

OL
(x t, u(x))t, dx dt

Put

As

f
< 2M [ sup

Itl <_M, vK

oL
(x t,

sup

OL

it follows that m(Ft) x, 0 as e "% 0 and

dx.

OL
(x t, u(x)) 1}

< -5/2 L(f),

2M/ M2(x)dx -- O.
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As a consequence of the previous results, we can get a family of real numbers
{6}>0, with 6 "% 0 when e 0, such that

Z(, ) _< inf(P) + 5.
Therefore we can apply Ekeland’s principle with F(u) ](yu,u) defined in the
complete metric space (K:, d) and deduce the existence of a control u E/ such that
d(, u) _< 5 and

(4.22) ](y, u) < ,](y, u) + 5d(u, u) Vu 1,

where y is the state associated with u. To apply Proposition 4.6 we must put
the cost given by the right-hand side of inequality (4.22) into the framework of this
proposition. For it we introduce the function X ft x K R by

X(X, V) { 0 ifv-u(x),
1 otherwise.

Then (y, u) is the solution of the problem

min (y, u) j(y, u) + (5 ] X(x, u(x))
(Q)

(y, u) satisfies (2.1), u(x) K a.e. x e f.

Then Proposition 4.6 implies that for every v K

H(x,y(x),u(x),p(x)) < H(x,y(x),v,p(x)) + 6 a.e. x

where p is the adjoint state

(4.23) I OL--z-Of (x, y u)p + (x, y u) in ft,

p 0 on F

and

(4.24) H(x, y, u,p) L(x, y, u) + pf(x, y, u) + 5X(x, u).

From Theorem 2.1 it follows that y --. y in H(f)ffl C’(f). Then, thanks to
hypothesis (2.3) and the definition of L, we have

f(x, y, u) --, f(x, , ) Of (x,y u) --, Of (x,,) in Land yy yy

L(x, y, u) --, L(x,-, ) OL OL
(x,-,and --y (x,y,u)

With the aid of these relations and Lemma 2.4 we can pass to the limit in (4.23)
and (4.24) and deduce the first conclusion of Proposition 4.6. To prove the second
conclusion, i.e., the Pontryagin’s principles, we argue as follows. Under condition

(H2), the argument used in the proof of Proposition 4.6 can be repeated here without
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modifications. If condition (H1) is satisfied, then, thanks to Proposition 4.6, we can
take a sequence ej "N 0 and 5j 5j 0 such that

Hj (x, yj (x) uj (x),p (x)) < min H (x y (x) v, p(x)) + j a.e. x e j,
vK

with () m(). Now we pass to the limit and get

H(x,(x) (x) (x))- minH(x,y(x), v (x)) a.e. x j,
vK

which concludes the proof because m()
THEOREM 4.9. The statement of Proposition 4.6 is still valid without hypothesis

(4.18).
Proof. From the definition of stationary point we deduce that for every > 0

there exists r > 0 such that

2(u,) 2(y,)
d(,) - w (),

where B() is the open ball of ( d) of radius r and center at . Hence

(,) (, ) + [ x(x, ())dx W e (),

with

f 0 ifv-(x),X(x v) 1 otherwise.

Then it is enough to apply Proposition 4.7 to the problem

min .](y, u) + e X(x, u(x)) dx,

and pass to the limit when e "N 0 to deduce the desired result.
The hypotheses made about K, L, and f do not allow one to assure the existence

of a solution of control problem (P). Here we will prove a principle of Pontryagin’s
type for e-solutions.

DEFINITION 4.10. A control u E 1C is called an e-solution of (P) if
Y(, ) < nf(’) + .

THEOREM 4.11. For every e > 0 there exists at least one eg-solution of (P) in
IC. Furthermore for every e2-solution of (P), , there exists another e2-solution u
such that d(u,) <_ e and for every v K

H(x, y(x), u(x),p(x)) < H(x, y(x), v, p(x)) + e a.e. x ,
where y y and p p.. Moreover, if there exists a Lebesgue measurable set

to C , with rn(fto) rn(2), in such a way that (HI) or (H2) holds, then satisfies
Pontryagin’s principle:
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Proof. Thanks to hypothesis (2.3), we have that inf(P) E R. Therefore there
exists at least one e2-solution of (P). Let be one of them. Then we can apply
Theorem 4.8, with F(u) 3(yu, u) defined in the metric space (/C, d), and deduce the
existence of a control u E/C, e2-solution of (P), such that d(u,) <_ e and

(4.25)

Now we put the cost into the framework of Proposition 4.7, using the function
as in its proof, and apply it to get the result.

5. Proof of the weak minimum principle. Let be a solution of (Pe) and
its associated state. For every -y > 0 we define the problems

min Jv(y,u) L(x,y(x),u(x)) + -((g(x,y(x)) -5)+) 9. dx

(y, u) satisfies (2.1) and u(x) e K a.e. x e ft.

The first issue to remark is the following.
PROPOSITION 5.1. Let (Pe) be weakly stable on the right. Then

lim inf(O-r) -inf(Pe).

Pro@ Let {u-r} be a family of -y-solutions of problems (Q-r) and {y-r} be the
associated states:

J(y-r, u.r) < inf(O-r) +

From the definition of (Q-r) it follows that (g(x,y-r(x))- 5)+ --+ 0 in LU(ft), which,
together with (2.4) and the compactness of the inclusion H(Ft) C C’(Ft) C C0(f),
implies the convergence (g(x, y-r(x)) 5)+ -+ 0 in C0(ft). Therefore

As (y-r, u-r) is a feasible pair for (P5) we deduce that

inf(P5) <_ J(y-r,u-r) <_ inf(Q-r)+

Then, using the weak stability of (Pe) on the right, we obtain

lim inf(Q-r) _< inf(P5)inf(P5) lim inf(P5) <_ lim {inf(Q-r) + "7}
-\0\o \o

with the last inequality due to the fact that (yu, u) is feasible for (Q-r) whenever it is

feasible for (P), with the same cost.
2Proof of Theorem 3.3. Thanks to Proposition 5.1 we deduce that g is a %-solution

of (Q-r), with e "N 0 when -y "N 0. Applying Theorem 4.11 we obtain the existence
of a control u-r /C, e2-solution of (Q-r), with d(u-r,-) <_ % and such that for every
vK

H(x,y-r(x),u-r(x),p-r(x)) < H(x,y-r(x),v,p.r(x))+e-r a.e. x E ft,
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where y y and p is the adjoint state"

OL 1 OgOf (x, u,)p. / (x, u) / (g(x, y) 5)+A*p yy y, y y, yy (x, y) in

p 0 on F.

Defining

( 1
-& 1 + I[-(g(x,y.)- 5)+

-1

and p,

we get

OL OgA p/ -oOf (x, y/, u.)p../ + -&./ -y (x, y., u.) + -fi. -y in ft,

0 on F,

and for every v E K

(5.28) H-(x,y,(x),u.(x),(x)) < H-(x,y(x),v,.(x))+% a.e. x E ft.

If "x 0, then d(u/, ) < % ---, 0; therefore from Theorem 2.1 we get y --, in
H() C’(). Now using (2.3), we deduce the convergences

f (x, y/, u) ---, f (x,-, ), of Of (x ,g) in L--(x, (a),

L(x, y.,/, u.) L(x, , ),
OL
Oy--(x y, u)--

/)L
(x ,g)in L(ft)

Applying Lemma 2.4, we obtain the following estimation for p"

OgOL
(x, u) + -fi. (x (x))llM < M’

for every cr < n/(n- 1). Therefore, remembering (5.26), we can extract subsequences,
denoted in the same way, such that - g in M(ft) *weakly and p --, weakly
in W’ (ft). From Rellich’s theorem (Adams [1]) it follows that p --, strongly in
Lq(ft) for each q < n/(n- 2). Then

O
y

x y. u. p. -YOf x p in L (f).

We can pass to the limit in (5.27) and derive (3.14). Relation (3.16) follows from
(5.28). Relation (3.15) is obtained as follows: for every z C0(ft) with z(x) <_ 5 for
all x ft

(z(x) g(x, (x))) d-fi(x) lim c--7% (z(x) g(x, y(x)))(g(x, y(x)) 5)+ dx < O.
o
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It follows that

(,g(.,)} max{(,z} z E Co(a),z(x)

_
5};

hence, is nonnegative and the value of the max is 511-fillM().
To obtain (3.13) it is enough to remember (5.26) and remark that

1
I111() <, g(., )> lim

1

0 (7,g(’,Y)) lim [][M(a).
0

Finally we must prove (3.17). If we assume that (H1) is satisfied, then, thanks to
Theorem 4.11, (5.28) can be written as

H (x, y(x) uT(x), p7(x)) rainH (x, yT(x) v, p7(x)) + e a.e. x
vK

Taking a subsequence {7}=1, we pass to the limit as above and get (3.17).
If (H2) is satisfied, we can argue as in the proof of Theorem 4.9 to conclude

(a.l).
6. Proof of the strong minimum principle. In this section we establish the

existence of a certain link between the stability of the cost with respect to small
perturbations of the feasible state set and the viability of the exact penalization
procedure of the state constraints. In the context of the abstract optimization Burke
[11], generalizing an idea of Clarke [15], proved an equivalence result between stability
and exact penalization. Since we are assuming the hypotheses of Theorem 3.4, we
have that (Ps) is strongly stable on the right and (, ) is a solution of this problem.
Now we consider the exact penalization of state constraints.

PROPOSITION 6.1. If r > 0 satisfies (3.11), then is a local solution in (, d) of
the penalized control problem

min J() [ L(x, V(x), (x)) x + l((x,) )+,
u.

Proof. From (3.11) it follows that

inf(Ps) inf {J(y, u) + r(5’ 5): u , g(x, y(x)) <_ 5’, 5’ e [5, 5 + ]}.

Minimizing first with respect to 5 for fixed u we find

inf(Ps) inf {J(yu, U) + r]l(g(x,y -5)+ll u e , g(x,y(x)) <_ 5+e}.
Since the mapping u (K:, d) ---, y e C0(t) is continuous, we deduce the existence
of a ball B(),/ > 0, such that

II(x,)ll < + w e B(),

which together with the previous identity proves that is a local solution of the
penalized control problem.

Take ,k > 0 as in the proof of the previous proposition and r > 0 verifying (3.11).
We introduce the problem

(Q) / min J(u) fa L(x, y(x), u(x)) dx + rll(g(x y) 5)+11,
u e B().
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Then is a solution of this problem. We passed from a state-constrained control
problem to another control problem without state constraints. The difficulty in this
new problem is that the penalization term is not differentiable. To overcome this
difficulty we define

and

Jr,q(U) ] L(x, yu(x), u(x)) dx + r q-q + [(g(x, yu(x)) 5)+] q dx

min Jr,q(U)(Q,) u B(),

with q > 1. Note that (Qr,q) has a differentiable cost and, moreover, it represents an
approximation of (Qr) given in the following proposition.

PROPOSITION 6.2. The following identity holds:

inf(Qr) lim inf(Qr,q).

Proof. From the convergence IIllzq<> Ilzll for every z E L(Ft) and the
inequalities

( )l/qII((x,) e)+ll() <_ q- + [((x, (x)) e)+]dx

1

we deduce that Jr,q(U) -- Jr(u) when q -- +oe. Therefore for every u E B(g)

hence,

limsup inf(Qr,q) _< limsup Jr,q(U) Jr(u);
q-++ca q-++cx

(6.29) limsup inf(Qr,q) <_ inf(Qr).

Now we prove the converse inequality. Let us take e > 0 arbitrary, and let C1 0
be the constant given in Theorem 2.1. Since g" x R ---+ R is continuous, it follows
that the existence of a constant p (0, e) such that Vx, x’ t

(6.3o) Ig(x, t)- g(x’, t)l < e if Ix- x’ _< p and Itl _< C1.

Moreover we assume p small enough in such a way that m({x "lxl <_ p}) < 1. Now
we define tp(x0) t r Bp(xo). Since the boundary of F is Lipschitz, there exists a

number/ (0, 1) verifying

.(a.(.0)) _> .({..Ixl _< v}) Vx0 e a.

On the other hand, from the continuity of we deduce the existence of another
constant M > 0 such that

(6.31) Ig(x, t)] + 0 (x, t) V(X, t) X [-C1, qLC1].
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Pick u e B(). If II(g(x,y,)-5)+11oo 0, then J.,q(U)= J.(u). Let us suppose
that [[(g(x, y)- 5)+ I1 > 0, and take x0 E verifying

(g(x0, y,(xo)) ,5) + (g(x, y)

Then for each x E Ftp(X0) we get with the aid of (2.4), (6.30), and (6.31) that

I(*, w(*)) v(xo,

_< I(x, v(x)) (o, w(x))l + I(xo, w,(x)) (xo,

<_ + Mlv(x) w(*0)l < + MC,p <_ M’;

hence,

((, w(x)) )+ _> ((xo, w(o)) M’)+ Vx e ,(xo).

Therefore, we obtain

[](g(x, Yu)--5)+[[Lq()>-- (j,(xo) [(v(x, w(x)) )+1 dx)
/

m(,)(xo))/q((xo,y(xo)) m’d+ II(g(x,y) )+11oo

+(m((x0))*/ 1)ll((x, w) )+11oo ]vIt-wt(p(Xo)) 1/q

II(g(x, y) )+11 + M(((x0)) 1/q 1) M’e.

Choosing q > 1 such that

1 m(tp(Xo))1/ < 1 -[/3m({x "lxl < p})]l/v < e Vq > q,

it follows that

II(g(:, y)- )+IIL<) II(g(x, Y,)- )+11o -(M + M’) Vq > q.

We have proved that

j,() > j() -(M + M’)

for each u Bx (g) and all q > q; hence,

liminf inf(Q,v) > inf(Q)- (M + M’)e

for e > 0 arbitrary; consequently,

(6.32) lim inf inf(Q,q) >_ inf(Q).
q--++oo

So the proposition follows from (6.29) and (6.32). 13
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2Proof of Theorem 3.4. Thanks to Proposition 6.2 we deduce that is an eq-
solution of (Q,q), with eq + 0 as q - ec. Then Theorem 4.11 states the existence of
a control Uq E/C, with d(uq, ) 5 eq, satisfying for every v E K

(6.33) H(x, yq(x),uq(x),pq(x)) < H(x,y(x),v, pq(x)) +Q a.e. x ft,

where yq -Yu,, and pq is the adjoint state:

(6.34)
OL Og

(x, yq) inOf (x, yq, u)pq / (x yq, uq) / #q

pq 0 on F,

with

+

Now we must pass to the limit. From d(uq,) <__ eq 0 and Theorem 2.1 we
obtain that yq in H0 (ft)C C’(). On the other hand, from the definition of #q
we get

(/ftII#qllM(a) II,qllnl(a) <_ r [g(x, yq(X))/] q dx [g(x, yq(X))/]q-1 dx

1-q )+ q-1

Applying HSlder’s inequality with exponents q/(q- 1) and q it follows that

IlZllLq-l(> m()l/qllzllLq( Vz Lq(),

which together with the previous relation leads to

As in the proof of Theorem 3.3, the boundedness of {q}q_>l, the convergence of

{(yq,Uq)}q>_l, and assumptions (2.3)imply the boundedness of {pq}q>_l in
for every a < n/(n- 1). Therefore we can extract subsequences {Pqk } and {#qk }, with

qk -- +oc, converging to p and in W’ (Ft) weakly and M(ft) *-weakly, respectively.
Now it is easy to pass to the limit in (6.33) and (6.34) and to obtain (3.16) and (3.14).
As in the proof of Theorem 3.3 we derive (3.15) from the definition of #q.

Finally, as stated in Theorem 4.11, under conditions (H1) or (H2) given in The-
orem 3.3, the relation (6.33) becomes

H(x, yq(x),uq(x),pq(x)) minH(x, yq(x),v,pq(x)) + eq a.e. x Ft.
vK

Therefore, passing to the limit in this inequality, we get (3.17).
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7. Pontryagin’s principle in the control of variational inequalities. In
this section we will consider the following control system:

(7.35)
Ay / (y) f(x, y(x), u(x)) in
y=0 on F,

where A and f are as in 2 and/ is a maximal monotone graph in R R (see Brezis

[10] and Barbu [2]) such that dom() 0. The control problem is

f

(y, u) satisfies (7.35), u(x)e K a.e. x e t and g(x, y(x)) <_ Vx e .
We keep the assumptions stated in 2 on the data of this problem. Then we have

the following result about the state equation analogous to Theorem 2.1.
THEOREM 7.1. There exist constants C5 > 0 and c E (0, 1) such that for every

u E K: (7.35) has a unique solution y H();3 C’(-) satisfying

(7.36)

Furthermore the mapping u e (/C, d) ---, yu H() A C’(-) is continuous.

Proof. We may assume that /3(0) 0. If dora(/3) R and / is Lipschitz and
of class C1, the result is consequence of Theorem 2.1. When 8 is a general maximal
monotone graph in R R it is enough to apply the standard procedure that consists in

approximating (via Yosida’s approximation and convolution with a smoothing kernel:
see [2]) with a Lipschitz C monotone function 3. In this way we obtain solutions

e of

Ay + (y) f(x, y(x), u(x)) in
y=0 on F.

In order to pass to the limit and derive (7.36) we need a uniform estimate of y in

H(t) A C’(). Using the mean value theorem we can write

with I)(x)l <_ ly(x)l and I(x)l _< lye(x)] for all x . Hence

Ay+ /())(x))- yy
y=0 on F.

y f(x, O, u(x) in f,

Now applying Lemma 2.2 to the above equation we get a uniform estimate of y in

H(ft) Cl L(ft). Then hypotheses (2.3) on f imply that {f(x,y(x),u(x))}>o is

uniformly bounded in LS(Ft). On the other hand, arguing as in [9, Appendix] we also
deduce the boundedness of {/(y)}>0 in LS(ft). Therefore {Ay}>0 is uniformly
bounded in LS(f); applying Lemma 2.2 again we obtain the desired result.

The aim of this section is to prove Pontryagin’s principle for control problem (Ph).
For this purpose we need the following approximation scheme. First let us observe
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that Proposition 6.1 is still valid and consequently there exists a number A > 0 such
that g is a solution of the problem

(Q)
rain J(u) ] L(x, yu(x), u(x)) dx +  ll(g(x, 5)+11,
u B().

Here Yu denotes the solution of (7.35) corresponding to the control u.
The next step consists of approximating (Q) by a new control problein with a

differentiable cost functional and a state equation with a C monotone term/q(y).
Let us begin with the last question. Following Bonnans and Tiba [9] we will say that a
maximal monotone graph in R x R q, with q > 1, is an (1/q)-uniform approximation
to if/q satisfies the following two conditions:

1. /(t + l/q) >_/q(t) >_ (t- I/q), Vt E R,
2. dom(/3q) D dom(/3).

Here we view/3 and/3q as multivalued operators extended on R with values -oc on
the left of their domains and +oc on the right of their domains, and the inequality
for sets means

>_ r >_ v, V E /3(t + I/q), r lq(t), v (t-1/q).

A constructive procedure for (1/q)-uniform approximations of class C was given in

[9], and the following result was proved.
PROPOSITION 7.2. Let u . Then the problem

Ay + q(y) f(x, y(x), u(x))
y=0 on F

has a unique solution Yq,u H(’)N Ca(-) and IlYq,u- Yulloc -- 1/q.
Now we consider the following approximation of (Q):

min J q(U)(Q) u Bx(),

where

J,q(U) L L(x, yq,u(x), u(x))dx + r q-q + [(g(x, yq,u) 5)+] q dx

PROPOSITION 7.3. The following identity holds:

inf(Q) lim inf(Q,q).
q---

Proof. With the aid of Proposition 7.2 we get
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m()1/q + 1<- II1((,,) )+11() -II((x,p) )+111 + - o q .
q

Therefore we can argue as in the proof of Proposition 6.2 to deduce that

(7.37) lira sup inf(Q,) inf(Q).
q

Let us prove the converse inequality. Let Ca > 0 be the constant given in Theorem
7.1. From the properties of g we obtain

o ( t) < M V( t) x [-C5 +C](7.38) Ig(,t)l +

for some constant M > 0. Applying the mean value theorem and using the hypotheses
(2.3), (7.38), and Proposition 7.2 we get for some constant M and all u B()’

z(, ,(), ()) & + - + [((, ,) 5)+] &

>_ L(x, y(x), u(x)) dx + r q-q + [(g(x, y) 8)+] q dx
q

Therefore

The proof is concluded by noting that the second term of this inequality is greater
than or equal to inf(Q), which is proved exactly in the same way than in Proposition
6.2. S

Now we are ready to state the extension of Pontryagin’s principle.
THEOREM 7.4. Let - be a solution of (Ps) in (/C, d), with - its associated state.

If (P) is strongly stable on the right, then there ezist X E W-1’ (2), W’ (f)
for every < -, and-fi M() such that is a limit point in W-’(f) weak of
{()v},

OgOf OL
(x, y(x) (x))+ (x 2(x)) ind*p + X -’ (x’ (x)’-(x)) + -y -y(7.39)

p 0 on F,
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(7.40) (z(x) g(x,-(x))) dfi(x) <_ 0 Vz E Co() with z(x) <_ Vx e ,
and for every v K

(7.41) H(x,(x),(x),(x)) <_ H(x,-(x),v,(x)) a.e. x t.

Moreover if conditions (H1) or (H2) of Theorem 3.3 hold, then

(7.42) H(x,(x),-(x),(x)) minH(x,(x),v,(x)) a.e. x e .
vEK

Proof. This theorem can be proved in the same manner as Theorem 3.4: applying
Proposition 7.2 we deduce that g is a solution of (Q) and then Theorem 4.11 provides

2-solution Uq The adjoint state corresponding to Uqa minimum principle for an eq
satisfies the equation

OL OgOf (x, uq)pq / (x Uq) / (x, yq) in

pq 0 on F,

with

tq r q-q / [(g(x, yq(X)) ()+]q dx [(g(x, yq)

The passage to the limit is carried out as in the proof of Theorem 3.4 with the only
modification due to the term (y)p. That {#} is bounded in Ll(t) can be proved
as in 7; therefore, the boundedness of {pq} in W’S() is a consequence of Lemma
2.4. Finally from the adjoint state equation it follows that {(y)p} is bounded in

W-I’(), for all a < n/(n- 1). Then there exists a subsequence, denoted in the
same way, and an element X W-’(t) such that/(y)pq --, X weakly in
when q --, c.

Remark 7.5. Additional information on X can be derived from Theorem 7.4 for
particular choices of ft. For instance if fl is Lipschitz near Y0 E R and x0 is such
that y(xo) y0, then X(x) Ofl(y(x)) with Ofl the Clarke gradient [14] of fl, for x
close to x0. See, for example, [9] for other illustrations.
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A NONCONVEX VARIATIONAL PROBLEM
WITH CONSTRAINTS*

MICL AMAR* AND CARLO MARICONDA*

Abstract. A multidimensional version of Liapunov-type theorems is proven. As an applica-
tion, it is proven that, under proper hypothesis on the possibly nonconvex function f, the problem

minf[ f(u’(t))dt on the subset of WI,p([O,T],n) of those functions u satisfying the prescribed
boundary conditions and whose trajectory lies out of a prescribed open subset of n admits at least
one solution.

Key words, relaxed problem, bipolar, Liapunov, simplex, convex, extremal point

AMS subject classification. 49A05

1. Introduction. The most general scalar problem that has been investigated
without the classical Tonelli convexity condition on the function h(t, s, ) is that
of minimizing

(P’) minI(u)=min{joT
t e WI’p [O, T], In),

h(t, u(t), u’(t)) dt
u(O) a, u(T) b.

Under differentiability assumptions on the integrand, this problem was studied by
Aubert and Tahraoui in [2] and [3], Raymond in [11], and Tahraoui in [13].

In the case h(t, s, ) g(t, s)+ f(t,), this problem was studied by Olech (see
[10]), Marcellini (see [8]), Cellina and Colombo (see [4]), and Raymond (see [12]),
under weaker assumptions on the regularity of g and f.

In particular, in [4] the main tool is a Liapunov-type theorem, which allows the
modification of a solution to the convexified problem in order to obtain a solution of
the original one. The same technique has also been used in [12] and [9].

For n 1, i.e., for functions with values in I, a more precise version of Liapunov’s
theorem has recently been given in [1].

THEOREM 1.1. Let (I): [0, T] -- 2 be a measurable rnultifunction with values in
the closed intervals of I. Then for each integrable selection t’ of O(t), there exists a

measurable selection t’ with values in the extreme points of O(t) such that foT t’(t) dt

f[ (t’(t) dt and for each t E [0, T], (t) _< (t).
This result has been successfully applied in [5] in order to prove that there exists

a dense subset D of C([0, T],I) such that, for g in it, the problem of minimizing

foT g(u(t))dt + foT f(u’(t))dt does always admit at least one solution for each f satis-
fying growth conditions.
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A more than one-dimensional version of the above Liapunov type lemma does not
hold, in general.

Ezample. Let n- 2, T 1, (t)= {,X(1, t) ,X [0, 1]}, ’(t)- (i(t), (t))=
(1/2, ()t) (t) a.e. in [0, 1]. Assume, by contradiction, that there exists g’(t)
(ff’(t), ff’(t)) {(0, 0), (1, t)} a.e. such that

(1.1) ’(t)dt ’(t)dt,

(1.2) g(t) g(t) for a.e. t [0, 1],
(.3) (0) (0).

Then there exists a measurable subset E of [0, 1] such that

’(t) (0, 0)[0,1]E + (1,

whence, (t) tg](t). Conditions (1.1) and (1.3) and integration by parts of the
second component give

1 (t) dt 1 (t) dt

This is a contradiction.so that, by (1.2), g (t)- (t), i.e., XE- .
Neverthless, we prove here that a multidimensional version of the above theorem

holds if the measurable function is identically equal to a convex bounded subset of
N. As an application, we study the problem of minimizing

Tf(u’(t))dt

on the subset of W’P([O,T],R) of those functions u satisfying prescribed boundary
conditions and whose trajectory lies out of a prescribed open subset of

2. Notation and preliminary results. In the following, F will denote an open
convex poligone contained in R and, given a, b R F, K will be the set of those
functions " [0, T] R that are in the Sobolev space WI’p((0, T),N) (p 1) and
such that (0) a, u(T) b.

Given a set A, we denote by OA the boundary of A, by extra the extremal points
of A, and by meas(A) the Lebesgue measure of A. Finally, given two vectors Vl and

v of R, we denote by Vl.V the usual scalar product in R and by IVll the euclidean
norm of v in Rn.

Let f R R be a nonnecessarily convex and lower semicontinuous function
that satisfies the following growth conditions:

clp-c f() VN if p> 1,
() ()- f()

where c and c are real positive constants and ’[0, +) [0, +) is a convex

and lower semicontinuous function such that lim+ () +.
Given a function f, we denote by f** its bipolar function.
LEMMA 2.1 (see, for instance, [6, Prop. 1.4.1]). Let f R R be a lower

semicontinuous function. Then f** is the greatest lower semicontinuous and convez

function not greater than f.
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Let us consider the set

(2.1) E { IR f**() < f()}.

In the following, we shall assume that E LJie Ai and f** is affine on every Ai,
where Ai is a convex open and bounded subset of IR.

Notice that, while the hypothesis on the structure of E is quite natural, the
hypothesis on the form of f** on every Ai is a technical hypothesis, which is automat-
ically satisfied only in the scalar case (i.e., when n 1). On the contrary, when n is
strictly greater than one, this hypothesis is not always fulfilled.

LEMMA 2.2. Let A be a simplez in Rn, I C_ [0, T] be a measurable set, u

[0, T]--, A be a measurable function, and r] be a fized vector in IR. Then there ezists
a measurable function, co [0, T] -- extr A depending on u, A, and r], such that

(2.2) fia(s) ds fiu’(s) ds,

(2.3) Vt [0, T] [co(s). rx/(s)] ds > It’(s). rx/(s)] ds.

Proof. Let vo,..., v be the n+ 1 vertices of the simplex A; then u’ (s) po(s)vo +
+p(s)v for a proper choice ofp0,... ,p [0, T] ---, [0,1] withp0(s)+... +p,(s)

1. Moreover, for every 0,..., n, let us define ai := vi.r/. Without loss of generality,
we may assume that a0 > > a,.

We shall prove that there exists a measurable partition E0,..., En of I such that

(2.4) meas (Ei) .r pi(s) ds V 0,...,

(2.5) E aiPi(S)XI(8) ds <_ E aiXE (8) ds Vt [0, Z].
i=0 i=0

It is clear that, setting w(s) Ei=o vi)iEi(S), (2.2) and (2.3) follow from (2.4) and
(2.5). In order to prove (2.4) and (2.5), we proceed by induction. When n 0, we

have that po(s) =- 1; and if we set E0 I, the thesis is trivially satisfied. Let us

assume now that n > 0. Let 0 to < tl < < tn+l T be a partition of [0, T] such
that

fti+l fI 0,...,

Such partition exists since po(S) +.." + p(s) 1. Let us define

[t0,t ] n n v 0,...,

First, by the very definition of E, (2.4) trivially holds. In order to prove (2.5), we

proceed as follows.
Let us define

/)i=Ei, 15i=pi Vi=0,...,n-2,

/n-1 /n-1 U En, /5n-1 P-I + P.
n--1 n--1Clearly, U=o I, }--i=0 pi 1, and (2.4) is satisfied by i and i5i for
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0,..., n- 1. Moreover, the hypothesis of induction assures that

tn-1 tn--1
(2.6) ] Eaixk(s) ds>- fo Eaii(s)xr(s)ds"

i=0 i=0

Assume that t <_ tn. We observe that, in this case, En fq [0, t] 0; hence for every
i-0,..., n- 1 we have that Ei fq [0, t] =/i fq [0, t]. Then, by (2.6), it follows that

n tn-1

fO EaiXE(s) ds= fo EaiXE(s)ds
i=0 i=0

tn--1

fo Eaixi(s)ds>- fo aii(S)Xl(s)d8
i=0 i=0

>_ aiPi(S)Xe(8)d8.
i--0

Assume now that tn < t <_ T. Then

n--1

fO EaiXE(s)ds= Eaimeas(Ei)+ ftnanXE(s)ds
i=0 i=0

n--1 T

E ai fo pi(s)XI(s) ds + ftn anXEn (s) ds
i=0

tn--1

an [ft Tn-1 fOt>_ +
i=0 i--0

t an [ftn -1[ aipi(s)xi(s) ds + E pi(s)X,(s) ds + pn(s)xi(s) ds
i--0 i--0

tn--1 T

fO Eaipi(s)xI(s)ds+anmeas(En)-an ft pn(S)XI(s)ds
i=0

aiPi(S)XI(8 d8 + anPn(S)XI(8 d8 aiPi(S)Xi(8 d8.
i--0 i---0

Hence, also (2.5) holds and the lemma is proved.
LEMMA 2.3. Let A be an open convex bounded subset of In. Then A can be

covered by a countable family of simplexes whose vertices are contained in the boundary
of A.

Proof. Let x,... ,zn+ be n + 1 points of the boundary OA of A, such that they
generate a closed (n + 1)-dimensional simplex denoted by $1. We denote by Fi (for

1,...,n + 1) the face generated by

{Xl,... ,gi, ,Xn+l}

and let q be a point of Fi such that

d(qi, OA) max{d(x, OA) x e Fi}.

Moreover, let i be the external half-line normal to Fi at the point qi and let Xl,i be
its intersection with OA. Let Tl,i (i 1,..., n / 1) be the closed (n + 1)’-dimensional
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simplex generated by

Xl,... ,Xi--l,Xl,i,Xi-t-1,. ,Xn+l),
and set

n+l

S S U T,i.
i--1

Recursevely, one obtains an increasing family of convex polygons whose vertices lie in
OA; moreover, each Sj+I is obtained by adding to Sj a finite union of (n+ 1)-simplexes
Tj,k (1 <_ k <_ k(j) < +oc) with vertices in OA. We claim that

Clearly, it is enough to prove that

(2.7) lim max d(x, OA)- O.
j xOS

In order to prove (2.7), let us remark that, if it does not hold, there exists do > 0 such
that

max d(x, OA) >_ do

for each j E N. It follows that, by construction,

max d(x, OA) >_ do
xeOT,

for each j E N and k <_ k(j), so that the "heights" of the simplexes Tj,k (and hence
their volumes) are bounded below by a positive constant, a contradiction, the set A
being bounded. J

3. Main results.
THEOREM 3.1. Let A be an open convex and bounded subset ofn, I a measurable

subset of [0, T], u’ I -- A a measurable function, and r an arbitrary vector in Nn.
Then there exists a function w I --, OA, depending on u’, A, and r, such that

(3.1) fiw(s) ds ]i u’(s) ds

(3.2) Vt [0, T] [02(8)’/]1(8)] ds > In’(8)./]1(8)] d8.

COROLLARY 3.2. Assume that A, I, u, w, and l are as in the previous theorem.
Assume that f Nn - IR is lower semicontinuous, f** is ajffine on A, and f()
f**() when OA. Then

(3.3) ff**(u’(s)) ds= ff(w(s)) ds.

Proof. Since f** is affine on A, there exist two vectors v and v2 such that

f** () Vl" -[- v2 V A;

hence, by (2.2) of Lemma 2.2, it easily follows that

f f**(u’(s)) ds fif**(a(s)) ds.
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Finally, recalling that co takes values in OA and f** coincides with f on OA, (2.4)
follows. [

Proof of Theorem 3.1. By Lemma 2.3 A [-JjN Sj, where Sj is a simplex con-
tained in IRn w:hose vertices belongs to OA. Let us set, for every j N, Ij

in Ij we(u’) I(Sj)Cl I and uj u Xxj Ij -+ Sj. Applying Lemma 2.2 to uj
obtain a function coj Ij extr Sj c OA, which satisfies (2.2) and (2.3). Hence,
defining w(s)"- jeNwj(s), it is clear that co takes values in OA and satisfies (3.1)
and (3.2).

4. Applications. We consider the following minimum problem with obstacle

min f(u’(t)) dt.
u(t)r

As we have already announced in the introduction, our main goal is to prove the
existence of a solution for this minimum problem.

THEOREM 4.1. Let F C Rn, K C WI’P([0, T],IRn), f Rn --+ IR be as in 2.
Assume further that f**(0) f(0). Then the problem

(P) min f(u’(s)) ds u K, u(t) F

admits at least one solution.
Proof. Assume, for the sake of simplicity, that the set defined by

{ IRn. f**()< f()}
coincides with a simplex E on which f** is affine; by the remark following Lemma 2.1
and by Lemmas 2.3 and 2.2, this is not restrictive. Assume further that n 2, the
general case being similar. Let Pi (i 1,..., m) be the vertices of F; by Gi we denote
the relative interior of the side PiPi+l and by ui their external normal vector. The set
F being open, there exists a solution g to the associated relaxed problem

min f**(u’(s)) ds u K, u(t) F

Since the measure of the interval [0, T] is finite, for each vertex pi there exists an

external half-line Li containing pi such that, setting N {t (t) Li \ {pi}}, we
have meas(N) 0.

Fix Gi and consider the "external" unbounded set Oi defined by the interior of
the region delimited by the half-lines Li, Li+l and the side Gi, jointly with the side

Gi itself.
Clearly, each Oi is open in the relative topology of IR2 \ F; moreover, the solution

does not belong to F. Hence, the inverse image of (9 [_ji Oi under g is a countable
union of relative open intervals (cu,/3j) of [0, T]: for every j N let i(j) be such that

(, &) c o().
Let us define by/C the subset of [0, T] where f o g’ does not coincide with f**

/(7- (,)-1(/)_ {t" f**(’(t)) -J= f(2’(t))};

o g’ i.e

and set, for each j N,
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Now, for each j, ft’(,Sj) C E, on which f** is affine; by Corollary 3.2 there exists a
measurable function

aj Sj R

with values in OE (on which f** f) satisfying

(4.1) aj(t) dt L (z’(t) dt,

(4.2)

Vte [ay, ] aj(s) ui(j)Xs(s)ds g’(s) u(j)Xs(s)ds,

(4.3) f(aj(t)) dt f**(g’(t)) dt.

Let g [0, T] be the measurable function defined by

je

The growth conditions on f and relation (4.1) show, together with Vitali"s convergence
theorem, that g Lp. Let g be the function defined by

a +

We claim that is a solution to (P).
Clearly, by (4.1) and the definition of we have

In order to prove that

(4.4) (a’(t)) dt **(fi’(t)) dt rain *(’(t)) dt

we firsL remark LhaL [0, ] can be parLiLioned as disoinL union of four mesurable
subseLs N D, D,D where

J

By (4.3) we have

(4.5) L f(’(t)) dt J; f**(’(t)) dt;

by the very definitions of and we have

for a.e. t [0, T] f(g’(t)) f(g’(t))= f**(g’(t))

so that in particular

JD J2

D3 "l,-- {pl pm} ).
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Finally, by [7, Lemma 7.7], on -1({p1,... ,Pro}) Da we have fi’= 0 a.e.; since by
the very definition ’= 0 on D3 and by our assumption f**(0) f(0)

for a.e. t G D3 f(ft’(t)) f(0)= f**(0)= f**(’(t))

so that

(4.7) f_ f(’(t))dt f_ f**(’(t))dt.
JD J.L)3

Taking into account that N has measure zero, equalities (4.5), (4.6), and (4.7) together
give (4.4).

At this stage we only need to show that

vte [0,T]: (t) r.

Fix t in [0, T]: either there exists j0 E N such that t E (cU0, jo or t does not belong
to -1((..9). In the first case let N be such that (ajo,/3j0) c Oi; in order to prove
that (t) F it is enough to show that

(4.s) (t) .. >_ (t) ...
Since 5’- 5’ on [0, T] \ [_jj Sj then by (4.1) and (4.2) we have

((t) (t)).. (’() ’()).. d

which proves (4.8).
In the second case (t -1((.9)) there is no interval (cU,/3j) containing t. It

follows that for each j in N either Sj C [0, t] or Sj g [0, t] 0. As a consequence we
have

(t) (t) ’() ’() d

(’() ’())xs()d, () ’()d.
{j:SjG[O,t]} oj

Equality (4.1) yields g(t) g(t); in particular g(t) F, the conclusion follows. ,
As a consequence of the proof of the above theorem, we have the following result,

with no assumption on the bipolar of f in 0.
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THEOREM 4.2. Let F C n be an open half-space, K C WI’p([o, T], ]n), f
I -- be as in 2. Then the problem

min f(’(s)) ds K, (t) . r

admits at least one solution.
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THE GLOBAL CONTROL OF NONLINEAR DIFFUSION
EQUATIONS*

J. E. RUBIO

Abstract. The boundary control of a nonlinear difussion equation with an integral performance
criterion and a fixed final state is considered. By means of a process of embedding used by the author
and others for finite-dimensional systems, this problem is replaced by one in which a linear form is

minimized over a set of pairs of positive measures satisfying linear constraints. The advantages of
this formulation are: (i) There is an automatic existence theory. (ii) There exists the possibility of
using linear functional analysis to develop the theory. (iii) The minimization is global. The final state
is only reached, however, in an asymptotic fashion, as the number of constraints being considered
tends to infinity. A theory of controllability and reachability is developed, as well as a computational
method using an infinite-dimensional simplex method. An example is given.

Key words, nonlinear difussion, optimization, measure theory, simplex, reachability, global
optimization

AMS subject classifications. 49J20, 49M30

1. Introduction. In this paper we study the control of nonlinear diffusion equa-
tions by means of an approach that has proved useful in the analysis of the control
of nonlinear ordinary differential equations [1] and linear partial differential equations
[1], [2], [3]; lately we have extended it to the control of nonlinear diffusion equations
with a small nonlinearity [4]. No such assumption, of "small" nonlinearities, will be
made in this paper; we deal here with fully nonlinear diffusion.

The main approach that is used here is based on an idea of Young [5], consisting
of the replacement of classical variational problems by problems in measure spaces; he
mentions the possibility of treating these problems using the tools of linear analysis.
The extension of these ideas to optimal control problems and the realization that one is
dealing with fully linear problems--even if the original problems were nonlinear in the
usual sense--are due to us ([1], [6],[7]); it appears we were the first, in [6], to develop
linear programs whose solution would give rise to solutions of nonlinear optimal control
problems. The reader can consult the review paper [8] for a full bibliography and a
historical analysis of these matters.

The present work is not significantly related to our earlier ones [6], [7], [1, Chap. 7],
which proved to give rise to unsuitable finite-dimensional approximations and which
could not be used to study controllability in any depth; see [1, Chap. 6, 1], for an
analysis of this problem.

We should mention also that independently of our work there has been much
research on dual methods, especially by the Leipzig school [9]-[12], and by the group
at Imperial College [13]. There has also been some exciting work, mainly on the dual
approach, by workers involved in stochastic matters; see, for instance, [14]-[16].

In this paper we consider a nonlinear diffusion equation with a boundary control,
through which we wish to minimize an integral performance criterion, given that the
terminal state should be fixed. We first write some well-known integral relationships
satisfied by the solution to this equation and then proceed to transform the problem;
instead of minimizing over a set of admissible trajectory-control pairs, we find that it

*Received by the editors December 2, 1991; accepted for publication (in revised form) September
29, 1993.

University of Leeds, Leeds LS2 9JT, England, United Kingdom.
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is possible to minimize over a product of two measure spaces. The advantages of the
new formulation are:

(i) An automatic existence theory--there always is a minimizer for our measure-
theoretical problem.

(ii) The new problem is linear, and then one can use the whole paraphernalia of
linear analysis for dealing with such a problem.

(iii) Also, our minimization is global--the value reached, say, numerically is close
to what one could reasonably call the global infimum of the problem.

The price to pay for these advantages is that the final state is reached only
asymptotically--that is, as the number of (linear) constraints associated with the
measure-theoretical problem tends to infinity; the situation is similar to our results in
the finite-dimensional case; see [1, Chap. 4].

Our main achievement in the first part of the paper--that is, 2-4--is the con-
struction of a framework for the treatment of nonlinear partial differential equations;
in 2 and 3 by developing the embedding process in Sobolev spaces; and in 4 by
developing our main result on approximation, Theorem 1. Our intention here is to
repeat in this context what we have achieved with our work in [1] in the case of finite-
dimensional systems: to develop a frame of reference on which applications could be
based, as has happened in [11], [12].

We present in the rest of the paper two applications of our theory: a reachability
and controllability theory for these equations in which we introduce the concept of
asymptotic teachability and develop a sufficient condition for a state to be asymptoti-
cally reachable and a computational method in which we treat the semi-infinite linear-
programming problem developed in the paper by means of an infinite-dimensional
simplex method; nearly optimal controls can be constructed in this manner.

tion
and

2. The equations. Consider a boundary control problem. We follow the nota-
in [17] and [18] and take D, a bounded domain in R with smooth boundary OD
T, a positive real number, and define

QT := D x (0, T),
Fr := OD x (0, T),
D0:=Dx{0},
DT := D x {T}.
We also choose some functions

k" QT R,k E CI(QT);
f" R R QT --* R, f C C(R Rn X

a function is said to be differentiable in the closure of a domain if it is uniformly
diiferentiable in the domain itself. Consider the nonlinear diffusion equation

(2.1) ut(x, t) div(k(x, t)Vu(x, t)) f(u(x, t), Vu(x, t), x, t),

for (x,t) QT, with the initial condition

(2.2) u(x, 0) -0, x D,

and the boundary condition

(2.3) Vu. nitr v;

here n is the outward normal, and the function (s, t) FT -- v(s, t) V C R is the
control function, taking values in a bounded control set V. This form appears to be
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as general as it can be made while retaining the possibility of weak solutions and of
boundary control by means of heat flow [19], [20].

A pair (u, v) of trajectory function u and control function v is said to be admissible
if

(i) The function (z, t) --, u(z, t) is a classical solution of (2.1), that is, it is in
C’1 (QT) N C(QT U FT U Do) and satisfies (2.1), (2.2), and (2.3).

(ii) The control function is continuous in FT.
(iii) The terminal relationship

(2.4) u(., T) g

is satisfied; g is a given continuous function on DT.
Conditions for the existence of a classical solution of (2.1)-(2.3) can be found in

the literature [17, Chap. VII, [18, Chap. V, VII.
The set of admissible pairs for this problem will be denoted by 5c and assumed

to be nonempty, at least until 5, where we will be concerned with controllability.
We make the further point that, since the control set V is bounded, that is, there

is a constant My so that Iv(s, t)l < My, (s, t) E FT, there are bounded sets A C R
and B C R so that (see [18])

(2.5) u(x, t) e A, Vu(x, t) e B V(x,t) QT.

We must be very careful here, since there are many sets A and B which satisfy
(2.5); we must choose from those the minimum sets, that is, either the intersections
glA and CB of all sets satisfying (2.5) or subsets of them. Thus, every point in our
set A (respectively B) will be a state (respectively, a gradient of a state) that can be
reached by an admissible control inside the time interval [0, T]. This property will, of
course, be needed in our proofs on approximation later.

The optimization problem associated with this equation is as follows. Let f0, fl be
continuous, nonnegative, real-valued functions on R2n+2, R+1, respectively; further,
we assume that there are constants h, h" > 0 so that

fo(u, w, x, t) h’ll + h"llWllE, (u,w,x,t) A x B x QT,

with the norm the euclidean norm in Rn. Then we wish to find a minimizing pair in
)c for the functional

(2.6) J(u, v) /QT fO(U(X, t), VU(X, t), X, t) dxdt -t- pT f (V(S, t), 8, t) dsdt.

We transform now this problem, with a view at generalization. Let be in C (0T).
Then one can show [17], [18] that the classical solution of (2.1)-(2.3), if it exists,
satisfies the integral relation

(2.7) ] [u2t kVuV + f] dxdt fr kv dsdt + fD g
for all G C(O,T). We proceed in the next section to transform this problem.

3. Metamorphosis. In general, the minimization of the functional (2.6) over
the set 9c is not possible--the infimum is not attained at any admissible pair; it is

not possible, for instance, to write necessary conditions for this problem. We proceed
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then to transform it, realizing that a solution of (2.1)-(2.3) defines a linear, bounded,
positive functional

u(., .)" F /Qr F(u(x, t), Vu(x, t), x, t) dxdt

in the space C(f) of continuous real-valued functions F, with ft := A x B x QT. Also,
a control v defines a linear, bounded, positive functional

v(., .)" G - Jfr G(v(s, t), s, t) dsdt
T

in the space C(co) of continuous functions G, w := V x FT.
By Riesz’s theorem, an admissible pair (u, v) defines two Radon measures # and

u, the first on t, the second on w, so that (2.7) becomes

(3.1) Fe d# -}- %b dl] g dx :-- O%b, V e CI(QT),
T

where

(3.2a) F.,(u,w,x,t) := uCt(x,t) k(x,t)wV2(x,t) + f(u,w,x,t)(x,t),

cw (v, t) :--  (xloo, t)v.

Thus, the minimization of the functional (2.6) over ; is equivalent to the minimization
of

(3.3) ](#, P) #(f0)+ P(fl),

where we have written #(f) for f f d# and u(g) for f f du, over the set of measures

(#, u) corresponding to admissible pairs, which satisfy

(3.4) + ve
So far, we have not achieved anything new. We consider the extension of our problem;
we shall consider the minimization of (3.3) over the set S of all pairs of measures (#, u)
in Ad+(ft) x A4+(co) satisfying (3.4) plus the extra condition, satisfied of course by
the admissible pairs, that these measures project on the (x, t) or (s, t) spaces as the
respective Lebesgue measures. (See [1, Chap. 1], for a further discussion of this point.)
Thus, if a function :ft -- R depends only on (x, t),

if(()

the Lebesgue integral of sc over QT. Also, if a function < w -- R depends only on

(3.5b) u() be,

the Lebesgue integral of over FT. Note that (3.5) imply that, writing la and 1 for
the characteristic functions of Ft and co and L’ and L" for the Lebesgue measures of
D and OD, respectively,

(3.6) #(ln) TL’, u(lo) TL".
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Even if these equalities are a consequence of the equalities (3.5), they may be used to
advantage when only a finite number of these are employed, as will be the case in our
main approximation scheme.

In the next section we analyze this new optimization problem. We show that
it always has at least one optimizer and thatwthis is most important--admissible
trajectory-control pairs that are nearly minimizing for the original problem can be
obtained from this construction.

4. Existence and approximation. The proof of the existence of an optimal
measure for the functional I defined in (3.3) on the set S of measures in A/I+(Ft) x
A/I+ (co) satisfying (3.4)-(3.5) is quite simple, being based on simple compactness prop-
erties of the weak*-topology. The proof of the following Proposition is much like that
of Theorem II.1 in [1, Chap. 2], and is therefore omitted.

PROPOSITION 1. There exists an optimal pair (#*,*) E S that minimizes the
functional I.

The proof of the following proposition, which will be necessary later to prove
our main theorem of approximation, can be found in detail in [7, Prop. 2], and will
also be omitted; see also [2]. Note that the function u 7u as a mapping from
HI ((T) "-+ {L2 ({T)}n is continuous.

PROPOSITION 2. The set S1 C S of measures (u,v) that are piecewise-constant
functions on and co, respectively and satisfy (3.4)-(3.5) is weakly*-dense in S.

We start now the arduous process of approximation--that is, of building a frame-
work, based on approximation to our main weak problem, so as to construct admissible
pairs that nearly minimize the functional (2.6). The first of such constructions involves
the possibility of approximating the set S. Let {bi, 1, 2,...} be a set of functions
that is total in CI((T), that is, so that, given b E CI((T) and e > 0, there is an
integer N > 0 and scalars ai, 1,...,N, so that

N

T i=1

max

N

2t E Oi)it
i--1

we shall write

Further, we shall also take sets of functions {j, j 1, 2,...} and {k, k 1, 2,...}
that are total in the respective subspaces of C(Ft) and C(co), writing aj for a and bk
for bCk. We have then our first result of approximation; the proof is much like that of
Proposition III.1 in [1, Chap. 3], and will be omitted.

PROPOSITION 3. Let M1, Mg., and M3 be positive integers. Consider the problem
of minimizing

(p, ) #(f0) + (fl)
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over the set S(M1,M2,M3) of measures in J+(t) x M+(w) satisfying #(la) TL’,
(1) TL", and

(4.1b) #(j) ay,

’( bk,

=1,2,...,M1;
j =1,2,...,M2;
k =1, 2,... ,M3.

Then, as M1, M2, M3 --+

(4.2) inf [P(fo) + z,,(fl)] --+ if[p(fo)+ t,’(fl)].
S(M.,M,M3)

We note that
inf I < inf J
s -and that this may be a strict inequality; see [1, Chaps. 1 and 4], for a discussion of

this point.
We have reached the main point of this section. How do we construct suboptimal

pairs of trajectories and controls for the functional (2.6)? We shall proceed in several
steps:

(i) First we shall obtain optimal measures (#*, u*) for a problem such as the one in
Proposition 3. The existence of such a minimizer follows from the same simple
considerations as the existence theorem given in Proposition 1.

(ii) We then obtain a (weak*) approximation to (#*, u*) by a set of two piecewise-
constant functions (u, v) by means of the results given in Proposition 2.

(iii) The control function v obtained above is in L.(rr), that is, for each t E (0, T),
v(., t) L(OD), since it is piecewise constant and the set QT is bounded. It
can serve then as boundary function for a weak solution of the system (2.1)-
(2.3), to be denoted by uv. This solution will be in HI(QT). Conditions as to
the existence of such weak solutions are given in [17], [18].

(iv) Borrowing the term from Rudolph [12], we shall call the pair (uv, v) of trajectory
and control functions asymptotically admissible if:

(a) The control function v L2(QT) and v(s, t) V.
(b) The trajectory u is the weak solution of (2.1)-(2.3) corresponding to

the admissible control v L.(QT).
(c) The trajectory function satisfies the constraint (2.7).
(d) The final value uv(., T) of the trajectory function tends in L(DT) to the

prescribed function 9 in (2.4) as

(v) We shall prove below that if the numbers M1, M2, M3, are sufficiently large and
the weak*-approximation in step (ii) above sufficiently good, then the value at
the pair (u, v)of the functional J defined by (2.6), J(uv, v), is close to the

infs I and thus is a good suboptimal pair. Note that no use is made of the
trajectory u, obtained in step (ii) together with the control v.
We proceed to prove all this.
THEOREM 1. Let (u,,v) be the pair constructed as explained above. Then,

under the appropriate conditions on the approximations involved,
(i) The pair (u., v) is asymptotically admissible.

(ii) As M1, M, M3 tend to

J(uv, v) if I(#, v,).
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Proof. (i) Fix M1 > 0 and write e := l/M1. Fix also the values of M. and M3.
Let (#*,u*) be the minimizer for the functional (4.1a) over the set S(M1,M2, M3);
its existence can be proven by the same arguments used in proving Proposition 1
(see [1, Chap. 3 and 4]).

By Proposition 2, we can find a pair (u, v) E S1 so that

(4.3a) ]{p(fo) + v,(f)} {p*(fo)+ b’*(fl)}] < ;

(4.3b) I#u(Fi) + uv(Gi)- cil < e, i- 1,... ,M1.

Here we have written (#u, uv) for the measure in A/I+(Ft) x 3/[+(w) generated by the
pair trajectory-control (u, v). We note, further, that these measures satisfy automati-
cally the rest of the relations in (4.1b).

(ii) We proceed to prove now that the pair (u, v) defined above is asymptot-
ically admissible; we only have to prove the contention in (iv)(d) above, on the final
value u(., T), since the rest of the requirements in (iv) are trivially satisfied. Choose
the functions i E CI(QT),i 1,...,M, of the form i ai + Xi, so that, for
i= 1,...,M

(a) The function X CI()T) is chosen so that the Lebegue measure of the
support of Xi in 0T is not higher than a number e’ > 0 to be chosen below and so
that the maximum of the numbers

Ix (x, t)l, t)l, Ilvx (x, t)ll , (t, x) e

is not larger than a number ; > 0, to be defined. Then, since Fx uxit kVuVxi +
fxi and putting kmax and fmax for the maximum values of k and f over their respective
domains, we can choose ; so that

IF (x, t)[ _< [diam A + kmaxdiam B + +fmax] < 1.

We shall call 0i := Fx so that 10il < I on f, and the Lebesgue measure of the support
of 0i is less than e’. meas A. meas B, which can be made less than e by choosing e’
accordingly.

(b) The function pi Ci(QT) is chosen so that i(x, T) 0 on D and so that

(4.4) #u(F) + ’v(G) < e.

This is possible since the pair (#*, u*) assigns to the pair (F, G) a value near

fDr gpi dx 0, by (4.3b); note that the functions F,G and the integral fD. g dx
are linear in the function and that the set {pj} is total, so that the functions

pi are linear combinations of these functions. The relation (4.4) follows then from
Proposition 2.

Thus, we have
Fi F + Oi,

with i CI(0T), ai(x,T) 0, and [0i[ < 1 on f, with the Lebesgue measure of
supp0 < e, 1,..., M1, and (4.4) is satisfied.

Now we obtain the weak trajectory u corresponding to the control v, as ex-

plained above. Then, writing # for the measure corresponding to this trajectory
function u.,

(Fi) + b’v(Gi) f_ Uv(’, T)i dx, 1,..., M1,(4.5)
T
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by definition of a weak solution. But the pair (#*, u*) satisfies (4.1)"

(4.6) #*(F) + v*(G) =/D
T

Then

(4.7)

by (4.3b) and

(4.8)

because of (4.4) and the fact that

+

It follows from (4.7) that as M1 -- oe,

the proof is as in [1, p. 47]. Note that we need also M., M3 --* oc, a requirement of
the proof of Proposition 2 in [2].

(iii) The second contention of the theorem follows from the fact that

IJ(u, v)- (p*(fo)+ *(fl))I _< IJ(u, v) (p,(fo)+ vv(f))l
-t-I (#(fo)/ pv(fl)) (#*(fo)/ -*(fl))[ <_ 2,

by (4.3a) and the fact that

(4.9) J(u,, v)- (#(fo) + v(fl)) (#, #)(fo),

since
(a) The function f0 satisfies the condition f0(u, w, z, t) <_ h’lu + h"llWllE on ft,

so that

(4.10) I(#uv #u)(fo)l <_ I(#uv #)l(h’v + +h"llllE),

where tg(u, w, x, t) u, or(u, w, x, t) := w, (u, w, x, t) E a. We are assuming, without
loss of generality, that u _> 0 on f.

(b) Further, choose E C(QT) of the form

K K

(4.11) E/ii’ E I/il -< A,
i=1 i=1

with K a fixed integer not higher than M1 and

(1 1),_<max
16h1’16h"
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Then, by (4.8),

Further, choose the coefficients i, 1,..., K, so that

v(lCt 1) < d/3 Ikl IIVPlIE
_
’/3 Ifl <

which implies

on ft; the number d will be determined below. Then

(4.12)
_< 2Ae + dL(QT) < e/4h’,

if we take e’ _< e/8L(QT)h’; as above, L(QT) is the Lebesgue measure of the domain
QT.

Note that (4.12) could have been proved for the negative #-#Uv of the measure
for which it was actually proved, so that, finally,

Similarly, we can prove that

so that, by (4.10),
_<

The second contention of the theorem follows.
Remark. Note that it is not necessary to include in our set of equations (4.1)

relationships reflecting equations of the form fQT (u/kp + wVp)dzdt 0, for Pn 0
on FT, relating w to Vu; one can show, by methods similar to those used in the proof
above, that the function (x,t) w(x,t) tends in {L2(QT)n} to (z,t) --, Vuv(z, t), as
M1, M2, Ma tend to

In the next two sections we present applications of this theory, first to matters
on controllablity and reachability and then to matters computational.

5. Controllability and teachability. The--apparently--nonlinear control
and dynamical problem (2.1)-(2.4) has many facets that one could explore using the
linear theory that we have developed. In this Section we examine reachability and con-
trollability. A good review paper on the reachability and controllability of distributed
systems is [21], where the concepts of approximate and exact reachability and control-
lability are defined and illustrated. The most interesting development on nonlinear
controllability has been by Henry [22]; his approach has been developed further by
Zhou in [23] and [24]. This method has been applied to equations simpler than ours
and is based on the development of an associated linear system, whose controllability
can be studied in the usual way. It is not related to our approach, even if some results
are not dissimilar.

According to our results in the previous section, we are entitled to make the
following definition.
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DEFINITION. The state g is said to be asymptotically reachable (from the origin,
by the system (2.1)-(2.3)) if there is an integer N > 0 so that the system (4.1b) has a
solution in 2M+(ft) x Ad+(w) for all integers M1, M2, M3 that are larger than N.

In other words, according to our results on approximation, if a state g is asymp-
totically reachable one can, given e > 0, find a control v that generates a weak solution
u, so that the L.(DT)-norm of the difference u. (T) -g is not higher than e. This
of course does not mean that there is a control by means of which the state g can be
reached exactly, so this is a weaker concept than that of exact reachability. It is just
as strong as approximate reachability--a concept based on the. classical solutions--for
systems for which these and weak solutions coincide.

It is an open problem whether one can find a control to reach exactly a state
g based on the construction of the family of controls {v, e > 0}. Our philosophy is
that it is sufficient for any foreseeable application to have the possiblity of reaching
a final state as closely as necessary. The mathematical problem, essentially that of
exact controllability, remains. It does not appear that our methods can throw any
new light on this problem.

We shall follow the mathematical structure developed in [1, Chap. 6], and ap-
plied there to finite-dimensional systems. Consider then the real vector space Z; of
pairs (f, h) of continuous functions f :f R and h :co - R. The linear operations
are defined as follows:

A(f, h) (Af, Ah), (f, h) + (v, w)"- (f + v, h + w),

for all real A and appropriate functions v and w.
Further, we define an ordering on the space 12 by defining its positive cone,

C- {(f,h) E ’(f, h) > 0} {(f,h) ’f >_ 0onFt, h _> 0on co}.

It is trivial to show that this defines an ordering compatible with the linear structure.
It is also compatible with the topological structure generated by the uniform norm

II(f,h)ll sup Ifl + sup ]h I.
t2

Thus, the space /2 is an ordered topological vector space, and we can apply to our
problem of existence a particular theorem, due to Schaefer [25, Thm. 5.4]. To do
this, consider the functional T .defined by the equalities (4.1b) on the subspace g of
/2 spanned by the functions appearing in (4.1b), that is,

(5.1)
M1 M2 M3 }g (f, h) " (f, h) E Ai(Fi, Gi) + E Bj(j, O) + E Ck(O, )
i=l j=l k=l

for real numbers Ai, Bj, Ck. Then, according to our results in [1, Chap. 6]--a trivial
development of Schaefer’s results [25]--we have the following proposition.

PROPOSITION 4. The functional T defined by the equalities (4.1b) on the sub-
space g can be eztended to the whole of the linear space as a positive functional if
and only if the functional T is bounded above on g C (12 -C), where 12 is a suitable
neighborhood of zero in . Further, this is true if and only if the functional T is
bounded above on the subset U of RMI+M+Ma defined by

U’= {{Ai,i- 1,...,M1,Bj,j= I,...,M2, Ck, k- I,...,M3}"
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that is, the state g is asymptotically reachable by the system (2.1)-(2.3) if and only if
there is a constant D so that

{Ai,i= I,...,M1,Bj,j=I,...,M.,Ck, k= I,...,M3} E U
M1 M2 M3

(5.3) = E Aio + E Bjaj + E Ckb < D.
i--1 j--1 k=l

Proo The firt part follows directly from [25, Thm. 5.4]. The second part
follows from simply writing down the form of a neighbourhood F; take e > 0 and then
define the neighborhood F by

(f,h) sup ]f + sup h] < ,
so that

(5.4) -C={(f,) e:f+< o, a},
for some scalar a. The expression (5.2) follows by simply normalizing as in Proposition
VI.3 in [1], and (5.3) follows fom the definition of the functional T.

Finally, we can develop our main result of this section.

(i) The set U c RM+M+M3 is a convex set that contains the origin. It will
normally be unbounded.

(ii) The expression (5.3) defines a hyperplane H in RM+M+M by

M M2 M3

(5.5) Aa + Bjaj + Cb D.
i=1 j=l k=l

Proposition 4 says that (4.1b) has a solution in +() x +(w) if and only if the
set U is wholly at one side of the hyperplane H.

(iii) We shall make some assumptions now as to the nature of the functions
j,j 1,...,M2;,k 1,...,M3. First, we shall partition the (x,t) and (s,t)
spaces and define them as the characteristic functions of the sets in the partitions. Of
course, they will not be continuous but can be chosen as lower-semicontinuous, and
our arguments above follow without much change; see [1, Chap. 5] for a discussion
of this and related problems. Then we shall assume, without loss of generality, that
these partitions have been chosen so that M M2 Ma M.

(iv) Put now A B C 0 Yi g. What does the set U and the
hyperplane H look like, in this subspace with variables A, Be, C? Let

6 {((z, t), (, t)) e a x . 1, (F + ) > 0)},
{((x, t), (, t)) e a 1, (F + ) < 0)},

6’ {((, t), (, t)) e a . , (F +) > 0},

(.a) ’ {((, t), (, t)) e a x " 1, (F + ) < 0)}
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and

r) i..n,f(1/(Fe +

s’e sup(1/(Fe + Ge)),

re inf (1/(Fe +

s’ sup(1/(Fe + Ge)).

In the (Ae, Be) plane, U projects as a set bounded by two straight lines, one from the
point Pe of coordinates Ae- O, Be- 1 to the point with coordinates Ae- r, Be -0
and another from the same point Pe to the point with coordinates Ae s’e, Be O.

In the (Ae, Ce) plane, U projects as a set bounded by two straight lines, one from
the point Qe of coordinates Ae O, Ce 1 to the point with coordinates Ae r), Be
0 and another from the same point Qe to the point with coordinates Ae se, Be O.

The hyperplane II projects as lines in the (Ae, Be) and (Ae, Ce) planes. Consider
lines parallel to these but passing through the points Pe and Qe respectively. They
cut the Ae axis at the points

(5.8) A ae, A be

respectively. We have thus our main theorem.
THEOREM 2. The system (4.1b) has a solution in Ad+(ft) x Ad+(co) if

A)>r if A>0, A<s), if A<0
A)>r) if A)>0, A)<s), if A/<0,

Vt= 1,...,M.

Proof. It follows from the remarks above and the convexity of the set U.
COROLLARY 1. The state g is asymptotically reachable if and only if there is

an integer N > 0 so that the conditions (5.9) of Theorem 2 are true for all M > N.
What can go wrong? We can always satisfy (5.9) by making ce sufficiently

sinall, unless r, r), Is)l, Isel" are actually oc for some values of g--because the function
Fe + Ge does not take the appropriate sign on the appropriate subset of ftx co--or
because they tend to oc as M oc. We shall examine these possibilities further
below.

We introduce now a concept of controllability. Since the control set is bounded,
the trajectories will be in a bounded set A; see (2.5). Thus we cannot hope to reach
the whole of the state space and should be content with the following.

DEFINITION. A system such as (2.1)-(2.3) is asymptotically controllable if there
is a ball centered at the origin in L2(DT) so that every state g E C(DT) in this ball
can be reached asymptotically.

We have then the following corollary.
COROLLARY 2. There is a control set V C R so that the system (2.1)-(2.3)

is asymptotically controllable. This control set is defined in general in the paragraph
after (2.3).

Proof. If the quantities (5.7) stay bounded as M --, oc, we can choose the
moments ce sufficiently small so that the inequalities of Theorem 2 are satisfied.
Consider the first quantity in (5.7). It follows from (3.1) and (3.2) that

Fe + Ge toe kwVe + foe + kOelrv;
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provided that e is nonzero on FT, we can choose V so that this function takes positive
values on , bounded away from zero, for all values of the index g; similarly for the
other functions and sets in (5.6), (5.7). For such a control set V the system (2.1)-(2.3)
is asymptotically controllable. El

6. Numerical results. The system (4.1) is a semi-infinite linear-programming
problem, since the unknown is in Ad+(gt) x Ad+(a) but there are only a finite num-
ber of constraints. There are several methods for treating numerically such prob-
lems [26], [27], even though it appears that only Rudolph’s [11], [12], [28], [29] and
Hoffman-Klostermair’s [30] methods can be assured to converge to the global min-
imizer; these are simplex methods working in infinite dimensions. We have chosen
here Rudolph’s method, partly because its author has been very successful in using
our finite-dimensional framework for the estimation of optimal controls [11], [12].

To solve these problems we could work in Ad+(f LJ a), and indeed this is the
most convenient way for work involving discretized approximations; we have done
just that in a paper involving the control of variational inequalities, to be published
elsewhere. Here, however, it is more convenient to work in A/l+(gt x a), identifying
(#, ) ---, # x , so that

# x ,(f + 9) #(f) + v(9), f E C(ft), 9 E C(a);

note that the Lebesgue measures L, L are equal to unity and T 1.
conditions (3.6) take the form

Also, the

# x (lxw) T 1.

We have added this equality to our constraints because it improved the accuracy of
the computation.

The system we have chosen is

(6.1)

ut(x,t)-div
l + t Vu(z’t) l + z + u(z,t)

ux(O,t) O, Ux(1,t) v(t),
t (0, 1), x (0, 1);

that is, k(x,t)"- x2/(1 +t), f(u, w, x, t) (llwllE + 1)/(1 +x2 +u). We have taken
V [-10, 10], g(x)= 0.075, x [0, 1]; and we wish to minimize

(x, t) + IIW(, t)I1
dt;

1 + sin (tu(t, x))

that is, fo(x, w, x, t) (u + Ilwll)/(1 + sin2(tu)), and fl 0. The boundary OD
is composed of two points only, of which only one, the one at x 1, plays an active
role, the control being the heat flow at that point.

The functions in (3.2) were chosen of the form (x, t) tP cos(grx) + q(t) or

(x, t) tp sin(hrx) + q(t); the functions q are test functions introduced to improve
the behaviour at x 1 for the determination of an initial solution, as explained below.
Ten such functions were chosen, with values of p 1, 2 and g 1, 2, 3, h 1, 2.
The 16 functions were chosen by dividing the square [0, 1] x [0, 1] into 16 equal
squares, the functions being the characteristic functions of the individual squares.
The condition (3.5b) for the functions ( is satisfied automatically--thus the advantage
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of this formulation based on product measures. Thus the total number of constraints
rn equals rn 1 + 10 + 16 27. The computational method consists of three steps:

(i) The most difficult problem encountered was that of finding an initial solution
from which, in part (ii) of the method, one can iterate toward the minimum. This was
done here by means of a finite-dimensional linear program, obtained by discretizing
all the variables of the problem. It was necessary to find an initial solution by first
solving for some of the parameters, thus the need of the functions q introduced above,
because the (rather rough) discretization tended to make the problem unfeasible. Then
a finite-dimensional simplex program was run, of rather small size, with 677 variables
and, of course, 27 constraints. Only the first phasemthe one that produces a feasible
solution--was run. It is usual in these problems to use a discretized solution as an
initial one; see [11], [12], [26, Chap. 5, 6].

(ii) Then the simplex algorithm of Rudolph was run using the output of step (i)
as initial solution, and after 87 iterations it converged to a value of 0.202247; it had
started with a value of 1.93919. This is a numerical estimation of the global minimum.

(iii) Once the optimization is performed, a nearly-optimal control v can be
constructed; the method is shown in detail in [1, Chap. 5]. The graph of the resulting
control is shown in Fig. 1.

10.0

0.0

-10.0
0.0 0.2 0.4 0.6 0.8 1.0

FIc. 1. Graph of the nearly-optimal control v. Note that the control set is V [-10, 10].

We mention, finally, that our approach can be applied to other nonlinear partial
differential equations and to variational inequalities.
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ASYMPTOTICAL STUDY OF PARAMETER TRACKING
ALGORITHMS*

BERNARD DELYONf AND ANATOLI JUDITSKYf

Abstract. This paper addresses the problem of tracking random drifting parameters of a linear
regression system. The asymptotic properties of several estimation algorithms in the limit of slow
drift are studied. The basic tool is the central limit theorem for a class of stochastic difference
equations established under weak conditions on disturbances and observations. The estimates of
the rate of convergence obtained in the paper allow the asymptotically optimal algorithms to be
developed.

Key words, tracking algorithms, stochastic averaging, normal approximation
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1. Introduction. In this paper we consider the system of the form

Yt oT- t +
where et is a random noise, opt E RN, yt E R are observed input and output, and Ot is
an unknown time-varying parameter vector. We assume that Ot is random and varies
slowly, i.e.,

(1) O 0t- + Wt
where y is a small parameter.

To estimate the time-varying parameter 0t in many cases the following general-
form identification algorithm can be used (see [11] for a recent review):

(2) t t--1 nt- #Lt(yt TOt_l), t e RN.
The way in which the vector gain Lt is updated is characteristic for each particular
method. Here # is a small positive real number. Our paper is devoted essentially
to the asymptotical (as # --+ 0 and -y -+ 0) study of the stationary law of the error

Ot -Ot of the algorithm. More precisely, our objectives are to show that for a variety
of methods the distribution of the error converges to the normal law and to develop
asymptotically optimal versions of the algorithms.

Let F FT > 0. In what follows we consider the following gain constructions:
1. Widrow’s least mean squares algorithm (LMS):

FotLt Fot or Lt
1 + ##oTt Pot"

2. Normalized least mean squares algorithm (NLMS):

Lt rt/(1 +
3. Recursive least squares "forgetting factor" algorithm (RLS):

Rt (1 -/.t)Rt-1 q- ]_ttT, R0 koI, ko > 0,
Lt R- t
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4. "Stabilized" least squares (LS) algorithm:

Lt Fret,
Ft (p-lRt -]- F-l) -1,
Rt (1 P)Rt-1 q- P99t99Tt R0 0, where 0 < p < 1.

Comment. The algorithms above are well known (cf. [11]) except, probably, the
stabilized LS. This method was designed as a regularized version of both LMS and
forgetting factor algorithms (see [71 for details).

The main theoretical issue of the paper is the central limit theorem (CLT) for
the stochastic difference equations developed in 2. It provides an infinite horizon
approximation for the asymptotic distribution of the error Ot- Ot of equation (2)
assuming the stationarity of the sequence (t, et, wt). Next we provide a guide to the
application of this result to estimation algorithms. In 3 we consider the algorithms
described above and develop conditions of the CLT and expressions for the asymptotic
error covariance.

2. Main Result.

2.1. CLT for the stationary case. As usual, we suppose we have a probability
space {f,gv, P}. Let us consider a process (At), At E RN, which is generated with
the following equation:

(3) At (I #Pt)At-1 + #t Ao e RN,
where # <_ #0 is a scalar coefficient, and (Pt,) and (t) are random processes valued in
RNN and RN, respectively. We are going to prove the CLT for the solution At of
(3) which will be quite useful in the study of the estimation algorithms. Let us allow
the processes Pt and t to depend on #, and Pt can be decomposed in the following
way:

(4) Pt P + P[,
+

where P and do not depend on p. Suppose that there exists a strictly stationary
process (Xt) and t a{...,Xt} such that P,,P{,( t (for example, in the
state-space model Xt contains all the past "innovations"). Consider the following
assumptions:

[A] P (P?) a 0, > 0, ll < .
[A2] (P) and () are strictly stationary ergodic processes.
[A31 E,o(EIE(IYo))1/ < .
[A41 lim.0 a-/ -p (l;[I) 0.
[A5] There exists a stationary ergodic process p which satisfies

lim E(sup[p’t] -0, teO,

p 2)
THEOREM 1. Let assumptions [A1]-[A5] hold.

initial condition Ao
(6)

Then for system (3) with any

lim lira tt-1/2/kt J(0, V) in distribution,
#---0 t--,
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i.e., #-1 converges in distribution to the Gaussian random variable with zero
mean and covariance V. Here V is a solution of the Lyapunov equation

where B- EP and

BV + VB So,

(s) So f3o + o oEo +Eo
i--1

Note that assumptions [A2] and [A3] guarantee the existence of S0 < oe. The
precise sense of the limit above is

lim limsup IE[f(#-l/2At)] E[f(Af(0, V))]I 0
#--*0

for any bounded continuous function f.
The proof of Theorem 1 is postponed until 4 below.
Comment. We should note that the assertions of the theorem above provide

an infinite horizon approximation. We emphasize the difference with respect to the
standard results on weak approximation, when the weak convergence on the finite
interval of order .y-1 is usually shown. Let us compare Theorem 1 with the analogous
results of Theorem 4.15, Part 2 of [1] or the corresponding result in [9]. In fact,
those results implicitly require that the trajectories (At) of equation (3) are bounded.
Furthermore, the condition on the dependence in the input sequence (Pt) in Theorem
1 is more explicit and less restrictive than those, for instance, of Theorem 4.15, Part
2 in [1] since only ergodicity is required.

Compared with results obtained in [4], [18], [12]-[14] this paper does not consider

moments of Ot -Ot (which may as well be infinite) but investigates the limit in law of
this process. The notable advantage of this approach is the weakness of the assulnp-

tions made in the theorem. It should be noted that the assertion of the theorem does
not imply the convergence of the distribution of ft-1/2/k to any limit as t --+ oc for
fixed ft. It only means that the distance between the distributions of ft-1/2/kt and
the Gaussian distribution converges to 0 as ft 0.

Discussion. Let us consider assumptions of the result above. They are quite
simple, and only assumption [A3] needs to be clarified. Note that this condition
is usual when proving the CLT for the stationary processes. It is satisfied if, for
instance, t is a martingale-difference process with Ell < oc. Let t be defined by
the equation

Ct Get

_
R

where G E RNxg. If G is stable (i.e., I/max(()l _< /9 < 1) and t is a martingale-
difference with EII <_ oc, then <_ Kp and assumption [A3] holds.

We can also translate assumption [A3] into usual mixing conditions on the se-

quences (t) and (wt).
Let us recall the definitions of the three mixing coefficients (k), a(k), and p(k)

(el. [6]). Consider the sequence (zt) with Ezi O.
1. The uniformly strong mixing coefficient

(k)-suplP(BIA)-P(B)}, t, k > 1, P(A) >0

where the supremum is taken over all sets A 2t4t a{... ,Xt-l,Xt} and B
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2. The strong mixing coefficient

sup IP(AB) P(A)P(B)[,
AEJMt ,BEJMt+k

3. The coefficient of the maximum correlation

t,k> 1.

p(k)=supcov(z’ z") t,k> 1

where the supremum is taken over all random variables z and z" with the bounded
second moment such that z is At-measurable and z" is At+k-measurable.

LEMMA 1. The following inequalities hold:

IIE(xt+al3dt)llp < 2(]g) 1/p sup [Iztlp, p 2;

[[E(Xt+k[t)llp 8(k) 1/p-l/q sup IXti[p, p > 1, q p;

IlE(x + l  )ll2

Proof. The proof follows immediately from the classical mixing inequMities (see,
for instance, appendix III of [5]).

2.2. Extension to the Markov case. We use the following propositions to
obtain some further generalizations for the the case of Markov processes (Pt) and
(t). By using Proposition 1 below, we can identify the process (Pt,t) with the
stationary sequence (fit, 5) with probability 1- e for arbitrary e > 0 and t n(e).
The sequence t obtained from (fit, (5)t with h() A() satisfies (6) and

t 1-

The result is now immediate since e is arbitrary (the dependence of n(e) on does
not interfere due to the order of the limits in the statement of Theorem 1).

The following proposition shows how trajectories of certain Markov chains may
be identified, up to a change of probability space, with those of a stationary Markov
chain with same transition probability.

PROPOSITION 1. Let H(x, dy) be a transition probability on some measurable
space S, with invariant measure , such that for any initial probability measure on
S,

t

(],] denotes the total variation of measure ,). Then for any distribution, and any
e > O, there exist a (deterministic) time T and two Markov chains Xt and with
transition probability H, and initial distributions and , respectively, such that

P(Xt Yt, t > T) > 1-e.

Proof. We first recall a useful result [3]" Let X be a Polish space and M(X) be
the set of probability measures on X. There exists a Borel function

p M(X)[O, 1IX
such that if U is a uniform right variable (r.v.) on [0, 1] the distribution of p(m, U) is
m for any probability measure rn E M(X).



PARAMETER TRACKING ALGORITHMS 327

Using this result, we can build a realization of any Markov chain on the probability
space [0, 1] g by defining Xn p(P(Xn_l,dy), Un) where P(z, dy) is the transition
probability at time n and Un is an independently and identically distributed (i.i.d.)
sequence of r.v. uniformly distributed on [0, 1]. This is the mechanism we use in the
upcoming sections in order to avoid the construction of trajectory spaces (we will
need two functions p: one corresponding to X S and the other to X S x S).

Consider a realization Zt of the Markov chain with initial distribution u. From
the assumptions, we can find a time T such that

1-tT- < 1-e,

and this implies the existence of a random variable YT with distribution 7r such that

P(ZT YT) > 1- e.

By running (as explained before) the chain on S x S with transition probability

(x, x’, dy, dy’) I(x x’)II(x, dy)6y(y’) + I(x x’)II(x, dy)II(x’, dy’)

and starting with (ZT, YT), we obtain a process (Xt, Yt) defined for t > T. Then
setting Xt Zt for t < T, we get the desired assertion.

Consider the following assumption"
[A6] There exist a measure and a measurable set A such that for any C-positive

set B

inf Px(Xn E B for some n_< no) >0 for some n0=n0(B)
xEA

and the chain X is aperiodic. Furthermore, there exist a measurable non-negative
function g and a positive real number e such that

(9) f 9(y)II(x, dy) <_ 9(x)- e for any x E Ac,
SUPxEA f g(y)II(x, dy) < o.

The condition required in the settings of Proposition 1 may be easily checked
through the following result (cf. Theorems 4.6 and 5.2 in [16]).

PROPOSITION 2. Let X be a Markov chain with transition probability II(x, B)
(x e RN, B C RN). If assumption [A6] holds, then the chain is positive Harris-
recurrent ergodic), it has a unique invariant probability measure 7r. In particular,

lim I,I-[n 7711 0
n--

for any initial distribution ).

Example. Consider the process (99t), 99t RN defined by the equation

99t G99t- + Ft, 990 aN,

where G RNx, and (t) is a sequence of independent and identically distributed
random variables with, say, E 0, E2 < . If the matrix G is stable then by
the Lyapunov theorem we conclude that there are matrices W WT > 0 and U > 0
such that W GrWG + U. Thus we obtain for the function vt [Wt

E(vtlt-1) t-1 Ut + (yFTWF(t
T T(10) (1- a)vt_ + trace(F VFEtt
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for somea > 0. Set A= {x eRN I’l <_ R}. From (10) we conclude that there is
some R < oc that the inequalities in (9) hold. Suppose that the distribution of {t has
an absolutely continuous on RN component with respect to the Lebesgue measure. If
the pair of matrices (G, F) is controllable, then it can be easily verified that I-IN (x, dy)
has a positive continuous component on A, thus assumption [A6] holds. More results
may be found in [17, Chap. 6] for the convergence of IIn(x, .) to re and in [19] about
the second assertion of the proposition.

When summing up the above arguments we obtain the following result.
THEOREM 2. Suppose that a Markov chain (t) satisfies assumption [A6]. This

implies the existence of the invariant probability re(.). Let At be defined by equation
(3), where Pt Pt() and t t(). Suppose that Pt can be decomposed as in

(5). Furthermore, assumptions [A1], [A3]-[A5] hold for the invariant measure re.
Then lim_0 limt-+oo #-1 --J(O, V) in distribution, i.e., -l/2A converges in
distribution to the Gaussian random variable with zero mean and covariancc V. Here
V is a solution of the Lyapunov equation (7).

2.3. Application guide for Theorem 1. Equation (2) leads to the following
recursion on the estimation error 5t Ot- t"
(11) 5t (I- #LtTt )St_l + #Ltet -7wt.

Set

Then

(2) 7 5(2)(5 -(51) qt_

_
and equation (3) is equivalent to (11) if we put

(13) Pt ( L
L q )

(14) (t ( Ltet )
Thus, as # tends to zero, 5 is supplied by equation (12) where the vector ((5 (1), 5(2))
is approximated (independently of 7) by a Gaussian vector with known covariance

matrix of order one. These arguments are well known when dealing with the moment
bounds for 5t (cf. [15], [13], etc.), but to the best of our knowledge, are somewhat
new when considering the distributions. Note that the optimal choice of the gain
coefficient is # 7 (we can attribute the coecient of order of magnitude one to the
gain matrix F). Yet, the degenerate case (# o(-y) or 7 o(#)) is interesting froin
the practical point of view, since the scale parameter 7 of the disturbance is often
unknown and is extremely hard to extract from data. We introduce the following
useful notation.
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DEFINITION 1. Let

where 5} 1) and 59) are two random processes which depend on parameter # only. If
(5 1), 52)) converges in distribution to the Gatssan random variable N(0, V), where_

( 1o
then we will write 5t N(0, #V1 + Vg.).

In particular

0)

(i) if -y o(#) then lim,_+0 limt--+oo #-1/95t N’(O, V) in distribution;

(ii) if #- o(’y) then lim,_+0 limt--+o v5t- Af(0, Vg.) in distribution;

(iii) if # "y then lim,_+0 limt--+oo "y--1/25t J(0, gl q- V2) in distribution.

3. Algorithms study. To simplify the presentation we will require the distur-
bances et and wt to be martingale-difference processes. This condition is more restric-
tive than assumption [A3] on t in (14). Note that in a variety of cases some more
general assumptions on the dependence in (et), (wt), and (qot) would be sufficient for

t in (14) to verify assumption [A3] of Theorems 1 and 2. We will consider only the
stationary case. The implication for the Markov case is then straightforward through
Theorem 2 if assumption [A6] holds for the Markov process (qot, et, wt).

Denote b{ a{..., (OPt+l, et, Wt} and by ’ the a-algebra of invariant sets of the
sequence (t, et, wt). Consider the following assumptions:

[B1] (ot, et, wt) is a strictly stationary ergodic sequence; E(etlb_l) 0 E(wt[ t-l)
2 E(wtwTt .,0, < (IY-I) t-i)- Rw, and E(wtetl t-)- O.

[] 11 < d[ > 0.
[3] r- r > 0.

3.1. Widrow’s algorithm (LMS). Let us consider the following algorithm
[0]"

(15) 0 Or_ + Ft(Yt -t
We will also consider a slightly different version of this method:

#F 1 t Ot- 1)"

Let D Eo. Consider the following Lyapunov equations with respect to the
matrix V:

(17) 2FDF,FDV1 + VIDF- a

and

(18) FDVg. + V2DF Rw.

THEOREM 3. Let assumptions [B1]-[B3] hold true. Consider algorithm (15) or

(16) (in this case we require, in addition, EIg)tl s < oo) with arbitrary initial condition

0o. Then using the notation of Definition 1 we have
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The correspondent result on L2 convergence of the Widrow algorithm has been
obtained by Macchi and Eweda [15] under condition of m-dependence of regressors
99t.

Proof. Denote

(19) 5t F-1/2(t Or), t F1/2t, t F-/2wt,

Using these notations we obtMn the transformed error 5t of algorithms (15) or (16)"

wtto- (1), 5))s aena b t] o]]owin ution"

(0) (- P)_ +

with

p= Pt’ 0.
0 Pt, .

We choose i-0 or i=1 for algorithms (15) or (16), respectively. The processes Pt, fit
verify [A1]-[A5] of Theorem 1, thus the assertion of the theorem is immediate for
algorithm (15). Next note that Pt can be decomposed in the following way: Pt
Pt + P;, where

IIT

One can easily verify that assumption [A5] holds true. Furthermore,

which implies the limit in [A4]. Then Theorem 1 implies the assertion of the theorem
for algorithm (16).

To accomplish the asymptotic study of the Widrow algorithm, we develop its

optimal version. Let # 7. Then

-1/(, 0,) v(0, vs),

where V3 V1 + V2 is the solution of the following equation:

(21) rDVs + VDr rDr + n.
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We readily get the following corollary.
COROLLARY 1. Consider a gain matrix F* satisfying

F*DF* RW

Then for any choice of F admissible with respect to Theorem 1

2I*v(v) >_ v(r*)=

where V(F) is the solution of equation (21) with the fixed matrix r.
The proof of the corollary can be found in [8]. We just remark here that V(F*)

is given by

(22) V(F*)- creD-1/2(D1/2RwD1/2)I/2D-1/2.
Note that if the disturbances ct and wt have conditional Gaussian distribution, then
this value of the error covariance is the least achievable by any estimation algorithm
(see the lower bound in [8]).

3.2. Normalized algorithm (NLMS). Let us consider the following algo-
rithm:

t (yt- T"
t Or-- 1)(23) t 0t--1 -- #F 1 + [t] 2

It was introduced in the literature (see, for instance, [13]) as a stable modification of
the usual LMS algorithm. The Lp stability of the method has been shown in [131 and
some estimates of the rate of convergence have been established.

With a slight abuse of notation we denote D EtTt(1 + It12) -1 and G
EtTt(1 + It12) -2. Note that if assumption [B2] holds then D > 0 and G > 0.
Consider the following Lyapunov equations with respect to the matrix V"

2FGFFDV1 + V1DF a
FDV2 + V2DF-

THEOREM 4. Let assumptions [B1]-[B3] hold true. Consider algorithm (23) with

arbitrary initial condition o. Then

A/(o, UVl + 2/u).

The proof of the theorem is analogous to that of Theorem 3.

3.3. Forgetting factor algorithm (RSL). Consider the following equation for
the estimate tt"

(24) t -Ot- + #Rvlt(yt Llt),
Rt- (1 )Rt-1 - tT, R0 oI

with > 0. Denote D- Ey)taTt. Define

2D-/2,V1 o"

v2
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THEOREM 5. Let assumptions [B1] and [B2] hold true. Consider algorithm (24)
with arbitrary initial condition o. Then

At(o, ptl + v/p).

The sufficient conditions of Lp stability of the method were provided in [4] and
[18] along with some estimates of the rate of convergence. We need the following
simple lemma.

LEMMA 2. Suppose that (t) is an ergodic stationary process RN-valued, Et
D, and Elt4 < . Let Rt be defined by the equation

Then sup0<,<l supt ERt D] 2 < , and lim,o limt E]Rt D]2 O.
Proof. Denote At Rt D. Then we have for At the following equation:

(25) At (1 ,)At_, + ,(tY D).

Note that for any x, y R 2]xy ax2 + a-ly. If we take a 1-p then we obtain
from (25)

EAtl (1 p)e(1 + ,)EIAt_I + ,(1 + -)EIt{T DI
(1 )EIAt_II2 + K(E[I4 + 1),

which implies the first assertion of the lemma.
Let us fix some integer > 0. For t we have

]At[ traceAtA
(1 p)2[At_l[ 2 + 21PtP D[ 2 + 2p(1 p)trace(At_l(t D))
(1 ,)l_ll + e,(l + I)

(26) +2p(1 p)trace(At_t(t D)) + 2p(1 p)lAt At-llpt D[.

It follows from the stationarity and ergodicity of (t) (and the Levy theorem) that
there is e(t) (e(t) 0 as t ) such that E[E(t Dl0)2 e(t). Here, as

usual, t a{..., t}. Therefore,

}E_( D)I Ea_ll( DI_)I ().

On the other hand, we easily derive that EAt At_l2 Klp. Summing up, we
have for t from (26)

l[ (1 ,)_ + ,(()1/ + ( + 1),).

Choosing p-/2, we get for any t

ll K( -,) + o(1),

which implies the second assertion of the lemma.

Proof of Theorem 5. For the sake of conciseness we consider only the case p .
Denote xt Rt(t Or). Then we obtain for xt the following equation (cf. [2])"

xt (1 ")xt-1 nt- ")/tet -t- /Itwt.
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This equation can be decomposed in the following way:

xt 2t + t
where

t (1 "Y)t-1 nt- ")’(trOt D)wt, o O,

2t (1 /)2t-1 -- ")/tet nt- ")’Dwt, 20 xo.

It follows from Lemma 2 that all conditions of Theorem 1 are satisfied for the process
(2t), thus

lim lim ")/-1/22 J(0, tr) in distribution,
3’-*0 t-*oo

2D + DRwD. Since (Rt D)wt is a martingale-where the covariance matrix IF cr
difference, we get for t

Elt <_ (1 )2Elt_ll2
nc ")’21wlE t DI z o(’),).

Thus lim__,0 limt-*oo 3’-1/21t O. From Lemma 2 we conclude that for any 0 < e

1/2 there is (e) such that P(Rt- D[ > e) < e as soon as (e). Thus P(Rg
D-11 > 2n(D) < . This implies that lim0 limt -/Z(Rzt-D-zt) 0
and -1/2(0 --Or) D-xt.

Note that if then the normalized error covariance matrix V (aD- +
R)/2 differs from the optimal value in (22). This reflects the fact that the forgetting
factor method usually used is not optimal.

3.4. Stabilized LS. Consider the following equations:

(27) Ot Ot-1 + prtt(Yt tTOt- 1),

(2s) Ft (ttp-1Rt q- 1-’-1)-1 r FT > 0

(29) Rt (1 p)Rt-1 nt- ptgTt RO O.

Here 0 < p < 1 and # > 0 are the algorithm parameters. As # ---, 0 equations (27)-
(29) can be seen as a regularized version of the LMS algorithm (15) with the constant
gain F, as well as a regularized version of the forgetting factor method. The amazing
property of this method is its Lp-stability for any choice of parameters # and p under
some excitation condition (el. [7]).

THEOREM 6. Let assumptions [B1]-[B3] hold true. Consider algorithm (27)-(29)
with arbitrary initial condition o. Then

+
where the matrices V1 and V2 are defined in (17) and (18).

Proof. If we set Pt F, then Ft- Pt + P[, where

P[ -P(P +/z-lp/i-l)-lP,

and
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Let us introduce the "stationary version" of the sequence (/t)"

0

S0=p E (1-p)-Jj,
j---wCX

St (1 p)St-x -- Ptl.Note that

St Rt (1 p)(St-1 Rt-1)

and R0 0 implies Rt <_ St; thus the choice

satisfies assumption [Ah]. The rest of the proof can be carried out along the same
lines as the proof of Theorem 3.

Since the expression for the asymptotic error covariance is the same as in Theorem
3, Corollary 1 remains valid for algorithm (27)-(29).

4. Proof of Theorem 1. The proof of the theorem consists of the following
parts. First we show that the matrix product I-Ii=k(I- #Pi) is exponentially stable
as t -- c (Lemma 4). Using this fact, we prove that the process (At) is asymptotically
equivalent to (At) defined by equation (3) with t substituted with some martingale-
difference process t (Proposition 3). Next we show that the distribution of -l/2/t
is tight (Proposition 4). Next we provide the linear approximation A of At (Lemma
6), which makes it possible to accomplish the proof by using the classical CLT for
martingales (Propositions 5 and 6).

LEMMA 3. For any sequence of symmetric matrices (Q)= n, the following
inequality holds:

log
n I) ((k)l) n ( )H(I Qi) _< min ,min Qi + log 1 + K(n)inx I0 1

i--1 i=1

where /min(P) stands for the smallest eigenvalue of P and K(n) is a constant de-
pending only on n.

Proof. For any unit vector X, one has

XT (I Q) (I Q)X 1 2XT Qi
i=1 "= i=1

X + XTE HiX,

where each Hi is a product of matrices Qi with more than 2 and less than 2n terms.
Putting q max IQI and A Amin(- Q), we then have

i--1

< 1 2A + K(n)(q2 + q2n)

< 1 2 min(A, 1/2) + K(n)(q2 + q2n)
_< (1 min(A, 1/2))2 + K(n)(q2 + q2n)
_< (1 min(A, 1/2))2(1 + 4K(n)(q2 + q2n))
_< (1 min(A, 1/2))2(1 + K’(n)q2),
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and finally

log II( -
i=1

n
K q2<_ min(, 1/2) + log(1 + (n)).

Denote

i=j

LEMMA 4. Let conditions [All, [A2], and [A5] be satisfied, then there exist #o,
and a stationary random process Cs(w) such that for any T

sup (1 OZop)T-t7rT,t < CT(W)< oC a.s.,
t>T,tt<_o

sup (1- aop)t-TTrt,T < CT(W) < oc a.s..
t<T,#_<#o

Proof. Note that the second assertion is a consequence of the first used backwards
in time (we define the constant Cr(w) as the maximum of the backward-forward
constants). Let us prove the first one. Consider the case T- 1. Note that we have
the estimate

log(1 --Ctp) 1-t H(/-
i=1

t/
<_ tap + log

k=0

(k+l)n

i=kn+l

On the other hand, by Lemma 3 we get

(l/p) log H (I PPi)
i=s+l

_< -(l/p)min /min P E Pi 1/2 + (/t/2p)log 1 + K(n)p
i=s+l i=s+l

min min Pi + IP l 2
ki=s+l i=s+l

--min (minAmin ( Pi),l/(2po))+nKpomax(u<uo IPil2)/2"
The bound

min (EPi) - )min (EP--P)
_> ,min (E P/) EP:

min (/min (E Pi), 1/(2p0)) >_ rain (Amin (E p/0), 1/(2,0))
leads to
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where Ks is a sum of stationary ergodic processes. If n has been chosen large enough
and #0 small enough, then E[K] < 0. Indeed,

E[Ks]<_ -E [min (’min (E p0), 1/(2#0))] + nE
k#<o[maxp]

max ])+ Ko2 (ElPxl 2 + Ipll
P<#o

where the right-hand side is negative for #0 small enough due to the uniform (in #)
bound of p in assumption [A5]. Finally we have

log(1 ap) 1-t

i=1

t/n
<_ tc# + E #Kkn

k=o

(( ))_< #0 mtax t a + 1/t Kn A C1 (CO).
k=0

By the ergodic theorem we conclude that as a is small enough the expression inside
the max tends to -oc as t tends to ec, which implies the lemma in the case T 1.
A shift of indices immediately gives the result for other values of T.

Let us now make the reduction.
PROPOSITION 3. The process miy be written as

(30) Q0 t- //t 2r- /2t--1

where t is a stationary martingale-difference process with EoTo So, and the pro-
cess At defined by

(31) [kt (I- #Pt)St- + #t Ao Ao

satisfies

(32) lim lim -l/2(m St) 0 in probability.
---o t--,cx

This limit is to be taken in the sense explained after Theorem 1.

Proof. Let C- E,=o(EIE(lYo)l)1/. If

t ---E 0 (0.-t+s -1

s>O s>l

then <to t vt + vt-1, t is a martingale-difference and

El61 < 4c., El,tl < c
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(this well-known result (see, for example, [5]) is an immediate consequence of the
Minkowski inequality), and one easily checks that

+ +

We consider the process A t t as follows"

j=l

j= j=l

j=2 j=l

t+l

I;I ct.(1 aop)t-j-l(p(1 + IPjl)lj-ll +
j=l

,1/c()x(,)
with E[X(p)] < v(), v() 0 s p 0. Finally, for any e > 0,

P(.-l/21;I > e)- P(Ct(w)Xt(.) > e)
P(Ct(w) > A)+ P(Xt() > e/A) for any A
(c,() > ()-1/)+ (x,() > ()1/)
(c1 () > ()-/)+ ()1//.

This last quantity is now independent of t and tends to 0 as # - 0.
It remains to prove that

lira lim #-1/2/t J(0 V) in distribution.

We recall that the process/t is defined by

t (I- tgt)t_ nt- tt o Ao,

and t is a stationary martingale-difference process independent of # with EooT So.
PROPOSITION 4. The process (t-1/2/t) is tight in the sense that for some #t > 0

the following is true: for any > 0 there ezists R such that

for all # < #’ and t > (o0) -1 In t-1 (here ao was defined in Lemma 4).
Proof. From equation (3) we get

/t-- 7rl,t/0-- E 7rj-t-l’t"J i}1) +
j=l
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(we set zrt+l,t I). From Lemma 4 we derive that

Irl,tZol _< cl(w)(1- ao#)tlzol <_ Cl(cO)e-c#tl/ol

with C1(O2) OO almost surely. This implies that for any e > 0 there is R such that

P(Cl(W)-"tlffXo > R/2) e

as soon as t > (Oz0t) -1 in -1; thus -1/2I}1) is tight. Let us take c Co/2. Summing
by parts, we have

i/2) E rj+,t(1 ctlt)-(t-J)It ((1 c#)t-5j)
j=l

t--1

Et(Pj+I aI)rs+2,t(1 a#)-(t-i)# E (1
j=l i=j+l

+,(1 ,)1- (1 )- }1) + ).
j=l

The preceding lemma implies that for a- ao/2 the random process

(33) max{lrt-,tl(1 )-}
s>0

may be bounded by a stationary process C(02) a.s. finite. Note that

E #E(1
i--1

E(1
i=1

1/2

<_ Kp1/2,

thus

I)1 <_ C(w)(1- oz[4)t1/2Cl(02)

with ECI(w) < oc; #-/2r}) is tight, r 1) satisfies the bound

t--1

I})1 _< cf()a/ E(1- c#)t-YCy,t(w),
j=l

where

Cj,t(w) (IPj+ll + ct)tl/2 E (1 c#)t-i{i
i=j+l

and

EC;,t(w) <_ 4E(IPj+ll + a) + 2#E 12E (1-a#)t-ii <_K.
i=j-t-1
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Hence, we get for rl)

where C is a finite stationary process independent of it, and E(C’) is bounded

independently of it. Therefore it-1/2rl) is tight. [3

LEMMA 5. There is itt > 0 and K such that for any it <_ itt and n >_ 1

E (sup ln(I/tl z + 1)11/o1_</) <_ ln(R2 + 1)+ Kit(n1/z + itn).
\t_n

Proof. From equation (3) we get for the probe function Ut I/Xl

v <_ T_I(I nP)(- nP)- + e,hT_(- ,P) +11_
Ut-1 -I-2ittT/t-1 + #(I/_lllPl + I;1).

Denote It ln(Ut + 1). Due to the concavity of the function ln(z) we get

(34)

We conclude from the Doob inequality that

\t<_n

and

(I Kitsup I_) -.(EIP{I + EI({I) _< Kit2n.E
kt_n i=1

Summing up we obtain the desired lemma.
Denote Lt Pt0 B. Let us define for any t >_ 0 and R0 < cx a random time

(35) a’(s)--inf{t _> s 11 > itl/2R0}.

We denote a’(0) a. Set

(36) re(e) min{/>_ 0.l(z- ,)1 -< }.
Assumption [A1] implies that there exist it’ and K() < ec such that

() .() < (),-1

for any it <_ it’. Let us consider a new process (A) along with (At). We define it by
the equation

(38)
A (I- itB)At_l + itt, t >_ 1,

/’o ho.
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LEMMA 6. For any 5 > 0 there exists #o(a, 5) such that

for any # < #o(, 5, Ro).
Proof. We have the following equation for the difference:

(5 /t-/t’ (I- B)6_ tzLtt- [-tg:t- 1, ; O.

Denote v- min(a, re(e)). We have for 6; the decomposition

(39)

Let us estimate the first term in (39)’

n()

EII() <_ K ElE(L{lo{_z)llz/lgo <_ ttm(a)EIE(Lz o)l/,1/2Ro
i:1

where K(e) < oc is defined in (37) and e(1) is a sequence which tends to 0. From

assumption [A5] we derive the estimate for

Eli(,5) <_ K# E EIP[I#I/9R <- K(e)RoE pill-t1/2-- (’(/-t)/-t 1/2
i=1

with e’(#) 0 as # -- 0. Next we have for I,(4)

Note that

/i-lli-l<a i-lli-l<a
l-1 1-1

(A_ k__l)l__<. /X_I_=..
k=l k=l
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Then we get for

l- rn() l- rn()

I/v(3) < #E E [Lil’[ki-k- ’i-k-llli-k-l<a A- #E E I/hi-k[ILilli-k=
k:l i=1 k:l i=1

1-1 rn() 1-1

(40) <" ILll/x- -/xi-k-1 ]li-k-l< -+- #l/x] E IL/ll/_<,<).
k=l i=1 k=l

Note that

E sup # PI _< #2 EiPl <_ K K()#,

and E(supi<m(e 11) K K(). Thus

(E /a 2)1/2 R01/2 + / K(c)#1/2(1 + #1/2).

Furthermore,

(E[Si 5i-1121i-1<a) 1/2 Kp.

Summing up, we obtain from (40)

Eli,(a) < #K/((c)(1- 1).

For i(2) we obtain in the same way

If we take -1/4, then

EIS’ I </((#1/2((/) q_ t(#)) q_ #l) 0(#1/2)

for # < #o- Meanwhile, for any 5 > 0 we have

for suficiently small #. [3

We must show that #-1/2AI converges in distribution to the Gaussian randomre(C)
variable as # ---, 0.

LEMMA 7.

(41)

as # O. Here V VT > 0 is a unique solution of the Lyapunov equation (7).
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Proof. Let us fix # small enough. Denote gi /T So and

e(i)
1

j=l

The ergodicity of the sequence (i) implies that e(i) - 0 a.s. The distribution of the
sum in the left side of (41) coincides with that of I.() + V.(), where

and

-()

V.() It E (I ItB)’()-iSo(I ItB)m()-i
i=1

.()

Ira(e) It E (I ItB)i-l(_i.T_ SO)(I
i=1

n()

It E (I ItB)i-lg_i(I ItB)-li.
i--1

Summing by parts we get

I.() #m(e)(I- #B)’()e(m(e))(I- Itj)m(e)
,(e)-

+It E i(I ItB)i-l(i)(I ItB)i-1 i( Itt)i(i)(I Itj)i.
i--1

Since e(t) -- O, for any e’ > 0 one can choose to such that e(t) <_ e’ for all t >_ to (note
that to does not depend on It). Thus from the definition of re(e) in (36) we have

(42)

For the first term in (42) we have immediately ele(m(e))l 0 as p - 0. Since the
random time to is independent of #, we get that

to

Ktoit E(1 ait)ile(i)l 0
i=0

as It --, 0. For the last term in (42) we derive

Keit E(1- cIt)9ii _< Ke e
i=0

-2cttdt < Ke.



PARAMETER TRACKING ALGORITHMS 343

Summing up, we obtain from (42) that II,()l 0. Now it suffices to prove that
Vm() -- V. Note that Vt adheres to the following recursive equation:

Vt (I- #B)Vt-1 (I- #B) + S#, V0 0.

Let V be a solution of the Lyapunov equation (7). Then for the difference Ut V
we obtain

Vt (I- B)Ut-1 (I- B) + 2BVB.
From the stability of matrix (I B) we conclude that

lu()l K(1 )() + Ko() o()

as0.
PROPOSiTiON 5. Let the process (A) be defined by the equation

’Moreover, for any 1 0 there ezists R < such that the initial condition A
A0() satisfies

1/P(
for any > O, and

lim Ef(-I/A()) Ef((O V))I <

for any continuous f.
Proof. Note that

()

(s)"
i=1

Recall that we have chosen re(e) in (36) such that l(I- B)()I e. Thus

() e01,

and we have for the first term in (43)

(() > 1./) (ll > ./)< .
Next we apply the CLT for martingales to the second term. It states that -l/2i(2)m(e) D
(0, V) if condition (41) is satisfied along with the Lindeberg conditions [10, Thm. 5.4]"

()

(44) ll(I_U)()-l>5 0 for any 5 > 0.
i=1

Condition (44) is satisfied since () is a strictly stationary sequence, and for some
>0

(

i=1
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as # -- 0. Along with lemma 7 it implies the desired statement.
The following proposition completes the proof of the theorem.
PROPOSITION 6.

lim lim p-1/2 Jf(O, V) in distribution.
p--O

Proof. Let us fix any 5 > 0. From Proposition 4 we conclude that there is R < oc
such that P(l,tol <_ #1/2R) >_ 1-5 for all to > (a0#) -1 ln#-1. Let us choose rn(c) to
satisfy (36) with c 5/R (recall that the estimate (37) implies that re(e) < K(e)#-1
for some K(e) < oc). Denote

A- { to<_t<_to+m()sup Itlllatol<tl/.R

and B {l&ol 72}. Lemma 5 implies that

1 P(A) P(Ac) < (log #Rg + 1) -1 [E log(/_t/i2 + 1)+ K#(m(e) 1/2 + #m(c))]
_< (log #Rg + 1)-l(log(#R + 1)+ (K(5/R)+ 1)#1/2).

Thus, one can choose R0 < oc such that P(A) >_ 1 -6. Note then that

sup
to <_t<_to+rn(e

I?xtl < #/Ro }
_
A B.

Therefore,

P( sup
to<_t<_to+rn(e)

>_ P(A n B) >_ 1-25

or

(45) P(cr’(to) < to + m(e)) < 25

where cr’(t) is defined in (35). Let us consider along with zt a random process
defined by the equation

A’ (I- #B)/lt_ #t for t > to,

A=At for0_<t_<t0.

Then Lemma 6, along with the bound (45), implies that

p(#-l/2 /kt
to+re(e) -/to+,()l > 5) < 35

for all # _< #0 small enough. On the other hand, all the conditions of Proposition 5
are fulfilled, thus A, N’(0, V) which results, in turn, in [Xto+m() N’(O V)to+m(e)

To conclude the proof, we note that the time to _> (Co#)- In #-land 5 > 0 have
been arbitrarily chosen.
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JACK WARGA: IN APPRECIATION

The Editorial Board of the SIAM Journal on Control and Optimization (SICON) and
members of the SIAM community take great pleasure in honoring Professor Jack Warga on
the occasion of his retirement as Professor of Mathematics at Northeastern University. Jack’s
dedication to SICON, especially in its early formative years, was crucial to the establishment of
thejournal as one ofthe preeminent publications in the fields ofcontrol theory and optimization.
In addition, his many contributions to mathematical analysis and optimal control theory have
proved to be fundamental for subsequent developments in these important fields.

Jack Warga was born in Warsaw, Poland, on December 5, 1922. He received a B.A. degree
in physics from Carleton College in 1944 and a Ph.D. degree in mathematics from New York
University in 1950. From 1951 to 1956 he was employed as a mathematical and computing
analyst by Reeves Instrument Corporation, New York, New York, Republic Aviation Cor-
poration, Farmingdale, New York, and the ElectroData Division of Burroughs Corporation,
Pasadena, California. He was a mathematical analyst and later Manager of the Mathematics
Department of Avco Research and Development Division, Wilmington, Massachusetts, from
1957 to 1966. From 1966 until his retirement in July 1993, he was Professor of Mathematics
at Northeastern University, Boston; Massachusetts. In addition, Professor Warga held a Weiz-
mann Memorial Fellowship at the Weizmann Institute of Science, Rehovot, Israel, during 1956
and 1957, and spent his sabbatical leave there in 1973. During 1981 he was on sabbatical at
Tel Aviv University, Tel Aviv, Israel. He has been an invited speaker at numerous conferences
and workshops in the United States, Canada, Italy, and Israel.

Jack Wargajoined the editorial board of SICON in 1964, the second year of publication of
the journal (then called the SlAM Journal on Control), and served with distinction in various
capacities for over 25 years. He was Co-Managing Editor with Lucien W. Neustadt from late
1967 until the end of 1969 and Associate Managing Editor from 1969 to 1972, sharing those
duties with Leonard D. Berkovitz from 1970 to 1972. For six years, from 1973 through 1978,
Jack served as Managing Editor of the journal.

A pioneering researcher in mathematical control theory, Professor Warga’s work covers
a board spectrum of problems in the field. He has contributed to the theory of necessary
conditions for optimal control problems, especially the theory of relaxed controls. Much of
this effort is summarized in his book [24], in which the inherent convexity ofrelaxed controls is
exploited in order to address existence questions, as well as to derive strong-variation necessary
conditions. In later work he developed a theory of generalized differentiation for nonsmooth
functions as well as necessary optimality and controllability conditions for optimization and
optimal control problems [26]-[29], [35], [36], [40], [43], [44], [54] [57]. Among Jack’s
other significant contributions are those that address higher-order necessary conditions [32]-
[34], [39], [47]-[49], [52], iterative computational techniques [2], [6], [42], [46], and related
functional analytic issues [41 ], [61 ], [62].

In his service to SICON, as well as in his research, Jack is known for his high standards of
scholarship, personal integrity, and helpfulness to fellow researchers. Especially noteworthy
is his personal concern for young researchers; he has provided guidance and encouragement
with extraordinary patience and kindness to many. Over the past 30 years he has worked
extensively and anonymously for human rights for scientists throughout the world. He is truly
beloved by his students and colleagues for his humble manner and exceptional generosity.

The editorial board is honored to join Jack Warga’s many friends and admirers in formally
recognizing his many contributions to mathematics and his outstanding service to SIAM and
the mathematical community at large.
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H OPTIMAL SENSITIVITY FOR A CLASS OF
INFINITE-DIMENSIONAL SYSTEMS*

HONG YANG

Abstract. The computation of the H optimal weighted pure and mixed sensitivities for
a class of infinite-dimensional systems is studied by characterizing certain wandering subspaces of
some related Kren spaces. The new characterizations can be used to obtain explicit bases for those
subspaces. Explicit formulas for the optimal sensitivity for some infinite-dimensional systems can be
obtained from these bases. The new characterizations can also be used to obtain fast algorithms for
computing the H optimal performance for pure and mixed sensitivity problems. The results are
applied to obtain an explicit optimal sensitivity formula for a class of infinite-dimensional systems
that generalizes a known result.

Key words. H optimal sensitivity, infinite-dimensionM systems, KreYn space

AMS subject classifications. 93B28, 93B35, 93B36

1. Introduction. We study the computation of H optimal weighted pure and
mixed sensitivities for a class of infinite-dimensional systems. In the standard fre-
quency domain approach for H control, it is has been shown that for a quite general
class of systems, the original H sensitivity minimization problem is associated with
a self-adjoint operator. For the scalar (single-input/single-output) systems, in the case
when the norm of this operator is given by its largest eigenvalue, the minimal pure
sensitivity is unique and can be found by means of Sarason’s Theorem [16, Prop. 5.1,
p. 188]. In this case Sarason’s Theorem can also be used to obtain the unique mini-
mal mixed sensitivity [4]. In the case when the norm of this operator is given by its
essential spectral radius, the optimal sensitivity may not be unique. Using the Kren
space approach developed by Ball and Helton [1], [17] and [4] studied the parameter-
ization of optimal pure and mixed sensitivities in the nonunique case respectively. In
this approach, one needs to compute the bases for certain subspaces of some related
Kren spaces. Although [17] and [4] gave abstract formulas for computing such bases,
for the infinite-dimensional systems, the actual computation using those formulas in-
volves computing an inverse image of an infinite-dimensional operator, an image of an
infinite-dimensional operator, and the norm of an inverse image of the square root of
an infinite-dimensional operator. Explicitly carrying out these operations is difficult
if not impossible. In the matrix (multi-input/multi-output) case, even when the norm
of the related self-adjoint operator is given by its largest eigenvalue, the optimal pure
sensitivity may not be unique [10]. Intuitively speaking, this is because in the matrix
case we only minimize the largest singular value of a matrix and there is some leeway
left for the smaller singular values. In the scalar case there is no such leeway.

We begin with the mixed sensitivity case; by studying the actions of various shift
operators on the elements of the related subspace, we observe some "symmetry" prop-
erties and obtain a new characterization for the subspace. The pure sensitivity case
can be treated as a special case. The characterizations enable us to compute explicitly
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the bases for the related subspaces. These bases in turn give us parameterizations of
all optimal pure and mixed sensitivities respectively.

The paper is organized as follows: Notation is introduced in the next section.
Computation of optimal mixed sensitivity is considered in 3, and the special case of
optimal pure sensitivity is considered in 3.1. In 4 the results are applied to a class
of infinite-dimensionM systems to obtain an explicit optimal sensitivity formula that
generalizes some known results. Some concluding remarks are made in 5.

2. Notation. In this paper we shall work on the Hardy spaces on the unit disc
in order to apply more directly the mathematical literature, except for 4, where
examples are computed on the Hardy spaces on the right half plane. We shall use
s and z to denote the complex variables in the right half plane and the unit disc D
respectively. Basic definitions and facts used in this paper about Hardy spaces and
Kren spaces can be found in [12] and [2] respectively.

H2, H, L, L: Hardy spaces and Lebesgue spaces.
H2_ the orthogonal complement of H2 in L2, i.e., L2 H2 (R) H2_.
BH { E H, I]11 <- 1}, the unit ball of H.

(0) { n 0 }.
II+" the orthogonal projection L2 - H2.
H_" the orthogonal projection L2 --, H2_.
x*(z), x*(s): the involutions of x(z) and x(s) respectively, i.e., x*(z) 2(3 and

x*(s) := 2(-). Here the bar denotes the complex conjugate. Note: when "*" is
applied to an operator, it denotes the adjoint.

F(*) F’F, where F can be an operator or a function.
Kl" the Kren space L2 H9 with indefinite inner product

(it1, tt2}L2 (Vl, V2}H’.

the Kren space Lz H2 H2 with indefinite inner product

Vl V2
Wl ?-02

(it1, lt2)L2 -}- (Vl, V2)H2 (Wl, W2)H2.

M[+/-1" orthogonal companion of M with respect to the indefinite inner product

sl" the bilateral shift operator on L2.
s2" the unilateral shift operator on H2.

S" shift operator on K defined as S1 (
v 82v

$2" shift operator on K2 defined as $2 v s2v

{7(’)" the graph of A’, i.e., if A’" H -- H2, then

h HI} C HI(H2.
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3. Optimal sensitivities. We begin with the mixed sensitivity case. It is well
known [14], [6], [4] that for a very general class of infinite-dimensional systems (in-
cludes systems with infinite-dimensional inner part and finite-dimensional outer part
and finite-dimensional weights), minimizing the mixed sensitivity in H norm is
equivalent to the following problem:

Given matrices G E L and F E H, find all Zo H such that

#o min
ZEH

G-Z

It has been shown (see [8], [7], [111, [6], and the references therein) that the
optimal performance #o can be computed in the case when G m*W and F rational,
where m is arbitrary inner and W is rational. In this paper, we shall assume that
the optimal performance #o is known. Define +/-G,/ +/-F" then the above

po po
problem is equivalent to:

Given matrices ( L and/ H, find all 2o H such that

1 min
oc 2EH

where 2 is related to Z by Z #o2. In the following, we shall assume #o 1.
For (a L H) E (R) define an operator

.,4 A(G,F)" H2 -- H2__ @ H2 (4h (II_Gh II+Fh)).

Since we assume #o
2 1, we have [13]

11.4(*)11- o 1.

Note that modifying G by adding an H function does not change the operator
and conversely, for any (I) L such that A(G, F) A((, F), we have

min IIG- ( ZII -IIA(G- , 0)11- IIA(a, F) A(, f)ll- 0,
ZH

which means that G q) H. We see that the problem (1) is equivalent to finding

all (I) L such that 4(G F)- 4((I) F)and I]( e I[) 1. We shall call each such

(I) a minimal symbol of A(G, F). From (I) G- Zo we get Zo G- (I).

It is easy to see that the adjoint operator of A is

,A*" H2 (H2 H2

H+G*h_ + H+F* h.

h_ )h
H+G*h_ + H+F*h

h_ H2 hEH2

Let

: g(A*) [+/-1.
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Corresponding to Lemma 3 and Lemma 2 in [10] for the pure sensitivity case, we
have the following lemma.

LEMMA 3.1. A subspace A/’2 of K2 is maximal negative if and only if it is the
graph of a contraction C n2 -- L2 n2, i.e.,

whre IICll .
LEMMA 3.2. If Af2 is the graph of a bounded linear operator H2 -- LgH2, then

A/’2 is Sg-invariant if and only if

Jk/’2 5)2x "x E H2

X

for some ffPl L and some 9. H.
From Lemmas 3.1 and 3.2 we see that for any Sg.-invariant maximal negative

subspace Afg., there are two matrices 5)1 L and 5)2 H associated with it.
Further, we have the following lemma.

LEMMA 3.3. For an S2-invariant maximal negative subspace Afg., A/’2 c A9. if
and only if

7t TIG and 5)2 F.

Proof. Since Af2 is maximal negative and S2-invariant, by Lemmas 3.1 and 3.2,
there are two matrices 1 L and 5)2 E H such that

Jf2 2x "x H2

X

Further, 2 C 2 if and only if for any x H2, y_ H2 and y n2

0 2x y
x y_ +Ty

(1x, y_> + (2x, y> (X, SY- +
(n_lX, v_> + (:/, v> (x, uSv-> (x,
(n_&x, v_)+ (&:/, v>- (/, n+a*v_>-
(n_lX, v_> + (&:z, v>- (x, a’v_> -(/, *v>
(n_lX, v_> + (&:/, v> (ax, v_> (x, v>

(n_ n_ax, v_> + (&x x, >.
This means 1 7tG and 5)2 F. [3

Remark 1. From 7-te 7ta and 5)9. F we can infer that A(5)1, F) A(G, F),
which in turn means G- (I) H.

For clarity we summarize the above three lemmas in the following theorem.
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THEOREM 3.4. Af2 is a maximal negative S2-invariant subspace and N’ c 3d2 if
and only if Af2 is the graph of a multiplication operator (1 F)n- H2 - L2 H2,
where E L and

and

The above theorem characterizes the optimal mixed sensitivity in terms of S2-
invariant maximal-negative subspaces of 3//2. By Ball-Helton’s Theorem [1], the
S2-invariant maximal-negative subspaces of 3/12 can be determined by the following
wandering subspace:

L2 := ,M2 C (S2Ad2) [+/-l

It is shown in [4] (see also [171) that for 11,411 < 1, dim L2 2 and there exist

x Frl L2, x2 Fr2 L2
rl r2

such that [Xl, Xl] 1, [x2, x2] -1, and Ix1, x2] 0 and that the suboptimal symbols
such that (G,F)- A(,F)and II(f)ll < 1 is parameterized by the formula_

PlCWP2, BH.r+ re

In the optimal case, for [[All- 1, consider A’=A for # > 1; then [IA[[ < 1.
The corresponding 2 is such that

sup 12(z)l < c for some z e D
tt>l

if and only if the symbol for 4 in BL is nonunique. In this case there is a sequence
{#n } such that 1 < #n --’ I and the corresponding/51, 1, i52, 2 converge to p, rl, p2, r2
respectively and the optimal symbols (minimal symbols) such that .A(G,F)
4( F)and II( F)II 1 is parameterized by

tiC+ r2

Now we see that in order to compute explicitly the optimal mixed sensitivity we
need to find a base for the wandering subspace L2.

Remark 2. In [4], abstract formulas similar to those of [17] were derived for a
base of L2. As the formulas in [17], for infinite-dimensional systems, those formulas
contain an inverse image of an infinite-dimensional operator, an image of an infinite-
dimensional operator, and the norm of an inverse image of the square root of an
infinite-dimensional operator.

In order to find a base for the subspace L2 explicitly, we study L2 and derive
some new characterizations for L2 in the following. Since L2 AJ2 N ($23/2) [+/-], we
begin with a characterization of the subspace

PROPOSITION 3.5. (p q r) -r E Ad2 if and only ifp-Gr H2 and q-Fr H2_.
If F H, (p q r)- 3/[2 if and only if p- Gr E H2 and q Fr.
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Proof. By the definition of Ad, we have

r 11+G*h_ + H+F* h
(p, h-}L. + <q,h>H. <r, II+G*h_ + II+F*h>H
(P,h-}L. + {q, h}H (r, a’h_ + F*h}L2
<p, h->L. + <q, h>H <Gr, h->L. <Fr,
<p Gr, h->L + <q Fr, h>L 0

for any h_ E H2_ and h E H2. This is true if and only if p-Gr n2 and q-Fr H2_.
If F H, then q- Fr H2 and this is true if and only if q- Fr 0 i.e.

q=Fr. [3

Remark 3. From Proposition 3.5 we see that for any h E H2, (h 0 0)m A/I2.
Also (II_Gr Fr r)T @ Jd2.

Remark 4. For F H 2[2 is S2-invariant i.e. $2J2 C .12. In fact for
(u v w) q- S2AJ2, by Lemma 3.6 we have

(2) v $2 Fx 82Fx Fs2x
W X 82X 82X

By Proposition 3.5, we see that the right-hand side of (2) is in AJ2. Therefore
$2.A/[2 ./2.

We shall use the following lemma that deals with the commuting properties of
the shifts s and sg. with multiplication operators.

LEMMA 3.6. For any A L,
As2 s A on H2.

In particular, if A H,
As2 s2A on H2.

Proof. Immediate from the definitions of the shifts 81 and s2. []

Using Proposition 3.5, we can prove the following characterization of L2. We
adopt the proof provided by one referee of the paper. The original proof is much
more complicated.

THEOREM 3.7. For F H, (p Fr r)T L2 a2 A ($2./2) [+/-1 if and only
f

p p Gr, (1- F )r Gp e H2.

Proof. Noting that F E H, by Proposition 3.5, we have

{2d2 Fx x, y
X

Then (p Fr r) q- (S2Ad2) [+/-] if and only if for any x, y H2,

,$2 Fx O.
r X
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By Lemma 3.6, for any x, y E H2, we have

This means that Gp- F(*)r- r* (G*p- F(*)r- r)* H2 and p* H2. The
theorem follows, rl

Two immediate corollaries of Theorem 3.7 are in order.
COROLLARY 3.8.

(1-F(*))r*)Fp* L ($2A/[2) [+/-l a A//2
p*

if and only if (1 F(*))r* Gp*, (1 F(*))(p- Gr) e H2.
Remark 5. We note that

(p, (1 F(*))r*) + (Fr, Fp*) (r,p*)
(p,r*)- (p,F(*)r*) + (F(*)r,p*)- (r,p*}

--0.

If 1 F(*) has spectral factorization F(*) i.e. 1 F(*) F}*) with Fs H
then we have the following corollary.

COROLLARY 3.9.

Fr E L2 (S2Ad2) [+/-] V12[2

if and only if F{r* -Gr H2

Proof. From Theorem 3.7, (F*r* Fr r)-r L2 if and only if

Fs(F2r* Gr) (1 F(*))r* GFr e H2,
F2r* -Gr H2.

But F E H, so we only need F2r* -Gr H.
Remark 6. We note that

Fr Fr (Fr*, Fr*) + (Fr, Fr) (r, r)
r r

<(1 F(*))r*, r*> <(1 F(*))r, r> O.
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In view of Corollaries 3.8 and 3.9 and Remarks 5 and 6, when we find a base
{Xl,X2} for L2 such that [x,x] [x2,x2] 0, since L2 is not neutral, we have
-o-[Xl,x2] : 0. We can define

1 1
Xl 2[xOI,x]XO1 -- X, X2 --2[X,xO2]XO1 -" X;

then {x,x2} form a base for L2 nd [x,x]- 1, [x2,x2]- -1, and [x,x2]- 0.

3.1. Special case." optimal pure sensitivity. As a special case, let us look at
the problem of minimizing the pure weighted sensitivity in the H norm, which is
cast as the following Nehari problem [5], [19]:

Given a matrix G E L, find all Zo E H such that

IIG-Zo]l=#o= min I[G-ZII
ZHo

This problem can be treated as a special case of the mixed sensitivity case with
F 0. As in the mixed sensitivity case, we may assume without loss of generality
that #o 1.

The operator 4 becomes a Hankel operator

: H2 - n2 (7-l(h) H_Gh).

We want to find all (I) L such that 7-/ T/ and II(I)ll 1. Then Zo G- .
The graph of 7-/ is

To simplify the notation, we define

6( 5) I l.
From Theorem 3.4 we know that to find the optimal sensitivity is the same as to

characterize the set of all S-invariant maximal-negative subspaces of A/. In order
to do so, we need to find a base for the subspace [17], [10]

L := A/ (SA)[]

Remark 7. Abstract formulas were derived in [17] for a base of L. For infinite-
dimensional systems, those formulas contain an inverse image of an infinite-dimensional
operator, an image of an infinite-dimensional operator, and the norm of an inverse
image of the square root of an infinite-dimensional operator. In the finite-dimensional
case, an algorithm was given for computing a base of L [10].

By letting F 0 in Theorem 3.7, we have the following corresponding theorem
for the pure sensitivity case.

THEOREM 3.10. (Pr) I1 /f and only if p*, p Gr, r* Gp* H2.
Theorem 3.10 has the following immediate corollaries:
COROLLAPY 3.11. (p) e L /f and only if (r* p* - L1.
COROLLARY 3.12. (+/-r* r)- e L /f and only if r* = Gr e He.
Finding a base for the wandering subspaces L or L2 analytically is in general very

difficult. Yang and Orszag [18] proposed a numerical method to find their approxi-
mations. Nevertheless, in the next section, we shall show that in some special cases,
we can use Theorem 3.10 to construct explicitly a base for the wandering subspaces
L1 and therefore obtain explicit formulas for the optimal sensitivity.
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4. Example. In this section, we shall work on the Hardy spaces on the right half
plane. Because our results in the previous sections are on the Hardy spaces on the

unit disc and A(z)is in H2 of the unit disc if and only if A (8-1) (1 + s)B(s) for

some B(s) in H9 of the right half plane [12, Theorem, p. 130], we find it convenient
AEH9.to still write A E H2 when we actually mean

The purpose of this section is to use the results developed in the previous sections
to solve the sensitivity minimization problem for G rn* b-’a+8 where rn is an inner
function. This corresponds to the problem of pure sensitivity minimization for the

a+splant P-rn and weight W- b- [5]. We want to find all Zo H such that

(a) I1- Zolloo o inf Ila- Zlloo -IIall,
ZEH

or equivalently, find all 5 L such that 7-/e Ha and II(I)lloo #o.
Setting Z 0 in (3) we see that

/ {a2q-c2} { -5, a>b,
o <_ Ilalloo- sup

b2 wVeR + 1 a < b.

It is standard [15], [9] that the essential spectrum of) is

a q-co2o(n(*)) . + . o(n)

where ere(m) denotes the set of imaginary points which are essential singularities of
rn. Let

(4)
a q- co2

Pc=sup
b + w jw cre(m)

be the essential spectral radius of 7-/(c*). Noting that #o I111, we have #o
2 ]17-/ II;

thus, /to is given by the norm of a self-adjoint operator, whose spectrum contains

only eigenvalues crp(7-/)) and essential spectrum cre(7-/)). We have/t2o -IIt)ll-
sup{cre((*) ((*)c )uoo )} >_,oo.

We shall consider the case when a < b and rn has an essential singularity at
infinity. In this case we see that 1 p </to < 1, so/to 1.

Case I: a- b. Take G n*. For/t > 1 using Theorem 3.10 we see that

{ {Pl 1, P2 -fi-,
m

rl -; r2 1

is a base for I1 and

[(P)r (Plrl)1 /t2-1/t2 > 0, [(P2)r2 (P2r2)] 1-/t2#2
/ ’(Pl rl) T tt (P2Let x ,x2=

-1, and [x,x2] 0. It is easy to see that

r2) T Then [xl,x] 1, [x2,x2]

r2 --+ oo
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as # -- 1. Thus in this case the minimal symbol is unique. It is easy to see that the
unique symbol is (I) rn*.

Case II: a < b. Take G "* a+s For (P) E L1 the trick is to assume that
tt b+s"

p Plrn* + P2, r Rlrn +
where P1, P2, R1, R2 are rational functions to be computed later.

We have

p Gr rn* (P1 # b +
a + S R2) +

# b +
a + S

( p,) la+sr*-G rn* la+s__ +R. P{P R1
# b+ s # b+ s

By Theorem 3 10 in order for (P)
H, p* H, and r H2. Using these constraints we see that

{ Xa+sR2 O, {R la+s

+R1 H a+ H

These conditions in turn yield

P 1 - H
(5)

2 1 b_s

For > 1, define B b -a > 0. Then condition (5) becomes

P2 B;-l)s (B.--ls)(B.+-ls) H2

_s2) R .2(b2_s2

Since we require that p* H2 and r H, we see that we have the following
solutions for p)"

where the coefficients OZl, 1, O/2,/2 satisfy the following interpolation conditions:

(6) /1 (a C.)rn (C.) + Olt (b -- C]t) 0,

(7) a2 (a C)rn* (-C.) +/2# (b + C) 0,

where C. B.

By Theorem 3.10,

Pl E L1, L1.
/’1 /’2
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Since dimL1 2, (pl rl)T and (P2 r2)r form a base for L1.
Noting that C is real for # > 1, we have m*(-C) rh(C). From (6) and (7)

we can let/31 02 and a -/32. This gives us

p r2,

rl =P2.

Thus [(Pl rl)T, (P2 T2) T] (Pl,P2)- (rl,T2)---(1,pP2- rr2)= O.
Letting/31 a2 1, we have

Ctt -awhere F- C.+b"
One can compute that

PlP -rlr p4

Thus

[(Pl)7,1 (Pl)I (Pl’Pl)--

(PlP rlr, 1)
#z F Im(C.)l

4
Define

Xl

V/2 F Im(C)l 2 re
and x2

t2

V@ F I(C.)l=

Then [Xl,Xl] 1, [x2,x21 =-1, and [Xl,X2]--0.
Next let us look at

t2 Ft,m*(-C,)(a- s)m + #2(b + s)

For any real number sequence {yn} such that Yn --+ 00, if ?Tt(yn) M, then
IM[ _< 1 since ]m(yn)[ <_ 1. We shall further see that IMI < 1. In fact, if there exists

Yn --* oc and m(yn) --* M and IMI- 1, then for any s E C+,
sup IS.(s)l +c;
tt>l
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we should have a unique optimal sensitivity (minimal symbol). We see that

(b- s)M + (a + s)m*
’I1 (a- s)rn] + (b + s)

being a cluster point of (Ou)u>I relative to the weak-star topology of L, should be
a minimal symbol for T/a; but since a b,

ant-s
’= b+s

is clearly another minimal symbol for 7-/a, which contradicts the assertion that
has a unique minimal symbol.

We now have [M] < 1. Then

sup
#>1

and we have nonunique optimal sensitivities (minimal symbols). Since Im(s)l < 1
for s E C+, there exists a sequence {Yn} such that rn(y,) M and from the above
discussion we know that IMI < 1. Let # --+ 1; we get the parameterization of the
minimal symbols as

(s) , [M(a + s)rn* + (b- s)] d/)l "nt- (a + s)rn* + ](b- s)

for any 1 E BH.
Since

[(a- s)rn + M(b + s)] 1 + M(a- s)rn + (b + s)

+M

is a bijection from BH to BH for IMI < 1, we see from (8) that

(b- s) + (a + s)m* (b- s)m + (a + s)
(a- s)m + (b + s) (a- s)m + (b + s)

for any
We summarize the results in the following theorem.

,a+ with b > a > 0 and m an inner function withTHEOREM 4.1. Let G m
an essential singularity at infinity. Then Po 1 and the H optimal sensitivity is

parameterized by the formula

(a ;+ (b + s)’
Remark 8. The above formula is a generalization of a result in [3] that shows that

a+sfor a pure delay system e-ds i.e., m e ds with weight W , a < b, the optimal
pure weighted sensitivity cn be parameterized as

ed (b s)e-d + (a + s)
(a- + (b +

for any BH.
We remark that for other cases such as the inner function m that has finite

essential singularities on the imaginary axis or a > b, the optimal sensitivity can also
be computed by the present method.
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5. Conclusions. Based on some well-known results, we have considered the ex-
plicit computation of H optimal pure and mixed sensitivities for a class of infinite-
dimensional systems by studying certain subspaces of some related KreYn spaces. We
have given some new characterizations for those subspaces. The pure sensitivity case
can be treated as a special case of the mixed sensitivity case.

Our new characterizations are particularly useful both from theoretical and prac-
tical points of view. They can be used in the theoretical analysis of the optimal
compensators as well as convergence analysis for numerical algorithms since from
these new characterizations, explicit H optimal weighted pure and mixed sensitiv-
ities for a class of infinite-dimensional systems can be obtained as we showed in a
simple example that generalized a known result. Practically, they can be used to
obtain fast and stable algorithms for computing the H optimal performances [18].
In addition, we believe that they can also be used to develop numerically efficient
algorithms for computing the suboptimal compensators and spectral factorizations
for both irrational and rational systems and that the results can be extended to treat
the multivariable systems. An added advantage is that the mathematics used in the
paper is no more advanced than that used in the analysis of rational systems [10].
One area of further research is to obtain explicit optimal sensitivity formulas for more
general systems and weights.

Acknowledgments. The author thanks the anonymous referees for their valu-
able suggestions and correction of errors. The proof of Theorem 3.7 was greatly
simplified by one of the referees.
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Abstract. In this paper it is shown how the zero dynamics of (not necessarily square) spectral
factors relate to the splitting subspace geometry of stationary stochastic models and to the corre-
sponding algebraic Riccati inequality. The notion of output-induced subspace of a minimal Markovian
splitting subspace, which is the stochastic analogue of the suprernal output-hulling subspace in geo-
metric control theory, is introduced. Through this concept, the analysis can be made coordinate-free
and straightforward geometric methods can be applied. It is shown how the zero structure of the faro-
ily of spectral factors relates to the geometric structure of the family of minimal Markovian splitting
subspaces in the sense that the relationship between the zeros of different spectral factors is reflected
in the partial ordering of minimal splitting subspaces. Finally, the well-known characterization of the
solutions of the algebraic Riccati equation is generalized in terms of Lagrangian subspaces invariant
under the corresponding Hamiltonian to the larger solution set of the algebraic Riccati inequality.

Key words, zero dynamics, Markovian splitting subspaces, minimal spectral factors, matrix
Riccati inequality, algebraic Riccati equation, geometric control theory
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1. Introduction. By now it should be fairly well known that there is a one-
to-one correspondence between each pair of the following three fundamental areas of
systems theory.

(i) Minimal spectral factorization of a rational (full-rank) m x m spectral density
matrix (I). The problem is to find all (square and rectangular) rational functions

(i.I) W(s)-C(sI-A)-IB+D

(where prime denotes transposition) with poles in the open left half plane, satisfying
the factorization equation

(1.2)

and being minimal in the sense that the McMillan degree of W is exactly half of
that of (I). The class of all such minimal spectral factors, each defined modulo right
multiplication by a constant orthogonal matrix, will be denoted by ]/Y. The subclass
of square spectral factors will be denoted }/Y0. Throughout this paper we shall al-
ways consider representations for which (A, B, C) is a minimal triplet and [] has
independent columns. This results in no loss of generality [16].

(ii) Finding all symmetric solutions of the algebraic Riccati inequality

(1.3) A(P) < 0,
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where A IR x __+ ]tn X is given by

(1.4) A(P) AP + PA’ + (’ CP)’/-I( CP),

the matrices A ]lnxn, C, C Imxn, and R mXm being defined through a
minimal realization

(1.5) +(s) C(sI A)- + R1
of the positive real part + of the spectral density , i.e., the rational matrix function

+ satisfying

+

and having all its poles in the open left half plane. Here we assume that R := () >
0.

Let us denote by P the solution set of (1.3). Then each P P corresponds to a
spectral factor (1.1) whose B- and D-matrices are determined by a full-rank matrix
factorization of the type

Obviously the correspondence is one-to-one modulo trivial coordinate transformations
[1], [9].

(iii) Describing all minimal stochastic realizations of an m-dimensional stationary-
increments process {y(t);t R} having the (incremental) spectral density . Each
stochastic realization is obtained by passing a suitable "white noise" through a filter

(1.8) d d

having an m x p minimal spectral factor as its transfer finction, thus yielding a linear
dynamical model

dx Axdt + Bdw,(.) (r) d Cxdt + Dd

for dy, defined on the whole real line. More precisely, w is a vector Wiener process
on N of a dimension p equal to the number of columns of W. The system E is in
statistical steady state so that the n-dimensional state process x and the increments of
the m-dimensional output process y are jointly stationary. The model E is a minimal
stochastic realization in the sense that there is no other representation of dy of type
(1.9) with a state process with fewer components.

In regard to topic (iii), it is actually more natural to consider a coordinate-free
representation by assigning to each model E the n-dimensionM space

(1.10) X {a’x(0)la }

of random variables. This space is the subspace of an ambient space H of the model
(1.9), defined as the closure of the linear hull of the following random variables

{wi(t) wi(7); 1, 2,..., p; t, T N} in the topology of the inner product

E
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where E {.} stands for mathematical expectation. The ambient space H is naturally
equipped with the shift induced by dw, i.e., the strongly continuous group of unitary
operators {Ut; t E ]R} on H such that Ut [w(-) w(cr)] w ( + t) wi ( + t) for
all 1, 2,..., p and t, -, cr E R. All random variables of E belong to H, and moreover
the processes z and dy are stationary with respect to {Ut}, i.e., Utzi(-) zi ( + t)
for all 1, 2,..., n and t, - IR and Ut [yi(-) y(a)] yi ( + t) yi (r + t) for
all 1, 2,...,rn and t,-,cr R. Minimality of E corresponds to minimality of
the subspace X in the sense of subspace inclusion and, hence, also in the sense of
dimension [16].

Defining the past and future output spaces as

H- closure {a’ [y(t) y(s)] la E IRm, t, s _< 0 }

and

H+ closure {a’ [y(t) y(s)] la E Nm, t, s _> 0 }

respectively, it is easy to show and well established in the literature [15], [16], [6]
that each X, defined as in (1.10), is a minimal Markovian splitting subspace for H-
and H+, i.e., in particular renders H- and H+ conditionally orthogonal given X.
Moreover, this property captures the concept of stochastic state space model of dy
in a coordinate-free way. Given any X together with its ambient space H, equipped
with a shift, we can construct the model E modulo the choice of coordinates in the
state space [16].

Modulo coordinate-transformations, there is a one-to-one correspondence between
the family X of minimal Markovian splitting subspaces and the solution set 7) of the
algebraic Riccati inequality (1.3) under which

(1.12) P E {z(0)z(0)’}

is the state covariance. Under this correspondence the subset 7)0 C 7) of solutions of
the algebraic Riccati equation

(1.13) A(P) =0

corresponds to the subclass A’0 C A’ of stochastic realizations such that

(1.14) X c H0 := H- V H+,
i.e., internal realizations constructed by using only random quantities contained in
the subspace

Ho closure{a’[y(t) y(s)]la IRn}

spanned by the output. Under the correspondence mentioned above, A’0 and P0
correspond to W0 C W, the subclass of square spectral factors.

Although the structure of the solution set of the algebraic Riccati equation (1.13)
is by now fairly well established [27], [20], [26], [3], it is fair to say that the structure
of the complete solution set 7) of the algebraic Riccati inequality (1.3) is far less

In the upcoming sections, given two subspaces A and B, we shall write A V B to denote the
closure of {c + lc E A, E B}. To stress that the sum is direct we write instead A + B or, if it is
an orthogonal direct sum, A (9 B.
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understood; and, except for [10], [16], and [25], little seems to have appeared in the
literature since the monograph [9]. We stress that the algebraic Riccati inequality and
the set 7) are important in many areas of systems and control, including dissipative
systems and H control.

In this respect, one purpose of this paper is to provide new results on the structure
of 7) and new concepts for the study and classification of this set based on the zero
structure of the family 14 of minimal spectral factors W. The work reported here is
a continuation and a deepening of the results presented in [16] and [19]. In particular
it was shown in [16] that

1. The set 7) (which is bounded and convex) has facets, each of which is uniquely
defined by a pair of solutions of the algebraic Riccati equation (1.13). For each P E 7)
there is a minimal facet [P0-, P0+l containing P, called the tightest local frame of P,
defined as the set of all solutions Q of the algebraic Riccati inequality (1.3) satisfying
the relation P0- <_ Q <_ P0+, where

P0-:= sup{P0 E 7)o IP0 <_ P},

Po+ := inf {Po 7)olP _< Po}.

Here, for any P1, P. 7), P1 _< P2 means that P2 P is nonnegative definite. The
tightest bounds of P, i.e., P0- and Pq+, can be computed as the limit solutions of the
matrix Riccati differential equation II A(II), with initial condition II(0) P, as t
tends to -ec and oc respectively.

2. The open tightest frame (P0-, P0+) of P 7), consisting of all Q [P0-, P0+]
having P0- and P0+ as tight bounds, can be characterized in terms of the zeros of the
corresponding minimal spectral factor W. If (W0-, W0+) is the pair of square minimal
spectral factors corresponding to P0- and P0+, then the zeros of W are precisely the
common zeros of W0- and W0+.

In this paper we greatly expand on the above characterization of facets and tight
frames providing necessary and sufficient conditions in terms of zeros (or, better, the
zero dynamics) of spectral factors. To this end, in 2, we first provide a geometric
characterization of the zero dynamics in the stochastic framework (Theorem 2.9). In
particular, we demonstrate how the zero structure of each W can be recovered directly
from the corresponding output-induced subspace X C? Ho and a related compressed
shift. We introduce a dual control problem and show that its maximal output-hulling
subspace consists of precisely those a E IRn for which ax(O) X A Ho and that these
a are also the zero directions of W. In this way we not only provide the appropriate
connection to geometric control theory [3], [28] but also obtain elegant coordinate-free
proofs of the main theorems of 2 and 3.

Next, in 3, we analyze the relation between partial ordering of minimal splitting
subspaces and zeros and characterize the ordering in terms of invariant subspaces for
the zero dynamics and right half-plane zeros. The results on ordering are very intuitive
and are in agreement with some early observations of Anderson [2] and Robinson [23].
The characterizations in terms of invariant subspaces extend those known thus far for
square spectral factors and the algebraic Riccati equation, as for example reported in
the survey of Kucera [13].

Thus far all results are coordinate-free. Then, in 4, we introduce coordinates
and translate the geometric characterizations of 2 and 3 in terms of covariances and
solutions of the algebraic Riccati inequality. Through this analysis we also obtain
a natural generalization of the well-known characterization (Potter [22], MacFarlane
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[17]; also see [26]) of 7) in terms of the n-dimensional Lagrangian subspaces/2 C N2n,
invariant under multiplication by the Hamiltonian 7-/corresponding to . In fact, in

5, we show that the 7-/-invariant isotropic subspaces of dimension k _< n are in
one-to-one correspondence with the facets of 7) whose elements P have identical zero
structure. Under this correspondence

(1.15) /2- p

where 2" C Rn is the space on which the zero dynamics of W is defined and which
corresponds in A’ to the output-induced subspace X N H0 of X.

We make extensive cross reference between the three frameworks of 7), A’, and 14?;
and there are some very good reasons for this. The geometric splitting subspace theory
provides a very natural setting also for analyzing the algebraic Riccati inequality. In
fact, several geometric results that are linked to such concepts as splitting and internal
subspace have less obvious counterparts in the 7)-setting and could easily have been
overlooked had it not been for the interaction with the geometry of splitting subspaces.

2. Zero dynamics and splitting subspaces. It is well known by now that
the poles of a spectral factor W can be expressed in terms of the shift {Ut} and the
corresponding splitting subspace X [16]. In fact, the compressed forward shift on X,

(2.1) Ut(X) EXut Ix for t >_ 0

(where Ex is the orthogonal projector onto X), is a strongly continuous and uniformly
bounded semigroup so that

and therefore there is an operator F" X -- X such that

(2.3) Ut(X) et.

Then it can be shown that

(2.4) {poles of W} or(F),

i.e., the poles of W are precisely the eigenvalues of F. To see this, take a E R and
integrate (1.9) to obtain

(2.5) a’z(t) a’catz(O) + a’ea(t-+)B dw(s),

the last term of which is orthogonal to X. Consequently, EXUta’x(O) a’eAtx(O),
i.e., e’ta’x(O) a’eAtx(O), showing that A’ is in fact a matrix representation of F.

The basic question that we shall address in this section is the following. Is there
an analogous geometric characterization of the zeros of W in terms of {Ut} and X?
As we shall see, the answer to this question is yes.

To simplify matters, in this paper we shall make the blanket assumption that the
spectral density is coercive, i.e., (I) has no zeros on the imaginary axis or at infinity.
In particular this implies that

(2.6) R (c) > 0
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so that all minimal spectral factors W are of dimension p rn with p >_ rn and of full
rank rn almost everywhere in the complex plane and, hence, right invertible. Let

ic=Ax+Bu,
y Cx + Du

be a minimal realization of W. Recall [7] that a complex number A is called a right
zero of W (or, equivalently, of the state-space system (2.7)) if, for some [] # 0,
u(t) uoet, x(t) xoet satisfy (2.7) while at the same time keeping the output
y(t) (identically) zero for all t

It is well known and trivial to check that A E C is a right zero of W if and only
if there are nonzero solutions of 2

(e.8)

More generally it can be shown [28] that constraining the dynamic variables x and
u in (2.7) to yield an identically zero output y 0 requires confining, for all times t
R, the state x(t) of the system (2.7) to a particular subspace V* 2*(A, B, C, D) C
]R called the maximal output hulling subspace of the system (2.7). The inputs u that
keep z(t) in 12" for all t IR can be generated by suitable linear state feedback laws

(2.9) u=Kx+Lv, x12",

where L is such that ImBL C 12", DL 0 and v is an unconstrained input function.
Any K achieving this is called a friend of 12" [28]. It can be shown that 12" is actually
the largest subspace 12 C IR for which there is a feedback matrix K such that

(2.10) (A + BK)12 2 c ker(C + DK).

It follows from the discussion above that all x0 solving (2.8) belong to 12" (A, B, C, D).
Conversely, the subspace 12" can be associated to the right zeros of (2.7) in the fol-
lowing sense. If K is a friend of * and u is generated by a feedback law (2.9), all
solutions of

(2.11) ic (A + BK)x + BLv, x(O)

belong to 12" for all times t and all inputs v. Pick A0 in the spectrum of (A + BK)Iv.
let x0 be the corresponding eigenvector, and set u0 := Kxo. Then it is trivial to check
that [o] solves (2.8) for A A0, and hence A0 is a right zero of (2.7). Those zeros that
are reachable modes for the system (2.11) can actually be moved arbitrarily in the
complex plane by a suitable choice of v. Those that are not reachable are fixed and
are called invariant zeros of W. They are in fact even independent of the particular
choice of the matrix K [28]. The maximal reachability subspace T*(A,B, C,D) of
W is precisely the maximal subspace of 12" that is reachable by inputs produced by
feedback laws of the form (2.9). If T* (A, B, C, D) 0, then all zeros are invariant.

In our setup the spectral factors W are most naturally viewed as operators acting
on input functions from the left, and it is more appropriate to consider left zeros
instead. These are defined simply as the right zeros of the transpose W. Given a

2 Note that there are infinitely many A for which the matrix in (2.8) has a nonzero kernel when
p > m, and hence there are infinitely many right zeros in this case.
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minimal realization of W as in (2.7), a complex number A is then a left zero of W if
and only if there is a nonzero vector [o] that solves

[A’-AI C’ ] z0 ]_0.(2.12) B’ D’ u0

It is easy to show that the vectors z0 solving (2.12) for some A form a subspace 2 C ]l

that is (A, C)-invariant and output-nulling. In fact, 12 is a subspace of the maximal
output nulling subspace 12" := 2*(A, C, B’, D) of the dual system

Az + Cu,(.) (r’) B’z +
corresponding to W. We note that the maximal reachability subspace of E, i.e.,
the subspace 7*(A’, c’, B’,D’) is just the zero space, since W’ is left invertible [12]
(Theorem 3.36). In other words, the left zeros of W are all invariant.

Now, since 7*(A, C, B, D) 0, it can be shown that there is a friend K,
whose restriction to 2" is unique, making 2" (A + CK)-invariant. The autonomous
system

(2.14) (t) (A’ + C’K’)z(t), z(O) e

with state space Y*, will be called the (left) zero dynamics of E (or of W) [4], [21].
The eigenvalues of the feedback matrix (A’ + C’K’)lv. are the (left) zeros of W. As
we have pointed out above, all left zeros are invariant. Clearly the invariant zeros of
W are the same from the left and from the right. There are, however, noninvariant
right zeros of W that are not left zeros (since, in general, T*(A, B, C, D) :/: 0). From
now on we shall only consider left zeros and left zero dynamics, and therefore we shall
drop the attribute "left."

Note that the zero dynamics of W is naturally defined only modulo similarity,
i.e., modulo coordinate transformations in the state space of minimal realizations
(1.1) of W. The vector space )2* := )2*(A’, C’,B’,D’) will be called the space of zero

directions of W.
For later reference we shall now explicitly compute the zero dynamics of W for

the special case under consideration. To this end, it is convenient to write the system
(1.9) in standard form taking

(2.15) D /1/2 0

where R DD and/1/2 is the symmetric square root of R. This can be achieved
by an orthogonal coordinate transformation in input space, which of course will not
affect the zeros of the spectral factor W. Eliminating the noise dwl in

dx Axdt + Bldwl + B2dw2,
(2.16) (E) dy Cxdt + R1/2dwl

produces a state representation

(2.17) dx Fxdt + BiR-/dy + Bdw2
in feedback form where F is the feedback matrix

(2.18) F A- BR-1/2C.
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Let us return to the dual control system (2.13). Then, setting the output v equal to
zero yields

(2.19)

or, eliminating the control u,

A’z +
0- Bz + R1/2u,
o

(2.20) { F’z,
0.

Consequently, the maximal output-nulling subspace V* is precisely

(2.21)

i.e., the orthogonal complement of the reachability space

(2.22) F B2 Im (Bg., FB, r2 Bg.,...)

in ]Rn. Now, it follows from the discussion above that the invariant zeros of W
are precisely the eigenvalues of F’ Iv*, for the maximal reachability space 7* of the
autonomous dynamics (2.20) is zero. Consequently, F’ Iv* is the generator of the zero
dynamics of W. In particular

(2.23) {zeros of W}=cr{r’lv.}.

Next we turn to the stochastic version of this theory. For this we need the following
definition.

DEFINITION 2.1. Let X be a Markovian splitting subspace. A subspace Y c X is
called output induced if

(i) y c H0;
(ii) UtY C Y V H[+o,t] for t > O,

where H[+o,t] is the subspace spanned by the output dy on the finite interval [0, t],, i.e.,

H[+o,t] closure {a’ [y(T) y(s)] la E ]R", r, s E [0, t] };

(iii) UtY C Y V H[-,o for t _< 0,
where Hi7,0 is spanned by the output on It, 0].

The following proposition, the proof of which will be postponed to the appendix,
establishes the fact that an output-induced subspace is actually a stochastic counter-
part of an (A, B)-invariant subspace in geometric control theory.

PROPOSITION 2.1. Let Y C X N Ho be output-induced. Then

(2.24) FY c Y VIm N

where the linear operators F X -- X and N :R --, X are defined by (2.3) and

(2.25) Na lim
1 EXa,

respectively.
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As we have already noted above, F has the matrix representation A in the basis
in X consisting of the components of x(0). Moreover, it was proven in [14] that

(2.26) Cx(O) lim
1 Ex

0
[() (0)]

and consequently Na aCx(O), i.e., N has the matrix representation C in the basis
x(0). Therefore, condition (2.24) is equivalent to (A’, C’)-invariance of the represen-
tative of Y in the aforementioned coordinate system. To make this correspondence
more precise we shall consider next the problem of finding the maximal output-induced
subspace of a given minimal Markovian splitting subspace.

THEOREM 2.2. Let X be a minimal Markovian splitting subspace. Then there is
a maximal output-induced subspace of X, namely, Y* := X g Ho. The subspace Y* is
maximal in the sense that Y C Y* for any other output-induced subspace Y of X.

There is a close connection between the concept of maximal output-induced sub-
space of a minimal Markovian splitting subspace and the zero dynamics of the cor-
responding minimal spectral factor. This connection is best understood by regarding
the realization (1.9).

LEMMA 2.3. Let X E X’, and let (1.9) be a corresponding minimal realization.
Then

X OHo {a’x(O)l a e F*(A’,C’,B’,D’)}.

Proof. First take E X N H0. Then has a representation ax(O) where
a In. We shall prove that a * := * (A, C’, B’, D’). We immediately see that

(.z) ’(0) ’-ae a(t).

On the other hand, since Ho, there is a representation

(.s) (i)’ a(i),

where is a vector function on the imaginary axis that is with respect to the
matrix measure (i)d and d is the spectral measure [41 of the process d, i.e.,

eiwt eiws
(t) -()

This spectral measure may be written

d$ Wd

in terms of the spectral factor (1.1), the transfer function of (1.9), and the spectral
measure d of the generating noise dw of (1.9). Consequently,

(. (’(i)e(),

where f Wg is an function on the imaginary axis with inverse Fourier transform
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where u is the inverse Fourier transform of t in the L2 sense. (To see that fi is L2
note that (cx) is nonsingular by assumption.) Then (2.29) may be written

./’?(.31) f(-t)’ dw(t)

in the time domain [24], [115], and, in view of (2.27), we must have

B’eA’ta for t _> 0,(2.32) f(t) 0 for t _< 0.

Hence, if we set

(2.33) v(t) B’ eA’t(--a) + eA’(t-s)C’u(s) ds + D’u(t)

{ }(2.34) B’ eA’t[--a + 2(0)] + eA’(t-)C’u(s) ds + D’u(t),

where

A8CI?.e- (s) ds,

it is seen from (2.32) that v(t) 0 for t >_ 0, and hence u is an output-nulling input
for the dual control system

). A’z + C’u,
(2.35) (E’) v- B’z + D’u

initiated at z(0) -a+2(0). Therefore -a+2,(0) e V*. On the other hand, (2.30) and
(2.32) show that the output of E’ with control u and initial condition z(-cx) 0 is
identically zero on the negative real axis. Therefore the corresponding state trajectory

e(t)

belongs to 12" for t < 0. Hence, in particular, 2(0) V*, and consequently a 12" as
claimed.

To prove the converse statement, we first note that the coercivity of (I) ensures that
F’ Iv* has no eigenvalues on the imaginary axis, since the zeros of a minimal spectral
factor W are also zeros of the spectral density q). Therefore V* can be decomposed
into a direct sum

(2.36) V* V* + V*

where F*__ is the sum of the generalized eigenspaces corresponding to eigenvalues of
F’ Iv* with negative real part and F_ is the corresponding subspace for eigenvalues
with positive real parts. Both F*_ and F are of course invariant for F’. We want
to prove that, ifa E F*, then ax(O) XAHo. To this end, take a G F* and let
a a_ + a+ where a_ V*_ and a+ V* Since in view of (2.21), V*_LIm B2 (2.17)
yields

(2.37) d(a’x) a’Pxdt + a’B1R-1/2dy
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for any a E 2". Therefore, by choosing a basis in * consistent with the direct sum
decomposition (2.36) (2.37) produces two equations relative to Y*_ and 2;, which
by F-invariance can be integrated separately on the negative and positive time axis
respectively. It then follows that

(2.38) a2x(0)= a2e-rtB1R-1/2dy(t) for a_EV*

and

’z(0)- -rt -1/2(2.39) a+ a+e BR dy(t) for a+12+,

and hence a

_
x(0) E X C H- and a+x(O) X C? H+ so that a’z(0) X H0, proving

the lemma.
Remark. Note that the basic idea of this construction is that 12" acts dually in

the model (1.9) as a maximal "exogenous-noise-nulling" subspace in the sense that
multiplying (1.9) by an a 12" removes the influence of the noninternal components
of the input noise dw. An alternative and perhaps more elegant way of seeing this is
to consider the adjoint control system

-A’z + C’u,(2.40) (E*) v -B’z + D’u

with transfer function W*(s) W(-s), instead of the dual system E’ defined by
(2.13). Clearly E* and E have the same output-nulling subspaces and, in particular,
the same *. (In fact, by a computation similar to the one given above for E, we
see that the generator of the zero dynamics of E* is -F Iv*.) The study of linear
functionals ax(0) of the state at time zero leads naturally to considering the adjoint

Given the stochastic system (1.9), differentiating the bilinear form zxsystem E*
yields

(2.41)
(2.42)

d(z’x) z’dx + i’xdt
udy vdw,

showing that the exogenous noise is blocked out if z(0) e 12", i.e., v 0. Then

d(z’x) u’dy

can be integrated to establish that z(0)’x(0) X VI H0.
The same idea is used in the following proof.
Proof of Theorem 2.2. Let X VI H0. Then, by Lemma 2.3, az(O) where

a E 12". Consequently, integrating (2.17) and noting that 12"_1_ ImB2, we obtain

(2.43) a’x(t) a’ertx(O) + a’er(t-s)BR-1/2 dy(s).

Since F* is er’tF -invariant, a and hence the first term in the sum (2.43) belongs
to X N H0 (Lemma 2.3). Consequently, X C H0 satisfies the conditions of Definition
2.1 and is thus output-induced. Since all output-induced subspaces are contained in
X H0, it must be maximal.

The fact that the zero dynamics of W is autonomous is reflected in the following
lemma, which will be proved in the appendix:
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LEMMA 2.4. Under the coercivity assumption above, X N Ho,t 0 for t >_ 0 and

X N H[,0 0 for t <_ 0 so that the vector sums are direct in (ii) and (iii) of Definition
2.1.

In view of Lemma 2.4, an equivalent way of stating Theorem 2.2 is to say that

(2.44) Ut{XNHo}CXNHo+H[+o,t] for t_>0

and

(2.45) Ut{XNHo}CXNHo+H[,o for t<_0.

Note that the direct sum property in Lemma 2.4 is lost as t --, oc, since H- and
H+ in general have nontrivial intersections with X NH0, namely, XNH- and XNH+

respectively.
Now, in view of (2.44) and (2.45), there are oblique time-varying projectors

and

Yrt (X N Ho) + H(_t,o] --* X N Ho,

the first being the projection onto X N H0 parallel to H[+o,t] and the second projection

onto X N H0 parallel to H_t,o]. The projectors play the role of feedback in geometric
control theory in confining the motion of the state to the subspace X N Ho. Accord-
ingly, we form the compressed shift operators Vt(X) and Vt(X) on X N Ho by the
relations

(2.46) Vt(X) rtUt

and

(2.47) (X) frtU.

LEMMA 2.5. The families {Vt(X); t _> 0} and {G(X);t _> 0} of linear operators
are strongly continuous semigrvups on X n Ho.

Proof. Let . E X N H0, and form

(2.48)
(2.49)  rt+ ut r G 

where we have used the fact that 7rt+slXNHo+H;,tl
H[+O,tl and hence

rt for s >_ 0. But (1 r.)Us E

Ut(1 %)Us H;,t+s];
therefore the last term in (2.50) equals zero, establishing the semigroup property for
{Vt(X); t >_ 0}. To prove strong continuity, note that, if t <_ T, Vt(X)c rtUt
7rTUt, which tends to c as t --* 0. The rest follows froin a symmetric argument. [3
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Consequently there are infinitesimal generators, i.e., operators G, G" X N Ho --+

X C/H0 such that

(2.51) Vt(X) eat

and

(2.52) lPt (X) eOr.

LEMMA 2.6. For each t > O,

g,(x)

i.e., in particular,

(2.54)

Proof. Let c E X N Ho. Then

(x)v(x) ,u;,u,
{ yrtu(1- rt)ut{.

Since (1- rt)Ut H[+o,t], we have

Ut*(1- rt)Ut{ H(_t,o],
and therefore the last term of (2.56) is zero. [

Consequently, we may define Vt(X) also for negative t. In fact, setting

v (x) v_,(x)

is equivalent to defining Vt(X) for all t IR by means of (2.46) with rr_t "t for
t _< 0. Hence the family of operators {Vt(X); t IR} is actually a group.

The following proposition characterizes the output-induced subspaces of X as the
invariant subspaces for the group {Vt(X); t IR}.

PROPOSITION 2.7. The output-induced subspaces of X are precisely the G-
invariant subspaces of X C Ho.

Proof. First suppose that Y C X is output-induced. Then

(2.57) UtY c Y + H[+o,t] for t >_ O,

so applying the projection rt to both sides we see that eaty C Y. Conversely, suppose
that Y c X N H0 is eat-invariant. From (2.44) we have that

UtYCXHo+H[+o,tI for t_>0.

We want to show that X N H0 in (2.58) can be exchanged for Y so that (2.57) is
obtained. However, this is obvious by applying the projector 71"t to (2.58) and noting
that, by assumption, eOty c Y. Trivially, the corresponding statement for t <_ 0
follows from (2.45) by an analogous argument. 1
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We shall identify two particularly important G-invariant subspaces of X N Ho,
namely, the past-output-induced subspace X n H- and the the future-output-induced
subspace X N H+. In fact, suppose that E X N H- and t >_ 0. Then Ut* E H- and

and hence

e-a: (x n/-/o): tW: e x n H-,

because the range of t is contained in X. Therefore X n H- is G-invariant. A sym-
metric argument shows that XNH+ is also G-invariant. Consequently, by Proposition
2.7, X N H- and X N H+ are output-induced subspaces of X.

Coercivity also implies that H- n H+ 0 [14] so that the sum

(2.59) Ho H- + H+

is direct. The following lemma states in particular that the maximal output-induced
subspace can be represented as a direct sum of X N H- and X n H+.

LEMMA 2.8. Let H-, H+, Ho be defined as in 1, and let X be a splitting subspace.
Then

(2.60) x (x n/-/-) + (x
where the sum is direct.

For the proof let us first recall that a Markovian splitting subspace can be uniquely
represented as the intersection

(2.61) X=SN9

of a pair (S, S) of subspaces of the ambient subspace H that satisfy

(2.62) SDH- and DH+,
the invariance properties

(2.63) U[ScS and Utc for all tk0,

and intersect perpendicularly in the sense that

(2.64) H S+/- X +/-,

where S+/- and +/- are the orthogonal complements in H of S and respectively (see,
e.g., [16]). We shall write X (S, ) to refer to this representation. The class X of
minimal Markovian splitting subspaces consists precisely of the X (S, ) that are

observable, i.e.,

(2.65) H+ V S-L,

and constructible, i.e.,

(2.66) S H- V
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Proof of Lemma 2.8. Since X N H- C X n H0 and X n H+ C X n H0, it trivially
holds that

(2.67) X n Ho D (X n H-) v (X n H+).
Since H0 H- + H+ is a direct sum, so is that of (2.67). Hence it just remains to
show that the converse inclusion holds. To this end suppose that/k E X n H0. Since
A E H0 H- + H+, there are unique a H- and/ H+ such that

, a+Z.
Then, since A X C and/3 E H+ C , we have a- A-/3 E , and hence

( NH- NSNH- XNH-

Then /k c E X, i.e., /3 E X n H+. This completes the proof of the lemma.

Remark. The fact that X nH- and X nH+ are output-induced can be seen from
first principles using Lemma 2.8. In fact, from (2.61), we see that X NH- S NH-,
and hence

{x +
(2.69) N H- + H;,t].
Here the first inclusion follows from the Ut-invariance (2.63) of S and the second
equality from Lemma 2.8, noting that (H, 5) is a splitting subspace and D

H[+o,t]. This shows that X n H- satisfies condition (ii) of Definition 2.1. A symmetric

argument proves condition (iii), while condition (i) is trivially satisfied. Hence XNIl-
is output-induced. In the same way we show that X n H+ is output-induced.

The following theorem is one of the main results of this paper, tying together the
geometry of minimal Markovian splitting subspaces to the zero dynamics of minimal
spectral factors.

THEOREM 2.9. Let X be a minimal Markovian splitting subspace, and let W
be the corresponding spectral factor. Then the group {Vt(X); t N} acting on the
maximal output-induced subspace X n Ho, of X, is isomorphic to the zero dynamics
(2.14) ofW in the sense that the linear bijective map T V*(A’, C’,B’,D’) -, XNHo,
defined by Ta ax(O), makes the following diagram commutative:

In particular,

(2.70)

v,(x)X NHo , X NH0

l
e(At +Ct Kt)t

* V*

{zeros of W}- a(G),

where a(G) is the spectrum of the infinitesimal generator of the group {Vt(X); t E IR}.
The restricted groups Vt-(X Vt(X)lxnH- and Vt+(X):= Vt(X)lxnH+, t R,
describe the asymptotically stable and antistable zero dynamics of W, the respective
generators

Gs G}xnH- and G, G}XnH+
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having spectra a(Gs) and a(Gu) coinciding with the zeros of W with respectively neg-
ative and positive real parts.

Hence, in particular, dim(X H0), dim(X N H-), and dim(X N H+) are respec-
tively the total number of zeros of W, the number zeros in the open left half plane
(stable zeros), and the number of zeros in the open right half plane (antistable zeros).
(The last statement is actually a splitting subspace version of Theorem 4.1 in [11] (see
also [1]) as we shall see in 4 upon introducing state covariances.) If X is internal and
dimX n, then there are exactly n zeros. If X N H0 0, there are no zeros.

We shall call G the generator of the zero dynamics of X. Since in this paper we
consider the special case when R is nonsingular, we may, as we have already pointed
out, write the zero dynamics (2.14) as

(2.71)

where F is defined by (2.18). By Lemma 2.3, the map T in the commutative diagram
of Theorem 2.9 assigns the value ax(O) X Ho to each a *, i.e.,

(2.72) T" a -- a’x(O).

Proof. Take a E Y* so that a’x(O) X N Ho. Then (2.43) holds. From this sum
with the first term in X D H0 and the second in H;,t] for t _> 0, we obtain

for t >_ 0, i.e.,

7tUta’x(O) ta’x(t) a’ertx(O)

eata’x(O) a’ertx(O).
Hence G [a’x(0)] a’rx(0), i.e., GTa Tr’a, proving the similarity

(2.73) G TF’Iv.T-1.

Moreover, note that (2.38) and (2.39)imply that

T];*_ cXNH- and T]; cXH+.
However, since, by Lemma 2.8 and (2.36) the two vector sums

T];* T];* + T]);

and

XHo=XH- +XH+

are direct and TV* X Ho (Lemma 2.3), it must hold that

(2.74) TV*_ X H- and TV X NH+.
Then, by retracing the first part of the proof with * replaced by *_ and Y, we
establish the similarity relations

T-1Gs TF’Iv. and Gu TF’IvST-I,

which clearly shows that G is stable and G is antistable. This completes the proof
of the theorem.
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Next we shall derive some representation formulas for the restrictions of the group
{Vt(X); t E R} to the complementary invariant subspaces X r H- and X r H+.
These relations are connected to the generalization to the Riccati inequality of certain
projection results concerning the algebraic Riccati equation due to Willems [27]. This
will be discussed in 5.

Because of the direct sum decomposition (2.59), any r/E Ho has a unique decom-
position

(2.75) r 7r_r/+ 7r+r]

where 7r_ H0 --* H- is the projection on H- along H+ and r+ H0 --* H+ is the
projection on H+ along H-.

LEMMA 2.10. Let t >_ O. Then if E X r H-, we have r_Ut( X r H-; and,
dually, if X N H+rn it follows that 7r+U( X r H+. Moreover, the restrictions

of Vt(X) to the complementary invariant subspaces XrH- and XrH+ coincide with
the above compressed shifts 7r_Ut XNH- XNH- and r+U( XOH+ ---, XrH+
respectively, i. e.

gt-(X) rt(X)lxH- r_gt IXnH-
and

Proof. Let t >_ 0, and take . X r3 H-. Since X r-i H- is output-induced (see,
e.g., the remark before Theorem 2.9),

Ut X r H- + H,tl.
Therefore, since X F/H- C H- and H[+o,t] C H+, we have

The (r_ Ut)-invariance of XnH- now follows from the Vt (X)-invariance. A symmetric
result yields the corresponding result for X

3. Zeros and ordering. In this section we shall study the zero structure of
the family of all minimal (analytic) spectral factors by using a partial ordering of
the family iV of all minimal Markovian splitting subspaces that are defined in some
common probabilistic setting. Such a setting can be described by a sufficiently large
common Hilbert space H containing H0. It can be shown [16, 5.2 and 5.3] that it
sutfices to take H to be of the form

fI Ho (R) H (d7),

where dr is some n-dimensional Wiener process independent of dy and H(dr) is the
space generated by the increments of tile components of r]. The Hilbert space /2/
is endowed with a shift {]t;t R}, namely, the one induced by (dy, dr); and the
ambient space of each minimal X in this setting is a doubly invariant subspace of/2/
containing H0. The shift {Ut} corresponding to X E iV is just the restriction of {Or}
to its ambient space H. Recall that tile ambient space H has a representation H(dw),



382 A. LINDQUIST, G. MICHALETZKY, AND G. PICCI

where the Wiener process dw may be identified with the driving noise of a minimal
stochastic realization (1.9) corresponding to X.

In [16] we introduced a partial order of A" defined as follows. Given two minimal
Markovian splitting subspaces, X1 and X2, we say that X X2 if

or, equivalently,

With the above choice of Hilbert space /2/, it can be shown that _< is a bona fide
partial ordering relation of A’; i.e., in particular, X1 <_ X2 and X2 _< X1 imply that
X1 X. Moreover, " has a maximal and a minimal element, X+ and X_, in this
ordering, i.e.,

(3.1) X_ _< X _< X+
for each X E ’, where X_ EH-H+ and X+ .:= EH+H- are respectively the
forward and the backward predictor spaces. Clearly both X_ and X+ belong to A’0.

It can be seen from (3.1) that any X E A2 is bounded from below and from above
by elements in A’0, namely, by X_ and X+ respectively. In this context, a relevant
question is whether these internal bounds could be tightened. In [16] it was shown
that, for each X E X, there are unique Xo-, Xo+ E/to so that

X XO_ X

_
Xo+ X2

for all X1, X2 ’o such that X1 X X2. In other words

Xo- max{Xo XolXo _< X},

Xo+ min{Xo Xol X _< Xo}

are unique, and we call them the tightest internal bounds of X.
At several instances that follow we shall consider a restriction of some linear

operator to an invariant subspace. Whenever such a restriction occurs, the invariance
is automatically implied and will not be stated explicitly.

LEMMA 3.1. Let X1, X2 A’, and suppose that X1 <_ X2. Then
(i) XlCIH+ cXC?H+ and Xg. NH- CXlCH-;
(ii) Vt- (X1)IXH- Vt- (X), t N;
(iii) E+(X2)[XlnH+ Vt+(X1), t N.
Proof. (i) Recall that if X (S, S) is a minimal Markovian splitting subspace then

the corresponding tightest lower internal bound Xo- (So-, So-) has the property
that So- S C? Ho (Theorem 6.11 in [16]). Now, if X1 _< X2, then, with self-
explanatory notation, (X)o- <_ X1 _< X2, and consequently (X1)o- <_ (X2)o- or,
equivalently, $1 C Ho C $2 gl Ho, which implies that $1 Cq H+ C $2 N H+. But, in
view of (2.61) and (2.62), this is equivalent to X1 C H+ C X2 C? H+. A symmetric
argument yields X2 71 H- c X1 H-.

(ii) First take t >_ 0. Then, by Lemma 2.10,
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for any X E 2(, where r_ H0 --* H- is the oblique projection parallel to H+.
Therefore, since X2 N H- C X1 t3 H- and these spaces are both invariant for the
compressed shift r_Ut (Lemma 2.10),

(3.2) Vt-(X)[x, Vt-(X2

for t > 0. However, for any X E 2(,

vg (x)

for all t P, and hence (3.2) may be written

V(X1)IXH- for t

_
O,

which is a statement about groups and consequently holds for all t I.
(iii) The proof follows from a symmetric argument to that used to prove (ii), first

proving the the statement for t _< 0 and then invoking the group property. [3

COROLLARY 3.2. Let X 2(. Then

(3.3) G-(x)

and

(3.4) (x)

Proof. To prove (3.3) just take X X_ and X2 X in Lemma 3.1 and then
observe that Vt-(X_ Vt(X_). A symmetric argument yields (3.4). [3

We see from this lemma that if W, W_, and W+ are the spectral factors of X, X_,
and X+ respectively, then the stable zeros W are also zeros of W_ and the antistable
zeros of W are zeros of W+. We also see that W_ is the minimum phase spectral
factor, all its zeros being stable, and that W+ is the maximum phase spectral factor
with only antistable zeros.

Lemma 3.1 with Corollary 3.2 has a number of other important consequences that
will be discussed later. Before turning to this, however, we shall complete the analysis
of the relation between subspace inclusion of the type exhibited in statement (i) of
Lemma 3.1.

LEMMA 3.3. Let X, X2 2(0. Then, for each X X,
(i) X < X X H+ c X H+,
(ii) X_<Xg.X:f3H- CXH-.

Moreover, X1 Xo- if and only if X1 H+ X H+ and X Xo+ if and only if
X2NH- XGH-.

Proof. We begin by proving (i). In view of Lemma 3.1, it remains to prove that
X1 H+ C X N H+ implies that X1 _< X, which, by Theorem 6.8(ii) in [16], is

equivalent to $1 C S. This in turn is certainly implied by $1 c S N H0.
Now, for any splitting subspace X (S, S), S is itself a splitting subspace, namely,

S (S, H); and consequently Lemma 2.8 implies that

(3.5) S NH0 H- 4- X NH+,

because, by (2.61) and (2.62), S H- H- and S H+ S H+ X H+.
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Then, by (3.5), X1 VI H+ C X C H+ implies that $1 S C? Ho c S N Ho, proving
(i). A completely symmetric argument yields (ii). By Theorem 6.11 in [16], X1 Xo-
is equivalent to S S V H0. This implies that S V/H+ S V/H+, i.e.,

(3.6) X H+ X CH+.
On the other hand, there is only one X1 E ’0 satisfying (3.6), because (3.6) and

$1 =H-+X1VH+

determine S uniquely and for minimal Markovian splitting subspaces there is a one-

to-one correspondence between X and S as can be seen from (2.65). Hence we have
shown that (3.6) is equivalent to X Xo-. In the same way we show that

X2AH- XAH-

is equivalent to X2 Xo+. 13
THEOREM 3.4. Let X,X2 ,’Yo, and suppose X1 <_ X2. Then:
(i) For each X e ,Y

X <_X <_X Xl C X. C X.

Moreover, XI Xo- if and only if X1 ["1 X2 X X2 and X2 Xo+ if and only if
X1 NX2 XX1.

(ii) If X X2 C X, then X1 X2 is a Vt(X)-invariant subspace for each t R,
i.e.,

(3.7) G [X X] c X a X.

Conversely, any G-invariant subspace Z C X Ho takes the form Z X X2 for
some unique X, X. Xo such that X1 <_ X <_ X2.

The proof of this theorem is rather long and technical. For this reason we shall
first give some interpretations of the results stated so far and postpone the proof of
Theorem 3.4 to the end of the section.

COROLLARY 3.5. Let at least one of X1,X2 X be internal, and suppose that
X1 <_ X2. Then

(3.8) V(X1)Ixx V(X2)Ixx

for all t N.
Proof. We want to prove that, for any ) X N X2,

v(x) v(x.)

for all t IR. To this end, first suppose that t >_ 0 and set i "= Vt(Xi), 1, 2. Then

i r}i)UtA, where, for each 1, 2,

H0 + Hi+o, H0

is the oblique projector onto Xi f H0 parallel to H[+o,t]. Hence there are

such that

Ut 1 nc f]l 2 -)F 7]2.
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Now, applying the invariance result of Theorem 3.4 twice, first taking X X1 and
then X X2, we see that both 1 and s% must belong to X1 O Xg.. But

X1 O X2 nt- H;,tl
is a direct sum (Lemma 2.3); and hence we must have 1 9. (and 71 Z]2),
establishing (3.8) for t > 0. Because of the group property, (3.8) actually holds
for all t E IR. gl

Recalling the characterization of Proposition 2.7 of output-induced subspaces of
X E A’, we immediately have the following important corollary of Theorem 3.4.

COROLLARY 3.6. The output-induced subspaces Y C X are precisely the
sub@aces of the form Y X1 aX where X1,X o are internal bounds of X, i.e.,
XIXX2.

As an illustration of Corollary 3.6 we shall give representations of the output-
induced subspaces X H0, X H-, and X H+ as intersections of internal minimal
Markovian splitting subspaces. As we have already seen, these output-induced sub-
spaces are of special importance in the classification of the zero structure of minimal
spectral factors.

PROPOSITION 3.7. Let X have tightest internal bounds Xo- and Xo+. Then
(i) X H- X X_ X0+ X_,
(ii) XH+ X &X+ X0_ X+,
(iii) XHo-XX0_-X&X0+-X0_X0+.
Pro@ In view of the last statement of Theorem 3.4(i), it only remains to prove

that

(3.9) X CH- X oX_,

(3.10) X CH+ X CX+,

and

(3.11) X O H0 X0- O X0+.

Taking X X_ and Xg. X in Lemma 3.1(i) and recalling that X_ C H-, we
see that XOH- C X_ OH- c X_ and, hence, XC) H- c XOX_. Trivially,
X_ C H- also implies that X O X_ C X O H-, and hence (3.9) follows. Relation

(3.10) follows by symmetry. To prove (3.11), let X (S, ). Then, by Theorem 6.11
in [16], So- S Cl H0 and 0+ O O Ho. Hence

X0_ c Xo+ So_ c oao+ S c a c Ho X Ho

because Xo- _< X0+ and hence -go- C So+ and oo+ C o-. S
Recall that the group {Vt(X)} acting on the maximal output-induced subspace

X O Ho can be identified with the zero dynamics of the minimal spectral factor W
corresponding to X because of the isomorphism of Theorem 2.9. Similarly the groups
{Vt- (X)} and {Vt+ (X)} on X O H- and X C H+ respectively can be identified with
the stable, respectively, the antistable, zero dynamics of W. The partial ordering of
minimal Markovian splitting subspaces induces a partial ordering of the stable and
antistable zero dynamics of the corresponding spectral factors. We shall say that

{Vt-(X1)} acting on X1 OH- is a restriction of {Vt-(X)} acting on Xg. OH- if
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X H- C X2 H-

and

Vt- (Xl) Vt- (X2)lx1v.iH-.
In the same way we can define restrictions of antistable zero dynamics. Clearly re-
striction is a partial-order relation.

THEOREM 3.8. Let Xl X2 with at least one of them be internal, and let W1
and W2 be the corresponding minimal spectral factors. Then ifX <_ X2"

(i) The stable zero dynamics of W2 is a restriction of the stable zero dynamics
W. In particular, all stable zeros of W2 are zeros of W.

(ii) The antistable zero dynamics of W is a restriction of the antistable zero
dynamics W2. In particular, all antistable zeros ofW are zeros of W2.

(iii) The zero dynamics ofW and W2 coincide on the intersection X f3X2 (i.e.,
a relation such as (3.8) holds).

Proof. Statements (i) and (ii) are just restatements of (ii) and (iii) of Lemma 3.1,
while statement (iii) is a reformulation of Corollary 3.5. El

COROLLARY 3.9. Let Xo- and Xo+ be the tightest internal bounds of X
and let Wo-, Wo+, and W be the corresponding minimal spectral factors. Then the
zeros of W are precisely the common zeros of Wo- and Wo+.

Proof. This follows immediately from Proposition 3.7(iii) and Theorem 3.8(iii).

From Corollary 3.9 we see that if X_ and X+ are the tightest internal bounds
of X, which in fact is the "generic" situation, then the corresponding spectral factor
has no zeros. In fact, W_ and W+ have no common zero. The other extreme is the
situation when X is internal so that X0- X X0+. Then W has n zeros.

The following corollary of Theorem 3.4 is a splitting-subspace version of an in-
variance result, due to Willems [27], formulated in the context of the algebraic Riccati
equation. It will be used in 5.

COROLLARY 3.10. Let G+ be the zero generator of X+. Then there is a one-
to-one correspondence between G+-invariant subspaces Z C X+ and X Xo under
which Z X f3 X+ and X (S, S) where

S=H-+Z and =H+VS+/-.

Similarly, if G_ is the zero generator of X_, there is a one-to-one correspondence
between G_-invariant subspaces Z C X_ and X k’o under which Z X f3 X_ and
X (S,) where

=H++Z and S=H+V+/-.

Proof of Theorem 3.4(i). (=) We first prove that if X <_ X2 and X, X2 are

internal, then

(3.12) X X2 (X X2 f3 H-) + (X X2 H+).
The inclusion D is trivial, and we use the procedure of the proof of Lemma 2.8 to
prove the converse. To this end, take ) X f3 X2. Then, by Lemma 2.8,

.--" X2 [(X f"l H-)-,}- (Xl f"! H+)]
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Set A c + where a E X1 N H- and E X1 N H+. But since 1 C $2 (see proof
of Lemma 3.3),

X1NH+ S1NH+ C S2NH+ X2NH+ C X2,

and therefore X2. Hence c A- X2 so that c X1 NX2NH- and
X1 N X2 N H+, as required. This proves (3.12). Now if X _< X _< X2, then by

Lemma 3.3, X2 N H- C X N H-, and therefore

X NX2NH- C X1 NXNH- 1 N0NH-,
where we also have used (2.61) and (2.62). But

0NH- CNH0=0+
by Theorem 6.11 in [16], and since X _< X0+ it follows that o0+ C 1. Hence

X1 NX2NH- C SNH- XNH-.

In the same way we show that

X1NX2NH+ C X N H+,
and therefore (3.12) and Lemma 2.8 imply that

X1 NX2 c X NHo c X.

(=) Next suppose that X1 N X2 C X. Then

X1NX2NH+ cXNH+.
But X N X2 N H+ S1 N $2 N H+, which in view of the fact that X X2 and
hence 1 2 (see, e.g., (3.5) and Lemma 3.3) is the same as 1 N H+. Since

S1 N H+ X1 N H+, we have

X1 N H+ c X N H+,
which, by Lemma 3.3, is equivalent to X <_ X. In the same way we show that
X <_X2.

We turn next to the second statement of the theorem, concerning tight internal
bounds. Since X1 _< X2 and X1 and X are internal, S1 C $2 and $2 S1 (Theorem
6.8 in [16]). Hence, in view of (2.61),

X1 N X2 $1 N 2.
NOW S1 S n H0 if and only if X X0_ (Theorem 6.11 in [16]), in which case

X1 N X2 S N $2 X N $2.

But since Xl N X2 C $2, this is the same as

X1 N X2 X N $2 N $2 X N X2.

The rest follows analogously. []
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Proof of Theorem 3.4(ii). First suppose that E X1 C X2 C X, and let t >_ 0.
Then, for 1, 2, Ut E i; and therefore, since

(1 7t)Ut e H[+o,tl C
we have rtUt{ S, i.e.,

(3.13) Vt(X n Ho) e

A symmetric argument yields

(3.14) Vt(X n H0) Si

for i= 1,2.

for i- 1,2.

Now from (3.13) and (3.14) we have G E 1 CI 2 and (c $1 $2. But the group
property of Theorem 2.9 implies that ( -G, so therefore

proving the invariance property (3.7).
Finally, we prove the converse statement on G-invariance. Thus, suppose that

Z c X n H0 is G-invariant. Then in view of the decomposition (2.60) of Lemma 2.8
and the fact that both X C H- and X NH+ are G-invariant, there is a decomposition

(3.15) Z=Zs+Zu
such that Zs C X gl H- is Gs-invariant and Zu C X C3 H+ is G,,-invariant (Theorem
2.9).

We show first that there is a one-to-one correspondence between Gu-invariant
subspaces Z C X H+ and splitting subspaces X Xo such that X _< X, under
which Z X CH+ and S, H- +Zu. To this end, take t _> 0 and recall
that ea’*Z, rr+UZ,; and therefore, since (1- rr+)UZ, C H-, it follows that
G,Z, C Z, is equivalent to

u; (H- + z,,) (H- +
because Ut*H- C H-. Set S := H- +Z and H+ V Zu+/-. Then X (Su, )
belongs to Xo. (See the discussion in 2 and [15] or [16].) Since Su (S, Ho) is itself
a splitting subspace, Lemma 2.8 yields

(3.16) S H- + (X N H+)
for S N H- H- and S Cl H+ X Cl H+. Hence we must have

Z, X, Cl H+;

and since Z, c X, we have X, f’l H+ C X n H+, from which we see that X _< X
(Lemma 3.3). Consequently we have established the required one-to-one correspon-
dence between G-invariant Z c X H+ and X Xo such that X _< X.

In the same way we prove the symmetric statement that there is a one-to-one
correspondence between G-invariant subspaces Z, c X Cq H- and X, E A’0 such that

X _> X, under which Z Xs Cl H- and S, H+ + Z,.
Now, returning to the decomposition (3.15), we have shown that there are splitting

subspaces X1, X2 X0 such that X1 < X _< X2 and

Z- (X1 i’-’1H-)-}-(X2 1’-’1H+).
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Let X be an abitrary element in 32 having X1 and X2 as tightest internal bounds.
Then by Lemma 3.3,

i.e., Z gl H0 (Lemma 2.8). Proposition 3.7(iii) then yields Z X1 C’l X2, proving
the last statement of the theorem.

COROLLARY 3.11. Let X E ,Y and Xo 32o be arbitrary, and let G be the zero

generator of X. Then

G[X C/Xo] C X NXo.

Conversely, any G-invariant subspace Z can be written Z f( C Xo where f( 32,
Xo 320, and Xo is either the tightest upper or tightest lower internal bound of f(.

Proof. Take c X gl Xo and t _> 0. Then by the same procedure as in the proof of
Theorem 3.4, Vt(X V/Ho) E o and (X VI Ho) E So, i.e., Gc o and -Gc So,
and consequently G So gl oo Xo. But, by definition, Gc X VI Ho C X, and
therefore Gc E X VI Xo. This proves the required invariance. The inverse statement
follows from the proof of Theorem 3.4. In fact, Z can be written as Z X1 VI X2
where X1 and X2 are tight internal bounds of X 32. Then from the last statement
of Theorem 3.4(i), Z J C? X N X2.

Proof of Corollary 3.10. Just noting that Gs G_ for X X_, Gu G+ for
X X+, and X_ < X < X+, the statements of the corollary are seen to be special
cases of the corresponding results in the proof of Theorem 3.4.

4. Introducing coordinates. In this section we shall, among other things, re-
formulate the geometric results of 3 in the dual deterministic setting of linear func-
tionMs of the state at time zero. This will lead to characterizations in terms of state
covariances and will facilitate the application of some of these results to the algebraic
Riccati inequality in 5.

To this end, we shall now equip each X G 32 with a basis chosen uniformly over

the family X, in a way first suggested in [5]. Let {cl, c2,..., n} be an arbitrary basis
in X+. Such a basis corresponds to a model (1.1) with a state process {x+(t); t
such that

x+(0)

(See, e.g., [16] for the construction.) Now, for an arbitrary X 32, we define

(4.1) x(O) Ex, k 1, 2,

This can be seen to be a basis in X, and x(0) is the state vector at zero of a model
(1.1) having the same A and C matrices as that of x+(0).

There are several reasons why this construction is the right one. First, if for each
X 32 we define the state covariance

(4.2) P E {x(0)x(0)’},
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then it was shown in [16] that

(4.3) X < X v::* PI < P.

(where, as before, P1 <_ P2 means that P2 P1 it positive semidefinite). In particular,
(3.1) corresponds to

(4.4) P_ _< P _< P+,

iv to the solution set P of the algebraic Riccati inequality A(P) <_ 0, and iv0 to the
subfamily 7)0 of solutions of the algebraic Riccati equation A(P) 0, thus connecting
the geometric theory of stochastic realization with that of Anderson [1] and Faurre et

Secondly, the above family of bases is consistent in the sense that representations
coincide on intersecting splitting subspaces as explained in the following lemma.

LEMMA 4.1. Let X1,X2 E iv. Then if A X1 N X2, there is a unique a R
such that - a’x(O) a’x2(O)

where x(O) and z2(0) are bases ofX and X2 respectively constructed as in (4.1).
Proof. Suppose that A- axx(0)- ax2(0). Then by Theorem 6.12 in [16],

EX- alX_(O)- a2x_ (0);

and hence we must have a a2, as claimed. 1

Next we shall give a result that will be instrumental in establishing the corre-
spondence between families of output-induced subspaces and covariance matrices P.
To this end, given X G iv and the corresponding basis (4.1), define the linear map
T :Nn --, X as

(4.5) Ta a’x(O).

This is a natural extension to IR of the map T defined in 2. Clearly T is a bijection,
and in view of Lemma 4.1,

(4.6)

if T corresponds to X1 and T2 corresponds to X2; hence, with some care, we may
simply write T- whenever there is no risk for misunderstanding.

LEMMA 4.2. Let XI,X2 iV and X1 <_ X2, and let at least one ofX and X. be
internal. Then

T-1 (X1 ffl X2) ker (P2 P)

where P and P. are the covariances corresponding to XI and X respectively.
Proof. Let A X1NX2 and T-(A)= a. Then a’x(O)- a’x.(O), and therefore

(4.7) a’ (P2 P)a 0,

and therefore a E ker (P2 P1). Conversely, suppose that

(4.8) a ker(P P).
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Since X1 _< X2 and at least one of X1 and X2 is internal,

a’xl(0) E a’x (0)

(Proposition 6.12 in [16]), i.e., [a’x2(0)- a’xl(O)]_l_a’Xl(O). Therefore, since

a’x2(0) [a’x2(0) a’xl(0)] -t- a’xl(0),

we have

Ela’x2(O) a’xl(0)l 2 a’(P2 P1)a.

Consequently, by (4.8), a’x2(0) a’xl (0) e XI A X2, i.e., a e T- (X1 V X2). [:]

We are now in a position to reformulate the first part of Theorem 3.4 in terms of
covariances, thus obtaining an amplification of Theorem 9.1 and Lemma 9.3 in [16].
In the parameterization 7) of X’ the tightest internal bounds Xo- and Xo+ of X E X’
will be denoted P0- and P0+ respectively. Recall that (Po-, P0+) denotes the open
tightest frame of P, i.e., the set of all P E P having P0- and P0+ as their tightest
upper and lower bounds in 7)0.

THEOREM 4.3. Let P1, P2 7)0 and P 7). Then
(i) P <_ P _< P2 ker (P2 P1) C ker (P2 P)

with ker (P2 P) ker(P2 P) if and only/f P P0-; and
(ii) P <_ P <_ P2 ker(P2 P1) C ker(P- P)

with ker (P2 P1) ker (P- P) if and only if P2 Po+.
Proof. Let T" In --. X be the bijection defined above,.i.e., T(a) a’x(O). If

X _< X _< X2, then X1 V X2 c X by Theorem 3.4. Hence Lemma 4.2 can be applied
with the same T- so that X V X., X V X2, and X VX correspond to ker(P2 P1),
ker(P2 P), and ker(P- P1) respectively under the bijection. Therefore,

(4.9) ker(P2 P1) C ker(P2 P) V ker(P- P).

Also X2 X0+ if and only if X1 VX2 X V X2, i.e., ker(P2 P) ker(P2 P). To
prove the converse statement observe that any element X1 V X2 can be written

in the form a’x(O) a’x2(0), where a e ker(P2 P). So if ker(P2 P1) c
ker(P2- P), then a E ker(P2- P), i.e., a’x2(O) a’x(0); therefore X, which
implies that X V X2 c X, which is equivalent to X _< X _< X2 by Theorem 3.4.
This proves (i). Statement (ii) is proved in the same way.

We shall now provide an explicit representation of 2" and its F’-invariant sub-
spaces F in terms of covariance matrices.

As pointed out in 1, the set 7) is a parametrization of the family X’ of minimal
Markovian splitting subspaces. In fact, a uniform choice of bases produces a unique
state process x for each X e X’ and hence a unique P := E{x(O)x(O)’}. Modulo
orthogonal transformations in the input space, there is a unique minimal stochastic
realization (1.9) corresponding to x that may be written in standard form

dx Axdt + Bldw + B.dw2,
(4.10) (E) dy Cxdt + R1/2dwl

A uniform choice of bases also fixes the matrices A and C to be the same for all
X ,. Conversely, for each P 7), we have a minimal spectral factor

W(s) C(sI- A)-(B,B2) + (R/,O)
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where

(4.11) B1 (0- CP)’R-/2

and B2 is a full-rank factor of-A(P), i.e.,

(4.12) A(P) -Bg.B,
and (in a suitable Hilbert space /2/ as discussed in the beginning of 3) a unique
stochastic realization (4.10), in turn defining a unique X.

Moreover, the uniform choice of bases associates to each X E A" a maximal output-
nulling subspace V* V*(A’, C’,B’,D’) of the dual system (2.13) and a feedback
matrix

(4.13) F A- BR-1/2C’.

We recall that 12" (FIB2} +/-. As explained in the proof of Lemma 2.3, (2.36), V*
can be decomposed into a direct sum

v*=v*_ +v;
of F’-invariant subspaces, 12"_ and 125, coresponding to the stable and the antistable
modes of F’ Iv* respectively.

LEMMA 4.4. Let P 7), and let 12" be the corresponding output-nulling subspace.
Then

(i) 12" ker(P- P0-) ker(P0+ P) ker(P0+ P0-),
(ii) 122 ker(P P_) ker(P0+ P_),
(iii) V* ker(P+ P)- ker(P+ P0
Proof. In view of Leinma 2.3 and (2.74), P* T-(XC)Ho), *__ T-I(XH-),

and )? T-(X n H+). Then applying Lemma 4.2 to Proposition 3.7 yiehts the
desired result.

Consider two covariance matrices P1 and Pg. in P such that P1 _< P2. We shall next
establish the relation between the corresponding pairs of oltput-nulling subspaces
(12"_), (12) and
and F2. The tbllowing chain of results provides dual versions of Lemma 3.1, Corollary
3.2, and Lemma 3.3 in g3.

LEMMA 4.5. Let at least one of P,P. 7) belong to 7%, and suppose that

P <_ P. Then
(i) (12;)1 C (12;)2 and (12"_)9. < (12"_)1,
(ii) F [(v*_) r [(v*_),
(iii) F 1(,) F I(),.
Proof. The proof follows directly by applying Proposition 3.7 and Lemma 4.2 to

Lemma 3.1. [-1

The following corollary illustrates the role of 12"_ and 12_ as the stable and unstable
F-invariant subspaces of

COROLLARY 4.6. Let P 7), and let F bc the corresponding feedback matriz

(4.13). Then

r’ Iv*_ r’__ Iv_*_ and F’ Iv; F_ Iv;,
where F_ and F+ are the feedback matrices corresponding to P_ and P+ respectively.

Pro@ Take P P_ and Pg. P in Lemma 4.5(ii) to prove (i). The second
statement follows by setting P1 P+ and P P in Lemma 4.5(iii).

LEMMA 4.7. Let PI, Pg. 7)o. Then for each P
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(i) P1 _< P ker (P+ P1) C ker (P+ P)
with ker (P+ P1) ker (P+ P) if and only if P1 Po-; and

(ii) P _< P. = ker (P2 P-) C ker (P- P_)
with ker (P2 P_) ker (P P_) if and only if P. Po+.

In other words,
)2*(i) Pl P( +)l C +

with (F) $ if and only if 5 P0-; and
(ii) PP2( _)2

with _)2 ff and only ff X2 Xo+.
Proof. Follows immediately from Lemm 3.3. It is also a simple corollary of

Theorem 4.3.
The following theorem gives, for an arbitrary P F, a complete characterization

of all F-invariant subspaces in F, i.e., the output-hulling subspaces of the dual control
system (2.13).

THEOREM 4.8. Let F be the feedback matrix (4.13) corresponding to P . Then
ff P1, P2 o and P P P2, the subspace

ker(P2 P)

is F-invariant. Conversely, any F-invariant subspace C * has a representation

F ker(P2 P1)

for some P1, P2 Po such that P1 P P2.
Proof. Follows by applying Lemma 4.2 to Theorem 3.4.
Concerning Theorem 3.4, of which Theorem 4.8 is an isomorphic version, we

may add that, thanks to Lemma 4.2, a simpler and more transparent proof of the
invariances can be given. For example, to prove the G-invariance of X X2 in
Theorem 3.4, take X X2. Then, by Lemma 4.1, there is an a such that

Since X and X2 are internal, the corresponding B2-matrices are zero; i.e., for t 0
and 1, 2,

+Ut a’er a,er(t-) 1/2

and therefore

cGt- 7tUt- a’erltXl(O) a’er2tx2(O) E XI N X2.

Consequently X N X2 is G-invariant.
In the same way as above we obtain from Corollary 3.5 the following result char-

acterizing intersecting zero dynamics.
LEMMA 4.9. Let at least one of P,P2 T) belong to 7)0, and suppose that

P <_ P2. Then

r Iker(P2-P1) F
An important consequence of this lemma and the fact that )2* is constant over

the open tightest frame (P0-, P0+) (Lemma 4.4) is that the zero dynamics is the same
for all P (P0-, Po+). In fact, by Lemma 4.9,

FF)_ Iker(P-Po_) ]ker(P-Po-
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and, by Lemma 4.4, ker(P- P0-) ker(P0+ P0-).
The next proposition, which is due to Molinari [20] (also see [16, Lemma 10.2]),

also belongs to the general area of invariance results described in this section and
corresponds to Corollary 3.11.

PROPOSITION 4.10. Let P E 7) and Po 7)0 be arbitrary. Then all subspaccs of
the form

V ker(P- P0)

are F’-invariant subspaces of
5. Invariant subspaces and the algebraic Riccati inequality. In this sec-

tion we shall generalize the well-known Potter-MacFarlane characterization of the
(symmetric) solutions of the algebraic Riccati equation

(5.1) A(P) =0,

in terms of subspaces invariant under the Hamiltonian matrix, to the algebraic Riccati
inequality

(5.2) A(P) <_ 0.

Setting

(5.3) F := A- ’R-1C,

we may write

(5.4) A(P) FP + PF + PC’R-1CP + R 1,

which corresponds to the Harniltonian matrix

F’ C’R-1C ](5.5) _’/--1 -F

It is well known [17], [22], [18] that the solution set 70o of the algebraic Riccati equation
is in a one-to-one correspondence with the class of Lagrangian ?-/-invariant subspaces

of 1R2n. Recall that a subspace is Lagrangian if it is isotropic in the sense that if
x, y , then

x’

and it is of maximal dimension n. Under this correspondence/2 hn [/]. The purpose
of this section is to show that a similar correspondence holds for the solution set 79
of the algebraic Riccati inequality (5.2) and that this correspondence is related to the
zero structure described above. In this respect a crucial observation is the following.

PROPOSITION 5.1. Let P 7), and let 2" be the maximal output-nulling subspace
of the. corresponding dual system (2.13). Then * is the largest F-invariant subspace
of In such that

(5.7) A(P) Iv* =0
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where F is defined by (2.18) or, equivalently,

(5.8) F F + PC’I-Ic.

Proof. In view of (2.21), 2" is the largest F’-invariant subspace orthogonal to the
columns of B2; and consequently, since A(P) -B2B2, 2" is the largest F -invariant
subspace for which (5.7) holds. [:]

Now, recall from 4 that to each P E 7) there is a direct-sum decomposition

ker(P- P_) + ker(P+ P) ker(P0+ P0-)

where P0-, P0+ E 7)0 are the tightest lower and upper internal bounds of P. In view
of Lemma 4.4, this is equivalent to

As we have seen in 4 122 is F’_-invariant and Y is F+-invariant. Moreover, if a

and b E 2+,* then a’ (P+ P)b a’ (P- P_)b 0 and, consequently, *_ and *+ are

(P+ P_)-orthogonal, i.e.,

a’ (P+ P_)b 0 for all a Y*__ b F*

In 4 (Lemma 4.4) we saw that 2"__ ker(P0+ P_) and Y ker(P+ P0-
so decomposition (5.9) may also be written

(5.12) ker(P0+ P_) + ker(P+ P0-) ker(P0+ P0-),

only involving covariance matrices belonging to P0.
If P is a solution of the algebraic Riccati equation (5.1), i.e., P 7)o, then

P P0- Po+ and both (5.9) and (5.12) reduce to the (P+- P_)-orthogonal
decomposition

(5.13) ker(P- P_)+ ker(P+ P) I

of the whole Nn. This corresponds to the situation studied by J. C. Willems [27]. To
set up notation and make contact with the gemetric theory of splitting subspaces we
shall here restate Willems’s result.

To this end, let X X0 and consider the stochastic version of (5.13), namely,

(5.14) X X NX_ + X NX+,

obtained via Lemma 4.2 or directly from Lemma 2.8 and Proposition 3.7. Applying
the projectors r_ and r+ of (2.75) to (5.14) shows that

r_X=XX_ and r+X=XNX+,

which can be translated into IR via the bijective map T" I ---, X of (4.5) to yield

ImII_ ker(P- P_) and ImII+ ker(P+ P).

Here II: :IR --, IR
defined as H_ T-t

and II+ :IR - i are complementary projection operators
r_lx T and YI+ T-lr+lx T respectively. Now take a IR
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and form the projections a_ := II_a and a+ II+a. From (5.13) we see that
a- a_ + a+, Pa_ P_a_, and Pa+ P+a+ so that Pa P_II_a + P+II+a for all
a E ]Rn. Consequently,

P- P_YI_ + P+II+.
LEMMA 5.2. (J. C. Willems). Let F_ and F+ be the feedback matrices, given by

(4.13) and (4.11), corresponding to P_ and P+ respectively. Then:
(i) There is a one to one correspondence between F’_-invariant subspaces

_
c IR

and P T)o under which

(5.15) 12_ ker(P- P_)

and

(5.16) P= P_II_ + P+(I- II_),

where II_ is the (P+ P_)-orthogonal projector of In onto _.
(ii) Dually, there is a one-to-one correspondence between F’+-invariant subspaccs

+ C IR and P 7)o under which

(5.17) + ker(P+ P)

and

(5.18) P P_ (I II+) + P+II+,

where II+ is the (P+ P_)-orthogonal projector of IR’ onto Y+.
Proof. By Lemma 4.2, V_ corresponds to Z X N X_ and F+ to Z X N X+

in Corollary 3.10. Moreover, F_ and F+ correspond to G_ and G+ respectively, and
therefore the lemma follows. [

In summary, by Lemma 5.2, any P 7)0 corresponds to two subspaces, V*_

ker(P- P_), invariant for F’_, and V$ ker(P+- P), invariant for F_, which
by (5.13) are complementary, i.e., sum to all of IR. If P 7) does not belong
to 7)0, however, (5.13) is replaced by (5.9). Therefore, if we insist on representing
the invariant subspaces V*_ and 125 in terms of solutions of the algebraic Riccati
equation, as stated in Lemma 5.2, then there will still be representations of the type
P*_ ker(P0 P_) and V$ ker(P+ P0), but now we can no longer use the same

P0. Formula (5.12) is precisely a manifestation of this fact.
The following notation will be used in the sequel. If L: is a k-dimensional subspace

of IR2 with basis matrix L IR2x, define r() to be the subspace in 1R spanned
by the truncated matrix obtained by removing the bottom n rows of L.

We are now in a position to state the main result of this section.
THeOreM 5.3. Let 7) be the solution set of the matriz Riccati inequality (5.2),

and let ?-t be the Hamiltonian matrix (5.5). Then there is a one-to-one correspondence
between the isotropic 7-t-invariant subspaces C IR2’ of dimension k <_ n and the
family of open tightest frames (P0-, P0+) of 7). Under this correspondence

(5.19) /- p

for any P (Po-, Po+), where Y* c n is the subspace of zero directions

(5.20) * ker(Po+ Po-)
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and k dim is the number of zeros of the spectral factor W corresponding to P.
Conversely, given any isotropic Tl-invariant subspace C IR2’ of dimension k <_ n,
the matrices Po- and Po+ are obtained from Lemma 5.2, formulas (5.16) and (5.18),
as the elements in 7)o corresponding to the invariant subspaces 12_ r(_) and

12+ r(12+), where

_
and 12+ are the subspaces of 12 consisting of sums of stable

and antistable eigenspaces of
Proof. First suppose that P E 7) has the tightest local frame (Po-, Po+), and

define 12 by (5.19) and (5.20). Clearly, (5.19) is independent of the choice of P
(Po-, P0+). In fact, if P1, P2 (Po-, P0+), then by Lemma 4.4, V* ker(P1 Po-)
ker(P2- P0-), and hence it follows that (P2- P1)a 0 for all a 12". Now a
straightforward calculation, using (5.4) and the fact that A(P)F* 0 (Proposition
5.1), shows that

Since F’F* c V*, this yields 7-//2 C as claimed. The fact that P’ P ensures that
/2 is isotropic.

Conversely, suppose that C IR2n is any 7-/-invariant isotropic subspace of di-
mension k <_ n. Then is a direct sum of generalized eigenspaces of 7-/; and since
these eigenspaces are contained in either Im[p/_] or Im[p/+] (for IR2n is a direct sum

of these subspaces), we have the direct sum decomposition

(5.21)

where 12_ 12KI Im[g/_] and 12+ 12N Im[p/+] are both 7-/-invariant, because Im [p/_]
and Im[,{+] are. Therefore, there are full-rank matrices M_ and M+ such that

(5.22) 12_= Im[ I ]p_ M_ and 12+ Im p+ I+.

But Im[] is 7-/-invariant and

I
p_ It’_,

and consequently

H[I M_

Therefore, since _, represented by (5.22), is 7-/-invariant, ImM_ must be F’_-
invariant. In the same way we show that Im M+ is F+- invariant. Consequently,
it follows from Lemma 5.2 that there are unique Po-, Po+ 7)o so that

(5.23) V_ ImM_ ker(Po+ P_)

and

(5.24) 12+ Im M+ ker(P+ Po-).
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It remains to show that Po- <_ Po+ so that (Po-, Po+) may form a tightest local frame
and we may identify 2_ and 2+ with Y*_ and F* respectively. To this end, note that+
since

/2=Im
M_ M+
P_M_ P+M+

is isotropic,

P_M_ P+M+ -I 0 P_M_ P+M+

M’_ (P+ O.

Consequently, V_ and ]2+ are (P+ P_)-orthogonal. In other words,

v+ c (v_)

where denotes the (P+ P_)-orthogonal complement in N. Now, in view of (5.23)
and decomposition (5.13),

(1;_) ker(P+ P0+).

Therefore,

ker(P+ P0-) V+ C (12-) ker(P+ P0+),

so it follows from Lemma 4.7 that P0- _< P0+, as claimed.
Now, let P 7) be an arbitrary element in the open tightest frame (P0-, P0+).

Then by (5.12), (5.23), and (5.24),

V := V_ + V+ ker(P0+ P0-),

and hence, by Lemma 4.4, ]2", the space of zero directions corresponding to P.
Moreover, ]2_ and 12+ are actually ]22 respectively 12. 1

Theorem 5.3 is a generalization of the well-known, result linking solutions in 7)o
to 7-t-invariant Lagrangian subspaces [17], [22], [18], in which special situation the
equivalence classes of Theorem 5.3 are singletons and the invariant subspaces are
n-dimensional. The fewer zeros that the spectral factor corresponding to P has,
the larger is the equivalence class (the tightest local fi’ame) and the smaller is the
dimension of the invariant subspace/2.

Appendix. In this appendix we shall give the proofs deferred from 2.

Proof of Proposition 2.1. Suppose that

(A.1) UtY C Y V H;,tl.
Let E Y. Then

(A.2) Ut At+ t
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where At E Y and Tt H[+o,t] Since Y C X N H0, we must have At eatS; and
therefore, applying the orthogonal projector EX to (A.2), we obtain

(A.3)

Hence, for t > 0,

(A.4)

and consequently

eFt eGt + Exrlt.

1(eFt i)
l (ect i) + Ext-i -i

(A.5) lim 1EXrit
t0 t

exists and, by the definition (2.25) of the operator N, must belong to Im N. Therefore,
since eGt ]z (Proposition 2.7), we have Y V Im N, i.e.,

(A.6) FY c Y V Im N

as claimed. Vl

Remark. Let u Im N be the limit (A.5). Then, from (A.5), we see that

. (r a)

is a linear function of c, and therefore there is a map L Y - In such that u NL,;
consequently,

G=F-NL.

Proof of Lemma 2.4. If X N H0, then a’x(O) with a E ;*. Therefore it
follows immediately from (2.43) and the fact that F* is F-invariant that for t >_ 0,

and

u, E X n Ho v Hi+o,,l

Ut* E X r Ho V Hi-_t,0],

so it only remains to show that these vector sums are direct, i.e., that X H[+o,t] 0

and X H(-_t,o O.

By stationarity X H_t,o] 0 if and only if (UtX) H[+0,t] 0. To prove the

latter, suppose r] E (UtX)A H[+o,t]. We want to prove that r] must be zero. To this

end, note that

+
(A.7) ) := EHI’I7 1.

Now there is an a E n such that ax(t) and hence- a’2(t),

where 2(t) is the Kalman-filter estimate. It is well known that H(t):= E{2(t)2(t)’}
satisfies the Riccati differential equation

fi A(U), n(o) o,
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which has the linit P_ as t --+ oo; see, e.g., [9] or [16]. It is now easy to see that
Q P_ II satisfies the homogeneous Riccati equation

( F_Q + QF’_ QC’R-CQ, Q(O) P_ > o.

Since Q(0) > 0, M(t) Q(t) -1 exists on some finite interval [0, tl] and it is readily
seen that it satisfies the Lyapunov differential equation

fd -MF_ F’_M q- C’t-Ic, M(O) p-l_ > 0

there. Integrating we obtain

M(t) + fo -P’ (t-s) r_ (t-s)e C’R- Ce- ds

where the first term is positive definite and the second nonnegative definite. Conse-
quently, M(t) > 0 for all finite t and hence Q(t) > 0 for all finite t.

Now, from (A.7) we have that

a’ [P II(t)] a O.

But P- n(t) >_ P_ II(t) Q > 0. Hence a O, and therefore r/- O. The proof
that X C? H;,t] 0 follows from a symmetric argument.
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A GLOBALLY CONVERGENT SUCCESSIVE APPROXIMATION
METHOD FOR SEVERELY NONSMOOTH EQUATIONS*

LIQUN QIt AND XIAOJUN CHEN
Abstract. This paper presents a globally convergent successive approximation method for solv-

ing F(x) 0 where F is a continuous function. At each step of the method, F is approximated by
a smooth function fk, with Ilfk FII 0 as k oc. The direction --f(xk)-lF(x:) is then used
in a line search on a sum of squares objective. The approximate function fk can be constructed
for nonsmooth equations arising from variational inequalities, maximal monotone operator prob-
lems, nonlinear complementarity problems, and nonsmooth partial differential equations. Numerical
examples are given to illustrate the method.

Key words, global convergence, successive approximation, integration convolution

AMS subject classifications. 90C30, 90C33

1. Introduction. Let F R R be a continuous but not necessarily differ-
entiable function. We consider the system of nonlinear equations

(1) F(x) 0, x e .
The recent literature of such nonsmooth equations includes [1]-[3], [6]-[8], [10]-

[13], [15], [17], [19], [21].
If F is smooth, a popular method for solving (1) is the damped Newton method

Solve F(xk) + F’(xk)d- 0 to get dk(2) Set xk+l xk + oadk,

where the step size aa in (0, 1] is chosen by a line search.
Han, Pang, and Rangaraj [6] generalized the damped Newton method to solve the

nonsmooth equation (1) using the idea of an "iteration function." Let 0 R R+
be defined by

1
0(x) ()F(x).

Damped Newton method with iteration function (IF). Let p, a (0, 1) be
given. Let G R R be a given iteration function. Let x0 R be arbitrary.
Sgt k 0.

Solve F(xa) + G’(x, d) 0 to get da
Set Xk+ Xk pmdk,

where mk is the smallest nonnegative integer m such that

0(x + d) 0(x) -2().

Global convergence was established in [6] under four assumptions on G and FTG.
In general, G(x, .) is nonlinear. This implies that a system of nonlinear equations
(generally easier than (1)) is solved at each step in the above method.

Received by the editors August 24, 1992; accepted for publication (in revised form) October 20,
1993. This research was supported by the Australian Research Council.

School of Mathematics, University of New South Wales, Sydney, New South Wales 2052,
Australia.
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Recently, Gabriel and Pang [7] proposed a trust region algorithm using iteration
functions. They also required certain assumptions on the iteration functions to estab-
lish convergence of their algorithm. Poliquin and Qi [14] proved that, in the case of
nonsmooth optimization, the assumptions on the iteration functions actually implied
restrictions on the original function. There are other globally convergent methods for
nonsmooth equations [10]-[13], [20]. These methods either assume conditions much
stronger than continuity or only work for some special problems.

In this paper, we introduce a successive approximation method. Let I1" II denote
the Euclidean norm. At the kth step, we approximate F by a smooth function f
such that F f + g, where

IIg ll sup{llg (m)ll m nn}  llF(x )ll

and a E (0, 1) is a fixed constant. The algorithm uses f(xk), wherever a derivative
of F at xk is needed.

There are two outstanding advantages of the new algorithm over existing meth-
ods. The first advantage is that a linear approximation is made at each step, so the
subproblem is a system of linear equations. Known globally convergent methods for
solving nonsmooth equations do not have this feature. The second advantage is that
the conditions required to establish convergence and implement the new algorithm are

very general. We establish global convergence of this algorithm under the following
assumptions on F: continuity of F, boundedness of a level set, and nonsingularity
of f at x for all k and at x*, an accumulation point of {x}. To implement our

algorithm we require F to be locally Lipschitzian. Under these assumptions, we may
construct f with the desired accuracy. The basic tool is the integration convolution.
In some special cases, we have other ways to construct f.

Although we discuss the linear convergence of this algorithm in 3, we do not
intend to pursue a higher rate of convergence for this method. There are already
several superlinearly convergent methods [10], [11], [19-21] and a superlinear conver-

gence theory [13], [15] for solving nonsmooth equations. One may construct a hybrid
algorithm that is globally and superlinearly convergent using the new algorithm and
a known superlinearly convergent algorithm with the methodology proposed in [15].
We do not go into the details of such a construction. The merit of our algorithm is
that it may solve some severely nonsmooth equations, such as nonsmooth equations
arising from the variational inequality problem for a general convex set and from the
maximal monotone operator problem (see 5).

In 2 we describe the successive approximation method and prove its global con-

vergence.
In 3 we consider the rate of convergence.
In 4 we discuss how to construct a successive approximation function for a non-

smooth function F using integration convolution.
In 5 we investigate some applications of our algorithm.
In 6 we give numerical results with the successive approximation method.

2. Method and global convergence.
DEFINITION 1. Let c E (0, 1) be a constant. At the kth step of the iteration

methods described in this and the next sections, we call

F= fk+gk
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a normal decomposition of F, if fk is smooth and Ilgk <- llF(x)ll, whenever F(xk)
O.

We shall give some examples of normal decompositions in 5.
Let

and

1
O(x) F(x)F(x)

1
Ok(x)-- -fk(x)Tfk(x).

Our method can be described as follows.
The successive approximation method (SAM). Given p,c e (0, 1), an ini-

tial vector x0 e Rn and a normal decomposition F f0 + go with Ilgoll <- IIF(xo)ll,
let0<a<l-c. Fork>0:

1. Solve F(xk) + f(xk)d 0 to get dk.
2. Set x+l x + pmkdk, where m is the smallest nonnegative integer rn such

that

Ok(x + p’dk)- Ok(x) <_ --2apmO(xk).

3. If F(Xk+l) 0, stop. If llgkll < allF(Xk+l)ll, we let fk+l fa and gk-t-1

Otherwise, we construct a new normal decomposition

with
Assumption 1. The level set

Do {x e Rn O(x) <_ (1 + a)0(xo)}

is bounded.
Assumption 2. f (x) are nonsingular for all k.
LEMMA 1. Suppose that F(xk) 0 and F fa + gk is a normal decomposition

of F. Then there exists a scalar t E (0, 1] such that for all t (0, tk]

Ok(Xk + talk)- 0k(xk)

_
-2atO(x).

Proof. Notice that 0(x)- f(xk)Tf(xa) and f.(xa)da -F(x). We have

Ok(x + talk) Ok(xk) -(fk(xk + td)Tf(x + td) fk(x)Tfk(x))
Ttd fk(xt)Tf(x) + o(t)

--tF(z)TF(xk) + tF(xk)Tgk(xk) + o(t).

Since

Ok(xk + td) Ok(x) <_ -2tO(xk) + tllF(x)llllg(x)ll + o(t)
< -2tO(xa) + tcllP(xa)illlF(xa)ll + o(t)
-t( )O(x) + o(t).

Since cr < 1 -c, there exists tk (0, 1] such that for all t (0, tk], (3) holds.
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Lemma 1 indicates that the SAM is well defined under Assumption 2.
THEOREM 1. Suppose that Assumptions 1 and 2 hold. Then the SAM is well

defined and for all k

(4) xk E Do.

Let {zk } be a sequence produced by the SAM. Iffurthermore for an accumulation point
z* of {z}, f(z*) is nonsingular for all large k, then

(5) lim F(z) 0

and

-0

for all accumulation points c of {zk}.
Proof. Without loss of generality, we may assume that F is not smooth. Hence

I1  11 > 0 for
By Lemma 1, the SAM is well defined. We now prove (4). Without loss of

generality, we assume that F(z) # 0 for all k. Let K {0} U {k II.q-lll >
allF(z)ll}. Assume that K consists of k0 0 < kl < k2 < Let k be an
arbitrary nonnegative integer. Let kj be the largest number in K such that kj < k.
Then

and

Ifj- 0, then IlF(x)ll <_ IlF(xo)ll+cllF(xo)ll, since 119011 <- -llF(xo)ll Ifj _> 1, then

(6)

(1)1<_ -+1 lgoll < (l+a)
1

In both cases it follows that O(z) <_ (1 + a)20(z0). This implies that (4) holds.
We now prove the second part of the theorem. If K is infinite, then for any k >_ 0

there exists kj E K, the largest number in K such that kj < k and (6) holds. The
limit in the right-hand side of (6) is zero. This proves (5).

Hence, to prove (5), it suffices to prove that K is infinite. Suppose K is finite and
assume > k for all k K. Then Ilgt.II < allF(x)ll for k >_ ’. Hence for all k > ,
(7) fk=f., g--g,
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and

1 1 12O(x) l,If(x)ll > -g Ilgl -= e > o.

Suppose that K0 is a subsequence of {0, 1,...} such that {xk k E K0} converges
to x*. By (7) and the condition of this theorem, I(x*) is nonsingular. Since

limk--.o,eKo xk x* and f(.)is a continuous function, {ll/(x)-ll No} is uni-

formly bounded. Therefore, there exists L > 0 such that IIdll- IIf(x)-lF(x)ll <_
L for all k _> c, k E Ko. Since 0h(. is continuous, we have 5 > 0 such that for all x
satisfying IIx- x*ll _<

(9) II0 (x) 0 (x*)l _<
L

g"

Since lim}__,,keKo xk x*, we have > such that for all k > , k Ko

(10) Ilxk x* <
-2

Let t* (0, 1) be such that

(11) t*L < -.
By (10) and (11), for all k > , k K0, t (0, t*], and r E (0, 1), we have

Now by (9) and (12), for all k > k,k Ko, and t (0, t*], we have

(3)

Therefore, for all k _> k, k Ko, and t (0, t*],
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This implies that for all k >_ , k E K0, we have pmk-1 >_ t*, i.e.,

(14) p’k

_
pt*.

By (8), (14), and the construction of our algorithm, for all k >_ , k E K0

0(Xk+l)--O(Xk) --2(ypmkO(xk) -2pt*a < O.

However, by (7) and the construction of our algorithm, 0() is nonincreasing for
k >_ k. This implies O(x) - as k c. This contradicts the fact that

0() _> 0 for all k. Hence, K cannot be finite. This proves (5). The final conclusion
of this theorem simply follows (5) and the continuity of F.

Remark 1. We may inductively apply the proof of Lemma 1 and the first part of
Theorem 1 to prove (3) and (4) In this way, we may reduce Assumption 2 to "r’ (x)k k

are nonsingular for all k satisfying xk Do."
Remark 2. In [17] trust region methods using the decomposition of F for non-

smooth equations were presented. In the second one, successive approximation was
used and F(x) and F’(xk) used in classical trust region methods were replaced by
f(xk) and f’(xk), respectively. If we use successive approximation and replace all
F(xk) in the SAM by fk(xk), then we can also prove the global convergence with the
technique of [17].

3. Convergence rate. In order to give a convergence rate, we consider a mod-
ification of the SAM.

Modified SAM (MSAM). Given p,a e (0, 1) c 1-), an initial vector

xo e Rn, and a normal decomposition F f0 + go with Jig011 <- ]lF(x0)ll, let
0<a< 1-c. Fork>0:

1. Solve F(x) + f.(x)d 0 to get d.
If

(15) ][F(x / d)ll < c,
IIF()II

we let z+ z + d, f+ f, and g+ g. Otherwise, we do Steps 2 and 3 of
the SAM.

THEOREM 2. Theorem 1 holds for the MSAM.
Proof. Let K be the set of k such that (15) holds. If K is finite, then the MSAM

is essentially the same as the SAM. Hence Theorem 1 holds in this case. Suppose now
K is infinite. Let ki and ki+l be two consecutive numbers in K. If ki+l ki + 1, then

IIF(x,/)ll <_ cllF(x,)ll.

Otherwise, with an argument similar to the first part of the proof of Theorem 1, for
any k satisfying k + 1 _< k <_ k+l

Hence, for any k satisfying ki + 1 <_ k <_ ki+l,

clllF(x,)lt <_ cxllF(x)ll,

where c c(1 + a) (0, 1). This shows that (5) holds. Then the conclusion follows.
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The proof of Theorem 2 shows that the MSAM is globally convergent and the
norm IIF(xk)ll reduces linearly in if (15) holds infinitely many times. In the following
theorem, we show that under some conditions the linear convergence rate can be
realized and that F fk + gk need not be a normal decomposition any more for all
large k.

THEOREM 3. Suppose that the conditions of Theorem 1 hold and that x* is
an accumulation point of {xk} generated by the MSAM. Suppose that there exist a

positive integer and positive numbers r, 11,/2, and such that x E S(x*, r) and for
all x, y S(x*, r)

and

lllr < 1, (211r +/2) _< c.
1 lr

Then for all k >_ , fk f, g gi, and

X*(lS) Ilxk/l- ]l<_cllxk II.
Furthermore, for all k _> , (15) also holds.

Proof. By Theorem 2, F(x*)= 0. For any x e S(x*, r), we have

IIf (x)- f (x*)ll <_

By the Perturbation Lemma, for all x S(x*, r),

llf (x) -11 < 1-1r =" "
Let 2+ x + d. Then from x S(x*, r), we have

X*

IIx x* f(x)-(F(x)- F(x*))[[

X*+(f(x) f(x*))(x O(X) (X*))
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This implies 2+
Furthermore,

Therefore, we have x+ :+1" So that f+1 f and g+ g. Repeating the

proof with ]c + 1, we obtain (15) and (16). [::]

Remark 3. If F is smooth, then g 0 and 12 0. Then the quadratic rate of
convergence of the Damped Newton method is recovered by (17).

4. Approximation using convolution. In this and the next two sections, we
use xi to represent the ith component of a vector x and xk to represent a vector.

Without loss of generality, we may assume that F Rn --, R is bounded and
uniformly continuous. If F is continuous but not bounded and not uniformly contin-
tots, let the level set Do be defined as in 2. By Assumption 1, there is r0 > 0 such
that Do C_ S(0, r0). Define Fo:R --, R by

F(x)Fo(x) F(o-)
if Ilxll to,
if Ilxll > ro.

Then (1) is equivalent to

o(x)-o,

while F0 is bounded and uniformly continuous. Hence, we assume that F is bounded
and uniformly continuous. Let M be a bound of IFII.

Let w" R+ -- R+ be the modulus of continuity of F defined by

o(t) sup{llF(x) F()[I IIx ll t}.

Then w is a continuous nondecreasing function [9], w(0) 0, and for any x and y in
Rn we have

IIF(x) F()II o(llx 11).

We call (I)" Rn --, R+ a kernel function if

(x)dx= l.

If is a kernel function, then /n __, R+, defined by

(I)A(X)-- ,n(I)(/x),
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where , is a positive number, is also a kernel function. If (I) is smooth, then (I)x is
also smooth. If " R R+ is a one-dimensional (smooth) kernel function, then

Rn --, R+, defined by

(18)

is an n-dimensional (smooth) kernel function. Two famous one-dimensional smooth
kernel functions are

1 1
(t)- . 1 + t2

(Cauchy kernel)

and

(Weierstrass kernel)

(see Shapiro [24]).
Suppose now that q) Rn. R+ is a smooth kernel function. For any , > 0,

define Fx R R by

According to [5], [23], [25], Fx is a smooth function and

(x) () (x- )d.

Furthermore, for any x in Rn,

IIF(x) F(x)l[ II J[F(x) F(x

< fo IIF(x) F(x- )ll()d.

For any e > 0, let 5 > 0 and r > 0 be such that

(19) [ (x)dx < e

11> 4M

and

(20) (5) < .
For any > $, we have

f
IIF(x)- F(x)ll ./. IIF(x) F(z-

F(x
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(21)

Therefore, in 2, if F(xk) O, we may choose e allF(x)ll and construct f F
for A > r/5. Then Ilgkll- IIF -FAll _< cllF(xk)ll, i.e., we have the normal
decomposition required in 2.

To construct F satisfying (21), we need to know r > 0 and 5 > 0 such that (19)
and (20) hold. If (I) is constructed by (18), then it is not very, difficult to choose r.

Actually, if (18) holds, then we only need r to satisfy

J(t ,>_- (t)dt <_ (-4-)

On the other hand, if F is globally Lipschitzian with constant Lo, then w(5)

_
LoS.

We may let 5 2o" Then (20) will be satisfied. In 5, we will give examples of such
applications.

If F is locally Lipschitzian, by the construction of F0 at the beginning of this
section, F0 is always globally Lipschitzian. Hence our method can be implemented as
long as F is locally Lipschitzian.

5. Applications of the successive approximation method. In this section,
we discuss some applications of the successive approximation method. The first two
examples have appeared in the literature such as [13].

5.1. The variational inequality problem. Let C be a closed convex subset
of Rn and " C -. Rn be a once continuously differentiable function defined on the
open set D C_ R containing C. This problem, which we denote VI(C, ), is to find a
vector x* E C such that

(x- x*)T(x*) 0, for all x E C.

The system is equivalent to a system of nonsmooth equations in R

(22) F(x) =_ x Hc(x (x)) 0,

where IIc(y) denotes the projection of y on C. The nonsmoothness of the function F
is the consequence of the projection operator Hc(.) (see [13]). When C is a polyhedral
set, this operator possesses some B-differentiability properties that can be put to use
algorithmically (see [10]). However, it is not easy to establish these properties when
C is a general convex set.

Since the projection operator is Lipschitzian with modulus 1, we can use the tool
of integration convolution stated in 4 to solve the nonsmooth equations (22) by the
successive approximation method.



412 LIQUN QI AND XIAOJUN CHEN

5.2. The maximal monotone operator problem. Let T" Rn Rn be a
set-valued maximal monotone operator. An important problem is to find x E R
such that

(23) 0 e T(x).

According to the theory of the maximal monotone operator, the resolvent of T, namely,
Pu (I + #T) -1, where I is the identity operator and # is a positive number, is
always single-valued and nonexpansive (hence globally Lipschitzian) [13]. Moreover,
the solution of (23) is equivalent to that of the nonsmooth equation (1) where

F(x) x- P(x).

Since Pu, and therefore F, is globally Lipschitzian, we can use the tool of integration
convolution to approximate F and solve the equation by the successive approximation
method.

5.3. LC1 optimization. Consider

(24) min (x),
X

where R -- R is a continuously differentiable function. Let F . Then we
may solve

F(x) 0

to find the stationary points of (24). If F is locally Lipschitzian, then / is called
an LC function and (24) is called an LC optimization problem. There are many
examples of LC optimization.problems [16], [18]. For example, if
and P2 are conjugate functions of extended-valued strongly convex functions al and
2, then 1,

, and F are globally Lipschitzian; see Theorem 2.5 of [16]. Actually,
we have

(x)(26) Qi(x) =-
maxz{xTz--i(z)},
(x) argmaXz{xTz (z)}

for 1, 2 [22] and

(27) =_

If and 2 are extended-valued convex quadratic functions, then we can rewrite

(28) lzTHiz" Aiz

_
bQi(x) argmaxz{xTz - },

where Hi Rx is symmetric and positive definite, Ai E R"x, and b Rrn for
i= 1, 2. In 6, we will give a numerical example where F is defined by (27) and (28).

5.4. The nonlinear complementarity problem. We consider the nonlinear
complementarity problem of finding x such that

p(x) > O, q(x) >_ O, p(x) q(x) O,
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where p, q Rn --, Rn are continuously differentiable. This problem can be formulated
as a system of nonsmooth equations (1) with

(29) F(x) min(p(x), q(z))

(see [13]). Now, we give a normal decomposition of F defined by (29). This is simpler
than the convolution approximation proposed in the general case.

Let a (0, 1) be a constant and

e- ----IIF(x)I] O.
v’n

Let

(L(x)) q(x) p(x) + ;(x) q(x) +
4ek

pi(x) + 4
qi(x) 4’

1
(O(x)) T (] p(x) q(x) -ek)2,

(A(x))- { (x) if pi(x) qi(x) [>
if p(x q(x) 1_

0(()) (0(x))
if p(x q(x)l>
if p(x) q(x)] ,

for i- 1,2,...,n.

Then it is easy to verify that

F(x) min(p(x), q(x)) f(x) + ga(x), x e

fk is continuously differentiable gk is continuous and I]g]] < v/llg]l < x//-k

5.5. A piecewise smooth function. Consider

(30) F(x) Ax + (),
where A R R is a matrix and is a diagonal continuous function, that is,
i(x) i(xi), 1, 2,..., n. See [9]. Such a system arises from nonsmooth partial
differential equations. In a general case, i is defined as a piecewise smooth function:

(xi)- { u(x) if x _> a,
Vi(Xi) if xi < ai,

where ui and vi are smooth functions with ui(ai) vi(ai) and ai are constants,
i- 1,2,...,n.

If ui(ai) > vi(ai), we may replace Fi by -Fi. Hence, we may assume that for all
i, ui(ai < vi(ai ). Let

f (Ax)i + ui(x) if x _> a,p(x) (Ax)i + vi(xi) + (v(ai) u(ai))(ai xi) if xi < ai
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and

(Ax)i + ui(xi) + (v(ai) u(ai))(xi ai)qi(x) (Ax)i + vi(xi)

Then p, q are smooth functions and

F(x) min(p(x), q(x))

is equivalent to (30).
Now, we can give a normal decomposition of F as in 5.4.
6. Numerical experiments. In this section, we give some computation results

to illustrate the SAM and MSAM. The first example is from 5.3.
Example 1. Let

ZI {z E R Alz <_ bl} and Z2 {z E R A.z <_ b2}

be nonempty convex polyhedra in Rn. Let

1
Ql(x)=argmax xTz zTHlz

zEZ1 -and

1 zTQ2(x) arg max xTz H2z
zEZ2 -where Hi E Rnxn are symmetric and positive definite, Ai 1rnxn, and bi @ Im for

i= 1,2.
We consider the nonsmooth equations

F(x) =_ Q (x) Q(x) + Px + o o,

where P is an n x n nonsingular matrix and co is a fixed vector in Rn.
PROPOSITION 1. Let

{ 1 }(x)=mzaX xTz - Z
THz Az <_ b

where H Rnxn is symmetric and positive definite, A Rmxn, and b R". Assume
that {z" Az <_ b} is not empty. Then

Proof. By Theorem 26.3 of [22], is continuously differentiable and ’(x)
zTHz Az < b}. MoreoverQ(x) =argmaxz {xTz

1ZTHz if Az < b,() + otherwise

is the conjugate function of and is a strongly convex function, that is,

tq(2) + (1 t)(2) 99(t2 + (1 t)) >_ ct(1 t)l]2 ll 2,
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TABLE
Example 1. For a 0.7, p 0.625, c 0.625; stopping criterion: IIF(xk)ll <- 10-6

Test Problem
X

(x*)

co
xo

(4.7545, 1.0537, 1.3704, 0.5054)
(2.3746, 0.0000, 0.0000, 0.0000)
(1.0000, 1.0000, 1.0000, 1.0000)
(-36.7090, 13.6718, 12.8669, -6.6836)
(7.0764, 4.4550, 7.1401, 2.1182)
1.0383882 10-7
7.5659260 10-7

Test Problem 2

co
xo

(4.7545, 10.5370, 1.3704, 5.0524)
(0.7643, 2.9602, 0.0000, 1.0998)
(1.0000, 1.5613, 1.0000, 1.0000)
(-45.9436, -96.0082, 26.2708, -47.1997)
(12.8565, 11.5656, 8.4323, 14.7801)
1.0267013 10-7

7.1972663 10-7

Test Problem 3
X

Q(*)
Q(*)
co
x0

(-4.7545, 1.0537, 1.3704, -0.5052)
(o.oooo, o.oooo, o.oooo, o.oooo)
(1.0000, 1.0000, 1.0000, 1.0000)
(36.3344, 15.6718, 14.8669, 8.6836)
(--2.0265, 7.9727, 5.7637, 3.0629)
1.3155275 10-7

8.8361463 10-7

where c 211_111. Let 2 ’(x) and 2 ’(y). By Theorem 23.5 of [22], x E 099(2)
and y 099(2). Hence, for any t (0, 1),

99(2) 99(z:’) > [99( -t- t(2 )) 99()]/t -t- c(1 t)llz 11
>_ xT( ) / c(1 t)ll- 11 2,

where the second inequality holds because of the basic property of subgradients. Let
t 0; we have

(31)

Similarly, we have

(32)

Addition of (31) and (32) shows that

(Y- x)T(2- ) >_ 211- 112.
Hence,

Therefore,

1
lie’(x)- ’(y)ll I1- zll < llx- yll,
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TABLE 2
The iteration numberk andllxk--x II1 (or xk-x** II1) fora 0.7, p 0.8, o 0.285(SAM),
0.000625(MSAM); stopping criterion: [Ixk- xk--ll[ 10-6

Initial
Data
IF

(1,0,0,0)

SAM 130(x**)
15 10-7

MSAM 4(x**)
17 x 10-7

(1,1,1,1)

23(x*)
52 10-7

14(x*)
13 10-7

5(x*)
6 x 10-7

(1,0,1,0)

21(x*)
2 X 10-7
29(x**)
25 x 10-7

8(x**)
0.1 10-7

(1,0,0,1)

18(x**)
7 x 10-r

18(x**)
7 x 10-7

13(x**)
5 10-7

Proposition 1 can be generalized to tim case that p is locally strongly convex.
See [16]. By Proposition 1, F is globally Lipschitzian with modulus L0 -IIHi-l]l +
IIHIlI+IIPII and IIF(z)I <_ Lollzll+llF(O)]l. If we take the transformation mentioned
in the beginning of 4, then ]IFI] _< Loro + IIF(0)II M. Hence we can give a normal
decomposition of F using the convolution discussed in 4. Let

f (x) (x

where

We use the Catchy kernel function stated in 4. At the kth step, let e cllF(xk)ll
and Ak >_ 2Lv/tan((l --(hM))). Then we have IlF(x)- fk(x)l

_
e llf(x)ll.

We solve the system of linear equations

vf(x)d -F(xk),
where

vfk(x) ,, F(y) V x y)dy.

Let F(x) (F1 (x),..., Fn(x))T, k,i(x) /+1(kXl)... ’ (k.Ti)... (kXn), and
V/(x) -(Jij(x)). Then

Obviously, F is nondifferentiable at x if for one 1 or 2, Qi(x) is on the
boundary of Zi. We test the algorithm SAM with a four-dimensional problem where

7.0022 0.9018 0.6111 0.5042
0.9018 7.9745 1.0961 0.9506
0.6111 1.0961 6.9120 0.6618
0.5042 0.9506 0.6618 6.6859

2.0022 0.9018 0.6111 0.5042
0.9018 0.2974 1.0961 0.9506
0.6111 1.0961 1.9120 0.6618
0.5042 0.9506 0.6618 1.6850



APPROXIMATION METHOD FOR SEVERELY NONSMOOTH EQUATIONS 417

2.9174 1.4182 0.4576 1.0221
1.4182 4.4486 0.7656 1.4075

H2 0.4576 0.7656 3.0682 0.8975
1.0221 1.4075 0.8975 3.6760

are randomly generated. Let

and

Z {z E R4"zi >_ O,i- 1,2,3,4}

Z2 {z E ]4 zi >_ 1,i- 1,2,3,4}.

We randomly generate x* and choose co such that x* is a solution of F(x) 0 and
F is nondifferentiable at the solution x*, i.e., Ql(X*) or Q2(x*) is on the boundary of
Z1 or Z2, respectively.

The Monte-Carlo method is used to calculate the integral numerically. Numerical
results are shown in Table 1 with random initial points.

Example 2. We consider the following degenerate nonlinear complementarity
problem [8]"

x _> 0, p(x) >_ 0, xTp(x) O, x R4

where p" R4 ---, R4 is given by

3x + 2xlx2 + 2x + x3 + 3x4 -6
2X nt- X -- X -- 10xa -t- 2x4 2p(x) 3x21 -I- xlx2 + 2x22 -t- 2x3 + 9x4 9

x2 + 3x22 + 2x3 + 3x4 3

This problem has two solutions:

x* -(1,0,3,0) and x** -(x/r@2,0,0,0.5)-(1.224745,0,0,0.5).
Formulate this problem as F(x) 0 with F defined by (29); then F(x) is differ-

entiable at x* but nondifferentiable at x**.
Using the Newton line-search method with iteration function method (IF), we

quote the particular definition of iteration function G(., .) given in [6]"

di if xi < pi(x),pi(x) >_ O,
Gi(x, d) Vpi(x)rd if xi > pi(x), xi >_ O,

min(di, vpTd) otherwise.

The computational results by the IF, the SAM, and the MSAM are shown in
Table 2. We used single precision. We choose c- in the MSAM.

We see that these three methods are globally convergent. The final iteration
numbers of the SAM and MSAM are comparable with those of the IF. The SAM
and MSAM are further featured by less work at each iteration (the SAM and MSAM
only needs to solve a linear system of equations at each step). We can construct
approximation functions for any locally Lipschitzian function, but until now generally
we do not know how to construct iteration functions in this case. Therefore, the
successive approximation method is more general.
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OPTIMAL SUPERVISORY CONTROL OF DISCRETE EVENT
DYNAMICAL SYSTEMS*

RATNESH KUMARt AND VIJAY K. GARG$

Abstract. The notion of optimal supervisory control of discrete event dynamical systems
(DEDSs) is formalized in the framework of Ramadge and Wonham. A DEDS is modeled as a
state machine and is controlled by disabling some of its transitions. Two types of cost functions
are defined: a cost of control function corresponding to disabling transitions in the state machine,
and a penalty of control function corresponding to reaching some undesired states or not reaching
some desired states in the controlled system. The control objective is to design an optimal con-
trol mechanism, if it exists, so that the net cost is minimized. Since a DEDS is represented as a
state machine--a directed graph--network flow techniques are naturally applied for designing op-
timal supervisors. It is also shown that our techniques can be used to solve supervisory control
problems under complete as well as partial observation. In particular, for the first time, techniques
for computing the supremal controllable and normal sublanguage and the infimal controllable and
normal/observable superlanguage without having to perform alternate computations of controllable
and normal/observable languages are obtained.

Key words, discrete event dynamical systems, supervisory control, automata theory, optimal
control, max-flow rain-cut

AMS subject classifications. 68Q75, 93B25, 93C83

1. Introduction. Research of the supervisory control of a discrete event dy-
namical system (DEDS) was pioneered by Ramadge and Wonham [23]. In [23], a
DEDS, also called plant, is modeled as a state machine (SM) and the behavior of a
DEDS is described by the language accepted by the corresponding SM. A controller
or a supervisor, based on its observation of the past behavior of the plant, determines
the transitions to be disabled in the plant, so that some desired qualitative control
objective is achieved. Usually, the control objective is to restrict the plant behavior
such that it remains confined within a specific range [24]. In some other cases, the
control objective is to design a supervisor so that the closed-loop behavior eventually
remains confined to a prescribed range [3], [18], [12]. Recently, there has also been
some work in which the control objective is to restrict the plant behavior so that a
certain cost function defined along the trajectory of the system is optimized [20], [19],
[2], [26], [10].

In [20], [19], a cost function is defined on the set of transitions and the control
objective is to restrict the plant behavior in such a way that after starting from a

given initial state the plant reaches one of the accepting states along a trajectory of
optimal cost. Authors provide an efficient heuristic search-based algorithm to solve
the problem. In [2] also, a cost function is defined on the set of transitions and the
control objective is to restrict the plant behavior so that after starting from any state
the plant reaches one of the accepting states along a trajectory of optimal cost. In
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[26], two types of costs, a control cost and a path cost, are defined on the graph
representing a plant. The control objective is to determine that subgraph of the plant
graph for which the maximum of the total cost along all its trajectories is minimal.
The notions of cost of control and penalty of control considered in our paper are
somewhat similar to that of control cost and path cost in [26]. However, our control
objective is to determine a state-feedback supervisor so that the net cost of disabling
transitions, that of reaching undesired states, and that of not reaching desired states
is minimized. Thus our control objective is different from that considered in [26].

In this paper, we consider two types of cost functions: (i) A positive cost of control
function is defined on the set of transitions corresponding to the cost of disabling a

transition; if a certain transition such as arrival of a customer in a queue is disabled
by a supervisor at a certain point, then its cost of control is added to the net cost,
otherwise--if the transition is not disabled--no cost is added to the net cost. (ii)
A penalty of control function is defined on the set of states corresponding to their
reachability in the controlled system. The penalty of control takes a negative or
positive value depending on whether the state is desired or undesired. If a state is
desired--e.g., working or idle state of a machine--then a negative penalty is associated
with it. If such a state remains unreachable in the controlled plant, then a positive
cost equal in magnitude to its penalty of control is added to the net cost, otherwise--if
the state is reachable--no cost is added to the net cost. On the other hand, if a state is

undesired--e.g., over/underflow of a buffer--then a positive penalty is associated with
it. If such a state can be reached in the controlled plant, then a cost equal to its penalty
of control is added to the net cost, otherwise--if it remains unreachable--no cost is
added to the net cost. The optimal control problem is to determine a state-feedback
supervisor for which the net cost is minimized. State-feedback supervisors [8], [21],
[13], [6] exercise control based on the state of the plant rather than the sequence
of events executed by it. However, this does not result in any loss of generality,
since a "string-feedback" supervision is equivalent to a state-feedback supervision on
a suitably refined [7] model of a plant.

replace

replace

top
/ maiain/xplace ma_jlXain’

fail

maintain

FIG. 1. Diagram for machine P of Example with N 4.

Ezarnple 1. Consider for example a machine P shown in Fig. 1. (For clarity,
the state labels have been omitted.) Initially P is in the "first idle" state (i.e., idle
and unused state). When event "start" is executed, it goes to the "first working"
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state. In the "kth working" state, where 1 _< k < N, the machine may either "fail,"
in which case it goes to the "kth broken" state; or it may complete its operation,
execute "stop," and go to the "(k + 1)th idle" state. In the "kth broken" state, the
machine is either "repaired," in which case it goes back to the "kth idle" state; or it
is "replaced," in which case it goes to the "first idle" state. In the "kth idle" state,
either the event "start" is executed, which sends the machine to the "kth working"
state; or "replace" is executed, which sends the machine to the "first idle" state; or
"maintain" is executed, which sends the machine to the "(max{l, 2k-N})th idle"
state. Thus, in the "Nth idle" state, execution of the "maintain" event does not result
in a change in state. Note that the function max{l, 2k- N} is chosen only for an

illustration; in general, it is an increasing function of k taking values smaller than k
except at k 1 and k N, where it equals k. An optimal control policy is needed to
decide (i) whether to repair or replace the machine in a broken state and (ii) whether
to operate or maintain or replace the machine in an idle state. An optimal control
policy evidently depends on the cost of replacement of machine, .cost of repair in the
kth broken state, cost of maintenance in the kth idle state, payoff of operating the
machine in the kth idle state, penalty of being in a broken state, payoff of being in
an idle or a working state, etc.

Our setting is similar to that considered in [27], in which appropriate cost and
penalty functions were defined on a suitably refined model of a given plant and the dy-
namic programming algorithm was used to determine the existence of a supervisor for
a given control problem. The computational complexity of the dynamic programming
algorithm was used to determine the computational complexity of the supervisory con-

trol problem thus solved. However, no technique for the synthesis of a supervisor, if
it exists, was given in that reference. Our approach to optimal supervisory control
differs from that considered in [27] in two ways. First, we show that an optimal super-
visory control problem of the type described above can be solved using network flow
algorithms. Thus a more general algorithm such as dynamic programming can also
be used, although this will result in an increase in computational complexity. Second,
we show that our techniques are equally applicable for the synthesis of supervisors,
whenever they exist.

The motivation of formulating an optimal supervisory control problem is twofold:
first, to introduce a formal framework for optimal supervisory control in which the con-
trol objective is to optimize a suitably defined cost and penalty of exercising controls;
and second, to present a unified technique for supervisory synthesis under complete
as well as partial observation. In particular, we obtain techniques for computing the
supremal controllable and normal sublanguage [22], [16], [1], [11], [4], the infimal con-
trollable and normal superlanguage [14], and the infimal controllable and observable
superlanguage [16], [5], [25], [9] without having to perform alternate computations of
controllable and normal/observable languages as is done in [4] (also refer to Remark
3). Our techniques also illustrate that supervisory control problem under complete
or partial observation can be solved using a state-feedback type of control on a suitably
refined state machine representation of the plant. We provide techniques to obtain
the appropriate refinements.

In 2, we introduce our notation and formally describe the optimal supervisory
control problem under complete as well as partial state observation. In 3, we show
how the network flow algorithms can be used to solve the optimal supervisory con-

trol problems. In 4, we show that by appropriately defining the cost and penalty
functions, our techniques can be used to solve the supervisory control problem under
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complete as well as partial observation.

2. Notation and problem formulation. A discrete event dynamical system
to be controlled, called plant, is modeled as a state machine [7] and denoted as a
4-tuple G := (X, E, 5, x0), where X denotes the set of states, E denotes the finite set
of events, 5 X E --, X denotes the partial deterministic state transition function,
and xo E X denotes the initial state. A triple (Xl,(7, x2) E X E X, such that
5(x1,(7) x2, is called a transition in G. The behavior of G is described by the
language L(G):

L(G) := {s E* 5(z0, s)is defined},

where E* denotes the set of finite sequences of events belonging to ,E, including the
zero-length sequence e; the transition function is extended in a natural way to 5
X x E*--, X.

In general, a supervisor or a controller determines the set of events to be disabled
after each transition, based on the record of observed states and events. We consider
a supervisor, denoted S, to be a map S X --, 2E that determines the set of events
S(x) G E to be disabled at each state x X. Events not belonging to the set
S(x) remain enabled at x. A supervisor as defined above is called a state-feedback
[21], [13], [12], as it exercises control based on the state of G (and not based on the
record of observed states and events). As is shown below, this does not result in
any loss of generality, as a more general supervisor, which exercises control based
on the observed sequence of events, can equivalently be viewed as a state-feedback
supervisor on a suitably refined model of the plant. Readers are referred to [24] for a
more general definition of a supervisor. The controlled plant, denoted Gs, is another
state machine given as the 4-tuple Gs := (X, E, 5s, xo), where X, E, x0 are as defined
above and 6s denotes the state transition function of the controlled plant

5(x, (7)Yx z.5s(x undefined
if (7

otherwise.

The behavior of the closed-loop system is described by the language L(Gs) generated
by the controlled plant. It is clear that L(Gs) C_ L(G).

Next we formally describe the problem of optimal supervisory control. Let c
X x E T+ denote a cost of control function, where 7+ denotes the set of strictly
positive reals, including infinity. The cost c(x, (7) represents the cost of disabling the
event (7 E at the state x X.

We assume for simplicity that the cost of control is a "one-time" cost. A justi-
fication for this simplifying assumption is the following: In Gs, a certain state may
be visited either only once (if it is not a node on any cycle in the graph of Gs) or
an unbounded number of times (otherwise). If a state is visited only once, then the
corresponding transitions are controlled only once. Hence, in this case, the cost of
control ought to be one-time. On the other hand, if a state is visited an unbounded
number of times, then the corresponding transitions are controlled each time the state
is visited. However, due to the state-feedback nature of supervision, the same con-
trol is exercised on each occasion. Hence, in this case, the cost of controlling such
transitions can be associated with the first time the control is exercised. The one-
time cost of control assumption can also be interpreted as follows: A transition once

disabled/enabled at the corresponding state remains disabled/enabled in that state
so that on subsequent visits to that state no cost is incurred in disabling/enabling
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that transition. Alternatively, the cost of control is primarily of setting up a con-
trol mechanism--a switch, for example--and the cost of engaging or disengaging the
switch is small compared to its one-time setup cost. In each case, the assumption of
state-feedback supervision is crucial.

Next, a penalty of control function p: X -, T is defined on the state set, where
9E denotes the set of reals, including positive and negative infinity. It corresponds
to the penalty associated with teachability of a certain state in the controlled plant.
The penalty function may take a positive or negative value depending on whether the
corresponding state is undesired or desired. Given a state x E X, if p(x) < 0, then
x is a desired state and it should remain reachable in the controlled plant. In case x
is unreachable in the controlled plant, a positive cost equal to -p(x) is added to the
net cost as a penalty, else no cost is added to the net cost. Similarly, if p(x) > 0 for
some x E X, then x is an undesired state and it should remain urireachable in the
controlled plant. In case x is reachable in the controlled plant, a cost equal to p(x) is
added to the net cost as a penalty, else no cost is added to the net cost.

We assume for simplicity, as above for the cost of control, that the penalty of
control is a one-time penalty; i.e., the penalty of reaching an undesired state does
not depend on the number of times that state is visited. The justification for this
simplified assumption is similar to that given above for the one-time cost of control
assumption.

Remark 1. If c(., a) oc for an event r E, then a should not be disabled by
any supervisor at any state of G. Thus an infinite cost of control of an event captures
the notion of uncontrollable events [23], [24]. The notion of desired or target behavior
can be captured by defining the penalty function to be infinity for those states that
are reachable by the strings in the undesired behavior, and any fixed negative real
for those states that are reachable by strings in the desired behavior. However, this
requires that the state machine G be refined [7], [11] with respect to the given target
behavior, so that the states corresponding to the desired and undesired behavior can

be uniquely identified, and the penalty function is unambiguously defined. This is
explained formally in 4.

With the above definitions of the cost and penalty of control functions we can
define the optimal supervisory control problem.

DEFINITION 1. For any supervisor S X 2z, the net cost of using S, denoted
C(S), is defined to be

xERe(Gs,) aES(x) xEHe(Gs),
,()>o ,()<o

where Re(G.) is the set of reachable states in G.
Thus the net cost of control of using S consists of the sum of three terms: (i) The

first term corresponds to the cost of disabling the events by S. () c(x, a) is the
total cost of disabling events at state x X. Thus :r(c)s() c(x, a) is the
total cost of disabling the events by S. (ii) The second term, xer.(s),p(x)>op(X),
denotes the penalty of reaching undesired states. (iii) Finally, the third term

-:,:a.(),(:,)<0-P(’), denotes the penalty of not reaching the desired states.

Given a state machine V := (Q, E, p, q0), the set of reachable states Re(V) is recursively defined
as: (i) qo G Re(V); and (ii) q G Re(V), Bcr E: p(q, a) is defined = p(q,a) Re(V).
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Optimal supervisory control problem 1 (OSCP1). Let a plant G :=

(X, E,5, x0), a cost of control function c X E --, 7+, and a penalty of control
function p X -- 7 be given. Design a supervisor S X - 2E such that the net cost
is minimized, i.e., determine

arg {mn C(S) }
2.1. Partial state observation. In OSCP1, a supervisor while deciding its

control actions assumes that a complete state information of G is available. We pose
another optimal supervisory control problem in which a complete state information is
not available, and there exists a mask X - Y defined from the state space X to
an observation space Y such that for each x X, (x) Y is the state value observed
by a supervisor. A supervisor in this case is given by a map S Y -- 2. Since a

supervisor takes a control action based on observing a state y G Y, given any y G Y,
the same control action is taken at all states in the set -l(y) := {x G X (x) y}.
Thus corresponding to a supervisor S Y - 2, we can equivalently define a super-
visor S :X - 2 with the constraint C1:

CI: Yxl,x2 E X: (xl) (x2) ::v S(Xl)-----

Optimal supervisory control problem 2 (OSCP2). Let a plant G :-
(X, E, 5, x0), a cost of control function c: X E -- T+, a penalty of control function
p X --, T, and a mask X --, Y be given. Design a supervisor S Y -- 2" (equiv-
alently a supervisor S X --, 2 satisfying C1) such that the net cost is minimized;
i.e., determine

arg{ min C(S)}.S: C1 holds

Remark 2. The difference between OSCP1 and OSCP2 is that, in OSCP2, the
minimization is performed over all supervisors that also satisfy the constraint C1,
whereas no such constraint exists in OSCP1. It is easily seen that given an instance
of OSCP1, it can be reduced to an instance of OSCP2 by setting the mask function
to be the identity function. We show in the next section that given an instance of
OSCP2, it can be reduced to an instance of OSCP1 by suitably modifying the cost
of control function and the graph representing the plant. Thus the two formulations
are reducible to each other.

In the formulation of OSCP2, a state-based mask function is used. This is in
contrast to the setting of supervisory control, where usually an event-based mask
is used. However, an event-based mask can be used to obtain a state-based mask
by first constructing a state estimator, as in [17], and next identifying all the states
with identical state estimates to have equal mask value. Thus it is possible to reduce
an optimal control problem under partial observation of events to one under partial
observation of states.

3. Solution using network flow algorithm. In this section we provide a
solution to the optimal supervisory control problems introduced in 2. The problem is
to determine for each transition in the state machine G whether to disable or enable
it, so that the net cost is minimized. We show that this problem is equivalent to
determining an optimal prtition of the state space X into the set of states that
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remain reachable in the controlled plant and the set of remaining unreachable states.
The desired optimal partition is determined using the max-flow min-cut theorem [15],
a technique for optimal partitioning of directed graphs.

3.1. Max-flow rain-cut theorem. Interested readers are referred to [15] for
a formal and elaborate description of the max-flow min-cut theorem. Informally
described, in its simplest form, a flow network is represented as a weighted directed
graph having a single source node from where the flow starts and a single terminal node
where the flow terminates. The weights on the directed edges of the graph represent
the maximum flow capacities of the corresponding edges (the minimum capacity is
zero unless specified). Formally, we have the following definition.

DEFINITION 2. A flow network N is a weighted directed graph described by a

triple N (V, E, u), where V denotes the set of vertices or nodes of N, E

_
V2-

subset of ordered pairs of V2--denotes the set of directed edges or links of N, and
u" E --, 7+ denotes the maximum capacity function of links. V contains two special
nodes s and t, the source node and the terminal node respectively.

The basic flow optimization problem is to determine for a given flow network a

flow of maximum value between its source and terminal nodes subject to the edge
capacity constraints, where a flow and its value are defined as follows.

DEFINITION 3. A flow for a network N is a map f" E --, 7+ such that
1. Ve E E" f(e) <_ u(e),
2. E,ev:(s,,)eE f((s, v)) Y-v’eV:(v’,t)eE f((v’, t)), and

3. Vv e V, v =/= s, v t" Ev,v:(,,,)E f((v, v’))- E,,,v:(,,,,,)eE f((v", v)).
ev:(s,)eE f((s, v)) 2’ev:(’,t)eE/((v’, t)) is called the value of f. a rnaz-flow
is a flow of maximum (flow) value. Thus a flow is an assignment of a positive number
to each edge in the flow .network that corresponds to the amount of flow on that edge,
satisfying three constraints. First, the amount of flow through each edge is no greater
than its capacity; second, the net flow out of the source node equals the net flow into
the terminal node; and finally, the net flow out of the intermediate nodes is zero. The
value of a flow equals the net flow out of the source node (equivalently, the net flow
into the terminal node).

DEFINITION 4. A cut of a network N is a partition of V such that s and t are in
different partitions. Let V c_ V and Vt V- V8 denote the partitions of a cut such
that s e V and t e Vt. Then the capacity of this cut is defined as

(i,j)E(Vs x Vt )nE

A rnin-cut is a cut of minimum capacity. Thus any partition of the nodes in N such
that the source node and the terminal node belong to different partitions is called a

cut. The capacity of a cut equals the sum of capacity of those edges that emerge out
of a node contained in the partition containing the source node and terminate at a

node contained in the partition containing the terminal node.
THEOREM 1. (max-flow min-cut) [15]. The value of a max-flow of a flow network

equals the capacity of a min-cut of that network.
Algorithms for computing a max-flow can be found in [15]. In this paper, we are

interested in computing a cost-minimizing supervisor. This is shown to be equivalent
to determining a min-cut for a suitably defined flow network, which in view of Theorem
1 can be computed using any of the max-flow computations.
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3.2. Solution of OSCPI. In this subsection we provide a solution for the
OSCP1 using the network flow technique discussed in the previous subsection. It is
clear that each supervisor S X -- 2 partitions the state space X into Re(Gs)U(X-
Re(Gs)), the sets of reachable and unreachable states in the controlled plant Gs. We
define a supervisor to be parsimonious if and only if it disables those transitions that
are defined from a state in Re(G) to a state in X- Re(Gs). Formally, consider the
following definition.

DEFINITION 5. A supervisor S X -- 2 is said to be parsimonious if and only
if for each state x E X and event a E E:

cr e S(x) v Ix Re(Gs), di(x, a) Re(Gs)].

We prove that parsimonicity is a necessary condition for optimality of a supervisor.
LEMMA 1. If S is an optimal supervisor, then S is parsimonious.
Proof. Assume for the sake of contradiction that S is optimal but not parsi-

monious. Then there exist an event cr E and states xl,x2 Re(Gs) such that
5(Xl, O’) X2 and cr E S(Xl), i.e., a is disabled at xl. Consider a supervisor S’ that
exercises the same control action as S does, except that at state x it does not disable
the event or, i.e., cr S’(xl). Then C(S’) C(S)- c(xl, a) < C(S), for c(x, a) > 0.
Thus we obtain a contradiction to the optimality of S.

The following is an immediate corollary of Lemma 1.
COROLLARY 1. OSCP1 is equivalent to determining

arg{ min C(S)}.S:S parsimonious

Proof. The proof follows from the fact that parsimonicity is a necessary condition
for optimality, and the definition of OSCP1. [

in the next theorem we provide a technique for solving the OSCP1 using the
max-flow min-cut theorem. First we define a flow network Nc corresponding to the
state machine G, the cost of control function c, and the penalty of control function p
as follows.

DEFINITION 6. Given a SM G := (X,E,5, xo) with cost of control function
c: X E --. T+ and penalty of control function p X 7, a flow network, denoted
Na, is defined to be Nc := (Vc, Ea, ua), where

1. Va := X U {s,t} with s,t X,
2. Ec :={(x,x2) X x X lo e E s.t. 5(x,cr) x2}

t) e x {t} p(x) > 0}
u{(s,x) e {s} X Ip(x) < 0},

3. V(xl,x2) e Ec n (X x X)’uG((xi,x2))"= Eze:5(zl,z)=x c(x,cr)
Vx e x s.t. p(x) > 0: t)):= p(x)
Vx e X s.t. p(x) < 0: u((s,x)):= -p(x).

Thus the node set of NG is obtained by adding to the state set X of G two extra
nodes s and tthe source and the terminal node, respectively. The edge set of Nc
consists of: (i) An edge from x X to x: X if there exists a transition from Xl
to x in G. The capacity of such an edge equals the sum of cost of disabling each
transition from Xl to x2. (ii) An edge from each x X for which p(x) > 0 to the
terminal node t, with capacity p(x). (iii) An edge from the source node s to each
x E X for which p(x) < 0, with capacity -p(x).

Example 2. Consider the plant G shown in Fig. 2, with the state set X {1, 2},
the event set E {a, b}, the initial state x0 1, and the transition function 5(1, a)
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a,b

a ) 0
10
0

2 s

15

c(a) 10, c(b) 5, p(1) -10, p(2) 5

SM, G Flow network, N

FIG. 2. Diagram illustrating construction of NG.

2, 6(2, a) 6(2, b) 2. Then L(G) a(a + b)*. Let the cost of control function be
defined as c(a) 10 and c(b) 5 and the penalty of control function be defined as
p(1) -10 and p(2) 5. Then the flow network Na, corresponding to the plant G,
obtained using Definition 6 is shown in Fig. 2.

DEFINITION 7. Given a supervisor S X ---, 2r’, the cut of flow network Na
induced by S is defined to be IRe(as)U {s}] U [(X- Re(as))U {t}]. Given a cut
V U (VG Vs) of Na, where V8 C_ Va, s E V, and t Vs, the parsimonious supervisor
S :X --, 2r" induced by the cut is defined to be: for each x E X and a E, a S(x)
if and only if x V and 6(x,

THEOREM 2. (Solution of OSCP1). The supervisor induced by a min-cut of Na
is a solution of OSCP1.

We prove a lemma before proving Theorem 2.
LEMMA 2. If S is a parsimonious supervisor, then C(S) equals the capacity of

the cut of Nc induced by S.
Proof.. Consider the cut IRe(as)u {s}] u [(X- Re(as))u {t}) induced by S. The

capacity of this cut is given by the sum of capacities of all the edges that originate from
a node in the set Re(Gs)U{s} and terminate at a node in the set (X- Re(as)) U {t}.
Let the set of such edges be denoted as Es, i.e.,

Es := {(xl,x2) Ea Ix1 E Re(Gs)U {s} and x2 6 (X- Re(Gs))t2 {t}}.

Then the capacity of the cut of Na induced by S equals -]eEs ua(e). We note that

Es {(Xl,X2) e Re(as) x (X Re(as)) Ba e E s.t. 6(xl,a) x}
u{(m, t) lz Re(Gs),p(z) > 0}
u{ x) R (Cs), p(x) < o}.

Hence

Since S is parsimonious, for each x Re(as)the set {a E z X-
Re(as)} {or 6 r,l S(x)}. Hence Ees ua(e)= C(S).
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Proof of Theorem 2. Consider the parsimonious supervisor S induced by a min-cut
of No. Then, from the result of Lemma 2, we obtain that C(S) equals the capacity of
min-cut of Na. In view of Corollary 1, in order to prove the optimality of S it suffices
to show that if S’ is any other parsimonious supervisor, then C(S’) >_ C(S). Since
is also parsimonious, it follows from Lemma 2 that C(S’) equals the capacity of cut of
Na induced by S’, which is greater than or equal to the capacity of the min-cut (by
definition of min-cut). Since C(S) equals the capacity of the min-cut (by construction
of S), we obtain the desired inequality: C(S’)

3.3. Solution of OSCP2. In this subsection we provide a solution for OSCP2.
In this setting, given a plant G, a cost of control function c, a penalty of control
function p, and an observation mask , the control objective is to determine an
optimal supervisor S X -+ 2p satisfying the constraint C1. The constraint C1 can
be satisfied by making a few modifications in G and in the cost of control function c
as described below. First, we modify the state machine G; the modified state machine
is denoted as G’.

DEFINITION 8. Given G (X, E,5, x0), the modified state machine G’ corre-
sponding to the constraint C1 is the quadruple G’ (X, E’, 5’, x0), where

1. E’:=EU{0}with0E,
2. Vx E X, Va’ E E’: 5’(x, or’):= 5(x, a’) if a’ = 0, and
3. Va e E, xl,x2 e X s.t. I/(Xl) I/(X2),(5(Xl, # ((X2,7):

5’ (5(Xl, r), {9) :-- 5(X2, {T) and 5’(5(x2, or), 0) := 5(Xl, r).
Thus G’ is obtained by adding in G, an oppositely directed pair of transitions

labeled 0, between the pair of states reached by executing a common event from a

pair of states that look alike under . No such transition is added if the same state
is reached after executing a common event from a pair of states that look alike under

as
Next, the cost of control function c X x E --+ T+ is extended to c’ X x E’ --+ 7E+

Vx X, or’ e E’ c’(x, a’) { c(x,oo a’) ifif a’er’
_

E,0.
Thus the cost of control function c’ is the extension of c obtained by assigning the
cost of disabling the event 0 to be infinity. For simplicity of notation, let OSCP1 with
respect to G’, with cost of control c’ and penalty of control p be denoted as OSCPI’.

THEOREM 3. (Solution of OSCP2). OSCP2 is equivalent to OSCPI’.
We prove a few lemmas before proving Theorem 3.
LEMMA 3. If S is parsimonious, then S disables transitions leading from states

in Re(Gs) into a state x E X if and only if it disables all transitions from states in

Re(Gs) leading into x.

Proof. if and only if it disables a transition that the set X-Re(Gs). Hence, S does
not disable a self-loop. Also, if If S disables some transitions but not all transitions
from states in Re(Gs) leading into a state x X, then x remains reachable in
i.e., x E Re(Gs), which contradicts that S is parsimonious.

LEMMA 4. There exists a solution S X -+ 2p/ of OSCPI’ such that
1. S never disables the event 0, and
2. S satisfies constraint C1.

Proof. 1. Let S X-+ 2p’’ be asolutionofOSCPl’. IfC(S) < oo, then it is
clear that S never disables the event 0. Next consider the case when C(S) oo. If
S ever disables the event 0, then consider a supervisor S’ that takes the same control
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action as S does, except that it never disables the event 0. Then by optimality of S,
C(S’) >_ C(S) oc, which implies that C(S’) oc. Hence S’ is optimal, and it never
disables the event 0.

2. Let S X -+ 2r’’ be a solution of OSCP1’. We show that if xl, x2 E Re(Gs) are
such that (Xl) @(x2), then S(xl) S(x2). In other words, if an event a E E is
defined at such a pair of states xl,x2 Re(Gs), then either a is disabled at both
and x2 or it is disabled at neither of xl and x2. Consider such a pair of states
Re(Gs) and an event a E. Then either 5(xl, a) 5(x2, a) or 5(xl, a) 5(x2, a). If
5(xl, a) 5(x2, a), then S disables the event a at both the states or at neither of the
states. This follows from the fact that any optimal supervisor is also parsimonious
(Lemma 1), and any parsimonious supervisor disables either all transitions leading
into a state or none of them (Lemma 3). Thus constraint C1 is satisfied in this case. If
5(Xl, (7) # 5(X2, (7), then according to the construction of G’ these states are connected
by a pair of oppositely directed transitions labeled 0. Since S never disables the event
0 (from part 1), the states 5(Xl,a) and 5(x2,a) do not belong to separate partitions
induced by S. Suppose that they both are in Re(Gs); then due to parsimonicity of S,
a is enabled at both Xl and x.. On the other hand, if they both are in X- Re(Gs),
then clearly, a is disabled at x and x.

Proof of Theorem 3. We first show that if S X - 2r’’ is a solution of OSCP1t,
then it is also a solution for OSCP2. In view of Lemma 4, it can be assumed, without
loss of generality, that S never disables the event 0 and satisfies C1. Since S never
disables the event 0 and satisfies C1, it can be viewed as a map S X -. 2r" satisfying
C1; and hence it can also be used as a supervisor under partial state observation.
Assume for the sake of contradiction that S is not a solution of OSCP2. Let S
2r" with S’ : S be a solution of OSCP2; then we must have C(S’) < C(S), where S, S’
are treated as feasible solutions of OSCP2. Let C’(S), C’(S’) denote the net costs of
using S and S’ respectively, when S, S’ are treated as feasible solutions of OSCPI’.
Since (i) S and S’ do not disable the event 0 and (ii) for each x X and a E E,
ct(x,a) c(x, a), we have C’(S) C(S) and C’(S’) C(S’). Since C(S’) < C(S),
we obtain C’(S’) < C’(S). This contradicts the optimality of S (treated as a solution
of OSCPI’).

Next we show that if S X -- 2r’ is a solution of OSCP2, then it is also a solution
of OSCP1t. It is clear that S can also be viewed as a map S X 2r’’. Assume
for the sake of contradiction that S is not a solution for OSCPI’. Let S X
with S’ S be a solution of OSCPI’; then we must have C’(S’) < C’(S). Also,
from Lemma 4, S never disables the event 0 and satisfies C1. Thus S can be
used as a supervisor under partial state observation. As above, C’(S) C(S) and
C’(S’) C(S’). However, since C’(S’) < C’(S), we obtain C(S’) < C(S). This is a
contradiction to the optimality of S (treated as a solution of OSCP2).

4. Applications to supervisory control. It is clear from Theorem 3 that
an instance of OSCP2 can be reduced to an instance of OSCP1 by suitably modifying
the graph of the plant and the cost of control function. We show in this section
that supervisory control problems under complete as well as partial observation can
also be reduced to instances of OSCP1. We begin with the problem of computing
the supervisors under complete observation, which requires computation of supremal
controllable sublanguage and infimal controllable superlanguage.

4.1. Computations related to controllability of DEDSs. We first con-
sider the computation of supremal controllable sublanguage: Given a desired prefix
closed behavior K C_ L(G), compute the supremal sublanguage K C_ K such that
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it is controllable [23], i.e., KTE fq L(G) c_ KT, where E C_ E denotes the set of
uncontrollable events. A closed-form expression for K is given in [1], and an optimal
algorithm for computing K is given in [11].

In order to reduce the problem of computing K to an instance of OSCP1, we
refine G with respect to K so that the states corresponding to strings in K are uniquely
identified. This is done as follows. Let V (Q, E, p, q0) be a trim deterministic state
machine that generates K. The graph of V is made "complete" by adding a dump
state d to its state set. If a certain event cr is not defined at some state q E Q, then a
transition labeled cr from the state q to the dump state d is added. Also, execution of
any event in the dump state leaves the system in that state. Formally, the completion
of V is another state machine V’ (Q’, E, p’, q0), where Q’ (20 {d} with d Q
and

e 0’, e r { if q’ E Q and p(q’, a) is defined,
otherwise.

It is clear that L(V’) E*. Consider the synchronous composition [81, [11] of G and
V’: GrnV’ := (X x Q’, E, a, (x0, q0)), where

Vz E X, q’ O’, cr E" a((z, q’), a) ! (5(z, or), p’ (q’, or))

undefined

if 6(, or), p’ (q’, a)
are defined,
otherwise.

It is easily shown that L(GDV’) L(G)gl L(V’) L(G)g E* L(G). GrnV’ is
called refinement of G with respect to K. Note that the first coordinate of a state in
GrnV corresponds to a state of G and the second coordinate to a state of V.

Example 3. Let G be the plant as in Example 2 and the target language K
be given by K (ab)* C_C_ L(G) a(a + b)*. The generator V for the language K
is shown in Fig. 3, with the state set Q {1,2}, the initial state q0 1, and
the transition function p(l’, a) 2’, p(2’, b) a. The state machine V’ obtained by

a a b

2’ (1,

b

a, b a,b a/

SM, V SM, V’ SM, G [-] V’

FIG. 3. Diagram illustrating construction of GfnV.
completing the graph of V and the state machine GcnV obtained by synchronous
composition of G and V’ are both shown in Fig. 3. Note that L(V’) (a + b)* E*
and L(GrnV’) a(a + b)* L(G).

LEMMA 5. Given a string s E*, s L(G) K if and only if the second
coordinate of the state reached by executing s in GE3V is d.

Pro@ The proof is straightforward. [3

Ezample 4. Consider the state machine Gc3V of Example 3. Then the strings,
the execution of which take to the state (2, d), belong to L(G)-K a(a + b)* (ab)*.
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Also, the strings, the execution of which take to states (1, 1’) or (2, 2’) or (2, 1’), belong
to the language K (ab)*.

The result of Lemma 5 can be used to identify unambiguously the desired and
undesired states in Go:IV’. The next lemma proves that it is also possible to obtain
the generator for K by partitioning the graph of GO:IV’ into sets of reachable and
unreachable states.

LEMMA 6. [11, Prop. 3.6]. Let s, t E K be such that c((x0, q0), s) a((x0, q), t);
then s E K if and only if t KT.

Based on the result of Lemma 5, we define a penalty of control function p
X Q’ -+ for G[::1V’ as

1) /(x q’) eXQ’’p((x,q’)):= oo ifq’=d,
I, -P0 otherwise,

where P0 7+ is any positive real. Since the penalty of control of a state in G[::]V’
with second coordinate d is infinity, it should remain unreachable in an optimally
controlled plant; and since the penalty of control of all other states is -P0, as many
such states as possible should remain reachable in an optimally controlled plant.

Example 5. Consider the state machine G[:]V’ of Example 3. Then in order to
compute the supremal controllable sublanguage of K (ab)* with respect to G of
Example 2, we define the penalty of control function as p[(2, d)] c,p[(1, 1’)]
p[(2, 2’)] p[(2, 1’)1 -P0.

Next we define a cost of control function c: X E --+ T+ as

(
Vx e x, e r, {, vo otherwise,

where [e[ denotes the total number of transitions in the graph of G1V’. Since the
cost of control of an uncontrollable event is infinity, it should not be disabled by an

optimal supervisor; and since the cost of control of a controllable event is

few such events as possible should be disabled. With the above definitions of cost and
penalty of control functions, we prove in the following theorem that the computation
of K can be posed as an instance of OSCP1.

THEOREM 4. If K - , then K equals the language generated by GIV’ under
the control of a solution of OSCP1 with respect to GIIV, with cost of control of
function as in equation 2 and penalty of control function as in equation 1.

Proof. Let S X Q -- 2E be the parsimonious supervisor induced by the
partition of (K]V into the set of states that correspond to the supremal controllable
sublanguage and the set of remaining states, i.e., S disables those transitions that
are defined from states corresponding to the supremal controllable sublanguage to
the set of remaining states. That such a partition exists follows from Lemma 6 and
the fact that K - . It is clear that S does not disable any uncontrollable events

(otherwise the controlled system behavior is not a controllable language), and no
state with second coordinate d remains reachable under the control of S (otherwise
the controlled system behavior is not a sublanguage of K). Hence C(S) < oo. Let
S’ X Q -+ 2z be a solution of OSCP1. Then it follows from the optimality
of S’ that C(S’) < C(S) < oo. Thus S’ does not disable any uncontrollable event
and no state with second coordinate d remains reachable in the controlled system
(otherwise C(S’) oo). Since S’ does not disable any of the uncontrollable events,
the controlled system behavior under its control is controllable [11, Lemma 2.7]. Also,
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since no state with second coordinate d remains reachable under the control of Sp, the
controlled system behavior under the control of S is a sublanguage of K. Assune
for contradiction that the controlled system behavior under the control of S is not
the supremal controllable sublanguage of K. So there exists at least one state with
second coordinate unequal to d such that it is reachable under the control of S and

po where n isunreachable under the control of S’. Hence C(S’) C(S) > Po nll+,
the difference between the number of controllable transitions disabled by S and the
number of controllable transitions disabled by S’. Since n _< lel, the total number

Poof transitions in GrnV’, n-T < Po. In other words, C(S’)- C(S) > 0. This is a

contradiction to the optimality of S’.
Next we consider the problem of computing the infimal controllable superlan-

guage: Given a desired prefix closed behavior K C_ L(G), compute the infimal super-
language K* _D K such that it is controllable. A closed-form expression for K and
an algorithm for computing it is given in [14]. We use the same notation as above.
The following modification is made to the penalty of control function:

(3) V(x,q’) e X x Q"p((x q’))"= { po if q’= d,
-oc otherwise

Since penalty of control of a state with second coordinate d is P0, as few such states
as possible should remain reachable in the controlled system; and since the penalty of
control of a state with second coordinate unequal to d is -cx, all such states should
remain reachable in the controlled system.

Example 6. Consider the state machine GrnV of Example 3. Then in order to
compute the infimal controllable superlanguage of K (ab)* with respect to G of
Example 2, we define the penalty of control function as p[(2, d)] p0,p[(1, 1’)]
p[(2, 2’)] p[(2, 1’)] -oc.

With the above modification in the penalty function, we prove in the following
theorem that the computation of K+ can be posed as an instance of OSCP1.

THEOREM 5. /+ equals the language generated by G[]V’ under the control of a
solution of OSCP1 with respect to GcnV, with cost of control function as in equation
2 and penalty of control function as in equation 3.

Proof. The proof is similar to that of Theorem 4. [3

4.2. Computations related to observability of DEDSs. Suppose that
the supervisor’s observation of events is filtered through a mask of the type J E -AU{}. Computation of a supervisor under such a partial observation requires compu-
tation of languages such as supremal normal sublanguage, infimal normal/observable
superlanguage, supremal controllable and normal sublanguage, infimal controllable
and normal/observable superlanguage, etc. We show that each of these computations
can be reduced to instances of OSCP1. Our techniques illustrate how supervisory
control under partial observation can be solved using a state-feedback type control on
a suitably refined state machine representation of the plant.

We first consider the problem of computing the supremal normal sublanguage"
Given a desired prefix closed language K c_ L(G), compute the supremal sublanguage
K C_ K, such that it is normal, i.e., M-I(M(K))V1L(G) c_ K. The existence of
K is shown in [16], and a closed form expression for K is given in [1], [11]. We
first refine the state machine G with respect to V (the generator for K) and mask
function M so that the states corresponding to K are uniquely identified. We begin
by constructing the machine G1 := GcnV’. Recall that L(GI) L(G). Using G1 we
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construct a machine that generates the language M-1M(L(G1)) by employing the
following algorithm:

ALGORITHM 1.
1. Replace each transition cr E E in G1 by the transition M(cr) E A U {e}. Call

this machine G2; clearly, L(G.)= M(L(G1)).
2. Construct a deterministic machine G3 that is language equivalent to G2 [7].

Then the state space of G3 is 2XxQ’ and L(G3) L(G2) M(L(GI)).
3. Replace each transition A A in machine G3 by the events in the set
M-(,) := { e r M(c) A}. Also, at each state in (3, add self-loops
corresponding to the events in the set M-l(e)= {or E E M(a e}.
Call this machine G4; clearly, L(G4)= M-I(L(Ga))= M-I(L(G2))=
M-1M(L(GI)).

G4 has a nice property that if two strings s, t E L(G4) are such that M(s)
M(t), then the state reached by executing them are the same. This follows from
the observations that (i) the state reached by executing s in G4 is the same as that
reached by executing M(s)in G3 (by construction); (ii)since M(s) M(t) and
G3 is deterministic, the same state is reached by executing M(t) in G3; and (iii) by
construction, this is the state reached by t in (4. We exploit the above property of
G4 in identifying the states corresponding to the strings in the language K. This,
however, requires the construction of machine Gu Gv1G4, for which it is clear that
L(Gu) L(G1)f)L(G4) L(G)C M-1M(L(G)) L(G) and the state space of Gu
equals X x Q x 2XxQ’. Construction of state machines G through Gu, their state
spaces, and their languages are summarized in Table 1.

TABLE
Various machines used for computation of K

SM
G1 G[]V

(2 M((I)
G3 det(G2)
G4 M-I(G3)
G5 GIG4

Construction State space Language
XxQ
XxQ’
2XxQ
2xxQ

X Q 2XxQ’

L(G)
M(L(G))
M(L(G))
M-I(M(L(G))
L(G)

Note that in Table 1 and Fig. 4, we have used the notation (i) M(GI) to represent
that G is obtained by "masking" the transitions of G1, (ii) det(Ge) to represent that
Ga is obtained by "determinizing" G2, and (iii) M-(G3) to represent that G4 is
obtained by "unmasking" the transitions of G3.

Ezarnple 7. Consider the state machine G G[::IV of Example 3. Let the mask
M: E {a, b} ---, {A} be defined as M(a) M(b) A. Then the state machines G2,
G3, (4, and G5 obtained by using Algorithm 1 are shown in Fig. 4.

We use r ((x,q’), {(Xl, ql), (xe,q2), (x,q’)}) e X x Q’ x2xxQ’ to denote a
typical state of Gs, where (x,q’) XxQ’ and {(xl, ql), (xe, q),..., (x, q)} 2xxQ’.
We call r’ (x,q’) the G1 part of r and R := {(x,q), (x.,q),..., (x, q;)} the G4
part of r. We prove in the next lemma that if r and r2 are two states of G5 with
identical G4 part, then corresponding to each string, the execution of which takes to
the state rl, there exists another string, the execution of which takes to the state r2,

such that it looks like the former string. We call such a pair of states to be a matching
pair. Formally, consider the following definition.
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SM, G: := M(G ) M(G V’)

[(2,1 ’),(2,d)]

a,b

a,b a,b

[(2,2 ’),(2,d)}

{(, ’)}

2

{(2,2 ’)} {(2,1 ’),(2,d)}

{(2,2 ’),(2,d)

SM, G
3 det(G2)

..a
SM, G4:= M-1 (G) SM, q

1"= (1,1’), {(1,1’)}; 3"= (2,1’), {(2,1’), (2,d)}; 5 "= (2,d), {(2,1’), (2,d)}

2"= (2,2’), [(2,2’)}; 4"= (2,2’), {(2,2’), (2,d)]; 6 "= (2,d), [(2,2’), (2,d)]

FIG. 4. Diagram illustrating construction of G2, G3, G4, G5.

DEFINITION 9. Let rl (r,/1) and r2 (r, R2) E X Q’ 2XxQ’ be such
that R1 R2. Then the pair rl and r2 of states is called a matching pair of states.

Example 8. Consider the SM G5 of Example 7. The states 3" (2, 1’), {(2, 1’),
(2, d)} and 5" (2, d), { (2, 1’), (2, d)} constitute a matching pair of states. Similarly,
the pair of states 4" (2,2’), {(2, 2’), (2, d)} and 6"= (2, d), {(2,2’), (2, d)} is another
matching pair of states.

LEMMA 7. Let rl, r2 E X Q’ 2X Q’ be a matching pair of states. Then given
a string s, the execution of which takes to rl, there exists a string t, the execution of
which takes to r2, such that M(s)= M(t).

Proof. First note that r (r’, R) is a reachable state of G5 if and only if r’ R,
i.e., if and only if the G1 part of r is an element of the G4 part of r. This follows from
(i) if s L(Gh) is a string, the execution of which takes to r, then the execution of s
takes to the state r’ in Gt and to the state R in G4, and (ii) the execution of s takes
to the state R {(Xl, q), (x2,q),..., (x, q,’r)} in G4 implies that there exists a state
(xj, q}) R such that the execution of s takes to the state (xj, qS) in G1.

Consider then the states rl,r2 X Q’ 2XQ’ such that R1 R9 := R.
Then rl (r, R) and r2 (r, R). It follows from the discussion in the preceding
paragraph that r E R and r R. Let s L(G5) be a string, the execution of which
takes to state rl in G5; then the execution of s takes to the state r in G and to
the state R in G4. Since both the states r, r R, there exists at least one string
t, the execution of which takes to state r in G1 and to state R in G4, such that
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M(t) M(s). This follows from: (i) states r and r of G2 belong to the same state
R of G3 if and only if there exists a string in L(G3) L(Gg.) C_ A*, the execution
of which takes to state R in G3 and the execution of it takes to both states r, r
in G2 (note that G2 is a nondeterministic machine in general); and (ii) a string, the
execution of which takes to the states r, r in G2, corresponds to two different strings
in L(G1) having the same mask value.

The result of Lemma 7 can be used to identify the strings in K. Note that
a string s E K- K if and only if there exists a string t L(G) K such that
M(t) M(s). A state r (r’, R) in G5 corresponds to strings in L(G)- K if and
only if r’ (x, d) for some x X. Thus strings in K and those in L(G) I( can
easily be identified in G5. Let rl and r2 be a matching pair of states in G5, with
/1 /2 _R, such that the second coordinate of r does not equal d whereas the
second coordinate of r equals d. Then as discussed above, strings leading to rl belong
to K and those leading to rg. are in L(G) K. Moreover, strings leading to rl are
in K- K. This follows from Lemma 7, which asserts that corresponding to each
string that leads to rl (i.e., the string is in K), there exists a string leading to
(i.e., this string is in L(G) K) such that it looks like the former string. Thus states
corresponding to K- K can also be identified in G5 by first identifying all those
matching pair of states for which exactly one of the states in each pair has its second
coordinate of the G1 part equal to d and then, among these matching pair of states,
determining those states for which the second coordinate of the G1 part does not
equal d. Hence it is possible to obtain the generator for K by partitioning the graph
of G5 into the set of reachable and unreachable states. Finally, we pose the problem
of computing the supremal normal sublanguage as an instance of OSCP1 with respect
to the machine obtained by adding an equally directed pair of transitions labeled 0
between each matching pair of states in G5. We call the machine thus obtained G.

Define the following cost of control function for G"
oo if 0r’=0,

(4) Vr X x Q’ x 2xQ’,er E U {O} c(r, er’) po otherwise,

where lel denotes the total number of transitions in G. The cost of control function
for the event 0 is infinity. Such a cost of control function ensures that the matching
pair of states remains in the same partition of states induced by an optimal supervisor.
Define the following penalty of control function on G"

(5) Vr (r’ R) e X Q’ 2xO’ { c if r’ e X {d},"p(r)
-po otherwise.

Thus the penalty of control is positive infinity whenever a state corresponds to strings
in L(G) K. Such states are undesired and should remain unreachable in the con-
trolled plant under an optimal supervision. Other states have a negative penalty of
control, -P0, implying that such states are desired, and as many of them as possible
should remain reachable in the controlled plant.

Example 9. Consider the state machine G5 of Example 7. Then in order to
compute the supremal normal sublanguage of the language K (ab)* with respect
to plant G of Example 2 and mask M(a) M(b) , G’5 is constructed by adding,
in G5, a pair of oppositely directed transitions labeled 0 between both the pair of
matching states, namely, between 3" and 5", and between 4" and 6". The cost of
disabling 0 is assigned to be infinity. Finally, the penalty of control flmction is defined
to be infinity for the states 5" and 6" and -P0 for the remaining states, 1", 2", 3",
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and 4". Note that the states 5" and 6" are such that for them the second part of the
G1 part equals d.

THEOREM 6. If K , then /(o equals the controlled plant behavior of G
under the control of a solution of OSCPI with respect to G, with a cost of control
function as in equation 4 and penalty of control function as in equation 5.

Proof. The proof proceeds similarly to that of Theorem 4. The key to the proof is
that each matching pair of states belong to the same partition induced by an optimal
supervisor.

It can be shown that the cost of control function in equation 4 can be modified
slightly to compute the supremal controllable and normal sublanguage of K:

J" oc if a’ Eu to {0},
], v0... otherwise.(6) gr eX Q’ 2XxQ’ r’ e 0{0} c(r,a’)

lel+l

Also, the penalty of control function in equation 5 can be replaced by the following
penalty of control function to compute the infimal controllable and normal superlan-
guage of K:

(7) Vr (r’, R) X Q’ x 2XQ’ p(r) { Po_c otherwise.ifr’ e X {d},

THEOREM 7. If the supremal controllable and normal sublanguage of K is
nonempty, then it equals the controlled plant behavior of G under the control of
a solution of OSCP1 with respect to G, with cost of control function as in equation
6 and penalty of control function as in equation 5. Furthermore, if instead penalty
of control function as in equation 7 is used, then the controlled plant behavior equals
the infimal controllable and normal superlanguage of K.

Proof. The proof is similar to that of Theorem 4.
Finally we show that the computation of the infimal observable superlanguage

of K can be posed as an instance of OSCP2. Refer to [16] for a detailed discussion
of observable languages and their properties. It is shown in [16] that the infimal
observable superlanguage of a prefix closed language exists, and a closed-form expres-
sion for computing it is obtained in [25], [9]. Observability of a language K requires
that whenever a pair of strings belonging to K and having the same mask value are

extended by a common event, either both the resulting strings belong to K or do
not belong to K. This condition is needed so that the supervisor can take the same
control action after execution of a pair of strings that have the same mask value. If
K does not satisfy this property, then the infimal observable superlanguage of K is

computed, which satisfies such a property.
The notion of pairs of strings in K with the same mask value is captured by the

matching pair of states having the second coordinate of the G1 part unequal to d. Let
rl, rg X x Q’ x 2x xQ’ be a matching pair of states so that the second coordinate of
the G1 part of both the states is unequal to d. Since rl and r2 is a matching pair of
states, Lemma 7 implies that, corresponding to each string that leads to the state
there exists a string having the same mask value as of the former string, such that it
leads to the state r2, and vice versa. Since the supervisor must take the same control
action after the execution of a pair of strings that have the same mask value, an event
is enabled at state rl if and only if it is enabled at r2. This constraint is similar to
the constraint C1 and can be captured by defining a Inask function on the state
space of G5 as follows:

(s) e x O’
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Thus two states in state space of G5 have the same mask value if and only if they
constitute a matching pair. Hence, according to constraint C1 of OSCP2, it is ensured
that the same control action is taken at any matching pair of states. Next the cost of
control function is defined as

(9) Vr E X x Q’ x 2xxQ’
po

where le[ denotes the number of transitions in G5.
THEOREM 8. The infimal observable superlanguage of K equals the controlled

plant behavior of G5 under the control of a solution of OSCP2 with respect to G5, with
cost of control function as in equation 9, penalty of control function as in equation
7, and state mask function q as in equation 8. Furthermore, if the cost of control
function is modified so that c(., or) oo whenever cr E E, then the controlled plant
behavior equals the infimal controllable and observable superlanguage of K.

Proof. The proof is similar to that of Theorem 4. B
Example 10. Consider the state machine G5 of Example 7. Then in order to

compute the infimal observable superlanguage of the language K (ab)* with respect
to the plant G of Example 2 and mask M(a) M(b) A, we define the mask on
the state space G5 such that (3") (5") and (4") (6"). Next the penalty
of control function is defined to be negative infinity for the states 1", 2", 3", and 4".
The penalty of control for the states 5" and 6" is defined to be P0.

Remark 3. An advantage of using the above techniques to compute control-
lable and normal/observable sublanguages/superlanguages is that they do not require
alternate computations of controllable and normal/observable sublanguages/supero
languages as they do in [4]. Note that if M is a projection type mask, then the
formula in [1] can be used to compute the supremal controllable and normal sublan-
guage without having to perform alternate computations of supremal controllable and
supremal normal sublanguages. However, if the mask is nonprojection type, then no
such formula is known, and techniques developed above can be used. reduction of the
overall computational complexity.

In case M is a nonprojection type mask, the fact that a computation of supremal
controllable sublanguage followed by a computation of supremal normal sublanguage
does not necessarily yield the supremal controllable and normal sublanguage can be
illustrated as follows. Suppose E {a, b, c, u}, E {u}, M(b) M(c) M(u) e,
K {e, a, at}, and L(G) {e, a, at, ab, ac, act}. Clearly K is controllable, i.e.,
K K; and K is not normal, as au K, ab L(G)- K and M(au) M(ab),
i.e., K -J: K. It is easily seen that K {e,a}. Then K is not controllable,
as a K,u E, and au L(P)-K. Thus (Kt) K does not equal the
supremal controllable and normal sublanguage of K. On the other hand, if we let
[ {e,a, au, ab, ac}, then / is normal, i.e., / /; and / is not controllable,
i.e., /T _j: /, as ac E /,u E, and act L(G)-R. It is easily seen that
/T {e,a, au, ab}. Then /T is not normal, as ab RT,ac L(G)-/T, and
M(ab) M(ac). Thus ^(/) /* does not equal the supremal controllable and
normal sublanguage of K. Also, note that the formula for computing the supremal
controllable and normal sublanguage given in [1, Thm. 4] is only applicable in a setting
where, whenever a controllable and an uncontrollable events have "nonepsilon" mask
values, then their mask values are different; so that the set of "masked uncontrollable"
events is unambiguously identified. Since u E E and b, c E- Eu are such that
M(b) M(c) M(u) : e, the formula of [1, Theorem 41 is not applicable here.
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5. Conclusion. We introduced the problem of optimal supervisory control for
DEDS by introducing the notions of cost and penalty of using a controller. Cost of
control is incurred when an event is disabled by a controller, and penalty of control
is incurred whenever undesired states remain reachable or desired states remain un-
reachable in the controlled plant. The control objective is to optimize the net cost
of control. This is formulated as OSCP1 for the case of complete state observation
and OSCP2 for the case of incomplete state observation. We show that a solution to
OSCP1 can be obtained as a min-cut of an associated flow network and a solution
for OSCP2 is obtained by reducing an instance of OSCP2 to an instance of OSCP1.
We show that supervisory control problems under complete as well as partial observa-
tions can be reduced to instances of OSCP1. In particular, we provide techniques for
the computation of supremal controllable and normal sublanguage and infimal con-
trollable and normal/observable superlanguage without having to perform alternate
computations of controllable and normal/observable languages until a fixed point is
reached. Thus, the above theory serves as a unified computational framework for
supervisory control problems.

We did not comment on the computational complexity of any of the algorithms
derived in this paper. However, since (i) all the algorithms developed in this pa-
per are instances of OSCP1 and (ii) OSCP1 is solved using the max-flow min-cut
computation, the computational complexity of any of the algorithms presented in
this paper can be obtained from that of the max-flow min-cut computation, which is

O(Iv Icl log(Ivl2/lel)), where Ivl denotes the number of vertices and lel denotes the
number of edges in the underlying flow network. Note that we are not suggesting
that the computation of a supervisor under partial observation can be performed in
a polynomial time; as in case of partial observation, OSCP1 is solved with respect
to a state machine having its state space as the power set of the state space of the
plant composed with the generator of the desired behavior, like to thank anonymous
reviewers for their helpful comments.
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UNIFORM STABILIZATION OF A HYBRID SYSTEM OF ELASTICITY*

BOPENG RAO

Abstract. The problem of boundary feedback stabilization of a Euler-Bernoulli beam with an endmass is
considered. Using a method of compact perturbation, the lack of uniform stabilization is proved in the case of a
clamped beam with the usual boundary feedbacks applied to the end with the mass. Next, the uniform stabilization
when the usual boundary feedbacks are applied to the end without the mass is proved. Also the uniform decay of
energy by means of higher-order feedbacks applied to the end with the mass is established.

Key words, hybrid system, lack of uniform stabilization, compact perturbation, higher-order feedbacks, bound-
ary multipliers, uniform decay of energy
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1. Introduction. The purpose of this work (the results of which were announced in
Rao 14]) is to study the boundary feedback stabilization of the well-known SCOLE model.
Consisting ofan elastic beam, linked to a rigid antenna, this dynamical system can be described
by the Euler-Bernoulli equation for the vibrations of the elastic beam and the Newton-Euler
rigid-body equations for the oscillations of the antenna

Ytt + Yxxxx O,
#Ytt(1, t) Yxxx(1, t) L (y, Yt),
#eytt(1,t) + Yxx(1,t) n2(y, yt)

where L1, L2 denote linear boundary feedbacks acting on the antenna and where
are positive constants. This system is composed of one partial differential equation and two
ordinary differential equations and called a hybrid system. For further descriptions concerning
the physical structure of the system, we refer to Littman-Markus 10]. Our goal is to choose
suitable boundary damping at the end z 0 and boundary feedbacks L1, L2 applied to the
end x 1 such that the hybrid system can be stabilized uniformly.

In one specific case, Littman-Markus [9] proved the strong stabilization together with
the lack of uniform stabilization. Lack of uniform stabilization for hybrid systems was also
observed in the string/mass model (cf. Lee-You [7]). However, to the author’s knowledge,
there is no positive result in the literature concerning uniform stabilization of hybrid systems.

Using an energy multipliers method (cf. Rao [13]), we recently obtained the uniform
stabilization for a string/mass model. The idea of the proof is to apply the usual boundary
feedbacks to the end of the string without the mass.

Let us outline briefly the content of this work. In 2, using a method of compact perturba-
tion, we prove the lack of uniform stabilization in the case of a clamped beam with the usual
boundary feedbacks L1, L2. Thus we generalize the result of Littman-Markus mentioned
above. In 3, we consider a beam with usual boundary feedbacks applied to the end without
the mass. We first formulate the problem by means of the semigroup approach. Next we prove
that, in that case, the usual boundary feedbacks are sufficient to obtain uniform exponential
decay. Section 4 is devoted to the study of the clamped beam. We establish the uniform
exponential decay of energy by higher-order feedbacks applied to the end with the mass.

Received by the editors July 12, 1993; accepted for publication (in revised form) November 8, 1993.
Institut de Recherche Math6matique Avanc6e, Universit6 Louis Pasteur et Centre National de la Recherche
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2. Lack ofuniform stabilization. We first consider the dynamical system ofthe SCOLE
model in the case of a clamped beam

(2.1)

Ytt -+" Yxxxx O
(o. ) w(o. t) o.
..(. t) (. t) L. (. ,).
#2Yxtt(1,t) + yxx(1,t) Lz(y, yt),

t>0,

t>0,
t>O,
t>0.

0<x < 1,

We prove the lack of uniform stabilization for the usual boundary feedbacks

(2.2)
Ll(y, yt) -6,1y(1, t)-5,2Yx(1,t)- ullyt(1,t) ulZYxt(1,t),
L2(v, yt) -521y(1,t) 522yx(1,t) u21Vt(1,t) u22Vxt(1,t),

where the coefficients 6ij, 12ij are real numbers.
Let y be a smooth solution of the system (2.1) (2.2). After a procedure of Slemrod 18],

we introduce the auxiliary functions"

z(x,t) yt(x,t), (t) yt(1,t), rl(t) yxt(1,t), u(t) (y(t),z(t),(t),l(t)).

Then we can write formally the hybrid system (2.1)- (2.2) into the following form:

(2.3) ( )(v,(t). z,(t). ,(t). ,(t))+ -(t). Vxxxx(t).---Vxx( t) Vxx( t)

(0, 0, L1 (y, Yt), L2(y, Yt)).

Now let us introduce the energy space E

E {(y, z, ,7) G H2(0, 1) L2(0, 1) ] ] such that y(0) y(0) 0}.

For any u (V, z, , r/) E E and any 2 (, , , ) e E, we define the inner product

Next we define the unbounded operator A and the linear operators/3, /3:

( u- (y,z,,) H4(0, 1) H2(0, 1) Ii such that
(2.4) D(A)

v(O) Vx (O) z(O) zx (O) O and (=z(1),=Zx(1)

(2.5)

(2.6)

(2.7)

Au (-z, Yxxxx,---yxx(1),--yxx(1))
#2

Bu (0, O, bll + bl2, b21 + b22)
/U (0, 0, bll b12, b21 b22)

V u (y, z, , 7) e D(A),

vu- (y, z,,) E,
Vu- (y,z,,) E,

where we have posed

(2.8)

1
b12 --(’11 -+- ’127),

1
b22 --(/221 --#2
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With these notations we can formulate the system (2.3) into the following abstract form:

d
(2.9) u(t) + (A + B)u(t) 0, u(0) u0.

THEOREM 2.1. For any real constants 5j and uj, the equation (2.9) is not uniformly
stable on the energy space E.

Proof It has been shown in Littman-Markus [9] that the operator A defined by (2.4)-
(2.5) is maximal monotone and satisfies the property A* -A; hence it generates a group
So (t) of isometries on the energy space E.

Let S(t) and (t) denote the groups generated, respectively, by A + B and A +/). From
the definitions (2.6)-(2.8) and Sobolev’s embedding, it follows that the operators B and B
are continuous and of finite rank, therefore compact. Using a classical result of compact
perturbation (cf. Russell 17, Prop. 1.1 ]), we deduce that there exist no positive constants
0_<7< landt0>0suchthat

(2.0) IIS(t0)ll < 7 and IIS(-t0)ll _< .
Given #0 E D(A), u(t) S(t)uo (y(t), z(t), (t), 7(t))is the solution ofthe equation

(2.9). We define

9(x, t) (, -t), (x, t) -z(x, -t), (t) -(-t),
,)(t) -,(-t), (t) ((t), (t), (t), ,)(t)).

Then we have II(-t)I1 Ilk(t)II for all t 6 .
On the other hand, a straightforward computation shows that (t) (t)(0). It follows

that

II(-t)ll- IIS(t)ll v t ,
which together with (2.10) achieves the proof of Theorem 2.1. []

Remark 2.1. The proof of Theorem 2.1 is a direct application of the classical result of
compact perturbation. In fact, there are several recent more general results that allow us to
conclude that the semigroup S(t) is not exponentially stable (cf. Curtain [4], Jacobson [5],
and Rebarber 16]).

Remark 2.2. In the specific case of boundary feedbacks L, L2 of the form

L,(y,y,) -yt(1,t), L2(y, yt) -yxt(1,t),

Theorem 2.1 was proved by Littman-Markus [9]. Their method is constructive and based
on the asymptotic estimation of the eigenvalues of the operator A //3. Here our method is
very simple and can be easily applied to other cases, in particular to some plate models (cf.
Markus-You 11 ]) where the estimation of the eigenvalues seems to be impossible.

3. Uniform stabilization by passive boundary damping. In this section, we consider
an elastic beam with usual boundary feedbacks applied to the end without the mass. By means
of multipliers method, we establish the uniform decay of energy for that case. Let us consider
the following hybrid system:

(3.1) Ytt / Yxxxx 0,

(3.2) a,y(O, t) + yxxx(O, t) + ,yt(O, t) + 2,2yxt(O, t) O,
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(3.3) c2y(O, t) yx(O, t) + 2fl2yt(O, t) + 22Yxt(O, t) O,

(3.4) .v.(.t)-Vxx(.t) -o.

(3.5) #2Yxtt(1, t) + yzx(1, t) O,

where c, c2 are positive constants.
Let y be a smooth solution of the system (3.1)-(3.5). We define the associated energy

E(t) by

(3.6)

E(t)= (yt +Yxx)dx+cyZ(O,t)+cy(O,t)+#lYt(1,t)+#2yt(1,t)

A straightforward computation gives (at least formally)

(3.7) E(t) -(l,y(0, t) + 2(12 + l)yt(O,t)yzt(O,t) + 22Yt (O, t) ).

Assume that the boundary damping coefficients ij satisfy the following conditions:

)(3.8) 11 > 0, 22 > 0, 1122 > (ill2 @ f121

Then there exists a constant flo > 0 such that

(3.9) ddE(t) _> -o(y(0, t) + y, (0, t)).

Now let us introduce the energy space

(3.0) E {(V, ,,V) H(0, l) x L(0, ) x a x a}.

For all u (y, z, , ) E and all g (, , , ) G E, we define the inner product

(. ) ,) (xx + z) dx + 1(0)(0) + (O)x(0) + + .v.
Next we define the unbounded operator A as follows:

(3.12)

(y,z,,) H4(O, 1) xH2(O, 1) x2suchthat-z(1) -Zx(1)
D(A) (0) + x(0)+ Z,z(0) + Zl(0)

x(O) xx(O) + Zz(O) + Zz(O) 0

( )(3.13) Au -Z, Yxxxx,-#-yxx(1),-2Yxx(1) Y u (y, z, , 7) e D(A).

Then by setting

z(x,t) yt(x,t), (t) yt(1,t), r(t) yxt(1,t), u(t) (y(t),z(t),(t),(t)),
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we can write the hybrid system (3.1)-(3.5) into the following abstract form:

d
(3.14) u(t) + Au(t) O, u(O) uo.

Under the conditions (3.8), it is easy to prove that A is a maximal monotone operator,
hence it generates a semigroup of contractions S(t) on the space E. Moreover by the classical
Hille-Yosida theorem (cf. Brezis [1, p. 105], and Pazy [12, p. 14]), we have the following
results.

PROPOSITION 3.1. Assume that the conditions (3.8) hold.
(i) For any initial data uo E D(A), the equation (3.14) admits a unique strong solution

u(t) (y(t), z(t), (t), l(t)) D(A) such that

(3.15) y(t) C([0, +cx:)[; H4(0, 1)) f-) cl([0, +0[; H2(0, 1)) f3 C2([0, 400[; L2(0, 1)),

(3.16) (,t) c([0, +[;), yx(1, t) c C2([0, +[;

(ii) For any initial data uo E, the equation (3.14) admits a unique weak solution
u(t) S(t)uo (y(t), z(t), (t), rl(t)) e E such that

(3.17) y(t) (70([0, +x[; H2(0, 1)) fq cl([0, +x[; L2(0, 1)).

(3.18) v(, t) c ([o, +[; ), Vx(, t) e c ([o, +o[; ).

Notice that for a general function y(x, t) possessing only the smoothness property (3.15),
the trace functions ytt(1, t) and yxtt(1, t) don’t make sense. Here they are defined by means
of the equations

v.(,t) --Vxxx(,t) Vx.(,t) ---w(,t).
#1 P2

From (3.15), we see that the right-hand sides of these equations are continuous functions.
Because the domain D(A) is dense in E and because S(t) is a semigroup of contractions

on the space E, we assume in this section systematically the smoothness properties (3.15)-
(3.16). All the results of decay estimates established for strong solutions can be extended to
the case of weak solutions by a standard argument of density and contraction property.

Now let y be a smooth solution of (3.1)- (3.5). We define the following functionals:

f01(3.19) p (t) 4 (x 1)ytyx 5 YtY dx,

{/o }(3.20) p2(t) yx(O,t) yt(Cox +4) + #l(C0 +4)yt(1,t) + #2Coyxt(1,t)

(3.21)

(3.22)

{/o }p3(t) 5y(O,t) 2 ytdx + 2#lYt(1,t) + /311y(O,t) + 212Yx(O,t)

p4(t) --5lYt (1, t)y( 1, t) #2Yxt(1, t)yx(1, t),
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(3.23) p(t) pl(t)-t- p2(t) -q- p3(t) -+" p4(t).

The constant Co will be determined later (see (3.39)).
PROPOSITION 3.2. Assume that the conditions (3.8) hold. Then there exist positive con-

stants C1, C2, and 0 such that thefollowing estimates hold

(3.24) p(t) (l/(t) t O,

d
(3.25) d--;P(t <_ -OE(t) + C2(yt2(0, t) + y2zt(O t)) V t >_ 0

for all solutions y ofthe system (3.1)-(3.5).
Proof First using the Cauchy-Schwartz inequality, a straightforward computation gives

01

( /01 )Ipe(t)l < (6o+4)(1/1 +e) (O,t)+(1,t)+t(1,t)+ dz

13(t)l lO( +. + fill + lel) e(O,t) + (O,t) + (1,t) + y dz

p4(t)l 3(pl + .2)(y(1, t) + yt(1,t) + y2(1, t) + y(1, t)).

Now let "7 > 0 denote the largest constant such that

y2(1 + yex(1) + (y2 + yx) dx < . y2(O) + y2x(O) + Yx dx

for all functions y E H2(0, 1). Combining the above estimates gives the estimate (3.24).
The estimate (3.25) is more difficult to establish. For the sake of clarity, we divide the

proof into five steps.
Step 1. Calculation of the derivative of pl (t). Using the equation (3.1), a simple calcu-

lation gives

(3.26)

d f01d--pl (t) {7Yt + Yxx} dx + 2yt(O, t)+ 2yxx(O, t)

4yxxx(O, t)yx(O, t) Yxx(1, t)yx(1, t) + Yxx(O, t)yx(O, t)
+

Step 2. Estimatefor the derivative ofp2(t). It follows from the equation (3.1) that

(3.27)

p2(t) yxt(O,t) (Cox +4)ytdx + l(Co +4)yt(1,t) + #2Coyt(1,t)

+ yx(O, t) (Cox + 4)yxxxx dx + tl (Co nt- 4)ytt(1, t) + p2CoYxtt(1, t)
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Using the boundary conditions (3.4)- (3.5), we calculate

(3.28)
(Cox + 4)yxxxx dx

4yxxx(O, ) (Co + 4)yxx(1, t) + Coyxx(1, t) Coyxx(O, t)
4yxxx(O, t) (Co + 4)#,ytt(1, t) Co#2yxtt(1, t) COYxx(O, t).

Inserting (3.28) into (3.27) gives

(3.29)

d
-p2(t) 4yx (0, t)Yxx(O, t) Coyz (0, t)yx(O, t)

+ t(O,t) (Coz +4)tdz + #l(CO + 4)t(1,t) + #Cot(1,t)

Using the Cauchy-Schwartz inequality, we get

(3.30)
{/0’ }yxt(O, t) (Cox + 4)yt dx + #, (Co + 4)yt(1, t) + #2Coyxt(1, t)

<_ Cy2xt(O,t) + - y2 dx + #ly2t(l,t) + #2y2t(1,t)

Inserting (3.30) into (3.29) gives

(3.31)

d
d--pe(t) <_ 4yxx(O, t)yx(O, t) Coyxx(O, t)yx(O, t)

+ CYt(O,t) + - Yt dx / lYt(1,t) + #2Yt(1,t)

Step 3. Estimatefor the derivative ofp3(t). Using the equation (3.1), we have

(3.32)

-p3(t) 5yt(0, t) 2 ytdx + 2#,yt(1,t) + ,,y(O,t) + 2fl,2yx(O,t)

+ 5y(O, t) -2 Yzx dx + 2#,ytt(1, t) +/3,,yt(O, t) + 2/3,2yxt(O, t)

By the boundary conditions (3.2) and (3.4), we obtain

-2 Yxxxx dx 2yxxx(O, t) 2yzxx(1, t)

Inserting the above relation into (3.32), we get
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(3.33)

d
p(t) (o, t)xxx(O, t) (o, t)

nk- 5yt(O t) 2 Yt dz + 2lYt(1 t) + lly(O, t)-- 212Yx(O, t)

Using the Cauchy-Schwartz inequality, we can find a positive constant C such that

Inserting the above estimate into (3.33) gives

(3.34)
3 2+ (xxx)(o t) (o, t) + (o t) + c(o, t)

Step 4. Calculation ofthe derivative ofp4 (t). Using the boundary conditions (3.4)- (3.5)
we calculate

d

(3.35) d--- p4(t) --5/lYt2(l’ t) 51zlYtt( l’ t)Y( l’ t) lz2y2zt( l’ t) lZ2Yxtt( l’ t)yx( l’ t)

-5#yt2(1, t) 5yxxx(1,t)y(1,t) #2y2,(1, t) + yxx(1,t)yx(1,t).

Step 5. Estimatefor the derivative ofp(t). Combining (3.26), (3.31), (3.34), and (3.35),
we get

(3.36)

On the other hand, by the boundary condition (3.3), we have

(3.37) 2 2(0o2Yx

Plugging (3.37) into (3.36) gives

(3.38)
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Now, by choosing

(3.39)

in (3.38), we obtain

Co 4a9. + 1, 0 min{ 1, a2),

d
dtP(t < -OE(t) + C2(Yt(0, t) + Y2xt(O,t)).

The proof of Proposition 3.1 is thus complete. []

Now we proceed as in Komornik-Zuazua [6]. Starting from the estimates (3.24)- (3.25),
we can establish the following uniform decay of energy.

THEOREM 3.3. Assume that the conditions (3.8) hold. Then given any M > 1, there
exists a positive constant co such that

(3.40) E(t) < ME(O)exp(-cot) V t _> 0,

for all solutions y ofthe system (3.1)-(3.5).
Proof First for c > 0, we introduce the perturbed energy

E(t) E(t) + cp(t).

Then given any M > 1, using the estimate (3.24), we prove the following inequalities"

(3.41) M-/E(t) <_ E(t) < M1/eE(t) Vt > 0,

provided e > 0 is small enough.
Next using (3.9) and (3.25), we have

d d d
(0,t)).d-E(t) E(t) + -p(t) < -OeE(t) + (C2 o)(Yxt(0, t) + Yxxt

Then for c > 0 small enough, we deduce that

_d E(t) < -OE(t) < -OM-/2E(t).
dt

Solving the above differential inequality, we obtain

E(t) <_ E(O) exp(-eM-’/2t) E(O) exp(-cot) Vt >_ O,

which together with (3.41) implies that

E(t) < ME(O) exp(-cot) V t > 0.

The proof of Theorem 3.3 is complete. []

Remark 3.1. The conditions (3.8) are by no means optimal in the sense that only one
moment control Yxt (0, t) or only one force control yt (0, t) suffices for obtaining the uniform
decay of energy. In fact, instead of the boundary feedbacks (3.2)- (3.3), we can consider the
following ones"

(3.42) (0, t) O, x(O, t) (0, t) +/3t (0, t) O,

(3.43) y(O, t) + yxxx(O, t) + yt(O, t) O, y(O, t) O.

For these two cases, the uniform exponential decay of (3.40) remains true for/ > 0 (cf. Rao
[5]).

Notice that the boundary feedbacks (3.2)-(3.3), (3.42), and (3.43) can be realized
by means of passive mechanical systems of springs-dampers similar to those used in
Chen et al. [3].
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4. Uniform stabilization by higher-order feedbacks. In this section, we carry out a
study of uniform stabilization for a clamped beam. In view of the negative result of Theorem
2.1, we have to choose suitable boundary feedbacks L1, Le and energy space such that not
only the boundary feedbacks L1, Le are noncompact but also the problem is well posed. Here,
as an example, we propose the following boundary feedbacks:

L1 (y, Yt) Y:xxt (1, L2(y, yt) -Yxxt(1,t).

To make our computations as clear as possible, we assume, without loss of generality,
the constants #1 and #2 are equal to one (because #1 > 0, #e > 0), and then we obtain the
following hybrid system:

(4.1)

Ytt + Yxxxx O,
t) t) o,
t)  xxx( , t) t),

yxtt(1, t) + Yxx(1, t) -yxt(1,

t>0,
t>0,
t>0,
t>0.

O<x < 1,

Because of the presence of the higher-order feedbacks such as Yxxxt (1, t) and -Yxxt (1, t)
in the system (4.1), for the well-posedness of the problem, we choose the following more
smooth energy space:

(4.2) E {(y, z) H4(0, 1) x H2(0, 1) such that y(0) yx(O) z(O) zx(O) 0}.

For any u (y, z) e E and any g (), ) E E, we define the inner product by

(4.3) (u, z> {yxxxxlxxxx + Zxxxx} dx + Yxx(1)gxx(1) + Yxxx(1)gxxx(1).

Next we define the unbounded operator A:

u (y,z) H6(0, 1) x H4(0, 1) such that

(4.4) D(A) y(0) yx(O) z(O) zx(O) O, Yxxxx(O) yxxxxx(O) O),\Yxxxx(1) + Yxxx(1) -Zxxx(1), Yxxxxx(1) Yxx(1) Zxx(1)

(4.5) Au- (-z, yxxxx) Vu- (y, z) D(A).

PROPOSITION 4.1. The operator A defined by (4.4)-(4.5) is maximal monotone on the
Hilbert space E defined by (4.2)-(4.3).

Proof. First for any u (y, z) D(A), by the definitions (4.3) and (4.5) and integration
by parts, we have

(4.6)
(Au, u) z(1)(yxxx(1) yx(1)) Zxx(1)(Yxx:x(1) + yxx(1))

2 2Zxx( )+ Zxxx( ) >_ o.

The last equality follows from the boundary conditions at x for u D(A).
We next verify the range condition

(4.7) R(I + A) E.

Let u0 (Y0, z0) E, we have to solve the equation

uED(A) such thatu+Au-u0,
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which means that

(4.8)

Eliminating the unknown z in (4.8), we obtain

Y + Yxxxx Yo + zo C H2(O, 1),

(4.9)
y(O) yx(O) O,
2xx() + xx(1) oxx(1),
2yxx(1) Yxxxxx(1) Yoxx(1).

Next, we replace Yxxx (1) and Yxxxxx (1) in (4.9) by their expressions

xxxx() o() + o() (), xxxx() ox() + Zox() x()

so that we get

Y + Yxxxx Yo + zo H2(0, 1),
v(o) x(O) o,
y(1) 2y(1) yo(1) yoxx(1) + zo(1),
y,(1) + 2yxx(1) Yox(1) + Yox,(1) + zo,(1).

Now let us denote by V the subspace V {y H2(w) y(0) y(0) 0}. We
introduce the bilinear continuous operator a(., .) in V V

(,)- (+x)dX+-()()+-x()x() V,eV.

For any V, we define the linear continuous operator f by the following way

f() (Yo + zo)dx + (yo(1)- yoxx(1) + zo(1))(1)

+ (ox() + ox()+ ox())x().

It is clear that a(., .) is V-elliptic in V V. We therefore deduce from the Lax-Milgram
theorem (cf. Lions-Magenes [8, p. 216]) that there exists a unique function y V such that

(4.11) a(y,p) f() V V,

which implies in particular that

Y+Yxxx--Yo+zo inD.
Because Yo / zo C V, we obtain that

Yxxxx Yo + zo y V,
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which means precisely that y c H6(0, 1). Now, given this regularity, when interpreting the
equation (4.11) we find that y is the solution of the equation (4.10). Moreover, we have

(o) o(O) + zo(O) (o) o,
xxxx (o) o(o) + Zox (o) x (o) o.

This proves the range condition (4.7). Proposition 4.1 is thus proved. []

Now letting z Yt, we can write the hybrid system (4.1) in the following abstract form:

d
(4.12) -u(t) + Au(t) O, u(O) uo.

We have the following well-posed theorem.
THEOREM 4.2. (i) For any initial data uo (Yo, zo) D(A), the equation (4.12) admits

a unique strong solution u such that

(4.13) u(t) (y(t), z(t) D(A) V t > O,

(4.14) y(t) C2([0, +oo[;H2(0, 1)) fq C([0,-+-oo[; H4(0, 1)) C([0,-[-oo[; H6(0, 1)).

(ii) For any initial data uo (Y0, zo) E, the equation (4.12) admits a unique weak
solution u(t) (y(t), z(t)) such that

(4.15) (t) s(t)o (v(t), (t)) v t >_ o,

(4.16) y(t) C’([0, +oc[; H2(0, 1)) C([0, +o[; H4(0, 1)).

where S(t) denotes the strongly continuous semigroup ofcontractions on E generated by the
maximal monotone operator A.

Proof. Because the operator A is maximal monotone on the Hilbert space E, by the
classical linear semigroup theory (cf. Brezis 1, p. 105] and Pazy 12, p. 14]), we know that
for any uo D(A) the equation (4.15) has a unique strong solution u such that

u(t) (y(t),z(t)) CI([0,--(:X3[; E) ["l C([0, +oc[; D(A)).

This means that

y(t) C1 ([0,-[-00[; H4(0, 1))Q C([0, +00[; H6(0, 1)),

yt(t) z(t) CI([0, +cx[; H2(0, 1)) fq C([0,-[-OO[; H4(0, 1)).

The last two conditions, together with Sobolev’s embeddings imply that

y(t) e C2([0, +oo[;H2(0, 1)).

This proves the condition (4.14).
Now let u0 C E. Then by the denseness of D(A) in E and the contraction of the

semigroup S(t), we know that the weak solution u given by u(t) S(t)uo satisfies

(t) ((t), z(t)) e c([o, +oo[; E),

which means that

y(t) C([0, +oo[; H4(0, 1)), yt(t) z(t) C([0, +oo[; H2(0, 1)).
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Using Sobolev’s embeddings, the above conditions imply that

y(t) C’([O, +x[; He(O, 1)).

The proof of Theorem 4.2 is thus complete. []

Now let u(t) (y(t), z(t)) be a smooth solution of the system (4.12). We introduce the
associated energy

2 2 2(4.17) E(t)- - u(t)l - (y2xx +yx)dx+yx(1,t)+yx(1,t

Using (4.6) and (4.12), we calculate the derivative of the energy

2d
E(t) -(Au(t) u(t)) -(Z2x(1, t)+ zxxx(1, t)).(4.18)

dt

Using the relation z Yt, it follows from (4.18) that

d
-(x(1, t) +(,t)) _< 0.(4.19) dtE(t)

Remark 4.1. The expression (4.19) shows that the energy E(t) is nonincreasing and
therefore defines a Lyapunov function. This justifies the introduction of the inner product
(4.3).

Now let y be a solution of (4.1). We define the following functionals"

/ofll (t) 2 xyttYtx dx,
(4.20) pz(t) 2(yxt(1,t)Yxx(1,t)- yt(1,t)yxxx(1,t)),

p(t) p, (t) + pz(t).

PROPOSITION 4.3. There exist positive constants C, C2 such that

(4.21) ]p(t)] _< C1E(t) Vt >_ O,

d
(xx(,t) + xx(1,t)) vt >_ o(4.22)

dt
P(t) <_ E(t) /C2 2 2

for all solutions y of the system (4.1).
Proof The estimate (4.21) is a direct application of the Cauchy-Schwartz inequality. In

fact, we have

Ip(t)l _< 2(1 + A)E(t),

where A > 0 is the largest constant such that

y2(1) + yx2(1) + y dx _< Yxx2 dx

for all functions y e H2(0, 1)" y(0) Yx (0) O.
The proof of the estimate (4.22) is more complicated. First by a straightforward compu-

tation, we have

Yxx dx- dx + (1 t)+ (1 t)Yxxxx Yxxt Ytt,,/91(t --3 2 2 2 2

(4.23)
2yxt(1,t)Yxxxt(1,t)+ 2yxt(1,t)Yxxt(1,t),
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d

(4.24) -pz(t) 2yxtt(1,t)Yxx(1,t)+ 2yxt(1,t)yxxt(1,t)

2ytt(1,t)Yxxx(1,t) 2yt(1,t)Yxxxt(1,t).

Combining (4.23), (4.24), and the boundary conditions at the end x 1, we obtain

p(t) -2E(t) + (ytt(.t) + yxx(1.t))2 + (y.(.t) yxx(.t))2

2
(4.25) + Yxxt(1,t) 2yt(1,t)Yxxxt(1,t) + 2yt(1,t)(2yxt(1,t) Yxxt(1,t))

2 (lt)+ 2-2e(t) + 2, v,(, t)
2t(1, t)gt(1, t) + 2gt(1,t)(2t(1,t) t(1, t)).

Let a > 0 denote the largest constant such that

( +(1 7 e,

for all functions H(0, 1)" (0) (0) 0. It follows that

2(1,t) + t(1,t) tdz E(t) Vt 0.

Applying Young’s inequality, it follows that

-2t(1,t)t(1,t) + 2t(1,t)(2t(1,t) t(1, t))
(4.6

E(t) + 6(t(1,t)+t(1,t)).

Inseing (4.26) into (4.25) gives

d
(t(1,t)+t(1,t)).

The proof of Proposition 4.3 is thus complete.
Remark 4.2. We see that the first functional Pl (t) is defined by means of the well-known

classical multiplier zt (cf. Chen et al. [2]) and the second one p(t) designates the two

bounda multipliers: (1, t) and (1, t). The idea of the proof of the estimate (4.22) is
to construct a suitable functional p(t) such that all the boundary terms can be absorbed by
the dissipative boundary damping.

THEOREM 4.4. Given any M > 1, there exists a positive constant such that

(4.27) E(t) ME(O) exp(-t) V t 0,

for all solutions y of the hybrid system (4.1).
The proof is a slight modification of that one of Theorem 3.3. Therefore, we omit the

details.
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SYSTEM EQUIVALENCE FOR PERIODIC MODELS AND SYSTEMS*

OSVALDO M. GRASSELLIt, SAURO LONGHI:, AND ANTONIO TORNAMBlt
Abstract. In this paper, the problem of obtaining a periodic description in state-space form

of a linear process which can be modeled by linear difference equations with periodic coefficients
is considered. On the basis of a polynomial time-invariant description of a linear periodic process,
system equivalence between two such processes is introduced and studied. For a given periodic
causal process, under an additional assumption, a periodic state-space description is found which is
system equivalent to it. It is shown that the order, the characteristic multipliers, and the stacked
transfer matrix at any initial time of the periodic system thus obtained coincide with those of the
original periodic process, and that the asymptotic stability, the reachability, the observability, the
controllability, the reconstructibility, the stabilizability, the detectability, and even the Jordan form
of the monodromy matrix of such a system are determined by the original periodic model, as well as
the existence of a solution of the robust tracking and regulation problem.

Key words, periodic systems, discrete-time systems, periodic models, system equivalence,
realization theory

AMS subject classifications. 93A10, 93A99, 93B15

1. Introduction. For processes which can be modeled by linear difference (or
differential) equations with constant coefficients, Rosenbrock [28] introduced the poly-
nomial matrix description in the form of the following pair of vector equations:

(1) T(6)( U(6)u,
(2) v v(5) + w(5),
where T(5), U(5), V(5), and W(5) are polynomial matrices in 5, which for difference
equations has the meaning of the one-step forward-shift operator. He showed that
under the polynomial transformations on (1), (2) that he called strict system equiv-
alence, if T(5) is square, detT(5) 0 (and has a degree equal to the dimension of
T(5)), and the input-output transfer matrix corresponding to (1), (2) is proper, then
it is possible to obtain a description of the same process in state-space form, i.e., in
the case of difference equations, of the type

(4)
x(k + 1) Ax(k) + B u(k),

y(k) C x(k) + D u(k).
Since then, several authors have studied the polynomial matrix description (1),

(2) and the procedures for the computation of a state-space realization (3), (4) strictly
system equivalent to (1), (2) (see, e.g., [4], [5], [8], [18], [19], [24], [26], [30]).

The same kind of problem seems to be of real interest for processes which can be
modeled by linear difference equations with periodic coefficients (whose period will
be denoted by w) of the following form:

L + L +
i=0 i=0
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(6) + + +
i=0 i=0

for some integer r :> 0, where k E Z,(k + i) E R is the vector of the internal
variables or pseudostate, u(k + i) Rp is the input, y(k) Rq is the output, T(k),
U(k), (k), and W(k) (i 0,..., r) are real periodic matrices of period w (briefly
w-periodic), and the T(k), 0,..., r, are possibly square. Equations (5), (6) are
termed the model of the process under consideration.

The interest in obtaining a description of such a process in state-space form is
motivated by the large variety of processes which can be modeled by linear equations
with periodic coefficients and the resulting attention devoted to linear periodic systems
[1], [2], [23], [27], specifically to discrete-time ones (see, e.g., [3], [9], [13], [14], [29]), for
which a control theory (based on a state-space description) is developing, including
eigenvalue assignment, state and output dead-beat control, disturbance localization,
model matching, robust tracking and regulation, and block decoupling [6], [10], [11],
[12], [15], [16], [21], [22], [25].

In this paper, the problem of obtaining a state-space description of the periodic
process (5):, (6) is faced. In 2 a polynomial time-invariant characterization of such a
process and some related notions are introduced, including the order of such a model
(i.e., the number of arbitrary and independent initial conditions needed for uniquely
solving (5) for a given function u(.)), as well as some conditions which are to be
satisfied so that the process is causal. In 3, system equivalence between two models
of the form (5), (6) is introduced, and the properties which are invariant under it are

analysed. In 4, a periodic system which is system equivalent to a causal periodic
model (5), (6) is found under an additional assumption on the model.

Henceforth, the identity matrix of dimension will be denoted either by I, or

simply by I; A will denote the w-steps forward-shift operator, A- will denote its

inverse; the following notation will be used also. Let R(A), Z+, be defined by

(7) :=
0

Let a vector function z(t) R" be given with t E Z; for any k Z, the w-stacked

form of z(t) at(the initial) time k is defined by

z(h) [zT(k + hw) zT(k + hw + l) zT(k + hw + w -1)] T, heZ.

The vector z(h) can be considered a function either of k or of h; in the following,
whenever the operator R,(A) will be applied to z(h), the operator A will have the
meaning of an w-steps forward-shift in the k variable, or, equivalently, a one-step
forward-shift in the h variable. Let an w-periodic matrix F(t) R"" be given, with
t Z, representing the linear map z(t) F(t)w(t). For any k e Z, the w-stacked
form of F(t) at (the initial) time k is defined by $’ := diag {F(k),F(k + 1),...,
F(k +- 1)}, and represents the induced linear map between the w-stacked forms
at time k of the vector functions z(t) and w(t), i.e., zk(h) 9w(h), h e Z.

The following lemma can be easily proved, taking into account that AF(k)A-F(k + w) and A-F(k + w- 1)A F(k- 1).
LEMMA 1.1. For any vector function z(t) R and w-periodic matrix F(t)

R"" (t Z), and for any k Z, the following identities hold:

(8) RJ+(A)z(h) z++(h)= z+(h + j) Vi, j e Z;

(9) RJ+(A)kR-(J+)(A) k+j,+ + Vi,j Z.
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Identity (9) still holds with A replaced by a scalar complex variable.

2. A time-invariant characterization of w-periodic models and systems.
By introducing the w-stacked forms ko (h), uk (h), and Yao (h) at time ko of vectors
(k),u(k),y(k), and the w-stacked forms T,ko,L/i,o,$;i,ko, and Wi, at time ko of
matrices Ti(k), Ui(k), V(k), Wi(k),i 0,... ,r, and taking (8)into account, model
(5), (6) can be expressed in the following form, which is called the w-stacked form at
time ko of model (5), (6) (briefly, the w-stacked model at time ko):

(10) T (A)k (h) b/ko (A)Uo (h),

(11) Yo (h) $;o (A)ko (h) + Wko (A)Uo (h),

where T (A) =o T,oR(A), /d (A) := -=o ld,koRp(A), );ko (A)
-o ;,koRm (A),)/Yk (A) := =o W,koRp(A). Since the matrices

L/k (A), $;o (A), Wk (A) are polynomial in A with constant coefficients, it seems nat-
ural to associate the following matrix with (10), (11)"

(12) skMo (A) - o(ZX) U o(ZX)
V o(ZX) W o(ZX)]

which is termed the w-stacked system matrix at time ko of model (5), (6), thus ex-

tending the time-invariant Rosenbrock system matrix [28]. For the computation of
the solutions of (10), (11), the following three types of elementary operations on the
scalar rows of (10) can be useful, as for w 1 [28]" (i) multiply any row by a nonzero
real constant c; (ii) interchange rows and j; (iii) add a multiple, by a polynomial
/(A) in A with real coefficients, of row j to row i. On this basis, the next proposition
can be easily proved, thus justifying the following assumption.

Assumption 2.1. The polynomial matrix To(A is square and nonsingular.
PROPOSITION 2.2. If Assumption 2.1 does not hold, then one (or more) of the

following situations occurs for equation (10)"
(t) by a finite sequence of elementary operations of the types (i), (ii), and (iii) on

the rows of equation (10), one of the scalar rows of the transformed equation of (10)
can be reduced to the trivial identity 0 0;

() there exists an w-stacked input function uko(.) for which (10) admits no so-
lution for h >_ 0;

(’y) there exist solutions of (10) for h >_ 0 and for any u (.), but they depend on
an infinite number of arbitrary and independent initial conditions.

If Assumption 2.1 holds, then, for each input function u(.), there exist solutions
ko(’),Yko(’) of (10), (11) for h >_ 0, and they depend on arbitrary and independent
initial conditions whose number is equal to the degree of detTko(A).

Relation (9) yields the following lemma about the dependence on ko of the ma-

trices in (10), (11).
LEMMA 2.3. If T (A) is square, then the following identities hold:

(13) To+I(A -/m(A)ko(/)/nl(/),
(14) L/o+l(A R,(A)L/o(A)R-I(A),
(15))/Yko+(A Rq(A))/Vko(A)R;I(A).

detT o+l(A) det o (A),
 ko+l (A) Rq(A))2ko (A),

If Assumption 2.1 holds for ko ko Z, then it holds for any ko Z, and the degree
of detTko (A) is independent of the initial time ko.
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Hereafter, in view of Proposition 2.2, AssumI)tion 2.1 will be assumed to hold;
then, by virtue of Lemma 2.3, the degree of det T: (A) for an arbitrary k0 E Z will
be called the order of model (5), (6).

Now, consider a linear w-periodic model in state-space form, i.e., a linear system
described by:

(16) z(k + 1) A(k)z(k) + B(k)
(17) y(k) C(k)x(k) + D(k)u(k),

where k Z, x(k) R is the state, u(k) Rp, y(k) Rq, and A(.), B(.), C(.), D(.)
are real -periodic matrices. For this special case of an w-periodic model, equations
(10), (11) reduce to

(18) Rn(A) Zko(h Ao Zo(h) + Bo Uo(h),
(19) Yko(h) Cko Xo(h) +o Uko(h)

(where Xo(h), Mo,Bko,Co, and ko are the w-stacked forms at time ko of x(k),
A(k),B(k), C(k), and D(k), respectively), which are termed the w-stacked forrn at
time ko of system (16), (17) (briefly, the w-stacked system at time ko). The stacked
forms A,o, Bo, Co, o allow the notions of invariant zero, input (output) decoupling
zero, and characteristic multiplier to be characterized and studied in a direct way for
the w-periodic system (16), (17) [13]. This is achieved through the matrix obtained
by substituting the operator A by the complex variable z in

(20)

which from now on will be called the w-stacked system matriz at time ko of system
(1),

Notice that, under Assumption 2.1, the roots of the equation deto(Z 0
coincide with the values of z, for which there exists a nonzero solution of (5) for
(.) 0, satist)ing the following:

() (0 + hw + e) zh(o + e) h Z+,e 0, 1,... ,w 1;

therefore, such values play the same role for model (5), (6) that is played by the roots of
the equation det[R(z)-No] 0 for system (16), (17). In view of the results in [13], it
seems natural to call eigenvalues or characteristic multipliers 4 model (5), (O) at time

ko, under Assumption 2.1, the zeros of the polynomial det%o(z (and characteristic
polynomial 4 model (5), (6) at time ko such a polynomial) with corresponding ordered
sets of structural indices defined at the same time as their nondecreasing sequences of
multiplicities as zeros of the invariant polynomials of o (z). In a similar way, under
the same Assumption 2.1, the invariant zeros, input decouplin9 zeros, and output
decoupling zeros 4 model (5), (6) at time ko are defined to be the zeros of the invariant
polynomials of SM(z) [--o(Z) U:o(Z)] [--r(z) V(z)}T respectively, withko k0
ordered sets of structural indices defined a he same ime as heir nondecresing
sequences of multiplicities s zeros of such polynomials.

The following proposition exends some results of [13] abou system (16), (17)o
model (), (6); i can be proved on he basis of Lemmas 1.1 and 2.3 in wy similar
o Theorem 3. in [13].
POOSTO 2.4. Identities (13)-(1) still hold with replaced b a scalar

eomplez variable. Under Assumption 2.1, the ran of S(), the nonzero invariant
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zeros, the nonzero input (output) decoupling zeros of model (5), (6) at time ko, their
ordered sets of structural indices, the whole characteristic polynomial of model (5),
(6) at time ko, and the ordered sets of structural indices of the nonzero characteristic
multipliers are independent of ko.

Note that, under Assumption 2.1 for a fixed initial time ko, the application of the
z-transform to both sides of (10), (11), with zero initial conditions, yields yko(Z)
G(z) u (z), where GMko (z) Pa (z)T-ol(Z)blko (z) + Who (z) is called the w-stacked
transfer matrix of model (5), (6) at (the initial) time ko. Proposition 2.4 yields

(22) GM (z)GkMoo Z)/; Vz c w0 z,

thus extending a similar relation for the co-stacked transfer matrix of system (16),
(17) [13]. By (22), if the transmission zeros and the poles of model (5), (6) at time k0
and their ordered sets of structural indices are defined through the Smith-MacMillan
form of Go(Z), as in [13] those of system (16), (17), then by the same proofs as in

[13] it is readily shown that the nonzero transmission zeros and poles of model (5),
(6) and their ordered sets of structural indices are independent of time.

If y(k) and yb(k) denote the output solutions of (5), (6) at time k ko corre-

sponding to given input functions u (.) and Ub(’), respectively, and to the same initial
time k0 and initial conditions, then model (5), (6) is said to be causal if y(k) yb(k)
for all the input functions Ua(’),Ub(’) such that u,(t)l[ao,a] ub(t)l[ko,a] for all the
initial conditions, for all k Z, k k0, and for all k0 Z.

The proof of the following proposition is given in the appendix. A result similar
to its first part was given in [20].

PROPOSITION 2.5. Under Assumption 2.1, the w-periodic model (5), (6) is causal
only if, for all ko Z, the corresponding w-stacked model (10), (11) at time ko satisfies
the following conditions:

(i) G(z) is a proper rational matrix;

(ii) if (z) is rewritten as (z) o (z) + Qko with o (z) strictly proper
and Qao constant, and Qao is decomposed into blocks of dimensions q x p, then
is lower block triangular.
If conditions (i) and (ii) hold for ko k0, k0 e Z, then (i) and (ii) hold for all ko e Z.

3. System equivalence. By formally using the same definition as the one in-
troduced by Rosenbrock [28] for the time-invariant case, two (m + q) x (’row + p)
polynomial system matrices SI(A) and S(A) with real coefficients are said to be
strictly system equivalent if a relation of the following form holds:

[M(A) 0 ] SI(A IN(A) X(A)(23) S(A)- Y(A) I,, 0 Ip

where I(A),N(A),X(A), and Y(A) are polynomial matrices in A with real coe-
cients, and M(A), N(A) are square and unimodular. It is stressed that strict system
equivalence is an equivalence relation [28]. In addition, for the same reason as in [28]
for the case w 1, the following extra operations can be considered on the w-stacked
form (10), (11) at time k0 of model (5), (6)"

(a) for each 0,..., w- 1, add to the vector component (k0 + hw + l) of o (h),
scalar components, 0, which are defined to be equal to zero for each h 0;

(b) for each 0,... ,w 1, remove from the vector component (ko + h + l)
of o(h), scalar components, 0 m, if they are equal to zero for each
0,... ,w- 1, for each h 0, for all input functions u(.), and for all initial conditions.
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The w-stacked system matrix at time k0, obtained from (10), (11) after an oper-
ation of type (a) has been carried out, is strictly system equiwlent to the following
one:

(24) ME [ --I 0
0
o V o(ZX)

0 lU, o

A similar characterization of operation (b) holds. Then, two w-periodic models
of type (5), (6) satisfying Assumption 2.1 and having inputs and outputs of the
same dimensions p and q, respectively, pseudostates of dimensions mi, 1, 2, and
corresponding w-stacked models A/[ of the form (10), (11) 1 2, at the sameko
time k0, are said to be system equivalent at time ko if there exist an operation of type
(a) or (b) to be carried out ono and an operation of type (a) or (b) to be carried
out on A//o such that the w-stacked system matrices at time k0 associated with the
resulting w-stacked models at time k0 are strictly system equivalent. For the proof of
the following proposition see the appendix.

PROPOSITION 3.1. The relation of system equivalence at time ko between two
w-periodic models of type (5), (6) is an equivalence relation.

Remark 3.2. The solutions for k >_ k0 of two w-periodic models which are system
equivalent at time k0 are biuniquely related in the pseudostate, and are exactly the
same in the output.

Such a statement is more deeply specified and clarified by the following proposition
(which follows from well-known time invariant results [28], Lemma 2.3, relation (22),
and Proposition 2.4) and by the subsequent remark.

PROPOSITION 3.3. Given two w-periodic models M1 and JV[2 of type (5), (6)
satisfying Assumption 2.1 and having inputs and outputs of the same dimensions p
and q, respectively, pseudostates of dimensions mi,i 1,2, and the following w-
stacked system matrices at time ko"

(25) sM i= 1,2,

if M and A42 are system equivalent at time k0, then: (i) the matrices in each

of the pairs (SM SMko,l(Z) ko,2(Z)), (ko,l(Z), Uko,2(Z)) ([--’ko,1 (Z) /4/ko,1 (Z)],
vko,l(Z) k0,1 (Z)] [-- k0,2(Z) ])ko,2(Z)] ), have the same

Smith form, apart from some unit invariant polynomials, equal in number to wlntl
7t’t21; (ii) the orders of Jl and J2 coincide; (iii)the w-stacked transfer matrices of
3/[1 and 2 at any initial time coincide; (iv) M1 and ./2 have the same nonzero
invariant zeros, nonzero input (output) decoupling zeros at all times, the same cot-

responding ordered sets of structural indices (apart from wlrn- rn2[ null structural
indices), the same characteristic multipliers at all times, and the same ordered sets of
structural indices of their nonzero characteristic multipliers (apart from wlTrtl ?Tt2l
null structural indices).

Remark 3.4. By Proposition 3.3, if a system A/2 of the form (16), (17) is system
equivalent at time k0 to a given model M, then all the features of A//2 that are

listed in items (ii), (iii), and (iv) of Proposition 3.3 are specified by the original model
M1. Hence, such a system A//2 is controllable (respectively, reconstructible) if and
only if A/[ has no nonzero input (respectively, output) decoupling zeros; it is stabiliz-
able (respectively, detectable), if and only if A/[ has no input (respectively, output)
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decoupling zeros outside the open disk of unit radius; it is reachable (respectively, ob-
servable) at time k0 if and only if J41 has no input (respectively, output) decoupling
zeros at time k0 [13]. Moreover, the order, the w-stacked transfer matrix at any time
k0, the asymptotic stability [7], the rate of convergence of the free motions, all the
characteristic multipliers of system A4., and even the number and the dimensions of
the Jordan blocks corresponding to each nonzero characteristic multiplier in the Jor-
dan form of the monodromy matrix of system A/[2 (denoted later on by Eko) [13] at
any time k0 are determined by the properties of the original model A/[1. In addition,
SMko,2(z) has full row-rank for any k0 E Z and for any nonzero z E C if and only if
SMo,l(Z) has full row-rank (it is recalled that such a condition on the w-stacked system
matrix SMo,(z) of the w-periodic system described by equations of the form (16),
(17) is necessary and sufficient, together with stabilizability and detectability, for the
existence of a solution of the robust tracking and regulation problem when the w-
stacked forms of reference signals and disturbance functions have a time dependence
of the form Zh [161).

In view of the above discussion, it seems reasonable to look for an w-periodic
system of the form (16), (17) that is system equivalent at time k0 to the given w-
periodic model (5), (6). The following section is devoted to this.

4. State-space representation for periodic models. For the w-periodic mod-
el (5), (6) and its corresponding w-stacked form at time k0 (10), (11), if Assumption
2.1 holds, its w-stacked transfer matrix GM(z) is proper, and its order is less thanko
or equal to row, possibly after a preliminary operation of the type () has been carried
out on (10) (11) then sM(A) is strictly system equivMent to the following matrixko

0 &o =:
0 o Po

(with Eo, Jo, o, and Po being constant matrices), which will be called a ormal

sstem matriz associated with (10), (11).
The property stated by the following lemma will be used constructively to find

representation in the state-space form (16), (17) that is system equivalent at time
to a given model of a periodic process having the form (), (6).

LMMA 4.1. For the -periodic model (), (6), if Assumption 2.1 holds,
-staced transfer matriz GN (z) sati4es conditions (i) ad (ii) 4 Proposition 2.5,

ko
and deto (z)l=o 0 for some time o, then for a ormal sstem mariz eM

of the form (26) associated with its w-stacked model (10), (11) at any time k0, the
following properties hold: (i) matrix E is nonsingulaE (ii) the matrix Hko := Po
Lo (Eo)- Jko is upper block triangular if it is partitioned into blocks of dimensions
qxp.

Proof. By (13) and Propositions 2.4 and 2.5, the same hypotheses of the lemma
hold at all k0 Z. Then, for an arbitrary k0 Z, by (23) and (24) the following
relation holds:

with c R being a nonzero constant, thus yielding (i). In addition, well-known
time-invariant results [28] imply that

(2S) GkMo(z) Lko(ZI- Eko)-IJko + Pko.
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Property (i) and relation (28) imply that GM (z) is analytic at z 0; thereforeko
g2M,izGo(Z can be expressed by means of a McLaurin series as GkMo(z) Ei+=o

whence (28) and the definition of H yield H GMo (0) o
M,iNow, let matrices Gko be partitioned as follows in the same way as Hko

(29)

M,iGo

M,i M,i M,i M,i
ko,O0 Gko,O Gko,O,j- Gko,O,w-2 Gko,O,w-
m,i Gm,i Gm,i m,i m,iGko,O ko,ll ko,,j-1 Gko,l,w-2 Gko,,w-
’, i’, Mi" Mii" M,

ko,j0 Gko,jl ko,j,j-1 Gko,j,w-2 Gko,j,w-1
y-214,i M,i M,i M,i (Ul14,i

ko ,j + 1,0 Gko ,j+ 1,1 ko ,j+ ,j Gko ,j+ ,w-2 ko ,j+ ,co-

y2M:i" M;i" M,i" y-2M,i 1,i
"ko,co-l,0 ko,w-l,1 ko,co 1,j-1 ko,w-l,w-2 "ko,co-l,w-1.

By the arbitrariness of ko, relation (22), and the McLaurin series expansion of

G(z) imply that

(30)

aM aM’i Z q(Z)aM(z)/I(z) E Iq(Z)aM’i -1
Z o+l(Z) (z)

i=0 i=0

GM,i GM,i ll,i ]I,i --1 M,i
ko,ll ko,l,j-1 ko,l,w-2 "ko,l,w-1 Z Gko,10
;[, Mi" g2M M "_’lI,

+o ko,jl ko,j,j-1 ko,j,w-2 ko,j,w-1 Z ko,jO

Z t2M’i GM,i g214,i M,i M,i
ko,j-t- 1,1 ko,jWl,j-1 ko,j+l,w-2 Gko,j+l,w-1 z ko,j+l,0

i=0
M:i M,i"" lI,i y2h.l,i M,iGko,co-l,1 Gko,co 1,j-1 ko,co-l,w-2 ko,co-l,w-1 Z "-ko,w-l,0

A,l g2A4 ]14 .l g2Al
Zt-ko,0,1 Z’-ko,O,j-1 Zt-ko,O,w-2 Z(-ko,O,w-1 "ko,O,O

Zi"

1I,iM,i be partitioned in the same way as Gko in (29). By computingLet matrices "ko+
M,o 0, g 0, w- 2; whence byGko+1M,o with the help of (30), we have "ko+x,-,e

the arbitrariness of ko, we have "ko,co-l,e 0, g 0,... ,w 2.
Now, the proof can be carried out by induction by showing that

(31) ko,j,e O, j --j- 1,...,co- 1, g- O,...,j- 1

under the inductive assumption that

(32) o,j,e O, j j,...,w- 1, g-O,...,j- 1

for j <_ co- 1, satisfying j >_ 2. In fact, with the help of (30) it is readily seen that (32)
implies (31) written with ko + 1 instead of ko, and this proves (31) by the arbitrariness
of ko. Since (31) coincides with property (ii) for j 2, this completes the proof.

Remark 4.2. In the special case of the state-space model (16) (17) Ss (A) isko
strictly system equivalent to (26) with m g n. It is stressed that in this case the
quadruplet (Eko, J,o, Lo, Po) can be shown to coincide [17] within a coordinate trans-
formation with the quadruplet (Eo, Jko,Lkso,Po) characterizing the time-invariant
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associated system (or lifted representation) at time ko of system (16), (17) [13], [16],
[23]. E/cS is the monodromy matrix at time k0 of system (16), (17), expressed by

(33) E/cSo A(ko + w 1)A(ko + w 2)... A(ko),

so that the characteristic multipliers, the invariant zeros, the input (output) decou-
pling zeros at time k0, the corresponding ordered sets of structural indices, and the
w-stacked transfer matrix at time k0 of system (16), (17) can be equivalently defined
in terms of these quadruplets instead of the w-stacked system (18), (19) at time k0
[13]. Note that in the same case of system (16), (17), the hypothesis of nonsingularity
of R,(0) Ao means the nonsingularity of the monodromy matrix E/cSo i.e., that of
A(k) for all k E Z, which implies the time reversibility of the causal system (16), (17),
i.e., its state x(k) and its output y(k) at any time k < ko can be uniquely computed
from the knowledge of the state x(ko) at time k0, and of the values u(j) of the input
function at times j < ko. This, together with the causality of system (16), (17), is
easily seen to imply condition (ii) of Lemma 4.1.

Under the following assumption (which implies Assumption 2.1), the necessary
and sufficient conditions will now be given for the existence of a periodic system of
the form (16), (17) that is system equivalent at time k0 to a given periodic model (5),
(6).

Assumption 4.3. The polynomial matrix To(A is square and Tko (Z)lz=0 is non-
singular.

By Proposition 2.4, if Assumption 4.3 holds for k0 k0 E Z, then it holds for
any k0 Z (as well as the pair of conditions (i) and (ii) of Proposition 2.5).

THEOREM 4.4. For the w-periodic model (5), (6) and its corresponding w-stacked
form (10), (11) at time ko, under Assumption 4.3, there exists an w-periodic system
of the form (16), (17) which is system equivalent at time ko to the model (5), (6), if
and only if its w-stacked transfer matrix G(z) is proper and satisfies condition (ii)
of Proposition 2.5.

Proof. Necessity. If model (5), (6)is system equivalent at time k0 to system (16),
(17), then it satisfies conditions (i) and (ii) of Proposition 2.5 by Theorem 3.1 in [13]
and Proposition 3.3.

Sufficiency. Denote by A/I the given w-periodic model (5), (6), and by n its order.
Denote by A/[ the w-periodic model--which is system equivalent to A/I at time
whose w-stacked form at time ko is obtained from the w-stacked form (10), (11) at time

k0 of A/I through an operation of type (a) with := n- m if m <_ n, and with 0
if m > n. Denote by T/co(A the (w) (w) matrix thus obtained from To(A

--M
with m + >_ n, and denote by Sko (A) the w-stacked system matrix at time k0
associated with A/I. The definition of operation (a) yields detTo(A det2-/co(A),
thus implying that the degree of det:r/co(A is equal to n and that 7"/co(Z)lz=O is
nonsingular; in addition, by Proposition 3.3, the w-stacked transfer matrix of 1 at
time k0 coincides with GM (z)/Co --M

The hypotheses on A/I guarantee that S/c (A) is strictly system equivalent to a
matrix sMako (A) of the form (26) [28], with n instead of , and E/c nonsingular by
Lemma 4.1. Let J/co, L/co, and P/co be partitioned into blocks of dimensions n p,
q n, and q p, respectively, as follows:

(34) Jko [Jo,0 Jko,1 Jko,w-1],
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Pko,O,O

(35) Pko Pk0,1,0

Pko,w-l,O

(36) Lko Lko,1

ko ,w-

0 0 0 ]
Po,, 0 0

Pko,w-l,1 Pko,w-1,2 Pko,w-l,w-1

where the zero blocks in Pko are yielded by condition (ii) of Proposition 2.5, and by
Proposition 3.3.

By virtue of property (ii) of Lemma 4.1, it is easy to check that

(37) Y(A) Iqo Sko (A)

with

(38)

-I.(-)o(A) o
0

i(_) o o
o

(zx)- o o -z(9)
0 0 0
0 Eko Eko

0 0 0
0 Lo,1 0

(40) ()- o o, o,

0 Lo,_ Lko,w_l
(_) o o o
o -I o

()= o o -(41)
0 0 0 0
o o o

0

0(4) 2()-

0
diag{Ao,...,A_}-R(A)

diag{Co,..., Co_1}

0 ]diag{Bo,..., Bo- 1}
diag{Do,..., Do_l}

0 0
0 0
0 0

Eo

Lko,w_l

0
0
0

0

0
0
0

0

Eko ,]ko ,1 0

0 (Eo)-&o,_
0 0

0
0
0

0
0

where

(43)
(44)

Ai I, i 0,..., w 2, Ao_l Eko,
ti (Eko)- 1jko,i, 0,..., w 2, B_ ko,w- 1,



SYSTEM EQUIVALENCE FOR PERIODIC MODELS 465

(45)
(46)

and the block columns (respectively, rows) of 2t?/(A) and ]Y(A) (respectively, (A)
and 2(A)) in the same position have the same number of scalar columns (respectively,
rOWS).

Since (38) exhibits a structure of the same form as (24) with u -n, a suitable
transformation of strict system equivalence on 0 (A), followed by an operation of
type (b) with u - n, allow us to obtain the matrix Ss (A) defined by (20) withk0

(47) A(ko+i+hw):=Ai,i=O,...,w-1 VhEZ,

(48) B(ko+i+hco):=Bi,i=O,...,w-1 VheZ,
(49) C(ko+i+hw) :=C,i=O,...,w-1 VhZ,

(50) D(ko + + hw) :=Di,i=O,...,co-1 Vh Z.

Thus system (16), (17), with A(k), B(k), C(k), and D(k) defined by (47)-(50), is
system equivalent at time k0 to the original model (5), (6) by construction.

Remark 4.5. The constructive procedure provided by the sufficiency proof of
Theorem 4.4 gives rise, under Assumption 4.3 and conditions (i) and (ii) of Propo-
sition 2.5, to an w-periodic system (16), (17) which is time reversible, since A(k) is

nonsingular for all k Z because of the assumption detTo (Z)lz=0 :/: 0 by Proposition
3.3. It is stressed that many properties and features of the w-periodic system (16),
(17) thus found are determined by the original model (5), (6) (see Remark 3.4 ). In
addition, by Assumption 4.3, model (5), (6) and, hence, system (16), (17) have no
null characteristic multiplier; thus, they have no null input decoupling zero and out-
put decoupling zero [13], and, therefore, system (16), (17) is reachable (respectively,
observable) at all times, or is not, according to the properties of model (5), (6) and
irrespective of the time k0 used in the procedure.

Remark 4.6. If a larger equivalence relation is introduced between two w-periodic
models, in which it is allowed to add to the original model of the form (5), (6) some
further pseudostate components in order to store the input values, then for this new
equivalence relation a theorem wholly similar to Theorem 4.4 can be obtained by
merely substituting Assumption 4.3 with the weaker Assumption 2.1 [17]. In this
way, under no assumption about time reversibility, an w-periodic system can be found
such that its w-stacked transfer matrix at any initial time, its output solutions at any
initial time, its nonzero characteristic multipliers at any time, and its nonzero input
(output) decoupling zeros at any time are still the same as those of the original model,
as well as the corresponding ordered sets of structural indices (apart from some null
structural indices), although their orders do not coincide, in general. Therefore, the
asymptotic stability and the rate of convergence of the free motions, the controllability,
the reconstructibility, the stabilizability, the detectability, and even the number and
the dimensions of the Jordan blocks corresponding to each nonzero characteristic
multiplier in the Jordan form of the monodromy matrix of such a system at any time

k0 are still determined by the properties of the original model, as well as the existence
of a solution of the robust tracking and regulation problem [17].

5. Conclusions. In this paper a polynomial time-invariant description of a dis-
crete-time linear periodic process has been used in order to obtain a representation
of it in state-space form.
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A solution of this problem has been proposed within the class of models which
are system equivalent at time k0 to the given one, under an assumption on the latter
implying the time reversibility of the corresponding state-space representation. It has
been shown that the order, the characteristic multipliers, and the stacked transfer
matrix at any initial time of the periodic system thus obtained coincide with those
of the original periodic model, and that the asymptotic stability, the reachability,
the observability, the controllability, the reconstructibility, the stabilizability, the de-
tectability, and even the Jordan form of the monodromy matrix of such a system at
any initial time are determined by the original periodic model, as well as the existence
of a solution of the robust tracking and regulation problem.

A. Appendix.
Proof of Proposition 2.5. Item (i) trivially follows by contradiction from causality,

taking into account that the w-stacked model (10), (11) is just a compact description
of the original periodic model (5), (6). For item (ii), call h the maximum degree in
A among all the elements of 5/ko(A and 1/Yo(A), assume Uo(h 0 for all h h,
and assume all the initial conditions of o(h) to be zero, so that item (i) and the
application of the z-transform to (10), (11) show that yo(h) QoUo(h). Then,
item (ii) follows by contradiction, since otherwise y(ko + hw + i) should depend on

u(ko + hw + j) for some i, j [0, w 1], < j, thus preventing the model to be causal.
Now, let (i) and (ii) hold for ko o and G-M (z) be partitioned as follows:

ko

](51) To (Z) a21 (z) a22(z)

where ll(Z) has dimensions q p and is proper, G2(z) has dimensions q (c- 1)p
and is strictly proper, G21(z) has dimensions (w- 1)q p and is proper, G2(z) has
dimensions (co- 1)q (w- 1)p and is proper, and item (ii), rewritten for G22(z)
instead of G-M(z) holds Then relation (22) yields

ko

(52) (/// (Z)"--I 122(Z)z-ll21(Z)]k0+l Zl12(Z) (11 (Z)

thus proving (i) and (ii) for k0 k0 + 1. The proof is completed recursively by virtue
of the a-periodicity.

Proof of Proposition 3.1. The reflexivity and symmetry properties are obvious.
For transitivity, given three w-periodic models Adi, 1, 2, 3, having inputs and out-
puts of the same dimensions p and q, respectively, and having c-stacked models ko
and w-stacked pseudo-states o(h) at time k0, 1,2, 3, assume that the pairs
and Ad. and, respectively, A/12 and 3//3, are system equivalent at time k0. That is,

let AJko and 3/Iko (respectively, JQo and Aao) be the w-stacked models at time

k0 obtained after operations of type (a) or (b) are accomplished on 3/Io and 2Mo
(respectively, A/Io and 3/o), such that their two corresponding w-stacked system

--i
matrices at time ko are strictly system equivalent. Let cko (h), 1, 2, (respectively,

co(h), 2, 3), be their w-stacked pseudo-states, and let pi 0, 1, 2, (respec-
>

tively, i 0, 2, 3), be the number of zero scalar components added to or removed
--i

from each of the co vector components of [.o(h) for obtaining o(h) (respectively,

o (h)), where Pi (respectively, i) is defined to be < 0 if IYi (respectively, Iil) scalar
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components are removed. Without loss of generality assume that P2 >_ 2 (other-
wise the ordering of the .Mi could be reversed). Make two operations of type (a)
on both .A4o and 2t’Io by adding the same number . of scalar components to

each of the co vector components of o (h) and o (h), and denote by 34o and 3Io
the co-stacked models at time ko thus obtained from .A’Io and o, respectively.
The proposition follows from the transitivity property of strict system equivalence by

2
noting that 3,;Io 3do and that the co-stacked system matrices at time k0 asso-

ciated with 324o and .A;to are strictly system equivalent, as well as those of .Mo and
2

Adk0. v1
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SUPERVISORY CONTROL OF NONDETERMINISTIC SYSTEMS
WITH DRIVEN EVENTS VIA PRIORITIZED SYNCHRONIZATION

AND TRAJECTORY MODELS*

MARK A. SHAYMANt AND RATNESH KUMAR$

Abstract. The supervisory control of nondeterministic discrete event dynamical systems (DEDSs)
with driven events in the setting of prioritized synchronization and trajectory models introduced
by Heymann are studied. Prioritized synchronization captures the notions of controllable, uncon-

trollable, and driven events in a natural way, and the authors use it for constructing supervisory
controllers. The trajectory model is used for characterizing the behavior of nondeterministic DEDSs
since it is a sufficiently detailed model (in contrast to the less detailed language or failures models),
and serves as a language congruence with respect to the operation of prioritized synchronization.
Results concerning controllability and observability in t.his general setting are obtained.

Key words, discrete event systems, supervisory control, nondeterministic automata, driven
events, prioritized synchronization, trajectory models
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1. Introduction. Supervisory control of discrete event dynamical systems
(DEDSs) was introduced by Ramadge and Wonham [23]. In this approach, the be-
havior of a DEDS, called the plant, is described by its language, that is the collection
of all possible sequences of events (traces) that it can generate. The task is to design
a controller, called a supervisor, which, based on the observation of the sequence of
events, disables some of the controllable events so that the language generated by the
controlled plant either equals a prespecified desired language, called a target language,
or remains confined to a prespecified range of languages. Various extensions of this
basic problem such as control under partial observation, decentralized and modular
control, hierarchical control, and optimal control have also been studied. Refer to [24]
and references therein for an overview of research in this area (up to 1989).

Most of the research on supervisory control of DEDSs assumes that the plant can
be modeled as a deterministic system [10]. In other words, given a state of the system
and an event that occurs in that state, the state reached after the occurrence of the
event is uniquely known. Such an assumption is not satisfied whenever unmodeled
dynamics, partial observation, or inherent nondeterminism are present. Hence the
assumption of a deterministic plant is quite strong. In this paper, we relax this
assumption and consider the control of a nondeterministic plant [10], [17], [18], [9],
[11], [7].

A modeling framework m over a finite event set E is an equivalence relation
on all DEDSs representable as state machines with arbitrary state space (finite or

denumerable) having e-transitions and event set E. We identify rn with the projection
rm, which maps each state machine 7) to its equivalence class or model r,(P). If
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the equivalence class of P is uniquely characterized by an attribute, is common to its
members, we will freely identify r,(P) with this attribute.

We say that a modeling framework r, is more detailed than another modeling
framework rn if the equivalence relation r, refines the equivalence relation rn. Ob-
viously, it is desirable to use the least detailed modeling framework which is sufficient
for the design task at hand. A complex system is generally synthesized by combining
simpler systems using various types of interconnections. Since specifications for the
logical behavior of a DEDS are typically given in terms of the language of the system,
a basic requirement is that the modeling framework should contain sufficient detail so
that if the models for each subsystem are known, then the language of the intercon-
nected system is uniquely determined. A modeling framework with such a property
for a given class of admissible interconnections is referred to as a language congruence

The language modeling framework associates with a system its language, the
collection of all possible finite traces which are executable. Thus, the language model
of a system is a subset of E*, the set of all finite sequences of events in E including, the zero-length sequence. For deterministic systems and deterministic operators
such as strict synchronous composition (SSC), the language modeling framework is

a language congruence. If operators which introduce nondeterminism (e.g., internal
choice, event internalization) are admissible, then the language modeling framework is

no longer a language congruence and a more detailed modeling framework such as the

failures model introduced by Hoare [9] must be used to have a language congruence.
The failures model consists of the set of all failures of the system--pairs (s, E) where
s is a trace and E

_
E is a refusal set with the property that if the environment

restricts the possible events to E, the system can deadlock following execution of s.

Thus, a failures model is a subset of E* x 2E.
In the work of Kumar, Garg, and Marcus [14], control design is accomplished

by constructing a supervisor which operates in strict synchronization with the plant.
In the work of Balemi et al. [3], the set of events E is partitioned into two disjoint
subsets: commands, which are generated by the supervisor and sent to the plant, and
responses, which are generated by the plant and sent to the supervisor. It is required
that the plant and supervisor be mutually receptive, which means that the plant
executes every command generated by the supervisor and the supervisor executes
every response generated by the plant. Thus, this design also requires that every
event be executed synchronously.

There are several reasons for considering control designs which do not require
complete synchronization between the plant and supervisor. Uncontrollable events
are generated spontaneously by the plant, and the supervisor is not permitted to
interfere with their execution. Consequently, there is no a priori reason to assume
that the supervisor needs to "track" every such event by undergoing a transition

synchronously with the plant. Also, certain uncontrollable events in the plant may
not be sensed and hence are invisible to the supervisor. It is unrealistic to require the
supervisor to execute such events synchronously.

In many applications, it is not realistic to expect (or require) the plant to respond
synchronously to every event generated by the supervisor. (Such events are referred to
as forcible [6], driven [7], or command [3] events in the literature.) By permitting the
supervisor to place commands which are not executed by the plant, nondeterminism in
the plant may be resolved and performance improved. For example, not every piece

For simplicity, we ignore the possibility of divergence.
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of equipment in a factory will trigger an alarm upon breakdown. Breakdown may
only be discovered when an action is requested by the supervisor and not executed by
the plant. Thus, the unsensed state of the plant is determined by a synchronization
failure.

Another motivation for relaxing the requirement of strict synchronization comes
from systems in which a single supervisor controls more than one plant. For example,
in a walking machine, there could be separate modules (viewed here as plants), which
perform motion control and vision control, respectively. At a higher level, there could
be a single supervisor which controls and coordinates the two modules. Some of the
commands issued by the supervisor may apply to both the modules, while others may
be relevant to only one of them and should be ignored by the other.

Heymann [7] has proposed a type of interconnection, called prioritized synchronous
composition (PSC), which relaxes the synchronization requirements on the plant and
supervisor. Each process in a PSC interconnection is assigned a priority set of events.
For an event to be enabled in the interconnected system, it must be enabled in all
processes whose priority sets contain that event. Also, when an enabled event oc-

curs, it occurs in each subsystem in which the event is enabled. In the context of
supervisory control, the priority set of the plant contains the controllable and un-
controllable events, while the priority set of the supervisor contains the controllable
and driven events. Thus, controllable events require the participation of both plant
and supervisor; uncontrollable events require the participation of the plant and will
occur synchronously in the supervisor whenever possible; driven events require the
participation of the supervisor and will occur synchronously in the plant whenever
possible.

It is important to distinguish between PSC and other types of parallel composition
in the literature. For example, Hoare [9] defines a concurrent composition operator in
which each process has its own event set and the processes synchronize on the events
in the intersection of their event sets. This is generalized to trace-dependent event
sets, cMled event-control sets, by Inan and Varaiya [11]. The key difference between
concurrent composition and PSC is that in PSC, although a process cannot block
events which are outside its priority set, it may be able to execute these events and,
whenever possible, will execute these events synchronously when they occur in the
other process.2

It is shown in [7, Ex. 7] that two systems with the same failures model may
yield different languages when composed in prioritized synchronization with a fixed
system. Thus, if PSC is included as an admissible interconnection operator, a more
detailed modeling framework than the failures model is required to serve as a language
congruence. One such modeling framework, called the trajectory model, is proposed
by Heymann [7] and Heymann and Meyer [8].3 The trajectory model of a system
consists of the set of all trajectories or refusal-traces--finite sequences of the type
E0(a,E).-.(ak,E), where a...a is the trace executed by the system, while

2 If applied to so-called improper processes, the parallel operator defined by Inan [12] can be
viewed as a generalized form of PSC, but only in the deterministic setting. However, when supervisory
control is considered in this reference, the assumption is made that the plant is proper and has a

constant event control set. This assumption excludes driven events.
3 The trajectory model is similar to the failure-trace model (also called the refusal-testing model)

of Phillips [20], but differs from this model in its treatment of silent transitions (transitions labeled
with e). The trajectory model treats silent transitions in a way that is consistent with the failures
model. While more detailed than the failures model, the failure-trace model is less detailed than the
ready-trace model [21], [1], and hence less detailed than the bisimulation model [19], [18]. Comparison
of various semantics for nondeterministic systems can be found in [27], [2].
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Ej C_ E (j 0,..., k) is a refusal set, a set of events which can result in deadlock if
presented to the system by the environment at the indicated point in the refusal-trace.
Thus, a trajectory model is a subset of 22 x (E x 2) and refines the failures model
by including the intermediate refusal sets.

Although we use the trajectory model for describing the behavior of a nondeter-
ministic plant, it is assumed that the desired specification is given only in terms of a

language model (as in [23]), and not in terms of a trajectory model. This is a reason-
able assumption, for in most applications, we are only interested in the sequences of
events that a system can execute, and not in the events that the system may "refuse"
to execute after execution of a certain event in a certain event sequence. Hence we
address the following supervisory control problem:

Given (i) a partition E Ec U E tJ Ed of the event set into subsets
of controllable, uncontrollable, and driven events, (ii) a nondeter-
ministic plant with trajectory model P C_ 2r x (E x 2r) whose
priority set is A Ec U Eu, and (iii) a (prefix-closed) target language
K C_ E*, design a supervisormanother trajectory model, denoted
S c_ 2z x (E x 2z)*--whose priority set is B Ec U Ed such that the
language of the PSC of P and S equals K.

The interconnection of the plant and the supervisor by PSC results in the disabling
of some of the controllable events and the forcing of some of the driven events, while
never preventing any of the uncontrollable events from occurring in the plant. Thus
we investigate the supervisory control of DEDSs in the general setting of trajectory
models and PSC, as opposed to language models and SSC studied by Kumar, Garg,
and Marcus [14].

We obtain a necessary and sufficient condition for the existence of a supervisor for
the general problem with driven events, and also provide a technique for synthesizing a

supervisor. For ease of implementation, we design supervisors which are deterministic.
We also address the control problem when some of the uncontrollable events are

not observed by the supervisor. While the primary goal of this paper is to obtain
necessary and sufficient conditions for the control of nondeterministic systems with
driven events, a secondary goal is to provide a rigorous mathematical foundation for
the theory of trajectory models and PSC.

The organization of this paper is as follows. In 2, an example is presented that
motivates the design techniques to be developed in the remainder of the paper. In
3, the trajectory model of a nondeterministic state machine (NSM) with e-moves is
defined and its properties derived from those of NSMs. An algorithm for constructing
a canonical NSM from a given trajectory model is presented and its correctness is

proven. In 4, the PSC of NSMs is defined, and it is shown that this induces a PSC
operation on trajectory models. It is also proven that the trajectory modeling frame-
work is a language congruence relative to PSC. Properties of the PSC of trajectory
models are described in 5, and the technique of augmentation is introduced. In 6,
the supervisory control problem with driven events under both complete and partial
observation is solved, and the results are applied to obtain a control design for the
example system from 2.

An abbreviated version of this paper appeared in [25]. Extensions of many of the
results to include nonclosed specifications and marking can be found in [15].

2. Motivating example. In this section, we describe an example that moti-
vates the results described in this paper. Figure l(a) gives a deterministic model for a

plant that processes a single type of part. Event a represents inputting a part. Event
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1 represents successful completion and outputting of the part. Event 2 represents
completion and outputting of the part, but accompanied by an undetectable misalign-
ment of an internal mechanism. If this has occurred, another part may be input, but
this event c can be followed by an event A that represents jamming of the machine.
When this occurs, further processing is impossible. The event tt represents realign-
ment of the misaligned internal mechanism. Since the misalignment of the internal
mechanism is undetectable, the observation mask M(.) identifies the events 1 and
2, i.e., M(I) M(2) := . It is assumed that a is controllable and that 1,/2, /

are uncontrollable. A ntural performance specification is that A should never occur
and that the closed-loop generated language should include (a(/1 + 2#))*, i.e., cyclic
operation should be possible.

(a) (b) (c)

FIG. 1. Diagram illustrating ecample of 2.

Let us regard # as a controllable event and consider whether the specifications can
be met by a supervisor S of the Ramadge-Wonham type that is consistent with the
observation mask. Since A is uncontrollable, such a supervisor would need to disable
a following any occurrence of .. Since the mask identifies and 2, the supervisor
must also disable ( following . Consequently, the generated closed-loop language
imposed by any such supervisor is contained in pr((a2#)*c) and thus fails to meet
the lower-bound specification. (pr(.) denotes the prefix-closure operation.)

The design problem is also unsolvable using a forcing supervisor of the type con-

sidered by Golaszewski and Ramadge [6]. If such a supervisor forces tt following 2,
it must also force # following . Since the plant cannot execute # after 1, the con-

trolled system would deadlock after the first occurrence of . Thus, the lower-bound
specification is not satisfied.

We could transform the partially observed deterministic system by identifying
the events 1, 2 in the plant model and representing both of these events by their
common mask value . This yields the completely observed nondeterministic model
depicted in Fig. l(b). However, this results in a loss of information. In the first
model, , 2 are indistinguishable only from the viewpoint of observation, while in
the second model, they are indistinguishable for specification and control, as well as

for observation. Since , 2 are uncontrollable, it is irrelevant whether they are

distinguishable for the purpose of control. However, to be able to translate the orig-
inal lower-bound specification into a corresponding specification on the transformed
system, it is important that the events remain distinguishable from the viewpoint
of specification. This can be accomplished by replacing 1, . by the three-event
sequences 71/, 72/, respectively, where 71, 72 are completely unobservable, i.e.,
have mask value . If M’(.) denotes the mask for the transformed system, then
M’(71/) M’()M’ (/) M’(72/). Thus, the substitution preserves the model-
ing assumption that the events , . have the same mask value. On the other hand,
since 7, 72 are distinct event labels, the distinguishability of 1, 2 for the purpose of
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specification is also preserved. To model the uncontrollability of/1, /2, we designate
/, 1’1, 2, r/to be uncontrollable events. The "sandwiching" of the unobservable event
/i between the observable events /, r/ reflects the fact that in the original model,
the occurrence of/i is known to the supervisor even though the supervisor cannot
determine which of/1, 2 has occurred. With the new model, the supervisor knows
that neither of the pair yl, 2 has occurred if/ has not been observed. Similarly, it
knows that one of the pair has occurred if r/has been observed.

The substituted events can also be given a physical interpretation. / represents
commenced processing of a part with or without internal undetectable misalignment.
fl and Y2 represent the registering of faultless processing and of faulty processing,
respectively. These are internal events that are modeled but whose occurrence is
unobservable to an external process such as a supervisor. 7 representsthe completion
of processing and outputting of the part.

The transformed system is shown in Fig. l(c). It is a partially observed nonde-
terministic system in which the mask is a natural projection and the unobservable
events are uncontrollable. We will treat # as a driven event rather than a control-
lable event as would be done in the Ramadge-Wonham theory. In the context of
PSC-based control design, this allows for the possibility that the plant may refuse
a request from the supervisor to execute this event. Using the results of 6, we will
construct a PSC-based supervisor that meets the control specifications. (See Example
5.) The flexibility obtained by permitting the plant to refuse a supervisor-initiated
event is an essential feature of the successful control design.

3. Trajectory model. A plant, or a DEDS to be controlled, is modeled as an

NSM with e-moves. Letting 7) denote an NSM, it is defined to be the four tuple [10]:
7) "= (X, E, 5, x), where X, denotes the state space of 7), E denotes the event set
of 7), 5 Xp E{e} --. 2x denotes the nondeterministic4 transition function of 7),
and x Xp denotes the initial state of 7). A triple (x,a, x2) X (Et2{})X,
is called a transition in 7) if x2 5,(xl,a). A transition (xl, e, x2) is referred to as
a silent transition. We assume that the plant NSM is finitely branching and cannot
undergo an unbounded sequence of silent transitions.

3.1. Language model of a nondeterministic state machine. As mentioned
in 1, although trajectory models are used for describing the behaviors of nondeter-
ministic systems, language or trace models are used for describing the desired or target
specifications. Hence in this section we define the language model of an NSM P. We
first define the e-closure of a state, which is the set of states reached by executing a
finite sequence of silent transitions.

DEFINITION 1. The e-closure map, e Xp 2X’, is recursively defined to be:
x eVx e x’ e c_

Using the definition of -closure, we extend the definition of the transition function
from events to traces as follows.

DEFINITION 2. The extension of the transition function to traces, denoted
Xp E* - 2X, is defined inductively on the length of the traces as:

:=Vx e w e r,,, e r,:

4 The transition function 57>(’, ") is deterministic if and only if it is of the type 5p XT x E Xp,
in which (i) there are no transitions labeled e, and (ii) given a state and an event, either a unique
state is reached upon execution of that event in that state, or that event is undefined in that state.
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where in the last equality, the transition map is extended to 57, 2x x EU{e} -- 2x’,
and the e-closure map is extended to e 2X 2x in the natural way. The set
of states reached by executing a trace s E E* from a state x Xp is given by the
set 5(x, s). It is clear that if 7) is deterministic, then the extension of the transition

function to traces is also a deterministic partial map 5 Xp x E* -- Xp. (It is a
partial map since it is generally defined only on a subset of Xp x E*.)

The preceding definition can be used to obtain the language or trace model for
the plant 7), denoted L(7)) C_ E*, as follows:

L(7)) {s E*lS(x,s) # 0}.

3.2. Trajectory model of a nondeterministic state machine. As discussed
in 1, language models are not adequate for characterizing the behavior of nondeter-
ministic systems. Hence, we next define the trajectory model for n NSM 7). We
first need to define the refusal map, and extend the transition function from events
to refusal-traces.

DEFINITION 3. The refusal map, Rp Xp -- 2, is defined as:

Thus the refusal map defines, at each state, a set of events such that the system
"refuses" to execute any of the events belonging to that set at that state. An event
cr E E belongs to the refusal set of a state x E Xp if and only if it is undefined at
each state belonging to the e-closure of x. Figure 2 depicts several NSMs defined over
the event set {a, b}; each of the states is labeled with its refusal event set.

DEFINITION 4. The extension of the transition function to refusal-traces, denoted

5 Xp x (2 x (E x 2)*) 2X is defined inductively on the length of the refusal-
traces as:

vr,’ c r,: G(x, r’):= {x’ r,’ c_
VxX" VeEx(Ex2r)*,aE,E’CE.

G(x, s’)) := {x’ e r’ c_
A state x E X is reached by executing a "zero-length" refusal-trace E C_ E

from a state x E Xp if (i) x’ belongs to the e-closure of x, and (ii) the refusal set
of x contains E. A state x E XT is reached by executing a refusal-trace c(a, E)
2r" x (E x 2’) from a state x Xp if (i) x’ belongs to the e-closure of a state reached
by executing the event a from a state reached after executing the refusal-trace e from
x, and (ii) the refusal set of x contains E. It is clear that if/) is deterministic,
then the extension of the transition function to refusal-traces is also a deterministic
partial map 5, Xp x (2r" x (E x 2’) *) --+ X,. Based on the above extension of the
transition function from events to refusal-traces, we define the trajectory model of the
plant 7), which we denote as T(/)).

T(P):= {e e 2r’ x (r, x 2r’)* (x%, e) # 0}.
We refer to the elements of this set as the refusal-traces or trajectories of 79

Remark 1. There is a subtle but important difference in the meaning of the
refusal sets in a trajectory model as opposed to those in an NSM. In the NSM, p(x)
represents events that must be refused at the state x if offered by the environment. In
contrast, the refusal set E(e) in the refusM-trace e represents a set of events which can
be refused if offered by the environment following execution of the previous fragment
of the refusal-trace. The reason for this is that the refusal-trace fragment does not
uniquely determine the state of the NSM due to nondeterminism. (Refer to Algorithm
1.)

Let e Eo(e)(al(e),El(e))... (an(e),En(e)) E 2 x (E x 2) be a refusal:trace,
wheren EAr, E(e) C_ E anda(e) E for eachi_< n. We call n the length of e,
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and denote it as lel n. Ei(e) is called the ith refusal set of e, and ai(e) the ith
event of e. For each <_ lel, we use e to denote the prefix of length of e, i.e.,
e := E0(e)... (a(e), Ei(e)). The notation pr(e) C_ 2 (E 2) is used to denote
the set of all prefixes of e. Let e, f E 2 (E 2) be refusal-traces. If f is a prefix
of e, we indicate this by the notation f <_ e. We say that f is dominated by e, denoted
f

_
e, if Ifl le[ n, a(f) ai(e), and E(f) C_ Ei(e) for each _< n. The notation

dom(e) C_ 2 (E 2) is used to denote the set of all refusal-traces dominated by
(.

Example 1. Consider a system 7) that deadlocks, i.e., cannot execute any tran-
sition, at its initial state. Then T(7)) {E’ E’ C_ E}, i.e., the trajectory model
of :P consists of all zero-length refusal-traces. We use A "= {E’ E’ C_ E} to
denote the trajectory model of the deadlock system. Given a E E and a trajec-
tory model P C_ 2 (E 2)*, we use a --, P to denote the system that first
executes the event a and then follows with a refusal-trace in P. In other words,
a - P pr{E’(a, e) E’ C_ E {(7}, e P}. (7 -- P is called the a-prefix operation
on the trajectory model P. Given trajectory models P1, P2 c_ 2 (E 2)*, and
(71, (72 E with (71 : (72, the external choice between the trajectory models (71 P1
and (72 -* P2, denoted ((71 --* P) + ((72 --* P2), is defined to be the trajectory model:

((71 5)+((72 P2):-- {e e ((71 --+ P1) [-J ((72 --+ P2) le ((71 P1)f((72 -- P2)}.
This is a system which initially makes a deterministic choice between (71 and a.. If a is
executed, then the remainder of the refusal-trace is in P. The notation P1P2 denotes
the system that nondeterministically chooses to execute refusM-traces either in P1 or
in P2. P1 P2 is called the internal choice between P1 and P2, and P1 P2 := P1 t2 P2.

{a,b}
{b}

a

{a,b} {a,b} {a,b}

{a,b} {a,b} {a,b}

(a) (b) (c) (d)

FIG. 2. Diagram illustrating Example 1.

Figures 2(a)-(d) depict NSMs defined over the event set {a, b}; each of the states
is labeled with the set of events that are refused at that state. Figure 2(a) depicts
an NSM that deadlocks. Hence its trajectory model is A{a,b}. Figure 2(b) depicts
an NSM that initially executes the event a and then deadlocks. Hence its trajectory
model is a -- A{a,b}. Figure 2(c) depicts an NSM that initially makes a deterministic
choice between the events a and b and deadlocks after executing either of the events.
Hence its trajectory model is given by (a A{a,b})--(b --, A{a,b}). Figure 2(d)
depicts an NSM that initially makes a nondeterministic choice between the systems
of Figs. 2(b) and (c). Hence its trajectory model is (a -- A{a,b})[(a -- A{a,b})+(b
n{a,b})]"

It follows from the definition of the trajectory model T(7)) that it satisfies the
following five properties, denoted (T1), (T2), (T3), (T4), and (T5).
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PROPOSITION 1. The trajectory model T(7)) of an NSM 7) satisfies the following
properties:

(T1) (nonemptiness)" e T(7)) T(7)) ;
(T2) (prefix closure)" Ve e T(7)), f e 2 (E 2) "f < e = f e T(7));
(T3) (dominance closure)" Ve e T(P), f e 2E (E x 2E) "f e f e T(P);
(W4) (refusal of infeasible)" Ve T(P),i ]e,a e E ei(a, 0) T(P)

e{-({(e), {() U {})... (ll, ll) e T();
(Th) (persistence of refused)" Ve e T(), lel,a e E a e E{(e) a+(e) #

Proof. (T1), (W2), and (Th) follow immediately from the definition of the tra-
jectory model. To prove (T3), we note that a straightforward induction on length of
refusM-traces shows that if f e, then 6(x,e) 6(x,/), which immediately
yields (T3). It remains to prove (T4). Fix i, and suppose that e{(a, ) T().
Then 6p(6(x, e),a) 0. Since (6(x,e)) 6(x,e), this implies that
a (x) for all x 5(x, e). It follows immediately that if is obtained from e
by replacing E(e) with E(e) {a}, then 5(x, )- 5(x, e), which implies that

Remark 2. In contrast to [8] where the properties of the trajectory model are
defined axiomatically, we regard the NSM as the fundamental object and derive the
properties of the trajectory model from the properties of NSMs.

3.3. Construction of canonical nondeterministic state machine. In this
section we develop an algorithm for constructing a canonical nondeterministic state
machine for any given set of refusal-traces satisfying (T1)-(Th).

DEFINITION 5. Let P C_ 2 (E 2) be a refusal-trace set satisfying (T1)-
(Th). If e E P is any refusal-trace which has the property that for each <_ lel,
a E Ei(e) whenever ei(a,O)

_
P, then we say that e is saturated. The saturated

trajectory model, denoted Pst, of P is defined to be: gsat := {e P e is saturated}.
It is easy to see that a prefix of a saturated refusal-trace is also saturated, and each

refusal-trace of P is dominated by a saturated refusal-trace of P, so dom(Pst) P.
Thus Psat is equivalent in detail of description to P. So, we use the set of saturated
refusal-traces for the construction of the canonical nondeterministic state machine.
Given a finite number of event sets E,..., En G E for some n , we use the
notation min(E,..., En) to denote the collection of minimal sets from among the
given n sets, i.e.,

min(E,...,En)"- {E,I n IflJ such that 1 j n;j #
i; Ej C Ei}.

LEMMA 1. Let P 2 (E 2) satisfy (T1)-(T5).
1. Psat contains a unique minimal zero-length refusal-trace Emin0 {a’ El a’

L(P)}.
Z. If e Psat and c(a, ) P, then the family {E’ E e(a, E’) Pt} has a

o) p}.unique minimal element given by Emi {a E] e

Proo The proof of the first part is similar to that of the second part, so we include

only the latter. Since e(a, O) P, repeted application of (T4) yields c(a, min P"
Since c is saturated, in order to show that e(a, Emi is saturated, it suffices to

show that if e(a, (’) (’) a (’)Emi )(a’,O) P, then a’ e min Suppose Emi Then

e(a, O)(a’, ) P. By repeated application of W4, it follows that e(a, Emi(’))(a’, )
P, which is a contradiction. Thus, e(a, E:)) e Pst.
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(’’) (a, 0)(a’, 0) P. By (T3),Finally, suppose e(a, E) E Psat and a E Emin i.e. e
(’) E’.it follows that e(a, E’)(a’, 0) P. Since e(a, E’) is saturated, or’ E’, so Y]min

AL(OPdTHM 1. Given P C_ 2rx (E x 2r) satisfying (T1)-(T5), construct a
nondeterministic state machine (with e-moves) 7) (X, E, 5, z), where

XT gsat i8 the state space of 7),
ox :-- Emi is the initial state of 7),

Xp x E U {e} -- 2X is the transition function of 7) defined
as"

(1) Ve Psat, r "
f e(a, E2)) if e(cr, O) e P5,(e ) :---
[ 0 otherwise,

(2(a)) VE’ C_ E such that E’ Psat"

5p(E’, e)’- min({E" C_ E E" E Psat, E’ C E"}),

(2(b)) Ve 2rx (E x 2r)*,cr E,E’ C_ E such that e(cr, E’)
sat

5(e(cr, E’), e)’-{e(a, E")I E" min({ C_ 2le(, )6Pt, r’

Algorithm 1 provides a procedure for constructing a canonical NSM P for a
given set of refusal-traces P satisfying (T1)-(T5). The state space of 7) equals Psat,
the set of saturated refusal-traces of P, and the initial state of 7) is the minimal

0zero-length saturated refusal-trace Emin of P. The state reached by executing a
nonepsilon event a E E from a state e Psat equals the minimal saturated refusal-
trace of the type e(a, E’) dominating e(a, 0). The set of states reached by executing
an epsilon transition from a zero-length refusal-trace E Pst X, equals the
minimal elements of the set of zero-length saturated refusal-traces dominating E.
Also, the set of states reached by executing an epsilon transition from a refusal-trace
e(cr, E) gsat Xp equals the set of saturated refusal-traces of the type e(a, E")
dominating e(cr, E) with Epp minimal. Note that the canonical NSM constructed using
Algorithm 1 has as many states as the number of saturated refusal-traces.

Remark 3. A construction which bears some similarity to Algorithm 1 was in-
formally described in [8, Alg. 12.1]. However, a proof showing that the trajectory
model of the canonical NSM equals P was omitted in that reference. There is also an

important difference between the two algorithms. The construction in [8, Alg. 12.1]
is based on prefixes of dominant refusal-traces, i.e., refusal-traces which are maxi-
mal with respect to

_
partial order. In contrast, Algorithm 1 is based on saturated

refusal-traces. The use of saturated refusal-traces for the states has the advantage of
avoiding the need to introduce certain "auxiliary states," which is the case when pre-
fixes of dominant refusal-traces are used. This advantage arises because the saturated
refusal-traces satisfy the properties described in Lemma 1.

Example 2. The trajectory model of the NSM shown in Fig. 2(d) is P :=
pr(dom(P’)), where P’ {{b}(a, {a,b}), 0(b, {a,b})}. Since P is obtained as the
trajectory model of an NSM, it follows from Proposition 1 that P satisfies (T1)-
(T5). Consequently, Algorithm 1 may be applied to obtain the canonical NSM 7)

with trajectory model P. The state space of 7) is the set of saturated refusal-traces

gsat pr({O(a, {a,.b}), {b}(a, {a, b}), 0(b, {a, b})}),



SUPERVISORY CONTROL OF NONDETERMINISTIC SYSTEMS 479

which contains five elements. The canonical NSM 7) with these five states is depicted
in Fig. 3(a). Each node is labeled with the name of the statema saturated refusal-
trace--that it represents. The NSM depicted in Fig. 3(b) with four states also has
the same trajectory model.

a e{}b
}(a,{a,b}) [a }(b,{a,b}) a

{b}(a,{a,b})

(a) (b)

FIG. 3. Diagram illustrating Example 2.

The equality of the failures models of the two NSMs shown in Figs. 3(a) and
(b) and the NSM shown in Fig. 2(d) is an instance of a basic property of the failures
model concerning the operations of external choice and event concealment [9, Law L10,
p. 113]. Since the three NSMs have identical trajectory models, the additional detail
present in the trajectory model still does not distinguish among the three systems.
However, the failure-trace model of Phillips does distinguish between the systems
analogous to those in Figs. 2(d) and 3(b) with r in place of e [20, Ex. 3, p. 250].

We now prove the correctness of Algorithm 1, i.e., that the trajectory model of
the canonical NSM 7) equals P.

PROPOSITION 2. Let P C_ 2r’ x (E x 2r) satisfy (T1)-(T5). Then T(7)) P,
where 7) is as constructed in Algorithm 1.

Proof. We begin by showing that

It follows from the definition of 5p that a’ Rp(e) if and only if for each f
((7, Y]) Psat such that E’ C_ E", f(a’, O)

_
P. If a’ E’, then (7’ E" for all such

E". By T5, f((7’,O) P, so (7’ Rp(e). Thus, E’ C_ Rp(e). On the other hand,
if (7’ E’, then since e E Psat, it follows that e(a’, 0) P, so (7’

_
Rp(e). Thus,

R7(e) C_ E’, proving (1).
Next, we claim that

(2) 6,(x%,e)-{fG&tlelZ::f} Vc2’x (Ex2’)*.

We prove (2) by induction on lel. Let e E’ C_ E, a zero-length refusal-trace. Using
the definition of 5p and (1)gives 5(xp, E’) {E" ep(x) E’ C_ (E")} {E"
Psatl E’ C_ E"}. This establishes (2) in the zero-length case.

For the induction step, let e g(cr, E’) 2r x (E x 2r) *. Using the induction
hypothesis on g, (1), and the fact that Psat is prefix-closed gives

5(x, e)= {f e), x’ c (f)}
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{f E gsat[ e f}.

This completes the induction step and establishes (2).
If e E Pat, (2) implies that e 3,(x,,e). Thus, 5,(x,,e) is nonempty, so

e T(P). Hence Psat T(P). Since every refusal-trace in P is dominated by a
saturated refusal-trace and T(P) satisfies (T3), this implies that P g T(W).

On the other hand, if e G T(W), then 5(z,e) is nonempty, so there exists

f G Pt which dominates e. Since P satisfies (T3), this implies that e P, so
T(W) P, which completes the proof.

The following result is an immediate consequence of the proof of Proposition 2.
COROLLARY 1. If P is a trajectory model with canonical NSM P, then for each

e P, 5(x, e) {f gsat[ e f}.
The following result is an immediate consequence of Propositions 1 and 2.
THEOREM 1. Let P 2r x (E x 2E) *. Then P is the trajectory model of a

nondeterministic state machine (with e-moves) if and only if P satisfies properties
(T1)-(Th).

3.4. Deterministic trajectory models. Recall that a state machine P is de-
terministic if and only if its transition function is a partial map 5p Xp x E Xp,
i.e., there are no e-transitions and 5p(x,a) is either empty or contains exactly one
element.

DEFINITION 6. P 2E ( 2E) i8 called a deterministic trajectory model if
and only if there exists a deterministic state machine such that T(P) P.

For any NSM P, the language model can be obtained from the trajectory model
via the trace map defined below. In the special case when the system P is deter-
ministic, the trajectory model can be recovered from the language model via the
inverse operation of the trace map, called the trajectory map, also defined below.
Consequently, for deterministic systems, he language model is equivalent in detail of
description to the trajectory model.

DEFINITION 7. The trace map from refusal-traces to traces, denoted tr 2
(E x 2=) E*, is defined inductively on the length of the refusal-traces as:

V’ E" tr(E’)"- e,
w e x x *, e s, z. s’)).=

It is clear that tr(T(P)) n(P), where the trace operator is extended to the set of
trajectory models in the natural way. Given a trajectory model P G 2s x (E x 2s) *,
we use L(P):= tr(P) to denote the language model associated with P.

DEFINITION 8. Let K * be a nonempty prefix-closed language. The trajectory
map from traces to refusal-traces for the language model K, denoted trjK K
2E x (E x 2s) *, is defined inductively on the length of traces of K as:

trjK(e):= {a E la K},
Vs K,a e E s.t. sa e K’trj(sa) := trj(s)(a,{a’ E

K}).
LEMMA 2. Let be an NSM with language model K := L(P). Then
(1) trjK(K) T(P),
(2) g is deterministic, then trjK(K) (T())sat.
Proof. Let s K be a trace of length r. If r 0, then s e; otherwise, let s

aa2,..., a. Let s denote the length-/prefix of s, and define { {a E] sa K}.
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Set

Since s E L(7) L(T(7))), it follows from (T3) that the refusal-trace 0((71,0)’’" (r, 0)
T(P). By repeated application of (Td), this implies that e G T(P), proving the first
part.

Now assume that P is deterministic. To prove the second part, it suffices to show
that e is the unique refusal-trace in (T(7)))sat with tr(e) s. Also, since there must
exist a saturated refusal-trace with trace s, it suffices to show that if f G (T(P))sat
with tr(f) s, then f e. We use induction on r lel to prove this together with
the assertion that

Note that since 7) is deterministic, ,(x) x, and given any s K, there exists a

unique xs 5(x,s). Furthermore, p(xs)= {a E sa K}.
If r 0, then f E0 with E0 p(x) o. Since f is saturated, o E0,

so f e. Also, 5(x, e) x 5(x, ) 5(x, tr(e)) as required.
For the induction step, express e and f as e (a, ), f ](a, E). Since the

prefix of a saturated refusal-trace is saturated, f (T(P))t. Therefore, by induction
hypothesis, we may assume that f . Using (3) applied to , it follows that

(4) T 0 (Np(5(x ) a)) E C p(x)}5p(xp, f) {x e ep
e
e

{x ifE(x),(7)
otherwise.

Since f is a refusal-trace of P, 5(x, f) is nonempty, so E (x) . Since f
is saturated, E, so f e. Also, by replacing f by e and E by in equalities
(4)-(7), we get 5(x,e) x 5(x,tr(c)). This completes the induction step.

PROPOSITION 3. Let K E* be a nonempty prefixed-closed language, and let
det(K) dom(trjg(K)). Then

(1) get(K) is a deterministic trajectory model.
(2) If P is any trajectory model with n(P) K, then det(K) P, with equality

if and only if P is deterministic.

Proof. By standard result, there exists a deterministic state machine Q such
that L(Q) K. Setting Q T(Q) gives L(Q) K. Since Q is deterministic,
it follows from Lemma 2 that trjK(K) (T(Q))sat, which implies that det(K)
dom((T(Q))st) Q. Thus, det(K) is a deterministic trajectory model.

Let P be any trajectory model with L(P) K. Then there exists a state machine
P such that T(P) P. By Lemma 2, trjK(K) P, so det(K) P. If P is

deterministic, then we can take P to be deterministic, so Lemma 2 implies that
trjK(K) (T(P))sat, and hence det(K) P. On the other hand, if det(K) P,
then P is deterministic by the first part.

Remark 4. It follows from Proposition 3 that, given a nonempty prefix-closed
language K, there is a unique deterministic trajectory model with language K. Fur-
thermore, this trajectory model det(K) can be constructed from K by applying the
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map trjK(.) and taking dominance closure. This trajectory model is the unique min-
imal element (with respect to inclusion) of the family of trajectory models having
language K.

4. Prioritized synchronous composition. In this section, we define the PSC
of two NSMs (with e-moves), which induces a PSC operation on trajectory models.
We also prove that the trajectory modeling framework is a language congruence with
respect to PSC. Our definition of the PSC of NSMs is more general than the one in [7],
since the silent transitions, i.e., transitions labeled , were not included. As discussed
in 1, a priority set is associated with a system. This means that for an event which
belongs to the priority set of a system to occur in the PSC with another system, the
former system must participate.

DEFINITION 9 Let 7 (Xp E 5p x) and Q (X E, 5 x) be two NSMs
(with e-moves). Let A, B C_ E be the priority sets of 7), Q, respectively. Then the
PSC of 7) and Q, denoted 7) A IIB Q, is another NSM defined as: :P A IIB Q T
(Xn, E, 5, x), where Xn X, X,x (x, x), and the transition function
5n’Xn E t_J {e} --, 2X is defined as:

Vx (x, x) X,

(,) 5e(x, ) I 5v(x, ) , 5e(x, ) # ,
5v(z,, ) {x} f 5v(x, ) , e e(x), B,W e r,. 5(x, ):= {x} 5e(x, ) f 5(x, ) # , e ,(x,), A,
0 otherwise,

6(x, ).= [6(x,, ) u {x}] x [6(x, )u {x}]- {(x, )}.

Thus, if an event is executable in the current states of both IP and Q, then it
can be executed in 7, in which case both :P and Q change their states synchronously
according to their respective transitions. An event can be executed asynchronously
by one of the systems if it is executable by that system and is not in the priority
set of and cannot be executed in any state in the -closure of the current state of
the other system. In this case, a state transition occurs in one system while no state
change occurs in the other system. The silent transitions, i.e., those labeled by e, can
occur either synchronously or asynchronously. It is clear that an event in ArflB occurs
only synchronously. Such synchronous execution is not required for events that do not
belong to ArflB. However, if an event that does not belong to Arab is defined at states
Xp E Xp and xq E XQ, then it occurs synchronously at state xr (Xp, xq) Xn.
Synchronous execution of such events is called broadcast synchronization.

Remark 5. If A B E, then an event is executable in the composed system
if and only if it is executable in both systems. Thus this case corresponds to SSC.
In contrast, if A B , then an event is executable in the composed system
if and only if it is executable in either of the systems.5 This corresponds to an

interleaving composition of the systems modified by the requirement that events which
are executable by both systems are executed synchronously.

If P represents an uncontrolled plant, Q a supervisor, and 7) A lib { the controlled
plant or the closed-loop system, then (i) A i B is the set of strict synchronization
events and can be used to represent the set of controllable events; (ii) A- B is the

5 If an event is executable in the current state of one system but not in the current state of the
other system, yet is executable in the second system following a silent transition, the event cannot
occur in the composed system until the silent transition has occurred.
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set of priority events only of 79 and can be used to represent the set of uncontrollable
events; (iii) B A is the set of priority events only of Q and can be used to represent
the set of driven events; (iv) E (n 2 B) is assumed to be empty, because events in
E- A t3 B belong neither to the priority set of the plant nor to that of the supervisor.

To simplify future notation, we define for any sets E/, El, E9., E" C_ E

The following lemma gives two useful properties of the PSC of NSMs. It is a straight-
forward consequence of the definition of PSC.

LEMMA 3. If 79 AIIB Q and xr (Xp, Xq) E X, then
(1) e(xr)= e(Xp) e(xq),
(e)

(x, x) e Xn belongs to the e-closure of xr (Xp, Xq)In other words, a state x
if and only if x (respectively, x) belongs to e-closure of Xp (respectively, x). Also,
an event is refused in 79 A lIB Q if and only if either it is refused in both 79 and Q, or
it belongs to the priority set of :P and is refused in 79, or it belongs to the priority set
of Q and is refused in Q.

We next consider the trajectory model of the PSC of two systems, and obtain its
relationship to the trajectory models of the component systems. Using the definition
of 79 AIIB Q and that of its refusal map AIIB e, the trajectory model T(7) AIIB Q)
is easily obtained from its definition developed in the previous section. To obtain the
relationship between T(79), T(Q), and T(7) ,AIIB Q), we first define the PSC of a pair
of refusal-traces.

DEFINITION 10. Let ep T(T)) and eq T(Q). Then the PSC Of ep and eq (with
respect to T(T)) and T(Q)), denoted ep A[[B eq, is defined inductively on lepl + leq[ as

follows:
VEp, Eq C_ E s.t. Ep T(79), Eq T(Q)"

p AIIB ]q {’ -p AB -q},

Vep e T(79); eq e T(Q); crp, aq E; Ep, Eq G E s.t. ep(Crp, Ep) e T(79), Ca(Ca, Eq) e

:= T1

where

{e(Crp, ’)1 e ep n]]g eq(aq, rq); r’

_
rp ng rq} if ap

_
B and

T1 eq(Crq, Eq)(Op, O)

_
0 otherwise;

{c(Crq, E’)le E ep(O’p, Ep) AIIB eq’, E’ C_ Ep A@B Eq} if Oq

_
A and

T2
ep(ap, Ep)(aq, O)

_
T(79),

0 otherwise;

T3 :--- / {e(r, ’) e e ep All- eq; ’
_
rp A@B rq) if Crp aq

0 otherwise.

It should be noted that ep AIIB eq is a set of refusal-traces that depends on

T(7)),T(Q) as well as on the particular refusal-traces ep, eq. The dependence on

T(79), T(Q) is not explicitly indicated in the notation.
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The PSC of two zero-length refusal-traces Ep E T(7)) and Eq E T(Q), which corre-
spond to initial refusal sets of T(P) and T(Q), respectively, is obtained by computing
Ep A@B Eq, which corresponds to an initial refusal set ofT(7) AIIB Q). Next, the PSC
of two refusal-traces ep(ap, Ep) e T(T)) and %(a, E) e T(Q) is obtained by consid-
ering these three possible cases: (i) a refusal-trace belonging to ep A[[B %(r, E) has
already been executed in the composed system, and at this point ap is executable in
7) (indicated by ep(ap, Ep) T(P)), the occurrence of ap cannot be blocked by
(indicated by Crp B), and Q cannot participate in the occurrence of ap (indicated
by eq(aq, Eq)(ap, 0) T(Q)); (ii) a refusal-trace belonging to ep(Crp, Ep) AIIB eq has
already been executed in the composed system, and at this point a is executable in
Q, and P can neither block the occurrence of a, nor can it participate in the occur-
rence of a; (iii) ap ere := a; a refusal-trace belonging to ep AIIB..% has already
been executed in the composed system, and at this point a is executable in both
and Q.

Remark 6. It is clear from Definition 10 that if A B E, which corresponds to
the case of SSC, then the sets T T2 0 since the conditions "ap B" and "a A"
both evaluate to "false." Hence the PSC of ep(Crp, Ep) E T(’f)) and %(aq, E) E T(Q)
is nonempty if and only if the set T3 is nonempty, which requires that Crp
Using induction, it can be easily concluded that the SSC of refusal-traces ep G T())
and e e T(Q) is a nonempty set if and only if tr(ep) tr(%), in which case,
tr(ep 11 %) tr(ep) tr(eq), and for each i <_ lepl leql, the ith refusal set of any
trace in ep 11 % is any subset of the union of the ith refusal set of ep and the ith
refusal set of e, since E(ep)() E(%) E(ep)[2

We can extend the definition of the PSC of a pair of refusal-traces to the PSC
of the trajectory models. With a slight abuse of notation, we use the same symbol
A]]B for the PSC of the NSMs 7), Q and for the PSC of their corresponding trajectory
models T(7)), T( Q).

DEFiNiTiON 11. The PSC of the trajectory models T(7)), T(Q) is defined to be

AIIB T(C2)"--
The following result shows that the trajectory model of the PSC of NSMs is the

PSC of their corresponding trajectory models. Equivalently, it states that the PSC
operation on NSMs induces a PSC operation on trajectory models, and the induced
operation is precisely the one described in Definition 11.

THEOREM 2. For any NSMs 7), Q, T(P AIIB Q) T()) AllB T(Q).
Proof. Refer to Appendix A.
COROLLARY 2. The trajectory model is a language congruence with respect to the

operation of PSC.
Proof. Let "l,P2, Q1, Q2 be NSMs with T(P) T(7)) and T(Q1) T(Q2).

Theorem 2 implies that T(7)l A[[B Q1) T(P2AllB Q2). Hence L(P AI]B Q1)
L(T(7)I AIIB 1))--L(T(T)2AIIB Q2))= L(P2AIIB Q2). [-]

We will need the following result which shows that PSC of trajectory models
preserves determinism.

COROLLARY 3. If P and Q are deterministic trajectory models, then so is
P All. Q.

Proof. By definition, there exist deterministic state machines 7, Q such that
T(V) P, T/Q Q. From Definition 9, it is clear that V llu Q is deterministic.
Since Theorem 2 implies that P llu Q T/V llu Q), we conclude that P llu Q is
deterministic.

Remark 7. Theorem 2 shows that the trajectory model of P A IIB Q can be
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described using only T(’P) and T(Q), and not 7), Q directly. This is in contrast
to the situation with the failures model. Theorem 2 and Corollary 2 both fail if
the trajectory model is replaced with the failures model. The equality of failures
models does not necessarily imply the equality of failures models, or even language
models, under prioritized synchronous composition with a fixed system [7, Ex. 7]. The
result in Corollary 2 was mentioned without proof in [7], [8]. However, its rigorous
demonstration depends on the precise definitions given above for the PSC of NSMs
(with e-moves) as well as for the trajectory model of an NSM.

5. Properties of prioritiz.ed synchronous composition. In this section we
describe some of the properties of the PSC of two or more trajectory models, which
are used in 6 for the synthesis of supervisors which control the behavior of nonde-
terministic plants via PSC.

5.1. Associativity. We begin by providing a proof for the following result which
is stated without proof as part of [8, Thm. 13.4].

THEOREM 3. For any trajectory models P, Q, R and priority sets A, B, C

_
E

(P AIIB ) ABIIc R- P AIIBUC (Q BIIc R).

Proof. Refer to Appendix A. Cl

This can be interpreted as an associative property as follows. Let P, Q denote
trajectory models with event set E, and let A, B be subsets of E. We refer to the
pairs (P, A), (Q, B) as prioritized systems, and define their synchronous composition
to be the prioritized system

(P, A) (Q, B) (P AllB Q, A U B).
Then Theorem 3 asserts that [(P, A)11 (Q, B)] (R, C)- (P, A)[1 [(Q, B)I1 (R, C)].
Thus, the result is simply the associative property for the synchronous composition
of prioritized systems.

5.2. Augmentation and prioritized synchronous composition. We define
augmentation of both NSMs and trajectory models, and show that the prioritized
synchronous composition of two trajectory models is identical to strict synchronous
composition of their augmentations, provided the two priority sets exhaust the set of
events.

Let 7) be an NSM with event set E, and let D c_ E. We denote by D the
deterministic state machine with one state and self-loops labeled by every event in D.
The augmentation of 7) by D, denoted 7), is defined to be the NSM DD ollo )"
The state space of -)D c&n be identified with the state space of 7), and "DD is then
obtained from T’ by adding self-loops at each x Xp labeled by every event in
D CI p(x). It is clear that D is deterministic whenever 7) is deterministic.

If P is a trajectory model, the augmentation of P by D, denoted pD, is defined
to be the trajectory model pD Polio det(D*). Note that since both priority sets
are empty, pD represents interleaving of P and det(D*) except that the broadcast
synchronization requirement means that events in D which can also occur in P occur

synchronously in both P and det(D*).
Remark 8. Since det(D*) can always execute every event in D and can never

execute any event in E- D, it follows that for any A C_ E D and any B C_ D,
pD := p ]1 det(D*) P A[IB det(D*).

It follows from Theorem 2 that given an NSM 7) and an event set D C_ E, T(T)D)
[T(7))] D, and it follows from Corollary 3 that if P is a deterministic trajectory model,
then so is its augmentation pD.



486 MARK A. SHAYMAN AND RATNESH KUMAR

The following result shows that augmentation can be used to reduce prioritized
synchronous composition to strict synchronization.

PROPOSITION 4. IfAUB E, then P AI]B Q-- pB-A EllB Q pB-A EI]E QA-B
Proof. It suffices to prove the first equality since the second equality follows from

symmetry and a second application of the first equality. Using Remark 8 and Theorem
3 gives

P-AIIB Q (P AII-A det((B- A)*))IIB Q
det((B A)*) B-AIIr (P AIIB )
P d[[B Q.

The final equality is an easy consequence of two facts: the priority set of P AIIB Q
is E, so det((B- d)*) cannot execute any events which do not occur in P AIIB Q;
det((B- A)*) can alway execute each event in its priority set, so it cannot block any
events in P A lib Q.

6. Supervisory control with driven events. In this section, we derive results
concerning supervisory control by prioritized synchronous composition in the presence
of driven events.

6.1. Control under complete observability. We begin with a result which
shows that in a prioritized synchronous composition, a deterministic system partici-
pates in every event of any refusal-trace whose trace belongs to its language.

LEMMA 4. Let P, Q be trajectory models with Q deterministic. If e
P AI]B Q with tr(e) e L(Q), then tr(e) tr(eq).

Proof. The result follows as a special case of Lemma 5 below.
The following result gives necessary and sufficient conditions for a given (prefix-

closed) language to be realizable as the closed-loop language for a plant supervised by
prioritized synchronous composition. The basic assumption is that every event in E
belongs to the priority set A of the plant P or the priority set B of the supervisor. The
interpretation is that E is partitioned into disjoint subsets Ec, E and Ed consisting of
the controllable, uncontrollable, and driven events, and A EE while B EEd.

THEOREM 4. Let P be a trajectory model, A 2 B E, and let K be a nonempty
prefix-closed sublanguage of L(pB-A). Then there exists a trajectory model S such
that L(P AIIB S) K if and only if

(8) K(A B) N L(PB-A) C K,

in which case S can be chosen to be the deterministic trajectory model det(K).
Proof. We begin with sufficiency. Suppose that equation (8) holds. Since K is a

nonempty prefix-closed sublanguage of L(pB-A), there exists a trajectory model S
such that L(PB-A) C L(S) t(. Without loss of generality, we may assume that S is
deterministic. (In particular, we can choose S det(K).)

We claim that

(9) n(PB-A) N L(SA-B) g.

Obviously, K L(PB-A) L(S) C_ L(PB-A) L(sA-B). We establish the reverse

inclusion by contradiction. Suppose L(PB-A) C)L(SA-B) strictly contains K. Let
t sa be a minimal length trace in L(PB-A) CI L(SA-B) -t(. Then s K
L(PB-A) L(S). Since sa E L(sA-B), there exists g (a, ) E SA-B such that
tr() s. Hence, there exist e (a’,E’) S, f f(a",E") e det((A- B)*)
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such that g E e0110f. First suppose a A-B. Then a =fi a, so a a’ and
E 11 f. Since S is deterministic and tr({) s L(S), it follows from Lemma

4 that tr({) tr(g). Thus, sa tr(g) tr(e) L(S), which implies that t G K, a
contradiction. On the other hand, if a G A- B, then it follows from (8) that t E K,
again a contradiction. Thus, (9) holds.

Using Proposition 4, we get K L(pB-A)’I L(SA-B) L(PB-A Ells sA-B)
L(P AIIB S), showing that S solves the supervisory control problem.

Conversely, suppose there exists a trajectory model S such that L(P AIIB S) If.
Then (9) holds. Let t sa K(A B)C L(pB-A). Since s K C_ L(SA-B) and
a A- B, it follows that sa L(sA-B). Thus, t L(PB-A) K! L(SA-B) K, so
(8) holds.

Remark 9. Theorem 4 states that K is realizable as the closed-loop language if
and only if it is controllable (in the sense of Ramadge and Wonham [24]) with respect
to the lan9age of the agmented plant, L(P-a), which depends on the trajectory
model P--not simply on L(P). Knowledge of L(P) is not sufficient to determine if
the supervisory control problem is solvable for a given target language K. This is
illustrated by the following example.

Example 3. We consider a very simple air traffic control problem. The plant rep-
resents the aircraft and pilot, while the supervisor represents the air traffic controller.
Let N {a, b} where a E represents a flight maneuver, while b Ea represents
a command from the tower not to execute the flight maneuver. The execution of
b by the supervisor indicates that the command has been broadcasted, whereas the
execution of b by the plant indicates that the command has been received.

We consider two alternative trajectory models for the plant"

NSMs with trajectory models P and P. are depicted in Figs. 2(c) and (d), respec-
tively. In P, the pilot can initially execute the maneuver or receive the command not
to do so. However, in Pa there is an initial nondeterministic choice between P and
the trajectory model (a Ar) in which the maneuver is possible but the command
cannot be received. Thus, P. models the possibility of aircraft radio receiver failure.
Note that L(P1) L(Pa). However, it can be verified that L(P-a) (a + e)b*,
while L(P-a) b*(a + e)b*. Suppose that the target language K is not completely
specified but is required to contain the trace b and not contain any trace in which the
event a occurs after the event b has occurred. In other words, the tower should be
initially able to broadcast the command b, and if the command has been broadcasted,
the pilot must not be able to execute the maneuver

The supervisory control problem is clearly solvable for the plant model P. For
example, if we choose S P, then P a ll S P1, so the closed-loop language
is L(P) {e, a, b}, which meets the specifications for K. On the other hand, the
supervisory control problem is not solvable for the plant model Pc. For any target
language K which satisfies the specifications, we have ba K(A- B)CL(P-) K.
It follows from Theorem 4 that there is no supervisor S such that L(P all c) K.

It is worth noting that if Pa is the correct plant model, i.e., receiver failure can
occur, then the supervisory control problem can be made solvable by changing the
protocol between the pilot and tower. If the pilot is required to obtain clearance from
the tower in order to execute maneuver a, then a becomes a controllable event and it
is then trivial to construct a supervisor that meets the specifications.

When there are no driven events, then A Ec U Eu E and B Ec. in this
case Theorem 4 specializes to give the following corollary.
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COROLLARY 4. Let If be a nonempty prefix-closed sublanguage of L(P). Then
the following are equivalent:

(1) There exists a trajectory model S such that L(P11 S)= K.
(2) L(PIIE get(K))= K.
(3) KE L(P) c_ K.
Remark 10. Corollary 4 shows that when there are no driven events, the nec-

essary and sufficient conditions for supervisory control by prioritized synchronous
composition are the same as those in the Ramadge-Wonham framework [23]. The
equivalence of the first and second conditions of Corollary 4 was stated without proof
in [7, Thm. 1] and [8, Thm. 14.2]. The equivalence of the first and third conditions
of Corollary 4 was stated in [8, Thm. 14.1] accompanied by an incomplete proof.

Remark 11. The proof of Theorem 4 shows that if K satisfies conc[ition (8) and N
is any prefix-closed sublanguage of E* with L(PB-A)N K, then the deterministic
supervisor S det(N) results in K as the closed-loop language L(P AIlB S). Since
K C_ N, it follows from Lemma 4 that every event executed by the closed-loop system
occurs in S. In particular, every uncontrollable event is executed by the supervisor
even though such events do not belong to its priority set. This behavior is induced by
the broadcast synchronization requirement in prioritized synchronous composition.

It is interesting to specialize this observation to the case where there are no driven
events. Since A E, the plant also participates in every event. Thus, the plant and
supervisor function as though they are connected by strict synchronization rather
than by prioritized synchronous composition. In particular, this is the case when the
supervisor is chosen to be det(K). The determinism of S is essential here. If S is
a nondeterministic trajectory model with L(S) N, there is no guarantee that the
closed-loop language will be K. This is demonstrated by the next example.

Example 4. Let E= {a,b}, E= {a}, E {b}, P= (a --, A) + (b --* (a-,
A)), S (a ---, Ar)@(b-, A). Then L(P) {,a,b, ba}, L(S) {,a,b}.
Let K L(S). Then K satisfies the controllability condition (the third condition
of Corollary 4) as well as L(P) L(S) /(. A straightforward calculation shows
that P II o ((a ZX )+ Thu , L(P
{e, a, b, ba} L(P) 7 K. What happens is that since S is nondeterministic, the event
b can be executed as the initial event solely in P even though b L(S). (This cannot
happen for deterministic S by Lemma 4.) Thus, strict synchronization is lost. This
permits a trace of P llr S, which is not a trace of S.

6.2. Control under restricted unobservability. We continue to assume that
AtVB , where A ct2 and B EcUEd. In the closed-loop system
P AIIB ’-, the events in A B, i.e., the uncontrollable events, are generated by the
plant P and are broadcast to the supervisor S, where they are synchronously executed
whenever enabled. It may happen that information about the occurrence of certain
uncontrollable events is unavailable for broadcasting due to lack of sensors, or it may
be desirable to implement a simplified supervisor which ignores such information.
This suggests a generalization of prioritized synchronous composition in which the
broadcast synchronization requirement is disregarded for a specified subset F c_ A- B
of uncontrollable events. Since events in A- B cannot occur spontaneously in S, this
effectively prevents S from ever executing the events in F. Thus, instead of modifying
the definition of prioritized synchronous composition, it is equivalent to restrict the
admissible supervisors to those which do not execute events in F.

Let Hr" E -- E denote the natural projection defined by
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for a E F,Va E" IIt(a):=
a for a E E-F.

IIr(.) extends to a map on E* in the obvious way. We define the restricted supervisory
control problem (RSCP) to be as follows: Given a prefix-closed sublanguage K of
L(PB-A) and F C_ A- B, determine if there exists a supervisor S such that

L(P A]IB S)= K and IIr(L(S))= L(S).
Remark 12. There are two different ways to model an uncontrollable event in the

plant which is unobservable to the supervisor. It can be completely suppressed and
treated as an e-event in P. Alternatively, it can be treated as a labeled event a E
in the plant which does not label any transitions in the supervisor. The advantage of
the second approach (which is the one taken in the RSCP) is that such an event can
be included in the performance specifications, i.e., in the target language K. Hence,
even though it is unobservable to the supervisor, its occurrence in the closed-loop
system can be controlled--albeit subject to the conditions that must be satisfied by
K for the solvability of the RSCP.

The next result generalizes Lemma 4 to the case where certain events in A- B
are not present in the second system Q.

LEMMA 5. Let F C_ A-B, and P, Q be trajectory models with Q deterministic and
satisfying IIr(L(Q)) L(Q). If e ep A][B eq

_
P A]IB Q with IIr(tr(e)) L(Q),

then IIr(tr(e)) tr(eq).
Proof. The proof is by induction on lel. The assertion holds trivially when lel 0.

For the induction step, write e- (cr, E1) and let p, q denote the prefixes of ep, eq
obtained by deleting the final event and refusal set from each refusal-trace.

If a occurs synchronously in both P and Q, then p AIIB q" Then a F,
so Ilp(tr(e))= IIp(tr())a. Since L(Q)is prefix-closed, IIr(tr()) e L(Q). Applying
the induction hypothesis gives IIr(tr(g))= tr(gq). Thus, IIr(tr(e)) IIp(tr(g))a
tr(gq)a tr(eq). The same argument applies in the case where e ep AIIB gq, i.e.,
when a occurs only in Q.

Suppose gpAIIB eq, i.e., cr occurs only in P. If a F, then IIr(tr(e))
IIp(tr(g)) tr(eq), where the second equality follows from the induction hypothesis.
Now suppose that cr F. Since a occurs only in P, it follows that eq(a, )

_
Q.

Since Q is deterministic, Proposition 3 implies that tr(ev)a

_
L(Q,). Since L(Q) is

prefix-closed, IIp(tr()) e L(Q). Using the induction hypothesis, we have tr(eq)a
IIp(tr(g))a Hr(tr(e)) e L(Q), a contradiction. Thus, this final case cannot occur.

For the standard supervisory control problem with partial observations. (and no
driven events), a target language K is obtainable as the language of the closed-loop
system if and only if K is controllable and observable relative to the language of
the plant [16], [5]. The following result shows that in the presence of driven events,
the RSCP is solvable if and only if K is controllable and observable relative to the
language of the augmented plant.

THEOREM 5. Let A U B E, F C_ A- B, and let K be a non-empty prefix-closed
sublanguage of L(PZ-A). Then there exists a trajectory model S such that

(10) L(P AIIB S) K, IIr(L(S)) L(S)

if and only if the following two conditions are satisfied:

(11) K(A- B)N L(PB-A) C_ K,
V$, { K, a E IIr(.) IIr(t-), a K, {a L(PB-A) {a K.
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In this case, S can be chosen to be the deterministic trajectory model det(Hr(K)).
Proof. We first show the necessity of the controllability condition (11) and ob-

servability condition (12). Suppose there exists a trajectory model S such that (10)
is satisfied. Then (11) follows from Theorem 4. Let $, E K with IIr() Hr(t-),
and suppose that $a K, t-a L(pB-A). We need to show that t-a K. Since
L(PB-A) N L(SA-B) K, it suffices to show that a L(sA-B). Since K is con-
trollable, it suffices to consider a B. Note that SA-B (sA-B-F)r. Also, since
IIF(L(S)) L(S), events in F are never executed in S. Hence IIF(L(SA-B-F))
L(sA-B-F). In other words, events in F are never executed in SA-B-F. Hence the
language L(SA-B) L((sA-B-r)r) is obtained by pure interleaving of the lan-
guages L(SA-B-r) and L(det(F*)) F*. Since the trace $a L(sA-B), we have
IIr(a) L(sA-B-r). Also, since Hr(a) IIr()a IIr(t-)a Hr(a), we have
IIr(a) L(sA-B-r). Since a is a pure interleaving of IIr(a) L(SA-B-r) and a
trace in F*, t-a L(sA-B). This establishes (12) and completes the proof of necessity.

To prove sufficiency, suppose that (11) and (12) both hold. Let S det(IIr(K)).
By Proposition 4, it is equivalent to prove L(PB-A I]B S) K. Given any t E K,
there exists e E pB-A with tr(e) t and there exists f e S with tr(f) IIr(t). Since
F N B and S can never execute an event in F, it follows that e ]]B f is nonempty
and every refusal-trace which it contains has trace t. Thus, K C_ L(PB-A E]IB S).

It remains to prove

(13) L(PB-A 2llU S)C_ K.

We establish (13) by contradiction. Let g O(a, E’) e pB-A E IIB S and suppose g
has minimal length among the refusal-traces of pB-A EIIB S, whose traces are not in
K. Let t and t ta denote the traces of and g, respectively. Then t K and

(14) e K, t e L(pB-A),

where the final membership follows from the fact that the priority set of pB-A is E.
If a A- B, then it follows from (11) that t K, contrary to assumption.

Thus, without loss of generality, we may assume that a E B. Since := IIr(t-)
Iir(K) L(S), it follows from Lemma 5 that S executes every event in while
pB-AEIIB S executes the refusal-trace . Since a B, the final event in g must
occur synchronously in pB-A and S. This implies that a G L(S) IIr(K). Thus,
there exists s K such that IIr(s) a. Since the last observable event in s is a, by
replacing s with a prefix if necessary, we may assume that s Sa. Then

(15) S e K, Fir(S) Hr(t-).

From (14), (15), and the observability assumption it follows that t K, contrary to
assumption. This establishes (13) and completes the proof of sufficiency. [:]

Remark 13. It follows from Lemma 5 that if S := det(IIr(K)) is used to solve the
RSCP, then every event in E-F which occurs in the closed-loop system is executed by
the supervisor. The events in F are not observed by the supervisor and are executed
only by the plant.

With Theorem 5 in hand, we can obtain a successful control design for the ex-
ample presented in 2. Recall that for the given partially observed plant, there is
no supervisor of the Ramadge-Wonham type that is consistent with the observa-
tion mask and satisfies the upper-bound specification of preventing jamming and the
lower-bound specification of permitting cyclic operation.
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Example 5. Let T’ denote the open-loop NSM described in 2 and depicted in
Fig. l(c). T’ is partially observed with a natural projection mask corresponding to F
{’1, "2 }. The partition of the event set E into subsets of controllable, uncontrollable,
and driven events is given by E {a}, E, {/3, ")’1, ")’2, r],/}, Ed {#}. Thus,
in a PSC-based control design, the priority sets of the plant and supervisor are A
{a,/3, /1,-, ,/} and B {a, #}, respectively.

(a) (b) (c)

FIG. 4. Diagram illustrating Example 5.

The augmented plant ’)B--A is shown in Fig. 4(a). The requirement that the jam-
ming event A never occur in the closed-loop system is represented by the specification
L(P A IIB S) C K, where P is the trajectory model of P, S is the trajectory model of
a supervisor, and K := {s G L(pB-A) Ino event in s is /k}. Since s := oQ’2T]o K,
sA L(PB-A) -K, and/ G A-B Eu, K is not controllable with respect to A-B
and L(pB-A), and a straightforward calculation yields

as the supremal controllable sublanguage [22]. However, K is not observable relative
to the augmented plant language L(PB-A) and mask IIr(.). In particular, if E
(#*a#*/3#*(’#*r/+ /2#*r/#))*#*a#*fl#*’2#*r/c KT, then a L(PB-A) -KT, and

(#*a#*#*(’#* + "2#*#))*#*a#*#*’l#* C K such that HF() Hr(t-)
and a KT.

It is easy to see that the supremal normal sublanguage [16], [4] of K is given by

Since/ is obtained from K by disabling certain occurrences of the controllable event
a, it is controllable. The fact that/4 is controllable also follows from the fact that it

equals the closed and observable sublanguage of K computed using the formula given
in [13, Eq. 10], and the fact that controllability is preserved under such a computation

[13, Thm. 5]. Since normality implies observability [16], it follows from Thm. 5 that
/4 can be obtained as the closed-loop language by using an appropriate PSC-based
supervisor, one choice being S := det(Hr(K)).

While the supervisor S det(Hr(/)) is minimally restrictive, it possesses an un-

desirable trait: S can execute arbitrarily long sequences of the driven event #. Since
the plant can never execute more than one # in succession, all but at most one of a se-
quence of #’s requested by the supervisor will be refused by the plant. We can remove
this redundancy by replacing/ by the sublanguage ’ "= pr((a3(/1 + ")’2)r/#)*). ’is obtained by removing the self-loops on # from K, and is also both controllable and
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observable. By Theorem 5, the PSC-based supervisor S’ := det(IIr(/’)) will impose
/ as the closed-loop language. A minimal state machine realization for the deter-
ministic trajectory model S is shown in Fig. 4(b), and the resulting closed-loop NSM
T) AIIB is depicted in Fig. 4(c). The closed-loop language/’ does not contain , yet
permits "1 and ’2 to be executed arbitrarily many times. Hence, the dual objectives
of preventing jamming and permitting cyclic operation are met.

The supervisor implements the following control strategy: tracks the in-
putting, commencement of processing, and completion/outputting of each part by
executing a, 3 and synchronously with 7. Between the synchronous executions of
fl and r/, the plant executes either 71 or 72 without the participation or knowledge
of the supervisor. Following the synchronous execution of r/, the supervisor requests
execution of the realignment event #. If the mechanism is misalig.ned, i.e., "2 has
preceded /, then the plant executes # synchronously with the supervisor. This cor-
rects the alignment and returns the plant to its initial state. On the other hand, if
misalignment has not occurred, i.e., ")’1 has preceded r/, then the plant refuses # and
this event occurs solely in the supervisor. The possibility that the plant can refuse an
event offered by the supervisor is an essential feature of this control design.

7. Conclusion. In this paper we have studied the supervisory control of nonde-
terministic plants in the presence of driven events under complete as well as partial
observation. We have shown that prioritized synchronous composition is an adequate
control mechanism for this purpose. The trajectory model, used for describing the
behavior of nondeterministic systems, is shown to be a language congruence with re-
spect to prioritized synchronous composition. Hence it is quite useful for describing
the behaviors of nondeterministic systems which may be controlled via PSC. It is
shown that the supervisory control problem with driven events is solvable if and only
if the target language is controllable and observable with respect to the language of
the plant augmented by the set of driven events. In case the languages involved are
regular, one way to perform the test for controllability/observability is to construct
a deterministic system and language equivalent to the augmented plant, and apply a
known test for controllability/observability [23], [14], [26]. However, it can be shown
that by modifying the algorithms in these references, the tests can be performed
without having to do such a nondeterministic to deterministic conversion. Hence it is
possible to obtain algorithms of polynomial complexity (polynomial in the product of
the number of states in the given plant NSM and that in the deterministic generator
of the desired language) for testing controllability/observability. Due to the augmen-
tation, the solvability depends on the trajectory model of the plant--not simply on
its language. We have also described the associativity and augmentation properties
of PSC, which are useful in the analysis of supervisory control.

Appendix A. Proof of Theorems 2 and 3.
Proof of Theorem 2. Let T P dlIB " First, we show that

(16) T(T) C T()AII T().

We prove by induction on length of refusal-trace that if e E T(7) and x,, (Xp, xq)
5Tn xn, e), then there exist ep T(P), eq T(Q) such that

(i) the final refusal sets of ep, eq are p(Xp), 2(Xq), respectively;
(ii) e e ep A[[B eq;
(iii) xr e 5,(x, ep) 5(x, eq).

Consider a zero-length refusal-trace e E’ E T(7). Then there exists xr
(Xp, Xa) e e(x) such that E’ c_ n(xr). Lemma 3 implies that Xp e e(x,), Xq e
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e(z), E’ C_ p(xp)A( Q(Zq). Setting ep p(zp), eq (Xq), it follows
that (i), (ii), (iii)are satisfied.

For the induction step, consider a refusal-trace e g(a, E’) T(). Then there
(G,G) ( ), (,) ()exist 2 (2p,2q) 5(x,), x

such that E’ (x). By induction hypothesis, there exist gp T(P), gq T(Q)
with final refusal sets Np(2p), N(2q), respectively, such that pa gq,2p
5(z,gp),2q 5(x,gq). Since a is executable in 2, it follows from Definition 9
that there are three cases"

() 5.(,, ) O, (), ;
(c) 5(,) O, .(), a.

By symmetry, it suces to consider cases (a) and (b).
5p(2,a), 5(2q, a). Setting e (a, p(x)), qIn case (a), x Xq

(a, (xq)), and using the fact that

(17) ’ c_ (x) .(x,) (R) e(x),
it follows easily that ep e T(7)), eq e T(Q), and conditions (i), (ii), (iii) are satisfied.

n cs (b), G e 5"(,), x’ q. St , ,(,.(x,)) nd et b
the refusal-trace obtained from q by replacing its final refusal set Q(2q) with the
set (Xq). (Since xq E e*(2q), the new final refusal set will contain the old final
refusal set.) Then ep e T(7)), eq e T(Q) and conditions (i), (iii) are clearly satisfied.
It follows from Definition 10 that p AIIB q C_ p AIIB eq. Since a (2q) G

(Xq), it follows from property (Th) that eq(a, ) T(Q). Since a B and (17)
holds, it follows from Definition 10 that condition (ii) is satisfied. This completes the
induction step and establishes (16).

It remains to show that

(18) T(7)) A lib T(Q) C_ T(7).

We prove by induction on lepl + leql that if e e ep AIIB eq with ep e T(7)), eq e T(Q),
then

(19) 5(x, ep) x 5(x, eq) 5 x(,).
Since the set on the left side is nonempty by assumption, this implies that the set on
the right side is nonempty, i.e., that c T().

Let e Ep, e E be zero-length refusal-traces of P, Q, respectively, and
let Xp 5(x,Ep), Xq 5(X,Eq). Then Xp e(X),Xq e(x),Ep G
p(Xp),E G (x). Let x (Xp, X). Then x (x). It follows from Defini-
tion 10 and Lemma 3 that e E’ with E’ G Ep A@B E G p(Xp)AB (x)
n(x) This shows that x 5 xn, E’), so (19) holds in the zero-length ease.

For the induction step, write ep p(ap, Ep), eq q(aq, Eq), and suppose
e (a, E’) ep A] e. It follows from Definition 10 that there are three cases to
consider"

(e) , B, (, ) T(), , ’ G ;
By symmetry, it suffices to consider eases (d), (e).

For case (d), let xr (Xp, Xq) 5(x,ep)XS(x,eq). Then Ep G p(Xp), Eq G
e(x), so

(20) ’ r,@G .(x,) @. e(x)) (x).
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Since Xp E 5>(x, ep), Xq 5(x, Ca), there exist 2p 5(x,, gp), 2q 5(x, q),
Xp 5,(2,,a), XPq 5(2,a)such that Xp e (Xp), Xq *(Xq). Let 2r
(2p,2q). It follows from Definition 9 that (Xp,X) 5t(2,a), while by induction

T 0hypothesis we may assume that 2 5n(x, ). Then

(21) (5( )) c (5(5(x ) )).x e ((x’,x)) c_

We conclude from (20) and (21) that xr e 5(x, e) as required.
T 0For case (e), let x (Xp, Xq) 5p(x,,ep) 5(x,e). The inclusions given

by (20) hold as in the previous case. Since Xp 5(x,ep), there exist 2p
5(X,p) and x 5(2,a) such that Xp (X). Let 2r (p, Xq). We have

5(e(x),a) 5(5(x,e),a) 0, where the final equality follows from the as-
sumption that e(a, O) T(Q). This implies that a (x). It then follows from
Definition 9 that (x, x) 5n(2, a), while by induction hypothesis, we may assume

that2r5 xn,)" Then

(22) x e ((x,,x)) c_ (5(,)) c (5(5(, e), )).

T 0We conclude from (20) and (22) that x 5n(xn, e) as required. This completes the
induction step and establishes (18).

The following result was proved in the course of the proof of Theorem 2.
COROLLARY 5. For NSMs 7), Q and A,B C_ E, let 7 "-P A Q. Then

T 0(1) for each e T() and x (Xp, X) 5n(xn, e), there ezists e T(P) and

e T(Q) such that El,,(ep) (Xp),El(e) (x), e ep AB
T 0and x 5p(xp, ep) 5(X, eq);

(2) for each ep G T(P), eq T(Q) and e ep AB eq; 5(X, ep) X 5(X,
T 0

In order to prove Theorem 3 we will use the following result which gives a mono-
tonicity property of the PSC of refusM-traces with respect to the dominance partial
order.

LEMMA 6. Let P, Q be trajectory models, A, B E, fp, ep P, fq, eq Q, with

fp ep, f eq. Then fpA]B fq eA[[B eq.
Proo The proof is by induction on the sum of refusal-trace lengths ep] + ]e. If

[ep] + ]e[ 0, then fp p, e Ep, f , e E with p Ep, E.
Let f fp n][B f. Then f E’ p@B Ep AB Eq. Thus, f e A[B e.

For the induction step, write fp fp(ap, p), ep p(ap, Ep), f f(aq, q),
eq q(aq, Eq) with fp p, p Ep, fq q, q Eq. Let f
fd]]B f. There are three cases to consider. (1) Suppose f e fpA]]B f, a

ap aq, E’ AB q. By the induction hypothesis, f p AB . Since

E’ g pAB Ep A@, Eq, this implies that f ep A[B eq. (2) Suppose f
p d[[ f, a ap B, f(a, ) Q, E’ p A@B. By induction hypothesis,
f e p [[ e. Also, e(a, O) Q, since otherwise (T3) would imply that

Q, a contradiction. Since E’ A EpdB E, this implies that f
p AIIB q. (3) Suppose f e fp AIIB f, A, &(a, O) P, E’ p A@B.
This case i8 analogous to case (2). Hence, the induction step is complete.

Proof of Theorem 3. By symmetry, it suffices to prove the inclusion

(P AIIB ) ABIIC R c P AIIBc ( [[c/).
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By Lemma 6, it suffices to show that if ep, eq, er are saturated refusal-traces of P, Q, R
respectively, then (ep AIIB eq) AuBIIC er C_ P AIIBUC (Q BIle R). To prove this, we
show by induction on the sum of the lengths lepl + leql + lerl that

(23) AIIB A BIIc C AIIB c BIIc
For future reference, we note that the following identity holds:

(Ep A@B E) ABcE (Ep Q E E) U (Ep N A) U (E N B) LJ (E Q C)
(24) Ep A@Boc(E B@C E)

If ep Ep, eq Eq, er Er each have zero-length, then (ep AIIB eq)AuBIIC er
consists of all subsets of (Ep A(B Eq)AuB(c E, while ep AIIBuC-(e BIIC e,.) con-
sists of all subsets of Ep ABc(EsBC E). Thus, (23) follows from (24).

For the induction step, let ep p(ap, Ep), eq q(aq, Eq), e (a,E).
p, , g are saturated since they are prefixes of saturated refusal-traces. Let f
ep AIIB e and let h f ABIIC e (ep AIB es) AUgIc er. Let h= (a,). (There
is no loss of generality in taking the final refusal set of h to be the maximal set .)
To establish the induction step, we consider several cases. (Some cases will not apply
if at least one of the refusal-traces ep, es, e has zero-length.)

(1) h f AoB][C r, a A U B, f(a, O) P A[[B Q, a at. (This is when the
final event in h occurs in R but not in P A ]]B Q.)

B, e(a, ) Q. (This is when the final event in h occurs in P A[[B Q but
not in R, and within P A[]B Q, it occurs in P but not in Q.)

(25) h e I AoB]]Ce, a C, e(a,O) R, a a, f e epA][,, a
A, ep(a, ) P. (This is when the final event in h occurs in P A[]B Q but
not in R, and within P A[]B Q, it occurs in Q but not in P.)

(2c) he IAoB]C e, C, e(a,O) C R, a ap a, I e pA]B a" (This
is when the final event in h occurs in P A[[B Q but not in R, and within
P A[[B Q, it occurs in both P and Q.)

(3a) h IAoBC , a ap a, f pA[[B e, a C B, e(a,) C Q. (This
is when the final event in h occurs in P A lIB Q and in R, and within P A ]]B Q,
it occurs in P but not in Q.)

(35) he IAoB][C , a a a, f e epA[[B , a C A, ep(a,O) C P. (This
is when the final event in h occurs in P A]]B Q and in R, and within P A]]B Q,
it occurs in Q but not in P.)

(3c) e ]AB]]c , a ap a a, f e p A[B . (This is when the final
event in h occurs in PA]]B Q and in R, and within PA]]B Q, it occurs in
both P and Q.)

We include a detailed proof for case (2). The other cases are proven in a similar
manner and are left to the reader. Under the assumptions of (2a),

h e f A BIIc C AIIB  q)A  IIc C AIIB c BIIc
where the last inclusion is the induction hypothesis. Thus, there exists

with a’ E {aq,a} such that h gp A IIBC g, (By Lemma 6, there is no loss of
generality in taking the final refusal set of g to be the maximal set ,q B@C
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Since eq(a, 0) Q and er(a, 0) R, it follows from the assumption that eq and er are
saturated such that cr E Eq and r E E. Thus, a G Eq fq E C_ Eq BC Er. By (T5),
g(a, O)

_
Q B IIC R. This together with cr B U C, implies that

completing the induction step.
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RISK-SENSITIVE PRODUCTION PLANNING OF
STOCHASTIC MANUFACTURING SYSTEMS:
A SINGULAR PERTURBATION APPROACH*

QING ZHANGt

Abstract. This paper is concerned with robust production planning of a stochastic manufac-
turing system in which the rate of machine breakdown and repair is much larger than the rate of
fluctuation in demand. It is shown that the risk-sensitive production planning problem can be ap-
proximated by a limiting problem in which the stochastic machine availability process is replaced by
its mean availability. The value function of the limiting problem is shown to be the only viscosity so-
lution to the Isaacs equation associated with a zero-sum, two-player differential game. Near-optimal
production plans are constructed from near-optimal controls of the limiting problem. Finally, these
results are extended to problems with state constraints.

Key words, stochastic manufacturing systems, risk-sensitive control, differential games, Isaacs
equations, viscosity solutions, near-optimal production planning

AMS subject classifications. 93E20, 90B30

1. Introduction. Most manufacturing systems are large complex systems. Be-
cause of the large size of these systems, exact optimal policies for running them are
quite difficult to obtain, both theoretically and computationally. One way to cope
with these complexities is to develop methods of hierarchical controls for these sys-
tems. The idea of hierarchical control is to reduce the overall complex problem into
manageable approximate problems or subproblems, solve these problems, and con-
struct a solution for the original problem from solutions of these simpler problems.
Development of such approaches for large complex systems has been identified as a
particularly fruitful research area by the Committee on the Next Decade in Opera-
tions Research [3] as well as by the Panel on Future Directions in Control Theory [7].
A great deal of research in hierarchical control has been conducted by researchers in
the areas of operations research, operations management, system theory, and control
theory. Related literature can be found in recent papers by Rogers et al. [16], Sak-
sena, O’Reilly, and Kokotovic [17], Gershwin [11], Lehoczky et al. [15], Soner [24],
and the book by Sethi and Zhang [19].

An interesting approach in hierarchical control is the singular perturbation method.
To illustrate this approach, let us consider a manufacturing system which consists of
machines that are subject to breakdown and repair and which faces an uncertain de-
mand. The objective of the system is to obtain the rate of production over time in
order to meet the demand at the minimum expected discounted cost of production
and inventory/shortages over the infinite horizon. Because of the uncertainties in ma-
chine availability and product demand, the exact optimal solution of such a problem
is very difficult to obtain. To reduce the complexity, we consider the case in which
the rate at which the machine breakdown and repair events occur is much larger than
the rate of fluctuation in demand. The idea of a singular perturbation approach is to
derive a limiting control problem, which is easier to solve than the original problem.
This limiting problem is obtained by replacing the stochastic machine availability
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9, 1993. This research was supported in part by Natural Sciences and Engineering Research Council
of Canada grant A4169.

Faculty of Management, University of Toronto, Toronto, Ontario M5S 1V4, Canada. Present
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process by the average total capacity of machines and by appropriately modifying the
objective function. From its optimal control, one constructs an approximate optimal
control of the original, more complex, problem. Research along this line can be found
in Lehoczky et al. [15], Soner [241, Sethi and Zhang [20], [19], and Sethi, Zhang, and
Zhou [21].

In this paper, we consider robust production plans of stochastic manufacturing
systems with a risk-sensitive cost function (cf. Whittle [25]). This consideration is
motivated by the following observations. First, since most manufacturing systems are
large complex systems, it is very difficult to establish accurate mathematical models
to describe them. Modeling errors are inevitable. Second, in practice, an optimal pol-
icy for a subdivision of a big corporation is usually not an optimal policy for the whole
corporation. Therefore, optimal solutions with actual cost criteria ma: not be desir-
able in many real problems. An alternative approach is to consider robust controls.
The design of robust controls emphasizes system stability rather than optimality. In
some manufacturing systems, it is more desirable to consider controls that are to-

bust enough to attenuate uncertain disturbances, which include modeling errors, and
therefore to achieve the system stability. Robust control design is particularly impor-
taut in manufacturing systems with unfavorable disturbances. There are two kinds
of system disturbances in the system under consideration: (1) unfavorable internal
disturbances--usually associated with unfavorable machine capacity fluctuations; (2)
unfavorable external disturbances--usually associated with unfavorable fluctuations
in demand.

The basic idea of the risk-sensitive control is to consider a risk-sensitive cost
function that penalizes heavily on costs associated with large state trajectories and
controls. Related literature on risk-sensitive control can be found, for example, in
Whittle [25], Fleming and McEneaney [8], [9], James [14], and Glover and Doyle [12].

In [8], [14], risk-sensitive control problems of controlled diffusions are considered.
Using the associated dynamic programming equations, the authors show that as the
system noise goes to zero, the value function of the risk-sensitive control problem
converges to the value function of a differential game problem. Then, a near-optimal
policy for the differential game problem can be shown to be a near-optimal control for
the risk-sensitive control problem. In this paper, we consider the risk-sensitive con-

trol of the manufacturing systems with stochastic production capacity and stochastic
product demand. As the rate of fluctuation of the production capacity process goes
to infinity, we show that the risk-sensitive control problem can be approximated by
a limiting problem in which the stochastic capacity process can be averaged out and
replaced by its average. We also show that the value function of the limiting problem
satisfies the Isaacs equation of a zero-sum, two-player differential game. Then, we
use a near-optimal control of the limiting problem to construct a near-optimal control
for the original risk-sensitive control problem. In this paper, the machine capacity
process will be assumed to be a finite state (jump) Markov chain. Our formulation is
similar to that of [8], [14]. Because of the presence of the jump Markov disturbance
processes, the dynamic programming approach used in [8], [14] will not work in our

problem. To obtain the desired results, we first prove an asymptotic property of the
machine capacity process (Lemma 3.1). Then, we use a combination of a probabilistic
approach and a weak convergence approach to derive the convergence of the associ-
ated value functions (Theorems 4.1, 5.1, and 6.1) to the value function of a limiting
problem. We show that the value function of the limiting problem is the only viscosity
solution to the associated Isaacs equation (Theorem 5.2).
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The plan of the paper is as follows. In the next section, we consider a relatively
simple model of manufacturing systems. We formulate the risk-sensitive control prob-
lem and make some assumptions on the cost function and stochastic processes of the
system. In 3, we give asymptotic estimates on the machine capacity process. Then,
in 4 and 5, we show that the value function of the risk-sensitive control problem
converges to the value function of a limiting problem that has a differential game
interpretation. In 6, we construct near-optimal production plans for the original
problem. In 7, we extend the results to a class of manufacturing systems with in-
ternal buffers. We present only the results obtained by considering a two-machine
flowshop for simplicity in exposition. Finally, we conclude the paper by making some
remarks.

2. Problem formulation. We consider a manufacturing system that produces
n0 distinct part types using m identical machines. Let ut E Rn denote the vector
of production rates, xt R denote the vector of total inventories/backlogs, and
zt Rn denote the vector of demand rates. They satisfy the following system
equation:

(2.1) 2t ut zt, xo a R’ (a is given).

We consider the manufacturing system that consists of machines that are subject
to breakdown and repair. Let M {0, 1,..., rn} denote the set of machine capacity
states and let a random process a(, t) A, defined on a standard probability space
(gt, , P), denote the total capacity process for the manufacturing system, where is
a small parameter to be specified later in this section. Since only a finite amount of
production capacity is available at any given time t, it would impose an upper bound
on the production rate ut. For example, in the one-dimensional case (no 1), the
production constraint is 0 <_ ut <_ a(, t).

We consider the risk sensitive cost function J’v(u.) defined by

(2.2) J’V(u.) vlogE exp +

where h is the inventory/backlog cost, c is the production cost, and p > 0 is the
discount rate. The problem is to find an admissible control u. (to be precisely defined
later in this section) that minimizes J*,v(u.).

In the above problem, we choose the risk-sensitivity parameter v > 0. This type
of risk-sensitive control problem is classified as a risk-averse problem (cf. [25]). The
cost function in (2.2) emphasizes the stability of the system since it penalizes heavily
on large trajectory xt and large control ut when is small.

Notation. We make use of the following notation in this paper:

D

A

f (x)
fx+(x)
C, Co, C,.
kh, kO, kl,.

the indicator function of any set D;
a function of y such that SUpy ]O(y)]/]y < oc;
the transpose of any matrix (or vector) A;
ess supll of any random variable ;
the derivative of f at x;
the right-hand derivative of f at x;
multiplicative constants;
exponential constants.
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We now specify the production (or control) constraints.

{0, 1, 2,..., rn}, let
For each E A

(2.3) /(i) {l-- (/1,..., trio) O p" i} C RTM,

where p (pl,...,pno) >- 0 are given constants with pi representing the amount of
capacity needed to produce part type at rate 1. With this definition, the production
constraint at time t is ut E 5/(a(e,t)).

We make the following assumptions on the functions h and c and the random
processes a(e, t) and zt.

(A1) h and c are convex functions. There exist constants Co and kh > 0 such
that for all x, x, u, and u,

and

0 <_ h(x) <_ C0(1 + Ixl  ),
Ih(x) h(x’)l C0(1 + Ixl + Ix’l  )lx

<- C01 

(A2) Let c > 0 denote a small parameter. The machine capacity process c(c, t) E
A is a finite-state Markov process governed by a generator Q Q(1) +e- 1Q(2), where
Q(t) is an (rn + 1) x (rn + 1) matrix such that Q(t) (t) -(t)[qij) withqij >_0ifiCj and
() ()q -y for 1 2. Moreover, Q(2) is irreducibleij

(A3) The demand rate zt is a bounded process which is independent of a(e, t).
Remark 2.1. Assumptions (A1) and (A2) are used in [15], [20], [21], [22], [23], [27].

Sonar [24] considers a model in which Q depends on the control variables. However,
due to the jump Markov property of the machine capacity process, the viscosity
solution method used in [24] will not work for the risk-sensitive control problem under
consideration.

DEFINITION 2.1. We say that a control u. {ut t 0} is admissible if ut is

a a{(, s), Zs s t} adapted measurable process and ut e ((, t)) for all t O.
We use A to denote the set of all admissible controls. Then our control problem can
be written as follows:

(2.4) 7)’v

min.

s.t.

value fn.

J,V(u.)

[ { 1 f0 pt=x/logE exp e- [h(xt).+c(ut)]dt

t tt Zt, Xo a, t.

v,v inf J’v/ (u.).
u.EA

Let (0,,... ,/]m) denote the equilibrium distribution of Q(2).
is the only positive solution to

m

,Q(2) 0 and E i 1.
i=0

That is,

Intuitively, the machine capacity process a(, t) "converges" weakly to its equilib-
rium distribution as tends to zero. This property suggests that the problem
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can be approximated by a problem in which the stochastic machine availability is
replaced by its equilibrium distribution.

Let Zt denote the r-algebra generated by Zs, s <_ t, i.e., Zt cr{zs s <_ t}. As
in [21], we consider the following control space:

4 {U. (u. u},..., u.m) u E ld(i), and Ut is a Zt adapted process}.

We also consider two. control problems p0,v and 7)’ defined as follows"

(2.5)

min.

s.t.

J,/ U.

-x/log Eexp
1 -pt c(u) dt

i=0
m

i=0

value fn. v’ inf jo,(U.),
U.

and

(2.6) 7)0,0.

min.

s.t.

value fn.

J’(U.) e-pt h(xt) + uic(u dt

m

2t uiu zt, xo a, U. (u. uTM) A
i=0

v’ inf jo,o (U.).
U.A

We will show that, when e is small, p,v can be approximated by 7)’v, and po,v
can be approximated further by po,o. Therefore, 7),v can be approximated by po,o.
Then, a near optimal control for po,o will be used to construct controls for 7)’v that
are nearly optimal.

3. Asymptotic properties of c(c, t). In this section, we consider an asymp-
totic property of the process a(c, t), which plays a very important role in this paper.

LEMMA 3.1. For each No > O, there exist constants Co > 0 and C such that for
0 < e <_ co., E ]VI, t >_ O, and for any Zt adapted process (t), [/(t)] <_ No a.s.,

[{1(3.1) E exp
x/(t / 1)- fo(x((,)= .)Z()d

Proof. In view of Lemma A.2, it suffices to show that for any deterministic (t),
I(t)l _< No,

1
(3.2) E exp

x/(t + 1)
We let

and

a(t) (x(,(,,)=o),..., x(,(,)=.))’
w(t) A(t)- ),(o)- Q’A(s)ds,
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where Q Q(1) + -1Q(2) is the generator of the process c(,t). Then, it is well
known (cf. [5]) that w(t) (wo(t),..., w,(t))’ is a a{a(, s) s <_ t} martingale and

Let

(3.3) l(t) eQ’tA(o) + eQ’(t-S)dw(s).

and let (t) eQ’t P. Then, (t) is deterministic and by Lemma -A.1

(3.4) (t) o( + -o,/).
Moreover, since PA(t) PA(0)= u and PQ’-O,

Pw(t) P A(t) A(0) Q’A(s)ds u- PQ’A(s)ds O.

We combine (3.3) and the definition of O(t) to obtain

(t)-. (t)(0) + ((t- s) + P)d()

(t)A(0) + (t- s)dw(s).

By integrating (A(s) u)/3(s) over [0, t] and exchanging orders of integration, we have

(A(s) ,)(s)ds (0) (s)3(s)ds + (r- s)(r)dr dw(s).

Recall that/3(t) is assumed to be deterministic at the beginning of the proof. Both

f (P(s)t3(s)ds and f: ap(r- s)(r)dr are deterministic. Moreover,

r
i (s)(s)ds

1

t+l J0 t + 1
0( + e-ks/)ds 0(),

t + 1
(r- s)(r)dr

8

1 r
I o( + e-(-)/)dr 0()

t+l Js

where 0(1) is deterministic and is independent of s and t. Thus,

(3.5)
t + 1

(A(s) v)3(s)ds O(1) + O(1)dw(s).

Therefore,

(3.6)
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Recall that w(t) (wo(t),...,Wm(t))’. It suffices to show that, for 0 smM1 enough
and for each

(3.7) E exp b(s, t)dw(s) < C

for all bounded measurable functions [b(s,t)l <_ N (for some fixed N) and t >_ 0.
Now, for each to > 0, let bo(s) b(s, to). Then, by Lemma A.3,

E exp bo(s)dwi(s)
(a.s)

<_ e+(e 1) E eJP x/ o(s)a(s) >_
j=l

Now, we estimate

)- o()d() >_

Let p(t) f bo(s)dw(s). Then p(t) is a local martingale. Let q(.) denote the only
solution to the equation (cf. [4])

q(t) 1 + q(s-)dp(s),

where q(s-) is the left-hand limit of q at s and is a positive constant to be determined
later. Then, it is shown in [22] that

(1) Eq(t) _< 1 for all t >_ 0;
(2) q(t) e@(t) 1-I<t(l+Ap(s))e-ZxP(), where Ap(s).- p(s)-p(s-), IAp(s)l <

N;
(3) q(t) >_ exp{p(t) kleiN(t)} for 0 < _< 0, t > 0, where 1 and 0 are

positive constants and N(t) is the number of jumps of p(s) in s e [0, t]. Therefore,

)P bo(s)d(s) >_ j

x + P p t <_ v
We first consider P (p(t) >_ jv/t + l/v). Let aj j(t + 1)/(Ske). Then,

P(p(t)>_ jx/’t+l)x/
-< P (q(t) > exp { jv/t +x/

< P (q t _> exp { jv/t+lx/
_<P(q(t) ->exp(jv/t+lvG
< exp (_jx/t + 1

-kleiN(t)})
]1 N(t) ,N(t) <_ a + P(N(t) > ai)

-kl2aj)) + P(N(t) > ay)

+ kl2aj) + P(g(t) >_ aj).
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Now if we take 4v/-/v/t + 1, then

exp( J v/t + l 2 )X - kl aj e

As in [22], we can show that for small enough,

P(Y(t) ay) 2y-1 for j

where y 8ek/jo e (0,1) and jo > max{1, Sek}. Thus,

P(p(t)>jt+l)- { e_2J+2a_ll+e- ifjjo,ifj<jo.
Repeating the same argument for the mrtingale (-p(t)) we get

( ){ e-2jW2a-
p(t)< J <

Combining the above two inequMities we obtain

,, v0(le(l

Then, by (3.8),

if j >_ jo,

if j < jo.

{ 2(e-2J - 2-),a -1)
_>j _<

e( + -)
if j >_ jo,

if j < jo.

E, (,t)() <_ Cl + (- 1)(- + a-l),
j=l

where C e + 2jo(e 1)(1 + e-2). Now, we choose o small enough such that

e/(sk) 1/2. Then,

E exp 4t+l b(s, to)dw(s) C1 + 2 + 4(e 1)-1.

Since to is arbitrary, we may take to t in the above inequality. Then,

( t)d() < C + e + 4( )-1Eexp
fit+l

Combining this inequality with (3.6), we obtain

Eexp
(t+l) (a(s)-

This completes the proof of the lemma.
CoaoAa a.1. N the above lemma, if Q(1) O, i.e., Q e-lQ(), the we

have the followin9 stronger estimate:
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Proof. If Q(1) 0, then Lemma A.1 becomes

IP(c(, t) i)- ,[ <_ Ce-t/;
see [20] for details. Thus, equation (3.5) can be replaced by

(A(s) v)3(s)ds eO(1) + O(1)dw(s).

The remaining proof of the corollary follows exactly as the rest of the proof of Lemma
3.1.

COROLLARY 3.2. For each No > 0 and 0 < 5 < 1/2, there exist constants o > 0
and C such that for 0 < 0, , t 0, and for any Zt adapted process 3(t),
I(t) No,

(3.10) P (X{(,)=i}- a)(s)ds -5 Cexp -5(t+ 1)
Moreover, if Q() 0, then

(3.1) P (x(.(,)=) .)Z()ds - Cep -t + i

Proof. Note in view of Lemma 3.1 that

P exp
(t+ 1) (X{(e,s)=} )Z(s)ds exp

(t + 1)
Cexp -ee(t+l)

This proves (a.10). Similarly, (a.11) follows from Corollary a.1.
To conclude this section, we give a corollary that will be needed in 7.
Coaoa a.a. t O(/= { ((,=- /()a }. , there

exist k > 0 and C such that

Eexp e-t/XD(e C.

Pro@ Note that

[exp k e-t/

By Corollary a.2,

(a.a) P(D()) Cxp -(t + )
Combine (a.12) and (a.a) to obtain

Eexp e-t/XD(e
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We now choose k > 0 and small enough such that

k -pt/2 1

/ /(t + 1)"
Then, for k small enough, we have

Eexp -e t/

4. Asymptotic properties of the value functions. In this section, we study
the asymptotic property of the value function v,v. The next theorem shows that
the value function v,v of :p,v can be approximated by the value function v,v of
po,,/-.

THEOREM 4.1. There exist constants eo > 0 and C such that, for 0 < <_ o,

v’’n v"nl _< Cv.
Proof. We first show that v,v <_ v,v+Cv/. For any given . (u.,..., u.m) E

mA, we construct a control u i=oX{(e,t)=i}u. Then, obviously, u. E A.
Moreover, let x. and 2. denote, respectively, the corresponding states of the systems
7)’ and :p0, with the same initial value a, i.e.,

ict u zt xo a,

m

E 20=a.(4.2) xt ,iu zt,
i--0

Note that c(u[)= Eim=o X{(e,t):qc(u). Then,

where

1 -ptI() xp h(x)- h()+ (x.(,)= .)() t
i--0

Recall that 2t and Ut are Zt adapted. Thus,

(4.3)
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We now estimate E[I()IZt]. Note that by Assumption (A1) and the fact that Ixtl +
[5:t O(1 + t),

(4.4)

Note also that, by integration by parts,

(4.5)

Combining (4.3), (4.4), and (4.5), we obtain

By Jensen’s inequality and the convexity of ex,

(4.6) exp e-pt/tdt <_ e- exp -e-pt/2/t dt
P

for any function ")’t. Taking

in (4.6), we get
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Note that there exists k2 > 0 such that, for all t >_ 0,

2
tkh 1)-e-pt/2C2(1 4- )(t 4- <_ k2

P

and

2-e-pt/p(t + 1) _< k.
P

This implies that

(4.7)

I(e) <_ - e-t/ exp
x/(t + 1) .=

)Wds

Moreover, observe that

E exp
x/(t+l) .:

i:

E exp
x/(t+ 1)

E exp
i=o x/(t + 1)

[/.2(m-t- 1)

2(m+)

In view of (4.7), we have

P/o --pt/2E[I(e)[Zt] < - e C3dt C3.

Using this inequality in (4.3) we obtain

(4.8)

j,,n(.)

_<v/logE C3exp e-pt h(2t) + E ic(u) dt
i=0

1

_
() atoC+o exp h()+

i=0

log c + o,(.).
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Since . E A is arbitrary we have

(4.9) v,v _< vo,v + v/ log C3.

Now it suffices to show the opposite inequality, i.e.,

(4.10) v’/ >_ v’v/ Cv/.

The proof of this part is similar to that of [20]. We provide the proof in the appendix
for the sake of completeness.

Combining (4.9) and (4.10), we conclude

Iv’v -v"zl <_ Cv.
COROLLARY 4.1. Let . (u. u.TM) e 4 be an x/-optimal (stochastic open

loop) control for 7),v. Then, u := -im=ox{(,t)=i}u 4 is an asymptotically
optimal (stochastic open loop) control for 7)’v/, i.e.,

Je’V u v’v/- <_ Cx/.

Proof. By (4.8) and the choice of . E Jt (v-optimal), we have

0 <_ J’V(u.) v’v

_< [j,v/(u.) jO,v(.)] + [jo,v(.) vO,v] + [vO,v v,4]
<_c4 + v + Cv.

5. Averaged problems. In this section we show that po,v can be approxi-
mated by 7)’, and the value function of p0,o is a viscosity solution to the Isaacs
equation of a zero sum, two-player differential game. To simplify the notation, we
take 5- x/ and consider the following control problem p0,5.

(5.) po,.

min.

s.t.

value fn.

j,(u.)

=SlogE exp e-pt h(xt) + E ,ic(u) dt
i=0

m

t uut zt, xo a, g. (u. u A
i=0

v’e inf jo,e (U.).
U.

Then, we have the following theorem.
THEOREM 5.1. v’5 is a monotone increasing function of 5 > 0 and

lim v’5 v’,
5-,0

Proof. First of all, note that J’5(U.) <_ J’(U.) for all 5 > 0 and U. A. This
implies

(5.2) v’ _< v’
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By Lemma A.4, for each U.

T J’(u.) o.

Now, for any given 5 > 0, let U.5 (u.5, u.5,..., u.m) E Jt denote a 5-optimal
control for problem 7)’5, i.e.,

v0,5 _< j0,5 (U.5) _< vO,5 + 5.

Combining these two inequalities and (5.2), we obtain

(5.4) limsup J’5(U.5) <_ limsup v’ <_ v,.
6--0 6--.0

Let 51 > 5 > 0. Then, again by Lemma A.4,

(5.5) jo,5 (U.5) _> jo,51 (U.5).

We now show that there exists a sequence of 5 such that {U.5} converges weakly to a

control U.* E Jt. To this end, we consider the following functional space.

{f(t) f(t)(w) e R1" measurable functions on [0, N]

f(t) is Zt adapted and (f, f}N <

where N 1,2,..., and {f,g}N := E foN f(t)g(t)dt for any measurable functions f
and g on [0, N] f. Then, it is easy to check that ?-/N is a Hilbert space with the
inner product (f, g}N.

By [26, Thm. 1, p. 126], for each fixed N there exists a sequence of 5 0 such
that U. ---. U.* c ’N weakly. By using the Catchy diagonalization method, we
can show that there exists a further subsequence of 5 4.0 (still denoted by 5) and a

measurable Ut* (ut*, utl*,..., un*) for all t >_ 0 such that U.* N for each N and

U.5 U.* E ’/N weakly on "N for each N.

This means, in particular, for all bounded measurable and Zt adapted functions f(t)
on [0, c) x ft and for any t >_ 0,

(5.6) E f(s)Uds ---, E f(s)Uds.

We now show that U.* G .A. Since U.* E -N, Ut* is 2:t adapted. It suffices to show
i, i,that us Lt(i) a.s. If not, then for some r/> 0, the set Do {(s,w) p.u

has a positive measure, i.e., (1 P)(Do) > 0, where/denotes the Lebesgue measure.

Now, let f(t) E[XDolZt]p, where p e Rn is the vector used in defining 5/(i). Then,

(5.7) E fo f(s)p, uhds Eo XDoP uis5 ds "- E ]t XDoP.Us ds, as 5 ---. 0.

On the other hand,

XDoP U5ds <-- iE fot XDodS i(1 x P)(Do)
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and

]oE XDoP.Usi*ds >_ (i + ?)E XDodS (i + )(l P)(Do).

This contradicts (5.7). Hence, U.* E A.
Let x denote the trajectory of p0,0 under control U.*. Recall the convexities of

h and c to obtain

(x) > h(x) + h+()(x x)
and c(u5) >_ c(u*) + %+ (u*)(u5 u*),

where hx+ and %+ denote the right-hand derivatives of h and c. Then,

J’el(U)=511ogEexp e-pt h(xt)+pic(5) dt
i=0

i=0

where

1 -pt i,

i=0

For each > O, let - h(; + (*) et o,o(v.,l

Then, P(D) > O. Moreover,

o,( og v xp g( (,

o,o(.,) + og{v(,}.
We now show that

(.s) liminf [log E{XDR(5,5I)}] >_ log P(D).
5--,0

To this end, we observe in view of assumption (A1) that

and

hx+ (x) O(1 + [x2 [a") O(1 + th),
xt x 0(1 + t),

cu+(u*)(u5 u*) O(1).

These imply, for any N,

i,E h/(x)(x x) + c/(*)(? t
i=0

< e-tO(1)[(1 + t)(1 + t) + 1]dr

---0 as N -, cx.
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Moreover, in view of the convergence of U. U.*,

(5.10)
i,E - h/ (x)(x x) + c/(<*)(< t

i=0

E e-ot(E[XDlZt]) h+ (x)(xt x)

i, i,+ c+(% )(-t dtO, asO.
i=0

Combining (5.9) and (5.10), we obtain

i,E XD e-pt hx+(X)(xt xt)+ uicu+(u*)(u6 u dt O.
i=0

Now, by Jensen’s inequality, we have

Then, (5.8) follows from the fact that

lim inf [lg E{XDR(6’ 51) }1
[> logP(D) + 5Ip(D-----E XD e-t’t hz+(x)(xt xt)

i,+E uicu+ (u{*)(u{ % dt log P(D)
i=0

as + +/-neremre,

lim inf J’l(U.5) >_ J’(U.*) + 5, log P(D).
6--,0

Since r/is arbitrary, we have

liminf J’6(U.5) > J’(U.*) + 51 log P(D).
5---0

In view of the monotonicity of j0,5, we obtain

liminf g’5(V.5) >_ liminf J’5*(U.5) >_ J’(U.*) + 1 log P(D) >_ v’ + 1 log P(D).
6--,0 6-+0

Sending 5x O, we have lim infe_o J’6(U.6) >_ v’. Combining this inequality and

(5.4), we obtain

lim jo,5 (U.6) vO,O.
6--0
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Finally, since J’5(U.) <_ v, <_ J’5(U.5),

lim v’5 v’.
5--,0

This completes the proof.
Remark 5.1. Theorem 5.1 says that the risk-sensitive control problem po,5 can

be approximated by the limiting problem po,0. This result can be easily extended to
any linear systems with convex costs and compact control spaces.

Remark 5.2. A related result on the connection of risk-sensitive control and dif-
ferential games is given in Barron and Jensen [2] in the context of financial economics.

In the next theorem, we will show that the value function of T’ satisfies the
Isaacs equation of a zero-sum, two-player differential game. The advantage of con-
sidering po,o instead of po,5 is that the theory of differential games (cf. Basar and
Bernhard [1]) can be used to obtain an optimal control for p0,o, and such optimal
control is independent of the choice of 5(= x/).

We write v,(x) as the value function of 7)0’0 with the initial value x0 x. Note
that I111 infp(F)=o sup-F I(w)l for any random variable . It is not difficult
to show that 0 <_ v’(x) <_ C(1 + Ixlh) and v’(x) is convex and locally Lipschitz;
see [20] for details of the proof.

Let F {U (u,ul,...,uTM) e Rn(’+l) such that u e 5/(i)}, and let Fz
denote a compact subset of RTM. We consider functions zt E Fz (t >_ 0) that are right
continuous and have left-hand limits. Let denote the metric space of such functions
that is equipped with the Skorohod topology d(., .).

We make another assumption on the probability distribution of the demand pro-
cess

(A4) z.(w) e Fz a.s., and for each z. e Z and any 5o > 0,

P(d(z.(w),z.) <_ o) > O.

Assumption (A4) says that the probability of z. is continuously distributed on
An. immediate example that satisfies assumption (A4) can be given as a finite state
Markov chain.

Note that under assumption (A4),

ess sup F(z.(w)) sup F(z.)
w z.EZ

for any continuous function F(z.) on Z. It can be shown that

dt

is continuous on Z for each given U. ,4. Therefore,

sup +
z.Z i=0

dt.

THEOREM 5.2. Assume (A1) and (A4). Then, v’(x) is the only viscosity solu-
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tion (see Fleming and Soner [10] for definitions) to the following Isaacs equation:

o,o h(x) ,()pv’(x) min max ,u- z vx (x)+ +
UEF,, zEFz

i=0 i=0(5.11)
0,0maxmin uii-z v (z)+h(z)+ uic(i)

i=0 i=0

Pro@ First of all, note that

min max uiu z p + h(x) + pic(
UF zFz

i=0 i=0

is Lipschitz in p. The uniqueness of viscosity solution follows from Ishii [13, Thm. 1.6,
p. 731]. It remains to show that v’ is a viscosity solution to (5.11). The proof of
this part is similar to that of Evans and Souganidis [6]. We only sketch the proof
below. Let xo e RTM and let (x) e C such that v(x)- (x) has a loam maximum
at x x0. Then, by using the Dynkin formula, we can show that for 0 > 0 small
enough,

(.1 -,(o-,(o - _o,o(+ -t e()at.
i=0

On the other hand, it can be shown that

i=0

Combine (.12) and (a.la) to obtain

(5.14) - (x) +.() t
i=0

+sup e-pt -pv’(xt) + ut zt Cx(Xt) dt O.
z.

i=0

mLet 2t xo +f(E=o ius zo)ds. Then Ixt 2t <- Ct for some C. This implies,
by assumption (A1) as 0 0,

1{ oO [ 111/oO [e-pt h(xt)+ pic(u) dt e-Ot h(t)+ pic(u) dt O.
i=o i=o

Using this fact together with (5.14) we can show

pv’(zo) < min max uii- z (zo) + h(zo) + uic(i)
UP

i=0 i=0

Thus, v’ is a viscosity suBsolution.
Similarly, we can show v, is a viscosity supersolution. Therefore, v’ is a

viscosity solution to the Isaacs equation (.11).
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6. Asymptotically optimal controls. In this section we state and prove our
main results, which are summarized in the next theorem.

THEOREM 6.1. Under assumptions (A1)-(A3), the following hold.
(1) (convergence).

(6.1) lim v’v vO,O.
---0

(2) (stochastic open loop control). Let U. (u.,..., u.TM) e 4 denote a stochastic
open loop c-optimal control for 7)’, i.e.,

0 <_ jo,o (U.) v’ <_ ’.

Let u i=o X{(,t)=i}u. Then, u E A and

(6.2) limsup [Je’V(u. ’ ’.
0

(3) (feedback control). Let U. U(z.,x.) (u(z.,x.),...,um(z.,x.)) denote a

feedback ’-optimal control for o,o, i.e., 0 J’(U.) v’ ’. Let

((,.),z.,x.) (,.:(z., x.).
i=0

Assume that U(z,x) is locally Lipschitz in x, i.e., for some k5 > O,

[U(z,x) U(z,x’) C(1 + Ixl + Ix’lk)lx- x’l.
Then, uf u(a(e, .),z.,x.) e and

(6.3) limsup J’(uf) v’] e’.
0

Proof. Note that, by Theorems 4.1 and 5.1,

iv, o,o , vO, + o, o,o

C+ Iv’ v’[ 0 as 0.

Thus, limo ve’ v’. (1) holds.
To show (2), we first observe that

IJ’() ’1
J,(u) v

,
(.4)

(g,() jo,(u.)) + (J,(u.) jo,o(u.))

+(jo,o(u.) .o,o) + (vO,O v,).

Note that

and

Je,V(u.)- J,v(U.) <_ Cv/ (by (4.8)),

J,v(U.)- J,(U.) -- 0 as --. 0 (by Lemma A.4),

ve’v v’ 0 (by (1) of this theorem).
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Then, (6.4) yields

lim sup [JS’/(u.)
--*0

<_ limsup[Cv/ + (J’vZi(U.) g’(U.)) + 6’ + (v’ ve’V)] e’.
e--*0

This implies (2).
We now show (3). In view of (6.4), it suffices to show that

limsup[j’V(u(a(e, .),z.,x.)) J’v(U(z.,2.))] <_ O,
0

where xt and 2t are the trajectories of systems :p,v and 7),v under the controls
u. u(a(e,.),z.,x.) and U. V(z.,2.), respectively. We can show, by the local
Lipschitz property of U(z, .), that, for some k6 and C4,

(6.6)

where R(t) f Ei=o(X{a(s,s)=i} ’i)ui(zs,2s)dsl By Gronwall’s inequality,

IXt t] R(t) -1- C4 (1 + skO)R(s)exp C4 (1 + rkO)dr ds.

Let T be any fixed number. Then, for 0 _< t <_ T and some C5,

Ixt 5:tl <_ R(t) + C5 R(s)ds.

Note that Ixtl <_ Ca(1 + t) for some constant Ca. Thus, for all t _> O,

h(xt) <_ C0(1 + Ix l C (1 +

We have

(6.7)
e-pth(xt)dt <_ e-th(2t)dt + Cs e-t(1 + t)lxt 2tldt

-t-C7 e-pt (1 + th )dt.
T

Now, (6.6) implies

(6.8)

T

C8 e-pt (1 + tkh [xt ct

]<_ C9 e-t R(t) + C5 R(s)ds dt

{IfT I/oTC10 e-ptR(t)dt + -fi e-ptR(t)dt-

<_ Cll e-ptR(t)dt.

e-PT lot R(t)dt
P
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Combine (6.7) and (6.8) to obtain

(6.9)
h(xt)dte-pt

<_ e-Pth(2t)dt -Jr- Cll e-PtR(t)dt + C7 e-P*(1 + tkh )dt.

Let RI() e-pt E(X{a(e,t):i} vi)c(u(zt,2t))dt. Then,
i--o

for any fixed T and some constant C. Note, by the local Lipschitz property of g.,
that

T m

f0e or -X{(,t)=ii[c(ui(zt,xt)) -c(ui(zt,2t))]dt <_ C13 e--Ptlxt 2tldt
i=0

<_ C4 e-tR(t)dt.

This yields

(6.10)
e-ptc(ue(c(,t),zt, xt))dt <_ e-pt vc(u(zt,2t))dt +

i--o

/o"-}-C14 e-ptR(t)dt + C12 e-ptdt.

Let

[ /o1
(C1 -- C14) e-tR(t)dtI2(e) exp

s;+ (C + CI) e-t(1 + t")dt + Rl(e)

Then, by combining (6.9) and (6.10), we have

e-pth(xt)dt + e-ptc(u(c(e,t),zt,xt))dt

<_ I2(e) + e-Oth(Sct)dt - e-or E pic(ui(zt’2t))dt"
i=0
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Moreover,

E[Ie(e)’Zt] <-exp { (CT +CI)
d e-’t(1 + t)dt}

Similarly, as in 4, we can show that, for some Cls,

E exp V
e-ptR(t)dt

and (E [exp{Rl(e)} Zt]) <_

Therefore,

< Cls,

E[I.()lZt] _< C exp
(C + C)

e pt (1 + tkh )dr.

Now, we have

J,v(u.

}v/log E exp e-pt[h(xt) + c(u)]dt

1 -pt h(2t)+ Euic(u) dt h(e)5 logE exp e
i=0

5 ogE exp . -ot h(,)+.() dt
i=0

+ logcs + (c + c) e-ot(i + t.)dt

J.(U.) + iogC + (C + CI) e-t(1 + t)dt.

Thus, for any fixed

lim sup[je,V (uS (c(e, .), z. x. J,v(U(z., ,2. )]
’---0

<_ (C7 + C2) e-t(1 + tkh)dt
T

which converges to 0 as T --, oe. Therefore,

limsup[jS’v/-i(uS(c(e,.),z.,x.))- J’v(U(z.,x.))] < O.
---*0

This completes the proof. El
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Ul

X2

Fla. 1. A manufacturing system with two machines in tandem.

7. Extensions to problems with state constraints. In this section, we ex-
tend the results in the previous sections to incorporate problems of manufacturing
systems with state constraints. These constraints are inherent in systems with inter-
nal buffers, i.e., buffers between any two machines, as the inventories in each of them
cannot be allowed to become negative. These state constraints cause great difculty
to the analysis. In fact, if we follow Theorem 6.1 to construct a control for the original
problem from a near optimal control for the limiting problem, then we find that the
constructed control may not even be admissible, i.e., the corresponding trajectory
may not satisfy the state constraints. In [22], a method of "lifting" and "modifica-
tion" is introduced to overcome the difficulty. The basic idea behind it is as follows:
First, we modify a given near optimal control of the limiting problem by increasing
the inventory in the buffer by a small amount. Then, we use this resulting control
to construct a "control" for the original problem in the same way as in Theorem 6.1.
The constructed control is not necessarily admissible for the original problem, so we

modify it whenever the state constraints are violated.
In this section, we only consider the risk-sensitive control problem of manufac-

turing systems with two tandem machines and an internal buffer. For risk-sensitive
controls with more general manufacturing systems, the results can be extended simi-
larly; see Remark 7.2.

We consider a manufacturing system with two machines arranged in tandem (see
Fig. 1). Each machine has a finite number of states resulting in a finite state machine
capacity process denoted by a(, t) (o (, t), a2(e, t)).

We use ul (t) and u2(t) to denote the input rates to the first and second machines,
respectively. We denote the number of parts in the buffer between the first and
second machine as xl (t) >_ 0 and the difference between cumulative production and
cumulative demand, called surplus, as z2(t). Then, the system can be written as
follows:

x(O) =a,

x2(O) a2,

where

(7.1) xl(t) >_ 0, 0 _< uj(t) <_ ozj(,t), t >_ 0, j-- 1,2.

Let S [0, ec) x/1 C/2 denote the state constraint domain.
DEFINITION 7.1. A control ut (u(t),u2(t)) is admissible with respect to the

initial state value a (al, a2) E S if (i) u(t) is adapted to a{c(e, s), zs 0 <_ s _< t},
(ii) 0 <_ uj(t) <_ cj(e, t) for t >_ 0 and j 1, 2, and (iii) the corresponding state

(7.2) xt (xl(t),x2(t)) e S for all t >_ O.
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We use A to denote the set of admissible controls.
The problem is to find an admissible control u(t) that minimizes the risk-sensitive

cost function

[ }1J’/(u.) /logE exp - e- [h(xt) + c(ut)]dt

Note that the risk-sensitive parameter in the above cost function is chosen to be /
rather than x/. This is because a certain degree of sharpness in estimation is lost due
to the presence of state constraints. We refer the reader to [22] for more discussion
on this point.

We use A {a,..., am} to denote the machine capacity process, where a

(a, c) with a.i denoting the capacity of the jth machine in state i for j 1, 2.

We use P’ / to denote our control problem, i.e.,

min.

Sot.

value fn.

Similarly, as in 2, we define .A as a set of the following Zt adapted controls U..

u. (o(.),..., (.)) ((o(.), o(.)),..., ((.), (.)))

for all t > 0 j 1,2, a.nd 0 1.. m, and thesuch that 0 <_ uj(t)

_
oj

corresponding solutions x.- (xl (.),x2(.)) of the following system:

(7.4)

satisfy xt E S for all t >_ 0.
We use 7)’ to denote the limiting problem.
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Next, we describe the flow of constructing an asymptotic optimal control u. E Jt
of the original problem 7)e’ / beginning with a near optimal control . E Jt of the
problem 7),.

Construction of nearly optimal controls. Let -.-- (u(-),..., urn(.)) e Jt, where
uJ(t)-- (u(t), u2(t)), be an e’-optimal control for 7),, and let

t*=inf t" i(a-u(s)+u2(s)) ds >_
i=0

We define another control process t (0(.),...,,(.)) e A as follows: for j
O, 1, m,

(7.5) hi(t) (5(t) ~i { (al, 0) if t < t*,
u2(t))

(u (t), u(t)) if t >_ t*.

Let

(7.6)
m

W(t) (Wl (t), W2(t)) E {c(e’t)=c ( (t), t2(t)),-i
i--0

and let y(t) (yl (t), y2(t)) be the corresponding trajectory defined as

Yl (t) al + (w (s) w2(s))ds,

y2(t) a2 + (w2(s) zs)ds.

Note that w(t) satisfies the machine capacity constraints. However, it does not neces-
sarily satisfy the state constraints, i.e., y(t) may not be in S for some t _> 0. To obtain
an admissible control for 7)’ /, we need to modify w(t) so that the state trajectory
stays in S. We define

Then, u. A. Moreover, we have the following theorem.
THEOREM 7.1. Let f. A be an open loop ’-optimal for 7)’. Then, for the

control u 4 constructed above, there exist constants o and C such that, for all
0<<_0,

(7.8) limsup IJ’V(u. v’V <_ Ce’.
--0

Proof. We only sketch the proof as follows. We can define p0, /, jo, /, and
v’ / similar to their definitions in previous sections.

Step 1. Following the proof of Theorem 4.1 and [22], we can show

j, /(u.) _< j0, (.) + C/.

In this step, Corollary 3.3 must be used to replace Corollary 3.2, which was used in
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Step 2. We can show as in the second part of the proof of Theorem 4.1 that

v’ >_ v’
Step 3. We then check that Theorem 5.1 holds even with the presence of the state

constraints.
Step 4. An estimate similar to the one in (6.4) can be obtained. Finally, (7.8)

follows from the proof of Theorem 6.1. []

Remark 7.1. Note that only the construction of open loop controls is discussed in
the above theorem. In fact, construction of feedback controls is much more difficult
in the presence of state constraints. The reader is referred to [18] for some discussions
on feedback controls.

Remark 7.2. As we mentioned, Theorem 7.1 can actually be extended to incorpo-
rate flowshops that consist of more than two machines (cf. [22]), or even more general
jobshops that are formulated in [23]. The proofs are similar to the ones we sketched
above. Since the procedures are much more involved, the statements, proofs, and
results are omitted.

8. Concluding remarks. In this paper, we have carried out an asymptotic
analysis of risk-sensitive production of stochastic manufacturing systems as the rates
of machines breakdown and repairs become arbitrarily large. Based on this analysis
we have constructed open loop and feedback production rate decisions for the origi-
nal problem 7)’v from a near-optimal control of the limit problem p0,0. We have
shown that the constructed production decisions are asymptotically optimal as the
fluctuation rate of the machine capacities goes to infinity, i.e., 0.

9. Appendix. In this section, we give five lemmas that are needed in the pre-
vious sections and the second part of the proof of Theorem 4.1.

LEMMA A.1. There exist constants C and ko > 0 such that for all t >_ 0,

IP(a(e, t) i) -< + w e

Proof. We refer the reader to [20] for the proof. []

LEMMA A.2. Let y {y(.)’[0, oo) --. R1, ly(t)l <_ No a.s.} and let

1
f(t, y(.), c(, .)) exp

v/(t + 1)- (X{(e,t)=i} i)y(s)ds

For each y(.) E Y, define

t(y(’)) Ef(t, y(.), c(, .)).

Then, for any Zt adapted process (.) 3) a.s.,

t(fl(’)) E[f(t,/(.), a(s, .))lZt] a.s.

Proof. The proof is similar to the proof of [4, Lem. 14.18]. El

LEMMA A.3. Let denote a nonnegative random variable. Then,

Ee <_ e + (e 1) E eJP( >- j)"
j=l
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Proof. The proof is given as follows:

Ee E j{ e dR
j--O

.=,+lp( _< < +
j=0

E eJ+l[P( > J) P( > j + 1)]
j=0

<_ e+(e-1)E ejP( >-j)"
j=l

LEMMA A.4. Let denote a nonnegative random vriable sch that I111 <
oc, h I111 sssupll. rhn, (x).- x- loNEe is a monotone increasing
function on (0, oe) and

lim (z)=

Proof. First of all,

1
’(x) - ogE

x Eex

Let

x-- -logEex+x.Ee

Then, ’(x)= (x). Note that (0)= 0 and

EeX EeX E2eXEe (EeX)2

’(x)= Ex E x (E)

(E2eEe (EeX)2 )x
(Eel()2

0.

Therefore, O(x) 0 for all x e (0, ). This implies ’(x) 0 for all x (0, ).
Thus, (x) is a monotone increasing function.

To see the limit of (x) as x , we observe that

(x) ogE I111 < .
x

This implies that lim (x) exists. Now, for any > 0, let D { ]ll] -}.
Then P(D) > O.

(x) k ogEXDx
11

log e(llll-v) + logEXD
x x

1
1 + oP(D).

x
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Thus,

Since r/is arbitrary, lim__, (x) I1{11. []

LEMMA A.5. Let /9(t) denote a o{a(e,s),z, s <_ t} adapted process. Then
E[3(t)[Zt] E[3(t)[ Vt>_o Zt]. In particular, E[(t)lZt] E[(t)[&,] for all t’ >_ t.

Proof. We refer the reader to [20] for the proof. []

Proof of Theorem 4.1 (cont.). To show (4.10), we first show that for any control
u. E Jte, there exists a control U. (u.,..., u.m) E ,4 such that IE[ulZt]--]io uiul
is small. In fact, for each 34, let u E[ufla(e,t i, Zt]. Then U.
(u.,...,u.) ,4. Moreover, note that u is Zt adapted and Zt is independent
of a(e, t).

By Lemma A.1,

(9.1)

m

E[ulZt] E uiut + E(P(a(e’ t) i) ui)u*
i=0 i=0

< + o( + -o/).
i=0

We repeat the above argument with uf replaced by c(uf). Then,
m

i=0

Now, by the convexity of c(u), we have

Thus,

(9.2)

m

E[c(uf )lZt] >_ P(a(, t) i)c(u)
i=0
m

.{(<) + o( + -o/).
i:0
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Let x. and 2. be corresponding state trajectories under controls u. and U., re-
spectively. Then, by Lemma A.5,

"t X + Pis Zs d8.
i=0

Subtracting the above two equations, we have

Then, applying (9.1), we obtain

l[lz]- 1 o(( + t).

Now, by the convex and locally Lipschit assumptions on h,

{ { 1 }J,(u) logE E exp e-t[h(xt) + c(u)]dt

>_ x/logE exp - e-Pt[h(E[xt[Zt]) +

i=0

where

[ .]I (e) exp e-or h(E[ztlZt]) h(t) + E[c()lZt] ,c(u) dr.

Combining (9.2) and (9.a), we obtain

--k3 -pt (1 + tk t) + exp
kot, () )(1 + + --- dt

p{-}}

for some k3 > 0 and k4 > 0. Therefore,

J,() o{-4}+ J,(u.)
-ke + j0,(U.).
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MULTILEVEL HIERARCHICAL DECISION MAKING IN
STOCHASTIC MARKETING-PRODUCTION SYSTEMS*

S. P. SETHIt AND Q. ZHANGt

Abstract. This paper presents an asymptotic analysis of hierarchical marketing-production
systems with stochastic demand and stochastic production capacity modelled as finite state Markov
processes. The decision variables used are advertising and production rates Which influence capac-
ity, demand, and inventory levels. The objective of this paper is to maximize the expected total
discounted profit over an infinite horizon. The authors are interested in situations in which the rate
of change in capacity states is an order of magnitude different from the rate of change in demand
states. These give rise to upper-level problems in which the stochastic capacity is replaced by the
average capacity and/or the random demand is replaced by the average demand. Controls for the
corresponding lower-level problems in different cases can be constructed from nearly optimal controls
of the upper-level problems in a way that guarantees their asymptotic optimality.

Key words, stochastic manufacturing systems, marketing-production planning, hierarchical
control, Markov processes, dynamic programming, viscosity solutions

AMS subject classifications. 93E20, 93A13, 90B30, 90C39

1. Introduction. One of the most important methods for dealing with opti-
mization of large complex systems is that of hierarchical decomposition. The idea
is to reduce the overall complex problem into manageable approximate problems or
subproblems, solve these problems, and construct a solution of the original prob-
lem from solutions of these simpler problems. Development of such approaches for
large complex systems has been identified as a particularly fruitful research area by
the Committee on the Next Decade in Operations Research [6] and by the Panel on
Future Directions in Control Theory [11].

Most manufacturing firms are large complex systems characterized by several
decision subsystems such as finance, personnel, marketing, and operations. Further-
more, they may have a number of plants and warehouses and produce a large number
of different products using a wide variety of machines and equipment. Moreover, these
systems are subject to discrete events such as construction of new facilities; purchase
of new equipment and scrappage of old; machine setups, failures, and repairs; and
new product introductions. These events could be deterministic or stochastic. Man-
agement must recognize and react to these events. Because of the large size of these
systems and the presence of these events, obtaining exact optimal policies to run these
systems is nearly impossible both theoretically and computationally.

In practice, therefore, these systems, largely due to their complexity, are managed
in hierarchical fshion. In this context, Herbert Simon [29] writes, "My thesis has
been that one path to the construction of a nontrivial theory of complex systems
is by way of a theory of hierarchy. Empirically, a large proportion of the complex
systems we observe in nature exhibit hierarchic structure." The literature provides
little additional justification beyond the fact that these systems are complex for the
practice of treating them hierarchically, especially when the environment is uncertain.
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Canada grant A4619.

Faculty of Management, University of Toronto, Toronto, Ontario, M5S 1V4, Canada. Present
address: Department of Mathematics, University of Georgia, Athens, Georgia 30602.
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There are several different and not mutually exclusive ways to reduce the com-
plexity. These include decomposing the problem into problems of smaller subsystems
with a proper coordinating mechanism; aggregating products and subsequently dis-
aggregating them; replacing random processes with their averages and possibly other
moments; and so on. For further details on hierarchical approaches in production
planning systems and their importance in practice, we refer the reader to the sur-
veys of the literature by Libosvar [18], Bitran and Tirupati [4], and Sethi and Zhang
[22], [24], books by Stadtler [33], Switalski [34], and Sethi and Zhang [26], and a
bibliography compiled by Bukh [5].

In this paper, we focus on the problem of a profit-maximizing manufacturing firm
that must decide over time on the rate of promotional expenditures that create addi-
tional demand for its products and the rate of production to meet the demand. Prob-
lems incorporating promotional and production decisions have also been addressed by
Abad [1], Sogomonian and Tang [30], and Sethi and Zhang [23]. Sethi, Taksar, and
Zhang [21] treat a problem dealing with capacity expansion decisions along with pro-
duction decisions and Zhou and Sethi [36] consider a problem with with production
and personnel decisions.

The problem under consideration, termed the global problem, is formulated as
a dynamic stochastic optimization problem with finite state Markovian demand and
production capacity processes that depend, respectively, on the advertising and the
production rates over time. In general, such problems are intractable. Either because
of this intractability or because of some organizational considerations, such as the
presence of a hierarchical structure within the firm, in practice the advertising and
production planning decisions are made at different levels of the organization; see Meal
[19] or Zistner and Switalski [16]. The former decisions are usually medium- or long-
term decisions and are in the domain of marketing management. The latter are short-
to medium-term decisions and are usually the concern of operations management.
The two-level decision-making procedure works roughly as follows. Marketing (the
upper level) bases its promotional decisions on some aggregated, rather than detailed,
information from the shop floor. Subsequently, operations management (the lower
level) makes production planning decisions given the advertising decisions already
made at the upper level.

An important and obvious question that arises is whether there is a two-level
decision procedure, such as the above, that is simpler than solving the global problem
and is, at the same time, a good approximation of the optimal solution of the global
problem. That such a procedure is usually simpler has been discussed in the literature;
see Meal [19], for example. The theory developed in this paper answers the second
part of the question in the affirmative under reasonable assumptions.

We shall develop several different two-level procedures, such as the above, that
are simpler than solving the global problem and are, at the same time, good approxi-
mations of the optimal solution of the global problem. One such two-level procedure
can be described as follows. The upper level solves a limiting problem obtained by
replacing random capacities by their averages. The solution of this limiting problem
yields an advertising decision as well as an average production plan. The upper level
implements the advertising decision and informs the lower level of it. It is clear that
the average production plan is not feasible for the global problem. However, one could
construct a feasible production plan from it at the lower level that takes into account
the stochastic demand resulting from the upper level’s advertising decision. We are
able to prove that the two-level decision procedure provides an asymptotic optimal
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solution to the global problem as the rates of transition between the various possible
capacity states become very large in comparison to those between the demand states.
The striking novelty of our approach is that this can be done without solving for the
optimal solution, which, as stated earlier, is an insurmountable task.

It is important to note that the model we formulate is sufficiently rich and repre-
sentative to illustrate the idea of asymptotic optimality in hierarchical manufacturing
organizations in which medium-term and short-term decisions are made by different
organizational units. Moreover, the processes taking place in the short term are much
faster than those in the medium term. By a fast-changing process, we mean a process
that is changing so rapidly that from any initial condition, it reaches its stationary
distribution in a time during which there are few, if any, fluctuations in the other pro-
cesses. The reader is referred to Lehoczky et al. [17, pp. 597 and 605] and Gershwin
[14], [15] for further details on this point.

So far in our discussion, we have assumed that the capacity process is much faster
than the demand process. In other words, the mean times between changes in capacity
states is much smaller than those between changes in demand states. In the cases
when the opposite might hold, a proper hierarchy would have operations management
at the upper level and marketing at the lower level. In this paper we treat all possible
hierarchies, including the case when capacity and demand processes have comparable
frequencies with both of them being faster than the discounting process.

The model developed here represents an extension of preceding papers by Soner
[31] and Sethi and Zhang [25] in the sense that it incorporates the possibility of
influencing demand using advertising. In more general terms, the model has two
explicit decisionmaking levels not present in the other two papers.

Furthermore, the results provide a rigorous theoretical justification, although in
the case of a mathematically tractable model, for the common practice of hierarchical
decision making as elaborated in the classical work of Anthony [2]. More importantly,
they elicit deep insights into the structure of hierarchy and suggest near-optimal proce-
dures of hierarchical decision making in more general contexts. Also, by establishing a
criterion for determining the quality of hierarchical solutions, these results and further
research could identify existing "right" and "wrong" practices. Viewed in this way,
the results may have profound implications for the design of hierarchical structures
within manufacturing organizations.

Finally, our model contains two parameters signifying the orders of magnitude
associated with the rates of change of the capacity process and the demand process.
We deal with cases in which only one of the two parameters is small and cases in
which both parameters are small. In the latter cases, the arguments used in [25]
to obtain the limiting problem in a single parameter case do not work because the
two parameters in our problem may converge to zero at different rates. Thus, we
need to modify the method used in [25] to suit our situation. In the former cases,
the presence Of the two parameters implies a number of different limiting problems.
When one parameter is fixed while the other is small, the associated limiting problem
involves a stochastic process associated with the fixed parameter. While this does
not complicate the asymptotic analysis of (partial) open-loop controls, it requires
additional care in dealing with feedback controls. Specifically, the uniqueness of a

solution for such a stochastic limiting problem needs to be specified via a solution
to an associated martingale problem. Consequently, various concepts in probability
and stochastic processes such as tightness, convergence in distribution, Skorohod’s
representation, and weak convergence in the space of square integrable functions are



MULTILEVEL HIERARCHICAL CONTROL 531

used for obtaining the desired asymptotic optimality results.
The plan of the paper is as follows. In 2, we formulate the model of the

marketing-production system under consideration and the related global stochastic
optimization problem. Also developed are possible hierarchies and relevant limit-
ing problems. In 3, we discuss some elementary properties of the associated value
functions and show that the value function of our problem converges to the value
functions of appropriate limiting problems. In 4, we study the asymptotic behavior
of the capacity and demand processes. Then, in 5, we provide a construction of the
asymptotically optimal open-loop controls. Asymptotically optimal feedback controls
are studied in 6. Finally, 7 concludes the paper.

2. Problem formulation and possible hierarchies. In 2.1 we develop the
marketing-production problem under consideration. The stochastic processes and
control variables involved in the problem will be specified precisely in 2.2. In 2.3,
we develop possible hierarchies by specifying three different limiting problems.

2.1. The marketing-production problem. Let us consider a marketing-pro-
duction system that produces n distinct product types using a random production
capacity a(, t) E R (parameter to be specified later). Let ut E Rn denote the
production rate. Clearly ut > 0 and, in addition, ut will be subject to the available
production capacity c(, t) in a way defined later. With the total surplus xt R
and a stochastic demand rate z(5, t) R (parameter 5 to be specified later), the
system dynamic is

(2.1) t ut- z(5, t), x0 x,

where x Rn is the initial surplus. Note that surplus represents inventories when
positive and shortages when negative. Here and elsewhere we use boldface letters to
represent vectors.

We consider the profit functional J defined by

(2.2) J(x, c, z, u., w.) E fo e-ptC(xt, z(5, t), ut, wt)dt],
where p > 0 is the discount rate; wt E RTM is the rate of advertising; G is the
net income function of x, z, u, and w; and x, c, and z are the initial surplus, the
initial capacity, and the initial demand, respectively. The problem is to find a control
(ut, wt), t > 0, that maximizes J(x, c, z, u., w.).

Example 2.1. Let xt R denote the total surplus at time t, ut R denote
the production rate, wt /1 denote the advertising rate, and z(5, t) E R denote the
demand rate. These variables satisfy (2.1). The decision variables ut and wt satisfy
the constraints 0 < ut < c(e,t), 0 < wt < K < oc, where K represents an upper
bound on the advertising rate. The objective is to choose admissible decision (u., w.)
to maximize the expected total discounted profit

J(x, c, z, u., w.) E jo e-Pt[z(5, t) (h (xt) + cut + wt)]dt,

where 7r is the revenue per unit sale, h (.) is the inventory/shortage cost function,
and c < r is the unit production cost. See Sethi [20] and Feichtinger, Hartl, and Sethi
[10] for surveys on dynamic optimal control models in advertising.
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We now specify the production and advertising constraints
capacity state i, let

For each possible

(2.3) b/i={u=(ul,...,Un) >_ O p" u <_ i} c Rn,

where p (pl,..., Pn) >- 0 is a given constant vector with pj representing the amount
of capacity needed to produce product type j at rate 1. Let )42 denote a convex
compact subset of the positive orthant of RTM. With this definition, the advertising
and production constraints at time t, respectively, are

wt E 142 and ut E 5/(,t).

2.2. Specification of capacity and demand processes. Our purpose in this
section is to specify precisely the joint process (a(c, t),z(6, t)) as a Markov process
constructed from an infinitesimal generator that depends on production and adver-
tising rates.

We begin with a standard probability space (Ft,9c, P). Let {z,zl,... ,zd}
denote the set of demand states and let wt Rnl, wt >_ O, wt bounded, denote the
advertising rate at time t. We shall assume that the demand process z(5, t) takes
values in g and that transitions between the demand states depend on the rate of
advertising. Assume that the random process a(c, t) AJ {0, 1,..., m}, and that
the transitions between the capacity states may depend on the production rate.

The dependence of a(,t) on the production rate will be given by a genera-
tor -lQm(u), > 0, where Q’(u) is an (m + 1) x (m + 1)-matrix such that
Qm(u) {qir}(U)} with qir(u) >_ 0 if/ # j and q. (u) -ji q(u). To model
the dependence of z(5, t) on the advertising decision, we let 5 > 0 and z(5, t) Z be
governed by a generator 5-1Qd(w). Here Qd(w) is a (d + 1) (d + 1)-matrix such

qid/(W) dthat Qd(w) {q(w)} with q(w) > 0 if j and -j qij(w).
Next, we define the average distributions associated with the generators. For this

purpose, let

(2.4)
and

rm={U=(u,ul,...,um) such that

rd-- {W-- (wO, wl,..., wd) such that

We define two matrices 0"(U) and Qd(w) as functions of (U, W) G rm Fd.

(u)

q(u) q(u) qom(u)
qrn m10(U1) ql(ll qom(U1)

q 0(u

(w)

q0d0(w) qodl(w) q0dd(W)
qd0(w1) qldl(W) qdd(wl

q 0(w
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For each U E F" and W E Fd, let

and

,(u) (,(u), ,?(u), ,(u)),
"(w) (,o(W), .l(W),..., ,(w))

denote nonnegative solutions, respectively, to

(e.5)
and

,’(U)Q’(U) 0 and Y]i:o u?(U) 1,
d,d(w)(d(w) 0 and -i=o uid(W) 1.

The vectors ’m(u) and ,d(w) will be called the average distributions of Om(u) and
Qd(w) for any given U Fm and W Fd, respectively.

We make the following assumptions on the function G and the generators Q’ (u)
and Qd(w).

(A1) There exists a constant cg, such that for all x, x, u, u, w, and w, we have

0

_
G(x,z,u,w)

_
cg(l +

[a(x, z, u, w) a(x’, z, u’,
<_ c(1 + Ixl / Ix’l)lx- x’l / clu- u’l / clw w’l.

(A2) Qm(u) and Qd(w) are continuous functions of u and w. Moreover, for each
U Fm and W Fd, the systems of equations (2.5) have unique nonnegative solutions
’m(u) and ,d(w), which are assumed to be continuous with respect to U E Fm and
W Fd. Furthermore, there exist U Fm and W Fd such that Qm(u) and Qd(w)
are both irreducible.

We give two examples in which assumption (A2) holds.
Example 2.2. Q’(u) Qm and Qd(w) Qd, where Q’ and Qd are constant

irreducible matrices. In this case, ’(U) ’ and ,d(w) ,d are the familiar
equilibrium distributions.

Example 2.3. Let Qm(u) and Qd(w) denote generators of birth-death processes,

Q’(u)

Q(w)

-#o #o 0 0 0

)1 (U) --(/1 (U) nt- t1) t 0 0

0 (u) -((u) + .) m 0

o o o (u) -(u)

-p0(w) po(w)

/l(W) --(,l(W)-- /l(W))
0 (w)

0 0

0 0 0

l(W) 0 0

-((w) + 2(w)) (w) 0

0 Aa(w) -(w)
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We assume that #i > 0, Xi > 0, and that ,(u) >_ 0 and #(w) are continuous in u, w.
Thus, for any given U E F and W E Fd, we have

O’s(u)

-#o #o 0 0 0

,1(ul) --’1 (ul) 1 #1 0 0

0 ,(u) -,X.(u) . 0

o o o ,,(u")

)(w)

-o(w) o(w) o o o
I(W1) --1(Wl)--1(W1) #I(W1) 0 0

o X. -X(w)-(w) .(w) o

k o o o i(w) -X(w)/

The average distributions m(u) and ,d(w) are given as follows"

(u)... X(uTM

/]n(u) )l(ul) ’’’m(urn) -4-o2(u2) ’’’)m(um)--’’’-4- 0""m-1

and for _> 1,

.o(W)

m #0" #i-z]n(U) /’0 (U)/l(ul).. ,m,,urn,,;

1(wl)’’" d(wd)
/1(wl) /d(Wd) -- 0(W0)/2(W2) )d(Wd) --.’’ + J0(W0) #d_l(Wd-l)

and for _> 1,

/2/d (W) pod(W) #o (w)".1
_

i-l::(--i(wi- 1)

Note that Qm(u) in the example could be thought of as a production capacity
process consisting of rn identical machines of unit capacity each. The state Ad
would correspond to the situation when machines are up and (m- i) machines are
down. The machine breakdown rate depends on the production rate u, whereas their
repair rates are independent of it.

Let us now return to the general setup. Since Q’(u) and Qd(w) depend on
the control variables of the system under consideration, the processes c(e,t) and
z(5, t) need to be defined simultaneously by using the piecewise-deterministic process
approach introduced by Davis [8]. To this end, we need to define the generator of the
joint process (c(e, t), z(5, t)).
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First of all, note that the state space of (a(,t),z(5, t)) is given by

3d Z { (0, z),..., (0, zd), (1, z),..., (1, zd),..., (m, z),..., (m, zd) }.

For ease of notation, we represent Ad Z by the set

{(00),..., (0d), (10),..., (ld),..., (m0),..., (rod)}

such that (ij) corresponds to (i, zJ).
We define an [(m + 1) (d + 1)] [(m + 1) (d + 1)l-matrix Q(u, w) as follows:

Q(u, w)

q(u)I q(u)I qomm (U)I
1 q(u)I qm qml(U)r (u)

qmmo(u)i qm m (u)Iml(U)/ qmm

Q(w) o o

1 o Q(w) o
+

o o Q(w)

where I is the (d + 1) (d + 1)-identity matrix. If we let q(ii,)(jj,) (u, w) denote the
(ii’)(jj’)th entry of Q(u, w), then one can see that

q(ii,)(jj,)(U,W)

-lqi. (u) 4- (-lq/d,i, (W)
5- lq/d,j, (W)
-1 m

qij (U)
0

ifi=j, i’=j’,

if j, i’ -: j’,

if j, i’= j’,

if -: j, i’ -: j’.

We can also define a matrix Q(U, W) as follows:

(2.6)

Q(u,w)

q(u)I q(u)I qom(u)I
1 q(ul)I qm(ul)111 qlmm (ul)I

qo(um)Z ql(um)I q,m(um)I

&(w) o o

1 0 Qd(w) 0

o o Q(w)

It can be shown that if Q’(U) and Qd(w) are irreducible for some U and W, respec-
tively, then Q(U, W) is also irreducible for some (U, W).
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With 0(U, W) thus specified, we can construct the desired Markov process (c(a, t),
z(5, t)) by the same approach used in [25]. Moreover, the process

f(c(e,t),z(5, t))- f(c(e,s),z(5, s))- Q(uT,wr)f(c(e,r),z(5, r))dr

is a martingale for any bounded function f on Ad x Z.

2.3. Possible hierarchies and associated problems. In this section, we shall
state precisely the various optimization problems that will be studied in this paper.
These problems arise in the process of specifying various possible hierarchies that are
involved.

We begin with a precise statement of the marketing-production problen devel-
oped in 2.1 and 2.2.

DEFINITION 2.1. We say that a control (u., w.) {(ut, wt) t _> 0} is admissible

if (u.,w.) is right-continuous having left-hand limit (RCLL), is cr{(a(e,s),z(5, s))
s <_ t} adapted, and satisfies ut E bl(,t) and wt 142 for all t >_ O. We use A’ to
denote the set of all admissible controls. Then our control problem can be written as

follows:

(2.8) p,.

max.

s.t.

value fn.

JS’5(x, c, z, u.,w.)= E e-ptG(xt,z(6, t),ut,wt)dt

t ut z(5, t), x0 x,

((, t), z(, t)) Q(u, w),

((, 0), z(, 0)) (, z),

(u., w.) A,,
ve’’5 (x, c, z) sup Je’5 (x, c, z, u., w.),

(u.,w.)A,

where by (c(e, t), z(5, t)) Q(ut, wt), we mean that the Markov process (c(e, t), z(5, t))
has the generator Q(ut, wt).

We use Jt’, A’, and A, to denote the admissible control spaces

.40,0= {(Ut, Wt) F x Fd (Ut, Wt) is deterministic and RCLL},

Me’= {(ut, Wt) L/(,t) x Fd" (ut, Wt) is a{c(e, s)" s <_ t} adapted and RCLL},

4’= {(Ut, wt) F x IW’(Ut, wt) is a{z(5, s)" s _< t} adapted and RCLL},
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respectively, for the optimal control problems 7)’, 7)’, and 7)’5 given below:

(2.9) 7)’

max. je,o (x, o, u., W.)

s.t.

value fn. J’(x, c, u., W.);

(2.10) 7)0,5.

max.

s.t.

value fn.

jo,5 (x, z, U., w.)

)dt.?(u)a(x.z(.t).u.w
i=0

(,t), so x,.(V)u z
i=0

1 Qdz(. t) (w). z(. o) z.
(U., w.) A,,

v,e(x, z) sup
(U.,w.)eAo,

J’(x, z, U., w.);

(2.11) 7)0,0.

max.

s.t.

value fn.

J’(x, U., W.)

foo -’ ?(u,)(w)a(x z,ut,wt)dt
i=o,j=o

m d

i=o j=o

(g., W.) e A,,
o,O(x) sup o,O(x, v., m).

(g.,w.)Ao,

Here we refer to 7)o,o as the corporate-level problem, 7)’ as the production-level
problem, po,5 as the marketing-level problem, and 7)’5 as the operational-level prob-
lem. Figure 1 shows the structure of this multilevel hierarchy. Note further that when
we consider any two of the above problems (except 7)’ vs. 7)0’5), we always use upper
level to refer to the simpler problem and lower level to refer to the other. For example,
between po,o and p,o, we say 7)o,o is the upper-level problem and p,o is the lower-
level problem. The structure of the multilevel hierarchy is shown in Fig. 1, in which
we use (U., W.)’, (u., W)’, and (U., w)’5 to denote near-optimal controls for 7)’,
:p,o, and 7)’5, respectively. We also use (u., W.)io E ,4’ and (U., W.)o’, E 4’5 to
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(u., w.)
,

0,0(u., w.)e,

(U., W.)’
--*0

u. W.)’,0
,s,o

(U., W.)’
(u.,

0,5

(U., w.)O,e;

6--0

6 0

FIG. 1. Possible multilevel hierarchies.

denote asymptotic optimal controls constructed from (U., W.)’ for 7)’ and 79,5, re-
,o .A,o ospectively. Similarly, (u., w.): jt’ (u., w.), and (u., w.)i are

asymptotic optimal controls constructed from (U., W.)’, (u., W)’, and (U., w.)’5,
respectively, for :Pc’5. It should be noted that the construction of asymptotic optimal
controls for the lower problems are certainly not unique.

3. Analysis of the value functions. In this section, we first state some ele-
mentary properties of the value functions and then study their asymptotic behavior
as --, 0 and/or --, 0.

We begin with the Lipschitz property of the value functions.
THEOREM 3.1. Let v(x, a, z) denote any of the four value functions v’ (x, a, z),

v’(x,a), v’5(x,z), and v’(x). Then for each (a,z) E AJ x Z, v(x,a,z) has at
most linear growth and is locally Lipschitz with the Lipschitz constant independent of
and 5, i.e., for some constant C,

(3.1) 0 _< v(x, a, z) < C(1 + ]xl) for all and x,

and

(3.2)

for all X and x2.

Proof. The proof is similar to the one in [25, Thm. 3.1]. [:]

Next, we write Hamilton-Jacobi-Bellman (HJB) equations for the problems de-
fined in the last section and claim that the value functions of the problems satisfy
these equations. In writing these equations, however, we note that the notation f,,
means the gradient of a function f with respect to x when it exists. Otherwise, the
equations are understood to be in the sense of the viscosity solutions (see, e.g., [13]
and [7]).
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THEOPEM 3.2. The value functions v’5(x, c, z), v’(x, c), v’5(x, z), and v’(x)
are viscosity solutions to the following HJB equations, respectively:

(.)
pv’ (x, o, z) max

(u,w)e.

for any (c, z) E A/[ Z;

(3.4)
pv’(x, c) max

(u,W)b/r

for any c A;

d

(u-z) .v, (x, .) + .](w)a(x, z u,w)
j=O

1Q’(u)v’ (x’ }+ .)()

(.)
pv’ (x, z) max

(U,w)er’-w

for any z Z;

o,(x,zz).vx
i=0

Qe(w),(x, .)(z)}+ }2 (u)a(x, z, u, w) +
i=0

(3.6)
pv’(x) .max

(v,w)[’,r

Proof. The proof follows directly from Soner [32]. []

We now examine the asymptotic behavior of the value functions v’5(x, a,z),
v,(x, a), and v,5(x, z), as goes to 0 and/or 5 goes to 0.

THEOREM 3.3. Under assumptions (A1) and (A2), the following hold:

(i) lim v’5 (x, a, z) v’(x);
,5--0

(ii) lim v’(x,c,z) vS’(x,c);
5---0

(iii) lim ve’ (x, c, z) v’ (x, z);
s---*O

(iv) lim v’(x, a) v’(x);
e---*0

(v) lim v’ (x, z) v’(x).
5--0

Proof. We only prove (i), since the proofs for the others are similar. By [25,
Thm. 4.1], it is sufficient to show the following: if there exists a sequence (, 51) --* 0
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(1 1, 2,...) such that v*’5 (x, a,z) --, v(x, a,z) as --. oe, then the limit function
v(x, a, z) is independent of (a, z).

If we examine the ratio of et and 6t, there are only three cases that may occur.
Case (a). lim inft__. et/6 O.
Case (b). lim supt_ Ct/6 o.
Case (c). There exist constants cl and c2 such that 0 < cl <_ /5 < c2 < c for

all 1.
We deal with each of these cases separately. We show that in each case, the

limiting function v(x, a, z) is independent of (a, z).
We consider Case (a) first. Note that Case (a) implies the existence of a further

subsequence of {/}, still denoted by {/}, such that /5 ---. 0 as/---, o.
By assumption (n2), there exist V (u,ul,...,ur) E. F" and W

(w,w,...,wd) E Fd such that Qm(u) and Qd(w) are irreducible. Moreover,
((U, W) defined in (2.6) is also irreducible.

For each fixed x, it follows from Theorem 3.1 that v,5. (x, a, z) is bounded on

(a,z) Ad Z. Moreover, the subgradient Ov*’5*(x, a,z) is also a bounded set.
Therefore by (3.3), we have

(3.7)

for all OxVet’5t (x, i, zJ). Since /5 O, it follows that

liminf (’(U)ve’5 (x,., z)(i) _< 0

for each JM. Since v’5 (x, i, z) -, v(x, i, z),

(3.s) O’(U)v(x,., z)() _< o.

This system of inequalities (3.8) implies (cf. [25, Thm. 4.11) that v(x, i, z) is indepen-
dent of i. We may now denote v(x, i, z) by v(x, z) with a slight abuse of notation.

We next show that v(x, a, z) is also independent of z. Indeed, if we multiply the
inequality in (3.7) that corresponds to (a,z) (i, zJ) by (U), sum over
and use the fact that _,i__o u(U)2(U)v’5(x,-, zJ)(i) 0, then we shall have

p,F(u), (x, i, z) _> .?(u)(u z). OxV, (x, i, z)
i=0 i--0

m

+ (u)a(x, z, u, w)
i--O

1
+ )(v) (u),(, i, .) (z).

i--O

Multiplying by 5t and taking the limit yields

lim inf (d(w)E u?(U)ve"e’(x’ i, .)(zj) _< 0
i=0

for each zj Z. By using ve’’5z (x, c, z) -- v(x, z), we have

Q(w)(x, .)(z) _< 0.
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This implies that v(x, z) is independent of z. Hence, if Case (a) holds, then v(x, a, z)
is independent of (a, z).

If Case (b) holds, i.e., lim sup_, et/5t c, then we have lim inft_, 5t/et O.
If we exchange the role of et and 51, then there exists a further subsequence of {/}
such that 5t/et -- O. We can thus repeat the argument used in Case (a) to show that
the limiting function v(x, a, z) is independent of (a, z), also in Case (b).

Finally, in Case (c), there exists a further subsequence of {/}, still denoted by {/},
such that et/5t - a > 0 as --, c. Without loss of generality, we may assume a 1.
Then, as in Case (a), we have

Q(u, w)(x,., .)(, z) <_ 0

for all (a, z) M Z. Then by the irreducibility of Q(U, W), we conclude that
v(x, a, z) is independent of (a, z). This completes the proof.

4. Asymptotic behavior of capacity and demand processes. The purpose
of this section is to analyze the asymptotic behavior of the process (a(, t), z(5, t)) as-- 0 and/or 5 - 0. The analysis will allow us to use optimal controls of lower-
level problems for constructing asymptotically optimal controls for the corresponding
upper-level problems.

Let XD denote the indicator function of set D and let

(t) ((,(,)=0),...,
(t) (x(.(,)=.),...,

and ’5(t) (X((,t)=o}5(t),...,X{(,t)=}5(t)).
From (2.7) it is easy to see that

(4.1) Ce’5(t) ’5(s) ’5(r)Q(U, W)dr

is a martingale. But

’5(t)Q(Ut, Wt) (q(u)x{,(,t):0} +"" + qo(U)X{(,t)=})5(t),
m 0(qom (u)X{,(e,t)=0} +"" + qm(um)x{a(e,t)=m})5 (t)

1 -d -dx(,(,)=) (t)Q (w)+ ? x(,(,)=0) (t)Q (w).

This implies that for each ,
{-l[(qo(){(e,r)=O +.-. + qi()X{(e,r)=m})()]

is a martingale. Summing up over , we conclude that

(4.2) 5(t) 5(s)- t 5(r)Q(W)dr
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is a martingale.
Similarly, we can show that

(4.3) 12 (r)Om(Ur)dr(t) () -i
is also a martingale.

Now define pe,e (t) Ege’e (t). Then,

Pe’5(t) P((a(a,t),z(5, t)) (O, zl)),...,P((a(e,t),z(5, t))= (0, zd)),
...,P((a(e,t),z(5, t)) (rn, zl)),...,P((a(,t),z(5, t)) (m, zd))).

By (4.1), we see that

(4.4) P’5 (t) P’5 (s) + PS’5 (r)O (Ur, Wr)dr.

Similarly, if we let P(t)- ECe(t) and P(t)= Eel(t) so that

and

(t) (P((, t) 0),..., e((, t) ,))
gs(t) (g(z(, t) z1),..., g(z((, t) zd)),

we can derive

PS(t) PS(s) + PS(r)Om(Ur)dr and P5(t) Pe(s) + P(r)Od(Wr)dr.

Let ’r(t)"- u’(Ut), ,a(t) := ,d(wt), and u(t)’= (u(t),d(t),..., u,(t)r,d(t)).
Let L([s, T]), 0 _< s _< T, denote the space of all functions f" Is, T] R that are
square integrable. Then, we have the following two lemmas.

LEMMA 4.1. For each s E [0, T], p,e (t), P (t), and P5 (t) converge weakly to
t(t), tm(t), and td(t) on L2([s, T]), respectively. That is, for each f(t) L2([0, T]),
we have

(i)

(ii)

(iii)

T

lim [P(t)- um(t)]f(t)dt 0;
--0

T

iI [P(t)- td(t)]f(t)dt- O;

lim (t) ,(t)]f(t)dt O.
,5--,0

Proof. First of all, (i) and (ii) can be proved as in [25, Lem. 5.11. Thus we need
only to show (iii). Let (et, 51, 1, 2,...) denote a subsequence of (e, 5) -- 0. We
have the same three possible cases as in Theorem 3.3. We deal with these cases one
by one.

If Case (a) holds, then there exists a further subsequence of {/}, still denoted
by {/}, such that /5 ---, 0 as oo. Note that since P’e(t) L2([0, T]), there
exists (cf. [35, Thm. 1, p. 126]) yet another subsequence of (et,Sl) 0 such that
{PeL’5(t)}[O,T converges weakly to some

P’(t) (Poo(t),..., Pod(t),... ,Pmo(t),... ,prod(t)) e L2([0, T]),
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T[P,5 (r) p,(r)]f(r)dr -- 0

for any f(.) E L2([0, T]). Moreover, 0 <_ P’(t) <_ 1 and E,’’ap(t)= a.e.
Let

q(u0) ql(U0) , oq0(ut)I
m qlm(Ut)I

Qm(Ut)
qlo(ut)I q(u)I m

qo(UF) q(u) q(uF)

It is easy to see that Q(Ut) L2([0, T]). This implies that for 0 s t T, we
have

[,()_ P’(r)]m(Ur)dr O.

Thus, by noting (4.4) and the fact that e/ 0, we obtain

(u)apO,O 0.

Since s and t are arbitrary, it follows immediately that

P,(t)Q(u) o, .e.

om this and the irreducibility of Qm(ut), which is related to Qm(ut), one can
conclude

(P00(t),..., Pmo(t)) po(t)(t),

(o(t),...,(t)) (t)TM (t),

po(t) +’" + pd(t) 1

for some py(t) O. By (i) of Lemma 4.1,

P((, t) z)

Since

P(z(5, t) z) P((a(,t),z(5, t)) (0, zi)) +... + P((a(e,t),z(5, t)) (m, zY)),

it follows that poy(t) +’" + pray(t) (t). This implies py(t) (t). Thus,

py(t) F(t),(t) a.e. for all i,j.

Since the weak limit of p,5 (t) equals (t), which is independent of the choice of the
subsequences of (t, St), it holds that P’5(t) (t) weakly.
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Similarly, we can show that Lemma 4.1(iii) holds in Case (b) if we reverse the
role of e and 5. Finally, if Case (c) holds, the above argument goes through by noting
the irreducibility of O.(Ut, Wt). []

LEMMA 4.2. For any bounded deterministic process (s) and for each E M and
t>_O,

E (s))(s)ds 0 as e-- 0,

E
2

--* 0 as 5 --. 0.

Moreover, for any 0 < s < T,

P((e, t) -ila{z(5, r)" r < s}) - (Ut)weakly on L2([s, Tl)as e ---, 0 a.s.,

Z(z(e, t) zl{(,). _< }) - (v,)a o ([, r])a - 0 .s.

Proof. The proof is as in [25, Lem. 5.1]. rn

5. Asymptotically optimal open-loop controls. In this section, we con-
struct asymptotically optimal open-loop controls for the lower-level problems from
optimal controls of the corresponding upper-level problems. Here open-loop controls
refer to partially open-loop controls, i.e., controls that respond to the machine state
but not to the surplus state. Feedback controls are considered in the next section.

THEOREM 5.1 (open-loop controls; pe,5 vs. p0,0). Let (U., W.) .A’ denote an
optimal control for the upper-level problem 7)’. Construct

e,5 e,5(ut ,wt {c(s,t)=i}ut, {z(5,t)=zJ}Wt
3

i=o j=o

Then, (u.’e, w.’) A,. Furthermore, it is asymptotically optimal for the original
lower-level problem ’, i.e.,

lim IJs’5 (x, c, z, u.’5 w’5) vs’5 (x, c, z)l 0.
e,5-*0

Proof. The proof of this theorem can be given as in [25, Thin. 6.1]. We provide an
outline of the proof here, however, for the sake of completeness. From the procedure
of constructing piecewise-deterministic processes described in [25], it is not difficult to

e,5see that the generators Q(u w and O.(Ut, Wt) both generate the same process

(a(e, t), z(5, t)). Thus, (u’5, wtS’5) E ,4s’5. Since lime,5_0 vs’5 (x, a, z) v’(x) and
js,5 (x, a, z, u.’5, ws’5). <_ vs’5 (x, a, z), it suffices to show that

lim inf Je’a (x, c, z, u.’, w.’) >_ v’(x).
e,5--O

Let (U., W.) ((u.,..., u.m), (w.,..., w.d)) e Jt’ be an open-loop optimal con-

trol for o,o and let (u’,w’) (y’im=ox{,(,t)=i}u, y=o X{.(,t)=.j}wj). Let x.

and . denote the corresponding state trajectories of the systems 7)’5 and 7)’ with
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TABLE
Asymptotically optimal open-loop controls.

Hierarchy:
lower vs. upper

Te,5 vs. -p0,0

),5 vs. 7)e’0

7e’5 vs. 7)0,5

),0 vs. O0,0

0,5 vs. 70’

Optimal control
for upper level

(U., W.) E A’
(u., W.) E A,

(U., w.) 6 A’5

(U., W.) 6 A,

(U., W.) 6 A,

Asymptotically optimal control
constructed for lower-level problems

d

XI=i}ut, X{z=z}Wt Ae’e
j-0

d

j=0

x(=i} u, wt E A’
x(=}u, Wt A’

Ut, X{z=zj}Wt A’
j=0

the same initial x, respectively. Then by Lemma 4.2, we can show that Elxt- tl ---* 0
as e,5 -- 0.

Moreover, by assumption (A1),

e,5 e,5 e 5liminfE e-t[G(xt,z(5, t) ut ’ w )-G(t,z(5, t) u wt’ )]dt > O.
,6--0

It follows that

lim inf J’5 (x, c z u.’5 w.’) > lim inf E e-ptG(f(t, z(5, t), u’ w’5)dt.
e,5--*O ,5-*0

Now, by our construction of (u.’e, wf’) and by Lemma 4.1, we have

This implies (5.1) and completes the proof.
In Theorem 5.1, the lower-level problem is 7)’5 and the upper-level problem is

7)0,0 The idea is to construct an asymptotically optimal solution for the lower-
level problem from an optimal solution of the upper-level problem. The result is
summarized in Table 1 in the 7)’ vs. 7)0,0 row, which is the first row. Similar
results Can be proved in similar ways for other combinations of lower- and upper-level
problems. These are also summarized in Table 1 in rows 2-4.

Remark 5.1. Another possible method for obtaining a lower-level decision is to
resolve the lower-level problem given the upper-level decision. In view of the results
proved in this section, it should be obvious that this method would also provide an

asymptotically optimal solution; see also [21].
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6. Asymptotically optimal feedback controls. We now consider feedback
controls. We begin with the hierarchy 7)e,5 vs. 7)’. Let

(U(x), W(x)) (u(x),...,u(x), w(x),..., w(x))

denote an optimal feedback control for 7),. This is obtained by maximizing the
right-hand side of (3.6), i.e.,

(6.1)

.? (U(x))u (x) .](W(x))z x’(x)
i----0 j-0

rn,d

+ (U(x))(W(x))a(x,z,u(x),w(x))
i=0,j=0

max u(g)u
(v,w)r- xr

(w) "x (x)
i=0 j=0

+ ?(u)(w)a(x,z,u,w).
=0,i=0

We then construct a control

(6.2)

m

u(x,., z) (.:)u (x),
i=0
d

w(x, , z) ..=..w(x),
j=0

which is clearly feasible (satisfies the control constraints) for 7)’5. Moreover, if
(U(x), W(x)) is locally Lipschitz, then the system +/-t u(xt, c(, t), z(5, t)) z(5, t),
x0 x, has a unique solution and, therefore,

(u, w) (u(x, (, t), z(5, t)), w(x, (, t), z(5, t)))

is also admissible for P’5. Discussions concerning the existence of such locally
Lipschitz feedback controls can be found in [12], [28].

We need an additional assumption to show that (u(x, c, z), w(x, c, z)) is asymp-
totically optimal for 7)e’5.

(A3) The following equation has a unique solution:

(6.3) t x + o n(U(r))ui(ycr) E (W(r))zj dr, o x.
=o j=o

A sufficient condition for this is that (um(u),ud(w)) is locally Lipschitz in

(U,W).
THEOREM 6.1 (feedback controls; 7)’5 vs. 7)’). Assume (A1)-(A3). Suppose

the feedback control (U(x),W(x)) e A’ is locally Lipschitz. Then, the feedback
control constructed in (6.2) is asymptotically optimal for T)’, i.e.,

lim IJ’ (x, c, z, u(x. c(e, .) z(6, .)) w(x. c(e,-) z(5, .))) ve’5 (x, c z)] 0.
,6---*0
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Proof. Since t is the only solution to (6.3), we can show as in Lemma 4.1 and
[25, Lem. 5.2] that

-. -. o.
The rest of the proof follows exactly as in [25, Thm. 6.2].

Next we consider the hierarchy 79’5 vs. p,0, which arises when e is fixed and
5 is small. While asymptotically optimal controls for 7),5 can be constructed from
the optimal control of p,0 in a way similar to that in (6.2), the proof of asymptotic
optimality is quite different from that in [25] due to the fact that the limiting problem
is no longer deterministic as it is in [25]. The uniqueness of the solution to the
limiting problem, therefore, needs to be specified by the probability distribution of
the underlying processes.

Let (u(x,a), W(x,a)) E JV’ denote an optimal feedback control for 79’ ob-
tained by maximizing the right-hand side of (3.4). We need to make the following
assumption"

(A3) The ordinary differential equation

d

(6.4) t u(t, (e, t)) E ](W(:t, (e, t)))zj, go x
j=0

has a unique solution for any given (e, t) generated by e-l(’(U(Yct)) and a(e, 0)
a, where

U(x) (u(x, 0),...,

A sufficient condition for (A3)’ is that (u(x, a), W(x, a)) is locally Lipschitz in x
for each a and ud(w) is locally Lipschitz in W.

THEOREM 6.2 (feedback controls; 7)’5 vs. p,0). Assume (A1), (A2), and (A3)’.
Suppose the optimal feedback control (u(x, a), W(x, a)) E 4, is locally Lipschitz for
each a. Let

(6.6)

Then, the feedback control (u.’5, w.’5) is asymptotically optimal for T’
lim IJ’5(x,a z u’5 w’5) v;5 (x, a, z) 0.
6--*0

Proof. In view of Theorem 3.3, it is sufficient to prove that

(6.7) lim inf J’ (x, a, z, u.’, w.’) >_ v’ (x, a, z).
5--,0

We divide the proof into four steps. These steps require the concepts of a martingale
problem, the tightness of a class of processes, convergence in distribution, and the
Skorohod topology. The reader is referred to [9] for details on these concepts.

Step 1. We need to show that (t, 6(, t)) stipulated in (A3)’ has a uniquely
determined distribution. For this purpose, we let A denote the generator defined as
follows:

Af(x,a) u(x,a)- uy(W(x,a))zd xxf(X
j=O

1(ma) + (U(x))f(x, .)(a)
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where U(x) is given as in (6.5).
(,, a(, t)),

As in [25, Eq. (5)], we can conclude that for

(6.8) f(Yt, (, t)) f(x, a) Af(,, 6(, r))dr

is a martingale for any continuously differentiable f(x, a) which vanishes at infinity.
Therefore, in order to prove that the probability distribution of (Rt, &(e, t)) is uniquely
determined, it is sufficient to show that the martingale problem (6.8) for A has a

unique solution.
o d0Indeed, let t, (e, t)) denote a stochastic process such that

f( t, &o(, t)) f(x, a) Af(5o, o(, r))dr

is a martingale. For any 7 > 0 and a bounded locally Lipschitz function g(x, c), let

(x, ) E -,(o, o(, t))dt.

Then, we can show (el. [32]) that (x, c) is locally Lipschitz and is a viscosity solution
to the HJB equation (7- A) g. It can be shown (cf. [32]) that such an HJB
equation has a unique viscosity solution. This implies, by [9, Eq. (4.29), p. 187], that
the martingale problem (6.8) has a unique solution.

Step 2. Consider (xt, c(e, t), z(5, t)) given by

(6.9)
, u(x, (, t)) (, t), x0 x,

((, t), (, t)) ?(U(x), W(x, (, t))), ,(, 0) , (, 0) .
Let D([0, T]) denote the space of fllnctions that are right-continuous having left-hand
limits on [0, T]. We now prove that {(xt, c(e,t))}, as a sequence of processes indexed
by > 0, is tight on D([0, T]).

Since u(x, c) and z(5, t) are bounded, it suffices to show that {a(e, t)} is tight.
Note that for any 0 _< t _< t _< t2 _< T and r/> 0,

P(Ic(, t) c(, tl)l _> r, la(, t.) c(e, t)l _> r)
<_ P(c(e, t) jumps at least twice on [tl, t2]).

Let 0 r0 < rl < r2 < denote a sequence of jump times of c(e, t). If tl 0, then

P(c(e, t) jumps at least twice on [0, t2])
< P(rl + r2 <_

< 2C dsdt, for some constant C

=Ct.
If t > 0, then by shifting the process a(e, t) by tl units, we can show that

P(a(e, t) jumps at least twice on [tl, t2]) <_ C(t2 tl)2.
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Let F(t) v/-t. Then,

P(lc(z, t) a(, tl)l -> r/, ]a(, t2) a(z, t)] _> r/) _< (F(t2) F(tl))2.
By the proof of [3, Thm. 15.6, p. 128], we conclude that {a(, t)} is tight.

Step 3. Let (xt, a(,t)) denote a solution to (6.9) and (t,C(,t)) as defined
in (A3)’. We now show that (xt, a(, t)) converges in distribution to (t, (, t)) as

Since {(xt, a(, t)} is tight on D([0, T]) for each sequence of 5 converging to 0,
x0there exists a subsequence, still denoted by 5, and (t,a(,t)) E D([0, T]), such

x0that (xt a(,t)) converges in distribution to (t,a(,t)). Then, by the Skorohod
representation theorem [9, Thm. 1.8, p. 102], there exist a probability space (t, ’, P)
and processes (t, (, t)) E D([0, T]) and (t, &(,t)) D([0, T]) defined on it, such
that

P((,, a(, t)) e .) P((x,, (, t)) e .),

P((,, (, t)) e .) P((x,, 0(, t)) e .),

and

(6.10) (, a(, t)) - (,, (, t)) ,.s. ,s - 0

in the Skorohod topology. Note that xt is continuous almost surely. It follows that t
is also continuous almost surely, and so is t. Therefore, (6.10) yields that t -- tin the space C([0, T]) of continuous functions with the uniform convergence topology.

Since t has the same distribution as xt, it holds that t is differentiable almost
surely. Define

Then

P((f(t,(s,t),.(,t)) .)- P((xt, a(,t),z(&t)) .).

Moreover, for any f defined on Z,

1 Qd(w(i, &(, r)))f((5, r))drf((6, t)) f((6, 0))

is a martingale. Then, we can show as in [25, Lem. 5.1] that

(5, t) vd(W(t, (, t))) weakly in L2([0, T]) a.s. as 5 0,

b

/a
b

X{.(5,t):.J)g(t)dt -* v](W(t, &(, t)))g(t)dt a.s.

for all g LZ([O, T]).
Note that for any continuously differentiable f(x,a),

(6.11)
0

f(,, &(, t)) -f(x, a) (u(, (, r)) ,(, r)))-xf(, &(, r))
1-
+-’(U())/(, .)(0(, r))dr
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is a martingale. Recall that (2t, &(e, t)) -- (2t, (, t)). By sending 5 -- 0 in (6.11),
we conclude (cf. [9]) that

f(t,&(,t))-f(x,a) u(, &(, r)) E (W(r, &(, r))) xxf(, &(, r))
j=o

+- (U(r))f(,’)(&( r))dr

is also a martingMe. Therefore, by Step 1, the probability distribution of (t, &(, t))
is uniquely determined by (6.8). Thus, (t, &(, t)) converges to (t, &(, t)) in distri-
bution as 5 0.

By the above argument, we may assume (by the Skorohod representation) that

(6.12)
and

(xt, a(e, t)) (:t, (e, t)) a.s. in the Skorohod topology

z(5, t) --. va(W(f(t, 6z(, t))) weakly in L2([0, T]) a.s.

Step 4. We can now prove (6.7).
Let

,0 u(,, (, t))Ut

w, (w,,..., w) w(,, (, t)).

Then, in view of assumption (A1) and a corresponding result in [25, Thm. 6.1], it
remains to show that for any fixed 0 < T.< oc,

(6.13)

T

’ s’e)dtlim inf E e-atG(xt, z(5, t) u w
5--o

T d

> E fo -’ (w(,, (, t)))a(,, u,,, w,O)et.
j=0

In fact,

(6.14)

T
,5 w,e)dtE e-PtG(xt,z(5, t), u

T
e,0E e-tX(z(5,t)=zJiG(t,zj, u ,w)dt

T d

+El0 -’ x,.(,,)_-,. [a(x,, z, u,’, w(x,, (, t), z(, t)))
j=0

,0-G(2.t,zj u ,wt)]dt.

Since (xt, a(e, t)) converges to (t, &(e, t)) almost surely, the second term in the right-
hand side of (6.14) goes to 0. By (6.12), the first term goes to

T
,0

’V’0 Z).E e-Ptv(W(Rt, &(, t)))C(t, zj u wt)dt (x, a

This completes the proof, rq

In view of Theorems 6.1 and 6.2, summarized, respectively, in rows 1 and 2 of
Table 2, the only remaining hierarchies for which asymptotically optimal controls need
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TABLE 2
Asymptotically optimal feedback controls.

Hierarchy:
lower vs. upper

7,5 vs. T0,0

::’5 vs. De,0

vs. 0,5

’),0 vs. 7pO’O

T’,5 vs. 7,

Optimal control
for upper level

(U, W) A,

(u,W)A,

(U, w) e A’
(U, W) A,

(U, W) eA’

Asymptotically optimal control
constructed for lower-level problems

m’ d

d

j=O

x{,=} u’(x, .), w(x, .)

x{,=}u (x), W(x)

U(x), x{..=... w (x)
j=o

to be constructed are 7)’5 vs. p0,5, 7),0 vs. p0,0, and 7)0,5 vs. p0,0. The results
for these are shown in Table 2 in rows 3, 4, and 5, respectively. The proof of row 2
is similar to the proof of Theorem 6.2. The proofs of rows 3 and 4 follow from [25,
Thm. 6.2].

7. Concluding remarks. In this paper, we have presented asymptotic opti-
mality results for hierarchical production and advertising planning in a marketing-
production system with random capacity and demand. We describe a procedure to
construct a control for the given system, derived from the solution to one of the upper-
level problems. The upper-level problems happen to be simpler problems obtained by
averaging the given stochastic production capacity process and/or averaging the given
stochastic demand process. Therefore, by showing that the associated value functions
for the lower-level problems converge to the value functions of the upper-level prob-
lems, we are able to construct a control for a lower-level problem from the optimal
control of the corresponding upper-level problem. It turns out that the controls so
constructed are asymptotically optimal as the rates of transition between the capacity
states go to infinity and/or the rates of transition between the demand states go to
infinity, respectively.

Several open problems remain. Particularly important to us is the extension of
these results to marketing-production systems with state constraints such as those
with machines in tandem analyzed in Sethi, Zhang, and Zhou [27]. We would also
like to obtain the convergence rates of value functions and error estimates of the
constructed controls.
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ON BANG-BANG CONSTRAINED
SOLUTIONS OF A CONTROL SYSTEM*

RAPHAEL CERF* AND CARLO MARICONDA$

Abstract. Given 1, 2 E L ([0, T]) and a function x E W2,1 ([0, T]) solving the control prob-
lem (P) x" +hi (t)x’ +ao(t)x [1 (t), 2(t)] a.e., x(O) xo, x(T) Xl, x’(O) vo, x’(T) Vl, there
exists a bang-bang solution y to (P) satisfying y

_
x; moreover there exists a finite union of intervals

E such that y" + aly’ + coy IXE + 2([0,T]\E. The reachable set of bang-bang constrained
solutions is convex: an application to the calculus of variations.

Key words, bang-bang, linear.control system, range of a vector measure, reachable set, cal-
culus of variations

AMS subject classifications. 34H05, 49B10, 93C15

1. Introduction. We consider the family of bidimensional linear control systems
(P) described by a generic second-order equation subject to a scalar control:

x" +al(t)x’ +ao(t)x e (t) [el(t), 2(t)], (x(O),x’(O),x(T),x’(T)) (Xo,Vo, x,v),

where 1

_
2 e nl([0, T]) and a, ao e C([0, T]), xo, vo, xl, v e I, x e W2’l([0, T]).

The function y is said to be a bang-bang solution to (P) if it solves (P) and,
moreover,

(1.1) y"+ al(t)y’ +ao(t)y e extr (t)= {el(t), 2(t)} a.e.

Existence of bang-bang solutions has been proved, for instance, by Cesari [4, Thm. 16.3].
The purpose of this paper is to prove that, given an arbitrary solution x to (P), there
exists a bang-bang solution y such that

(.) W e [0, T] (t) < x(t)

and, in addition, y" + aly’ + coy steers from 1 to 2 only a finite number of times.
Motivation of such a problem was to study the reachable set

{(y(T),y’(T)) y

_
c, y"+al(t)y’+ao(t)y e extr (t), (y(0),y’(0)) (x0,v0)},

where c is an arbitrary function. A consequence of Theorem 3.1 is that coincides
with

X {(y(T),y’(T)) y <_ c, y" +a(t)y’ +ao(t)y e (t), (y(0), y’(0)) (x0,v0)}.

Notice that A’ is convex, so the above assumption implies that is convex too. An-
other motivation arises from nonconvex problems of the calculus of variations (see [1]).

A possible approach in finding bang-bang solutions is to use the Lyapunov The-
orem on the range of a vector measure [4, 16.1].
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Here, the solution of x" + al(t)x’ + ao(t)x p(t), x(0) x’(0) 0 is given by

x(t)

where h E CI([0, T] x [0, T]), and for each s e [0, T] the function hs(.) h(.,s) e
C2([0, T]) is the solution to the associated homogeneous differential equation satisfy-
ing the initial conditions hs(s) 0, h(s) 1. The Lyapunov Theorem yields the
existence of a measurable subset E of [0, T] such that

(1.4)

fo
T

f0
T

h(T, s)p(s) ds h(T, s)(1 (S)XE(S) + 2(S)X[O,T]\E(S)) ds,

foo fo
T Oh

(T, s)p(s) ds (T, s)( (S)XE(S) + 2(S)X[O,T]kE(S)) ds

Clearly, by differentiating under the integral sign, the function y defined by

(1.5) +

is a bang-bang solution. However, this approach does not give any information on the
behaviour of y with respect to x on [0, T].

Here we prove a new Lyapunov-type theorem concerning the range of a two-
dimensional vector measure wkose densities are such that their quotient is monotone;
in this case, the set E can be chosen in the form [c, ]. Note that this is not true in
general; for instance, there are no c, [0, 37r] satisfying

j03rsin t dt sin tx[0,rlt[2r,3r] (t) dr, I dt 1X[o,.lu[2r,3.l (t) dt.

In our application, the equalities h(s s) 0 and Oh-(s, s) 1 imply that the mono-
tonicity condition is locally fulfilled; this allows us to build a set E satisfying (1.3)-(1.4)
as a finite union of intervals and, in the case where 1 < p < 2 are continuous, to
choose E in such a way that neither 0 nor T belong to its closure.

These facts, together with a decomposition of the kernel h(t,s) into a linear
combination of linearly independent functions, are the main tools that we use to show
that the bang-bang solution y defined by (1.5) satisfies the inequality y _< x.

As an application, we consider the problem of minimizing the integral functionals

T

I(x, u) f (t, x(t), u(t)) dt,

where x: [0, T] ]R2 is such that x(0), x’(0), x(T), x’(T) are fixed and u is a control
belonging to U(t,x) c R2. The classical approach to obtain existence of a minimum
is to impose conditions in order to have the lower semicontinuity of I with respect to
u (for instance convexity of u H f(t, x, u)).

Recently, in an effort to provide existence criteria other than convexity in u, some
sufficient conditions have been given: for problems of the calculus of variations (x u
in the above setting) and for maps of the form f(t, x, x’) g(t, x)+ h(t, x’), existence
of solutions has been obtained by requiring that the real map x g(t, x) be monotone
[5] or, for x in Nn, that the same function be concave [2]. Optimal control problems
escaping to convexity conditions have been handled in [6].
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It has been proved further in [3] that there exists a dense subset/9 of C() such
that, for g in it, the problem

minimize fjo 9(z(t)) dt + h(z’(t)) dt z(O) :co, z(T) Xl

admits a solution for every lower semicontinuous h satisfying growth conditions.
Our theorem gives a straightforward generalization of the above result.

2. Assumptions and preliminary results. Let 1,2 E LI[0, T], i 2,
and put (t) [1(t), 2(t)] C . We are interested in the solutions of the following
control problem.

Problem P.

a, ao e C([0, T]), xo, x, vo, Vl e , x e W’1([0, T]),

(P) x" + al(t)x’ + ao(t)x E ((t) a.e.,

x(O) xo, x’(O) vo, x(T) xl, x’(T)

By extr we mean the extreme points of , i.e., extr (I)(t) {1(t), 2(t)}.
DEFINITION 2.1. A function y W2’I([0, T]) is said to be a bang-bang solution

to (P) if y solves (P) and, moreover,

y" + al(t)y’ + ao(t)y e extr (t) a.e.

The following representation formula of the solutions to (P) will be used later.
PROPOSITION 2.1. There exists a function h G CI([0,T] x [0, T]) satisfying Prop-

erty S below such that, .for each function p L([0, T]), the solution of

(P,) x" + a(t)x’ + ao(t)x p(t), x(0) x’(0) 0

is given by the formula

(2.1) z(t) h(t, s)p(s) ds

Moreover, for each s [0, T], the fnction h(., s) is of class C([0, T]).
PIOPERT S.
(1) There exist Wl,W. C([0, T]), Zl,Z Cl([0, T])such that

(2.2) Vs, t [0, T] h(t, s) wl (t)zl (s) + w(t)z(s)

(t) .(t) # o.and W(wl,w2,t) det w(t) w(t)

For each to in [0, T] there exists 5 > 0 such that if we set I5 [to 5, to + 5] N [0, T]
then:

(2) Vs, teI h(t,s)>Oifs<t h(t,s)<Oift<s (whenceh(s,s)-0);
(3) Vs t o (t, ) > 0;-(4) vt e (t, )/o-(t, s) is decreasing on I.
Proof of Proposition 2.1. For each s e [0, T], let hs(.) h(., s) e C2([0, T]) be the

solution to

h(t) + al(t)hs(t) + ao(t)hs(t) O, hs(s) O, hs(s) 1.
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Set z(t) f h(t, s)p(s)ds. Differentiation under the integral sign shows that z is a
solution to (Pp) whence, by uniqueness, z x.

To prove the second part of the claim, let wl, w2 E (:2([0, T]) be two solutions of
the differential equation

x" + al(t)x’ + ao(t)x 0(2.3)

such that their Wronskian

W(wl, w2, t) det

is nonzero for every t. Such functions exist because the set of the solutions of a
second-order linear differential equation is a two-dimensional vector space. Since for
each s E [0, T] the function hs is a solution to (2.3), there exist zl, z2 defined on [0, T]
such that

(2.4) Vs, t e [0, T] hs(t) Wl (t)zl(8) -+- w2(t)z2(8).

Conditions on hs at s and equation (2.4) yield

h() o ()z () + ()z2(),
h’(s) 1 w (8)Zl (8) %- w2(8)z2(8).

Since W(w, w2, s) 7 0 for each s, we find

()
Zl (8)

w(wl, w2, 8)
()z.() W(w,, )’

so that z,z2 CI([0, T]); hence h(t,s) hs(t) belongs to CI([0, T] x [0, T]).
By construction

w e [o, T]

implying

As a consequence,

Oh
(s, s) 1Vse[0,T] h(s,s)=O and -dh(s s)=0=Vs[0, T]

,, Vs [0, T]

OhOh
( ) + ( ) 0-5-f

Oh
-s (S, S) -1.

w e [o, T] G

By continuity for a fixed to in [0, T], there exists 5 > 0 such that

Vs, t E [to 6, to + 5] C [O, T] -Oh (t, s) > O and -sO ( h--h ) (t’ s) <
ot

for this 6 (2), (3), and (4) in Property S are satisfied.
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Assume, for instance, (I)(t) [0, (t)] and let p e LI([0, T]) be such that 0

_
p

_. For a solution x to (Pp) formula (2.1) yields, in particular,

x(T) h(T,

i
T

(T, s)p(s)
Oh

x’(T) ds.

Let us point out that the classical Lyapunov Theorem on the range of a vector measure
[4, [16.1] allows us to find a bang-bang solution. In fact, its application yields the
existence of a measurable subset E of [0, T] such that

(2.7) h(T, s)p(s) ds h(T, s)(s)xE(s) ds

T Oh
(T, s)p(s) ds (T, s)(s)xE(s) ds,

so that the function 2 defined by

h(t, s)(S)XE(S) ds

is, by Proposition 2.1, a bang-bang solution to (P) (with 1 0, 2 , x0 v0 0).
However, for 0 < t < T, the Lyapunov Theorem does not give any information on the
relative positions of 2 and the original solution x.

The purpose of Proposition 2.2 below is to show that if s (hi Oh-) (t,s) is
monotone on [0, T] then the measurable subset E can be chosen to be an interval

[a, ] with 0 _< a <_/ <_ T. Taking into account Property S (4), this will allow us to
define in 3 a bang-bang solution y satisfying y(t) <_ x(t) for each t.

In what follows [a, b] is an interval of 1; p and are two functions belonging to
Ll([a, b]) satisfying 0 _< p _< . We say that r E is positive (resp. negative) if r >_ 0
(resp. r _< 0).

We consider the following hypothesis.
Hypothesis H. The functions f, g belong to L([a, b]) and are positive almost

everywhere. Moreover there exists a strictly monotone positive function k such that

g(t) k(t)f (t) a.e.

We have the following Lyapunov-type result.
PROPOSITION 2.2. Let f, g satisfy Hypothesis H. Then there exist a,/ I such

that, if we put E [a, ], we have

(2.9) p(s)f (s) ds (s)f(s) ds (s)f(s)XE(S) ds

(2.10) p(s)g(s) as (s)g(s) ds (s)g(s)xE(S) as.

Moreover, and/ are unique if p, , f, g are continuous, and 0 < p < , f > O,
g>0.

To prove Proposition 2.2, we need the following fundamental lemma.
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that
LEMMA 2.1. Assume that f, g satisfy Hypothesis H and let a, E [a, b] be such

(2.11) (s)f(s) ds p(s)f(s) ds,

(2.12) (s)f(s) ds p(s)Z(s) ds.

Then, if k is increasing, we have

(2.13) (s)g(s) ds >_ p(s)g(s) ds,

(2.14) (s)9(s) ds p(s)9(s) ds.

g is decreasin9 o [a,b], inequalities (.la) an (2.14) are reversed. Moreover,
inequalities (2. la)-(2.14) are strict if 0 < p < ad f > O, 9 > 0 a.e.

Proof of emma 2.1. Assume for instance that k is increasing. To prove (2.14)
let re, f be the monotone functions defined by

The Lebesgue-Stieltjes formula for integration by parts yields

analogously we have

Taking into account that f(a) fo(a) 0 and that by (2.12) fo(b) f(), we are
thus led to show that

2b
By our assumptions we have

therefore,

Io( l

urthermore, since functions fo and are increasing we have

b
d

fp(s)dk(s) (k(b)- k(fl))fp(b),
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which, together with (2.17), gives (2.15).
To prove the final part of the lemma, it is enough to remark that if f > 0 and

p > 0 then, by (2.12), /3 :fl a; if, moreover, 0 < p < a.e., then inequality (2.16) is
strict for every t > a so that (2.17) is strict too (k being increasing). Similar arguments
prove (2.13). -Proof of Proposition 2.2.

(i) Existence. (a) Assume first 0 < p < and f > 0, g > 0 a.e. Let 1, c2,/31,
/32E [a, b] be such that

Assume for instance that k is decreasing on [a, b]. In this situation Lemma 2.1 yields

(2.22)

The function v defined by
x

v(x) (s)f(s)ds

is continuous and increasing with values in [0, v(b)]" let v-1 denote its inverse function.
Set

m p(s)f(s)ds.

Since, by (2.18), v(b) v(al) + m, then v(a) + m e [0, v(b)] if and only if a < a < al;

this allows us to introduce the continuous function 1 defined by the formula

Vc e [a, c1] 1 (0) V
-1 (V(O)-1- TYt).

By definition, we have

l (c) jfa
b

(2.23) Vc e [a,cl] (s)f(s)ds=v(l(c))-v(c) =m= p(s)f(s)ds

so that, by (2.20) and (2.22), we deduce

(2.24) Va e [a, all 1 (a) 1 2.
Similarly, (2.21) allows us to define a continuous function 2 [Z2, b] such that
we have

ds,
(Z)

from which, together with (2.19) and (2.22), we deduce

(2.26) V 2 () a2 a.
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We deduce from (2.24) and (2.26) that the composed application

’1 ’2 [a O2 o 1 [a, Ctl] []32, b]
is defined and continuous from [a, all into itself and, therefore, admits a fixed point. Thus, if we set fl 1() we have 2(fl). Equalities (2.23) and (2.25) with
a, fl replaced by , yield the conclusion.

2(b) Let p p+ ;, -+ ;, f f+ ; so that 0 < p < and f > 0 a.e.,
and set g kf so that the monotonicity of k implies that g > 0 a.e. and f, gn
satisfy H. By (a) there exist an, such that

(2.27) p(S)fn(S) ds (S)fn(S) ds,

iv(.%) p()() d ()() d.

By compactness we may assume a a, fl . The conclusion follows by passing
through the limit in (2.27) and (2.28).

(ii) Uniqueness. Assume that 0 < p < , f > 0, g > 0 are continuous and that,
for instance, k is decreasing. By (i(a)) the points a, such that there exists fl satisfying
(2.11) and (2.12), are the fixed points of the composed map (2 o 1. By definition the
functions , are differentiable and we have

Va [a all ’ v’(a) (a)/(a)
1()- ’(1()) (l())f(l())’

()()v [, b] ;() (())(())
To prove the claim we notice that if a satisfies o (a) a then

(.-) ( o 1)’() ;(1())() (1()
()

By (2.23) we have (a) > a so that the strict monotonicity of k implies k((a)) <
k(a) and thus (Ol)’(a) < 1 whenever oz(a) a. Let S {a [a,b]

o (a) a}. Clearly, S is compact and nonempty by (i); moreover, taking (2.29)
into account, for each a S there exists such that

t ] ,[ 20 1 (t) > t,
(.a0) vt e], + v[ o 1(t) < t.

As a consequence, the set S has no accumulation points and is therefore finite.
Let 1 minS and assume S {al}; let a minS {al}. Then by (2.30)

there exist tl < t [al, a] such that 2 o z (tl) < tl and o 1 (t2) > t2. Therefore
there exists [tl, t2] such that o () , a contradiction.

3. Main result.
THOaEM 3.1. Let z W2’I([o,T]) be a solution to (P). Then there ezists a

bang-bang solution y to (P) satisfying

vt e [0, T] (t) (t).

Moreover, there ezists a set E which is a finite union of intervals such that

" + a (t)y’ + ao(t)y (t)x(t) + (t)x[0,rlX(t) a.e.
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COROLLARY 1. Under the above assumption, there exists a bang-bang solution y
satisfying

Vt e [0, T] (t) > x(t).

Proof of Corollary 1. Let -q be defined by the equality (-q)(t) -(t).
Clearly, :2- -x solves

" + al(t)’ + ao(t) e -(t) ..
By Theorem 3.1 there exists a bang-bang solution satisfying the same boundary
conditions as 5: and satisfying

Vt e [0, T] 9(t) < 2(t).

Then the function y defined by

vt e [0, T] () -9(t)

is a solution to our problem.
Proof of Theorem 3.1. Let h be the function defined in Proposition 2.1.
(i) We show that it is not restrictive to assume

(t) [0, (t)] ( LI([0, T]), > 0 a.e.) and xo vo 0.

In fact, let (t) [ (t), 2(t)] and x satisfy

x" + al(t)x’ + ao(t)x (t) a.e.

Then the function 2 defined by

(t) x(t) x’ (O)t- x(O)

satisfies :2(0) :2’ (0) 0 and

:"+ al(t)ff:’ + ao(t)c e [1(t), @2(/;)] a.e.,

where

1 (t) 1 (t) ao(t)x’ (O)t al(t)x’ (0) ao(t)x(O),
2(t) 2(t) ao(t)x’(O)t- al(t)x’(O) ao(t)x(O).

Moreover, by Proposition 2.1, the function 5: defined by

(t) c(t) h(t, s) (s) ds

satisfies (0) 0, 5:’ (0) 0 and

c" + al(t)c’ + ao(t)2 e [0, 92(t)- bl(t)] a.e.

If we assume that Theorem 3.1 holds for such an interval and initial boundary condi-
tions, there exists a function satisfying

(0) :2(0), ’(0) :2’(0), (T) :(T), 9’(T) 5:’(T),

fl" + al (t)fl’ + ao(t)ft e {0, .(t) 1 (t)} a.e.,

Vte [0, T] (t) <_ (t).
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It is now easy to check that the function y defined by

y(t) f](t) + h(t, 8)1 (8)ds + x’(O)t + x(O)

is a solution to our problem.
(ii) Assume first that the 5 of Property (S) can be chosen in such a way that

I5 [0, T]. In this case, if we set

p x" + alx + aox

then by Proposition 2.1 we can write

(a.1) z(t) h(t, s)p(s) ds,

where h satisfies Property (S(1)) and, in addition,

(:3.2) Vs, t [0, T] h(t,s)>Oifs<t, h(t,s) <0ift<s,

(a.a) t [0, r]
oh

(t, ) > o,
Oh

(t, s) is decreasing on [0, t](3.4) Vt G [0, T] s h(t, s)/
In particular, the functions f and g defined on [0, T] by

oh(,)g(s) h(T, s), f(s)

verify Hypothesis H with k(.)= h(T, )/Oh (T,)
By Proposition 2.1, each bang-bang solution y such that x(0) x’(0) 0 is given

by the formula y(t) f h(t, s)(s)ds for some measurable function with values in

{0,(t)).
We are thus led to show that there exists such a satisfying

(3.5) h(T, s)p(s) ds h(T, s)(s) ds,

Oh
(T, )(s) ds s () d(.) (T, ).

and for each t in [0, T],

(a.7) h(t, s)p(s) ds h(t, s)u(s) ds.

(a) Assume 0 < p < a.e.
By Proposition 2.2 there exist , [0, T] such that

(3.8) h(T, s)p(s) ds h(T, s)(s) ds,

(3.9)
T

NOh (T, s)p(s) ds N (T, s)(s) ds.

It is clear that if we set

(3.10) (s) (s)x[,z](s)
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then (3.5) and (3.6) are satisfied. In order to prove (3.7) we first show that under our

assumptions on p and we have

(3.11) 0 < a < /< T.

Notice first that the equalities (a,/) (0, T) or c cannot hold otherwise by (3.8),
p or p 0 a.e., a contradiction. Assume, for instance, ( 0 and < T, the
case c > 0 and T being similar. Under this assumption, equalities (3.8) and (3.9)
become

(3.12)

(3.13)

h(T, s)p(s) ds h(T, s)(s) ds,

oh
(, 1(1 (, )(1.

Property (3.4) and the assumption 0 < p < a.e. allow us to apply Lemma 2.1, from
which we deduce

h(T, s)p(s) ds < h(T, s)(s) ds,

contradicting (3.12).
Set y(t) f h(t,s)(s)ds so that (3.8) and (3.9) become y(T) x(T) and

’(T) x’(T).
The purpose of what follows is to show (3.7), i.e., that y(t) <_ x(t) for each t. We

consider the cases t e [0, a], t e [, T], t e [a, ] separately.
Inequality (3.7) is trivial if t _< c; in fact we have

(t) o <_ (t, )() d x(t),

the inequality being strict for t El0, a]. In particular

(3.14) y(a) < x(a).

Assume t E [, T].
Since, taking (3.2) into account, h(t, s) <_ 0 whenever s _> t, we have

(3.15) Vt >_ h(t, s)p(s) ds <_ 0 h(t, s)(s) ds

or, equivalently,

(3.16)

it >_ h(t, s)p(s) ds h(t, s)p(s) ds <_ h(t, s)(s) ds h(t, s)(s) ds.

Therefore, in order to prove that y(t) <_ x(t) for t [/, T] it is enough to show that

(3.17) Vt e [/, T] h(t, s)p(s) ds h(t, s)(s) ds.
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For this purpose, we use Property (S(1)). Equalities (3.8) and (3.9) become

w (T) z (s)(p(s) (s)) ds + w2(T) z2(s)(p(s) ,(s)) ds O,

w (T) z (s)(p(s) ,(s)) ds + w2(T z2(s)(p(s) (s)) ds O.

The condition on the Wronskian of w, w2 at T implies

(a.lS) z (s)(p(s) u(s)) ds O,

(a.l) z(s)(o(s) u(s)) ds O.

Multiplying (a.lS) by 1 (t), (a.l) by w(t), and adding the two equations we obtain

(w (t)z () + (t)z())() d ((t)z () + (t)z())() d,

which, together with Property (S(1)), gives (3.17). Moreover, note that since inequal-
ity (3.15) is strict for t T,

(.0) v(Z) < x(Z).

At this stage, we only need to prove that (3.7) holds for t [a, ].
Assume by contradiction that there exists t [a, ] such that x(t) y(t). Let

= uv{t e [,Z] x(t) v(t)}.

Then a < { < and, by the very definition of {, x({) y({) so that

y’({) x’({) lim
y(t) x(t)_ < O.

t{+ t- t

It follows that

(3.21) _/. h(, s)(s)ds ./, h(, s)p(s) ds,

(3.22) -0h (, s)(s) ds _< (, s)p(s) ds.

For each s e [0, [ let f(s) h({, s) g(s) Oh (, s) and k g/f so that by (3.2)-(3.4)
the function k is increasing and f > 0, g > 0. If we replace (a, b) by (0, , Lemma 2.1
together with (3.21) implies that

thus contradicting (g.22).
(b) Assume, in general, 0 p a.e. and let , p ([0, T]) be such that

0<p<na.e. and pp,inL([0, T])
2(for instance, p p + , 4 + ).
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Corresponding to each n, there exist On, n E [0, T] such that, if we set n
CnX[n,n], we have

(3.23)

(3.24)

]0 h(T, 8)pn(8) ds h(T, 8)12n(8 ds,

fo foo h
T Oh(T,s)pn(s)ds (T,s)Zn(s)ds

and, for each t in [0, T],

(3.25) h(t, 8)pn(8 ds >_ h(t, 8)12n(8 ds.

Because the interval [0, T] is compact, we may assume cn -+ a, /n --+ for some
< [0, T].

Clearly X[n,Zn] converges to eXIt,Z] in LI([0, T]); therefore, if we pass
through the limit in (3.23), (3.24), and (3.25) and we set t, CX[,/], we obtain (3.5),
(3.6), and (3.7).

(iii) In the general case, using Property (S) and the compactness of [a, b], there
exists a subdivision a0 0 < al < < at < T al+l of [0, T] such that, if we put
Ij [aj aj+ ], we have

Vs, t Ij h(t,s) > 0if s < t, h(t,s) < 0 if t < s;
vs t .r ’(t,s) > o.

Yt e Ij s H h(t, s)/Oh (t s) is decreasing on/j
By (ii), on each interval Ij there exist cj,/j such that the solution yy to the

problem

y" + al (t)y’ + ao(t)y 1 (t)x[aj,jl[Z,bl(t) + 2(t)x[j,Z](t) a.e. on Ij

with the initial conditions

yj (aj x(aj ), y(ay) x’(aj)

satisfies the equalities

yj(aj+l) x(aj+l), y(aj+l) x’(aj+l),

and, moreover, yy(t) <_ x(t) for each t e Ij.
Clearly the function y W2’1([0, T]) obtained by glueing together the functions

yj is a solution to our problem.
Remark 3.1. The proof of Theorem 3.1, part (ii(a)) shows in fact that when

0 < p < , we have y(t) < x(t) on ]0, T[.
Remark 3.2. With the notations introduced in Proposition 2.1, the proof of The-

orem 3.1, part (ii) shows that if T
bang-bang solution y _< x satisfying

y"+ al(t)y’+ ao(t)y min (t)on [0, a] tO [/3, T],
y" + al(t)y’ + ao(t)y max ((t)on [,/3].

Because the number 5 depends only on the function h, it can happen that
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This is the case when a and ao are constant and the equation 2 + a A + ao 0
admits two real roots 1, A2. In fact, under this assumption we have either

l----(eA2(t-s) exl(t-s)) if /1 z2, orh(t, s)
A2 1

h(t, s) (t- s)ex(t-s) if A1 A2 A.

4. Applications. Our first application concerns the reachable set of bang-bang
constrained solutions. Let c be an arbitrary function defined on [0, T] and consider
the reachable sets A’ and 3; associated with (P) defined by

X {(y(T),y’(T)) y <_ c, y" + al(t)y’ + ao(t)y E (t), (y(0), y’(0))= (xo, vo)},
y {(y(T),y’(T)) y <_ c, y" +al(t)y’ +ao(t)y extr O(t), (y(0), y’(0))= (xo, vo)}.
Then Theorem 3.1 claims A’ J;, whence J; is convex.

Finally, we give an application to the calculus of variations.
THEOREM 4.1. Let ao, al E C([O,T]), 1,2 E LI([0, T]) verify 1(t) <_ 2(t).

Let x0, v0, xl, vl be 4 fixed real numbers. Then there exists a dense subset 7) of C(])
for the uniform convergence such that for g in 7) the problem

minimize { oTg(x(t))dt+ oTh(p(t))dt}
on the subset of W2’l([0, T]) LI([0, T]) of those functions (x, p) satisfying

(x(O),x’(O),x(T),x’(T)) (xo, vo,xl,Vl) Xt’ +al(t)x’ +ao(t)x p(t) e [1(t), 2(t)]
admits at least one solution for every lower semicontinuous function h satisfying
the growth condition h(u) >_ c(lul) being lower semicontinuous and convex,
limr_+ (r)/r +c.

Proof. With Theorem 3.1 and the preceding application, the proof is a direct
adaptation of the proof given in [3]. [
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DEALING WITH INTEGRAL STATE CONSTRAINTS IN
BOUNDARY CONTROL PROBLEMS OF QUASILINEAR ELLIPTIC

EQUATIONS*
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Abstract. This paper deals with state-constrained optimal control problems governed by a
quasilinear elliptic equation. These constraints are given in an integral form and depend on the
state and its gradient. Equality and inequality constraints are simultaneously considered. Existence
of a solution is investigated and some optimality conditions are obtained with the aid of Ekeland’s
variational principle.

Key words, optimal control, boundary control, quasilinear elliptic operators, optimality con-
ditions, integral state constraints

AMS subject classifications. 49K20, 49J20

1. Introduction. The main objective of this paper is to derive some necessary
conditions satisfied by the optimal controls of a system governed by a quasilinear
elliptic equation. Two difficulties arise in obtaining these optimality conditions. The
first one is due to the fact that the relation between the control and the state is not
differentiable in many cases. When this relation is differentiable, its differential exists
in the Gteaux sense, but we do not know if it is continuously Gteaux differentiable.
The authors have studied these questions in [7], [11], and [18]. The method followed
to treat the nondifferentiable cases consists of introducing a family of approximate
control problems by perturbing the state equation in such a way that the dependence
of the state with respect to the control is now differentiable and then passing to the
limit.

The second difficulty is motivated by the presence of equality and inequality in-
tegral state constraints. The case of inequality integral state constraints has been
considered by several authors, among them Barbu and Precupanu [3], Lasiecka [21],
and Mackenroth [24] for control problems governed by linear partial differential equa-
tions, and Casas and Fernndez [10] for Dirichlet problems associated with quasilinear
elliptic equations. Problems with equality and inequality integral constraints on the
state have been studied by Chryssoverghi [13] and TrSltzsch [33] for a parabolic semi-
linear equation. In the framework of the quasilinear equations, when dealing with
these state constraints we cannot apply the known multiplier rules like the one of
Carathodory and John (see Mangasarian and Fromovitz [25], McShane [26], Halkin

[19], and Pourciau [30]), because it is unknown to us if the functionals involved in the
control problem are continuously differentiable or even Frechet differentiable. This
lack of Frechet differentiability is motivated by the relationship between the control
and the state. Here we are concerned with boundary controls; the reader is referred
to [9] for the case of distributed controls.

The plan of the paper is as follows. In the next section we formulate the control
problem for a particular quasilinear operator that is essentially the a-Laplacian, ( > 1.
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The reason for this choice is twofold: on the one hand, the c-Laplacian is a very
important operator because it appears in many physical models (steady laminar flow
of non-Newtonian fluids, some reaction-diffusion problems, magnetostatics, glaciology,
etc.; see Ames [1], aris [2], and Pelissier [29]) and it has been extensively studied,
being the main example among the quasilinear elliptic equations; on the other hand,
this choice avoids technical complications and simplifies the exposition. In 3 we
will describe a more general kind of quasilinear elliptic operator, containing the c-
Laplacian as a particular case, for which it is possible to extend the results stated
in this work; see Remarks 5.2 and 6.1 for more precision. A theorem of existence
of solution is proved in 4, and some optimality conditions of Fritz John type are
obtained in 5 and 6 corresponding to the strongly elliptic and degenerate operators,
respectively. Finally, in 7 we study control problems submitted only. to inequality
state constraints and derive the optimality conditions in a qualified form for almost
every problem.

2. Setting of the problem. Let be an open-bounded subset of Rn, n > 1,
with a Lipschitz boundary F; see Neas [28]. Let us consider the following Neumann
problem:

(2.1)
-div {[k + IVyl]-2Vy} + Ay f

(k + IVyl)-2Vy g u

in ft,

on F,

where k is a nonnegative real number, , > 0, c > 1, and is the unit outward normal
vector to F.

If we assume on the data (f, u) that f E LP(ft) with p > n/c and u E L(F),
the existence of a unique y WI’(a) N L(ft) solution of (2.1) can be proved; see
Theorem 3.1 below.

Now, if we fix an element f e LP(ft) with p > n/c, the optimal control problem
is formulated as follows:

minimize J u l(x, y(x), u(x))do(x)

such that uKand

Gj(u) Sj, l <_ j <_ n,

Gj(u) < Sj, n + l < j < n + ni,

where K is a *weakly closed convex bounded subset of

(x, (x), (x) )dx,

and L ft x R R, r x (R x R) R and gj ftx (R x Rn) R are
Carathodory functions of class C with respect to the second and third variables
and satisfy

l(., 0, 0) e Ll(r), L(., 0), gj(., O, O) e L
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(2.4)

for all x E F, y, u E R with hi LI(F) and h2 L(F),

(2.5)
OL

h3(x)(lyl),

(2.6)

_
(lYl)(h(x) / Ivl’/’),

<(2.7) (lyi)(h(x) + 171/) i= 1 n

for all x t, y R, and E Rn, 1 <_ j <_ ne + ni, with h3 LP(), h4 L(), and

" R+ -- R+ being an increasing function. Initially, the constants T, p, and 0 are
supposed to be strictly greater than one, later their values will be suitably limited.

The difficulties in deriving the optimality conditions satisfied by a solution of
problem (P6) depend on the values of k and a in the state equation (2.1). In the next
section we will see that the relation between the control and the state is differentiable
when k > 0 and a _> 2, which will allow us to deduce these conditions in 5. The
differentiability in the case a < 2 and k > 0 is an open problem for us; however, we
will obtain the optimality conditions for this case in 5 by introducing a family of
approximate problems corresponding to the case a 2 and passing to the limit in
the optimality systems of these problems. When k 0 the mapping u y is not
necessarily differentiable, as we will prove in the next section. To deal with this case
we study the limits of the previous optimality systems when k -- 0.

3. Sensitivity analysis of quasilinear elliptic equations. It is known that,
in order to derive the optimality system satisfied by the solutions of (P), an important
question to study is the differentiable character of the relation control-state. In this
section, we present a general result about this question concerning the Neumann
problem associated with a quasilinear operator in divergence form:

(3.1) I Ay -div (a(x, Vy)) + a0(x, y) f in ,
a(x, Vy) ff u onF,

where a(x,) (al(x,r),... ,an(X,])). On the operator coefficients we will assume
the following conditions:

(3.2) { aj(., ?) is a measurable function in fl,
aj(x, .) belongs to CI(Rn), j 1,..., n,

(3.3) ao(., s) is a measurable function in
ao(x, .) belongs to C(R),



(3.4)
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E Oaj (x, )ij _> A1 (k + Il)-ll2

i,j=l

n

i,j=l

Oaj (x, _< h(k + I.1)"-,

(3.6) OaoA3

_
-s(x,s)

_
h0([sl),

(3.7) a0(x, 0) aj(x, 0) 0, j 1,..., n

for some k >__ 0, some a E (1, +c), some strictly positive constants A1,A2,A3, some
positive increasing function h0, all x E fl, all s G R, and all r/, G Rn.

Let us remark that the operator given in (2.1) satisfies these assumptions.
In spite of the general growth condition allowed to the term a0 (see (3.6)), we

can still prove the existence and uniqueness of the solution for (3.1), together with
the continuous dependence of this solution with respect to the control u.

THEOREM 3.1. Under hypotheses (3.2)-(3.7), and given f LP() with p > n/a,
for every u L(F) there exists a unique y Wl,(ft) N L() solution of the
Neurnann problem (3.1). Moreover, if {uj}jeN is bounded in L(F) there exists a
positive constant kl independent of j such that

(3.8)

Finally, if {uj} converges *weakly towards u in L++(F), then {Yuj } converges to yu
strongly in W,() and * weakly in L().

Proof. For every natural number m, let us define the function

ao(x, s) if Isl <_ m,

a(x, s) A3(s"-1 m-) + ao(x, m) if s > m,

A3(m-1 --(--8)a-l) --ao(x,-m) if s < -m.

Using the hypotheses assumed on a0, it can be easily verified that a is a Carath6o-
dory function satisfying

(3.9) la(x, s)l- A3(Isl"- + mC-l)+ no(re)m,

(3.10) (a(x, s)- a(x, s’))(s- s’) > 0 if s # s’,

(3.11)
a(x,s)s>_ A3s:

a’2(x, )s >_ h(Isl" )

if a >_ 2,

if a<2

for some k2

_
0. In fact, when a < 2,

a(x,s)s >_ I A3s iflsl-<m} (
if I1 >- m
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for all x Eft and all s E R. Now, let us consider the Neumann problem

(3.12)
-div (a(x, Vy)) + a(x, y) f in

a(x, Vy) ff u onF.

By virtue of the corresponding hypotheses on aj for j 1,..., n and the conditions
(3.9)-(3.11), for every m N, we can apply classical results (see, for instance, Lions
[22, Thm. 2.8, p. 183]) to derive the existence of a unique y, Wl,(ft) solution
of the Neumann problem (3.12). For the boundedness of y,, let us remark that, if
a > n, it follows from the Sobolev inclusion Wl’a(fl) C L(ft). If a < n, it can be
deduced using Stampacchia’s procedure [31], and taking into account the continuous
inclusions

LP(ft) C (wl’s(a)) and L(F)c W-/’(F),

where r s/(s- 1) with r >_/ a/(a- 1) and r > n/(a- 1), because of condition
p > n/a. Furthermore, there exists a positive constant C independent of m such that

Given m >_ C, it follows from its definition that a(x, y,) a0(x, Ym). Therefore, for
every m > C the function Ym is a solution of (3.1). On the other hand, the uniqueness
of the solution of this problem in Wl’c(ft) N L (ft) is an immediate consequence of
the strict monotonicity of A. Finally, the uniform bound (3.8) and the continuous
dependence can be obtained by standard arguments.

Now let us begin the analysis of the differentiability question by showing that
the mapping u - y is not necessarily differentiable if k 0. Let us take a 3,
ft (-1,+1)n, 36, and f 0 in (2.1). Then it is easy to verify that the
associated states to the controls u0 0 and ut uo + tv, with t > 0 and

v(x)- / 1 if[x1[--1,

0 otherwise,

are Yo -0 and

(Yut (X)
IXll- 1 + -0

1/4)
3

otherwise.

1/4

Thus the nonexistence of the Gteaux differential of the relation control-state at u0
in the direction v is a consequence of the following fact:

Yut Yo - x/tl/4
---+ +o when t , 0.

For k 0 we are going to establish that the relationship between the control and
the state is Gteaux differentiable if a _> 2. In this study, some weighted Sobolev
spaces appear in a natural form.
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DEFINITION 3.1. Given y E Wl’(f) and k O, let us define the space HY(Ft) as
the completion of C(f) with respect to the norm

Ilzll (k + IVyl)-21Vzl2dx + Izl2dx

It may be easily verified that HY(f) is a Hilbert space with the inner product

Moreover, we have

wl’a() C HV(f) C HI(Ft) if o >_ 2,

HI(f) C HY() C wl’a() if o <_ 2

with continuous injections.
More general spaces of this type have been studied by Coffman, Duffin, and Mizel

[15], Murthy and Stampacchia [27], and Trudinger [34].
THEOREM 3.2. Let us suppose k 0 and c > 2. Let F" L(r) ---+ HI() be

the functional defined by F(u) Yu. Then F is G(teaux differentiable. Moreover,
if DF(u)v- z, then z belongs to Hyu(2) and is the unique solution in this space of
problem

(3.13)

-div ) OaoOa
(x, Vy )Vz + (x, yu)z 0 in

a
--(x, Vy)Vz.=vO

on P.

The proof of this theorem is basically the same as the proof of [11, Thm. 3.1]
with minor technical changes. Let us remark that the uniqueness of solution of (3.13)
in Hu (t) is a direct consequence of the Lax Milgram theorem applied to the bilinear
form

B(Zl z2) faVzl(x)TOa Ja Oa+

which is continuous and coercive on Hy (2).
4. Existence of a solution for the control problem. Under an assumption

of convexity of with respect to the last variable, we are going to prove the existence
of a solution for the problem (Ps).

THEOREM 4.1. Let us assume that L, and gj, 1 <_ j <_ n + ni, are Carathdodory
functions in f R, F (R R) and f (R Rn respectively, satisfying the following:
For every M > 0 there exist functions 2M e LI(F), e Ll(f), and a constant
CM > 0 such that

(4.1) l(x,y,) > Cb(x) Vx e r, lYl, I1 < M,
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L(x,y) >_ --2M(X Vx E , lY] <- M,

(4.3) Igy(x, y, 7)l <-- 2M(X) + CMII VX E , Rn, lYl <- M, l <_ j <_ n + n.

Moreover, let us suppose that l(x, y, .) is convex in u for all (x, y) F R and that
there exists a feasible control uo. Then the problem (Ps) has at least one solution.

Proof. Because of the existence of a feasible control for the problem (Ps), we
can take a minimizing sequence {ua}k__l C K such that every Yk Yk satisfies
the state constraints. Since K is bounded in L(F), with the aid of Theorem 3.1,
we can deduce the existence of a subsequence, denoted in the same way, a function

La(t), a constant C, and elements u and y yu such that

(4.4) Uk U in the *weak topology of L(F),

(4.5) ya y in Wl’(t),

(4.6) yk(x) y(x) a.e.[a] x e F and yk(x) y(x) a.e. x E ,
Vy(x) Vy(x) a.e. x

(4.8) IlY II, -< C and IVYk(X)] <_ (x) a.e. x e 2 Vk.

Taking into account that K is *weakly closed in L(F), we deduce from (4.4)
that u G K. Let us take

M max{C, max IlVllL(r)}.
vK

Then using the dominated convergence theorem, hypothesis (4.3), and relations (4.6)-
(4.8), we get that Gj(uk)
feasible control for (Ps).

On the other hand, thanks to the convexity of with respect to the last variable,
hypotheses (4.1)-(4.2), and convergences (4.4) and (4.6), it follows that (see Cesari
[12] or Ekeland and Temam [17])

+

liminfk: (/8L(x, yk(x))dx+ l(x,y(x),u(x))da(x))=inf(Ps),
which proves that u is

Let us remark that hypothesis (4.3) i8 satisfied under assumptions (2.2)-(2.7) if
0 1).

5. Optimality conditions: k ) 0. In this section we re going to deduce the
optimality conditions for the problem (Ps) under the assumption k > 0. We will
distinguish the cases a 2 and a < 2.

Hereafter, for the sake of simplicity, let us denote

(8.1)

where I denotes the identity matrix n n.
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5.1. Case c >_ 2. As mentioned in the introduction, since it is unknown to us
whether the functions involved in the optimization problem are Frechet differentiable,
we cannot apply any known rule of Lagrange multipliers because of the presence of
equality constraints; see Pourciau [30] for a discussion of this question and Halkin [19]
for a strong result not covering our case.

THEOREM 5.1. Let us suppose a > 2, k > O, and that assumptions (2.2)-(2.7)
are satisfied with - >_ (2n- 2)In, p >_ (2n)/(n + 2), and 0 >_ 2. Let t be a solution

of (Ps). Then there exist real numbers fitj, j 0, 1,...,he + hi, and elements 1 E
wl’a(’) N L(gt) and p HI() such that

(5.) #o > 0 and fitj > 0, ne + 1 < j < n + hi,

ne ne--ni

(5.a) + > 0,
j--1 j--n+l

(5.4)
( + IvgI)-v9 e on F,

(5.5)

OL
(x, )-div {M(9)Vi0} + AI0 #0-y

+ E {Ogj(x ,l)_div(Ogj(x,l,l))}Or]
j=l

O1
(x, 9, ) on r,M(9)Vp Poy

with Mk given by (5.1),

#j (f gj(x, l(x), Vl(x))dx 6j =0, j > n,(5.6)

j ( Ol
(x, 9,t)l (u- t)da(x) > O Vu K.(5.7) p + po

Moreover,

on
(x 9)pdx + (x 9, )pda(x)VpM()Vx + p:x o
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Before proving this theorem, let us make some remarks. Since the right-hand side
of the partial differential equation in (5.5) involves derivatives of L2(ft)-functions and
the boundary condition is of Neumann type, the solution of this boundary problem
must be intended in a variational sense, i.e., an element/ E Hl(ft) satisfies (5.5) if
and only if for every b E C (f) the following identity holds:

(x,
OL

(x, fl)dx + fr Y

Let us point out that the first integral in the above expression is finite thanks to (5.8).
It is well known that the difficulty with the Neumann problems is the interpreta-

tion of the boundary condition; see, for instance, Lions and Magenes [23, Vol. 1] for
linear problems and Casas and Fernndez [6] for quasilinear elliptic problems.

To illustrate this situation and the previous theorem, let us give an example:

with

minimize J(u) - (yu(x)- Zd(X))dx

(P) such that 0<u(x) < 1 a.e. [cr] xGFand

Gy(u)=Sj, l <_j <_n,

Gj(u) xj (x)dx, j 1, n

and Zd a given element of L2(ft).
If we assume that problem (P) has a feasible control, the existence of at least

one solution follows from Theorem 4.1. Now, applying Theorem 5.1, we deduce
the existence of some real numbers {PJ}j--=0 and elements $ W’() L() and

H1 () such that

n

(5.9) rio 0 and rio + fi > O,
j=l

(5.10)
(k + Vg)-2V9 g on F,

(5.11)

(5.12)

-div {Mk (9)Vi0} + ,kp= P0( Zd) E#J
j

M()Vp. - 0 on F,

> 0 VO<_u(x) <_1 a.e. [crlxr.
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According to the preceding comments, the solution of (5.11) must be intended in
a variational sense as follows: for every

VCTMk($)Vdx + -5-gx  X.
j--1

As it is classical in control theory, from (5.12) we can deduce a behaviour of
bang-bang type of "

1 if i(x) < 0,(x)-- 0 if /5(x)>0.

Proof of Theorem 5.1. We will follow a penalization method, where the penalty
objective function is a slight differentiable modification of the one used by Clarke in

[14]. For every e > 0, let us consider the problem

minimize J (u)(Pe’) such that u E K,

where

ne ne+hi }
1/2

J(u) [(J(u) J() + e)+] 2 + E IGj(u) 5Yl2 + E [(G/(u) 5j)+]2
j--1 j--n-t-1

and c+ max{c, 0}. It is obvious that (K,d) is a complete metric space, with

d(u, v) -Ilu- VilLa(r), J" K ---+ R is a continuous function, and

4()=e_<e+ inf 4(u).
u6K

Then we can apply Ekeland’s variational principle [16] to deduce the existence of an
element u K such that

(5.13) d(u, ft) Ilu llL(r)--< V/

and u is a solution of problem

minimize 4(u)+ x/llu- UllLo(p)(Qe,) such that u K.

Since J is Ggteaux differentiable in K (note that J(u) > 0 Vu K because is
a solution of (Pc)) and (u) Ilu UllL(r is a convex function, we obtain (for
example, see [4, Lem. 2])

(5.14)

Now it is easy to verify that

(5.15)
nent_n

J(u) (u- u) #og’(u) + E #ja}(u)
j--’l

te)
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where

/0e Je(te) -1 (J(u) J(’g) + e)+,

#j J(u)-l(Gj(u) 5j), 1 <_ j <_

#je Je(u)-l(Gj(ue)- 5j)+, j > he.

So we have that #0 .>_ 0 and #j >_ 0 for j > no; moreover,

neWni
2(5.16) E #Je 1.

j=o

On the other hand, let p be the unique variational solution in HV(t) of the
problem

cOL
-div {Mk(y)Vp} + Ap #o ---_ (x,y)

01
on r,

oy

where y E WI’() g L(t) is the state associated with u. Let us note that

on
(x, y)zdx + (x y u)zda(x)+

defines an element belonging to (H(Ft)) C (H(Vt)) thanks to the choice of T, p
and 0, the Sobolev imbedding theorems, and assumptions (2.4)-(2.7).

Let u be an arbitrary element of K and let us denote z DF(u). (u- u),
where F(v) y.; see Theorem 3.2. Then, from conditions (2.3)-(2.7), the identity
(5.15), and equations (3.13) and (5.17)we obtain
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From (5.13) it follows that u -- in L(F); therefore, y y --. yn in
WI’(). Now, thanks to Theorem 3.1 and (5.16), we deduce the existence of a
constant C > 0, a function E La(t), and a subsequence, still denoted in the same
way, verifying

(5.18) #j --, #j, j=0,1,...,ne+ni,

(5.19) y(x) (x) a.e.[a] x e F and y(x) -- (x) a.e. x e ,
V (x) x e a,

and

(5.21) and

With the aid of the previous relations, and taking into account the definitions of Pje
and identity (5.16), we can pass to the limit and get (5.2)-(5.4) and (5.6). On the
other hand, from hypotheses (2.3)-(2.7) and (5.18)-(5.21), we deduce the convergence
of the right-hand terms of (5.17) toward the corresponding terms of (5.5) in (HI())’.
Utilizing the fact that p is the solution of (5.17) and integrating by parts we get

where C1 and C2 are positive constants. This implies that {p} is bounded in HI().
Then, we can take a new subsequence, denoted again by {p}, such that

(5.23) p - p weakly in

for a certain element 10 H (f). By virtue of the expression obtained for the derivate
J(u). (u- u), we can pass to the limit in (5.14) and derive (5.7).

To finish the proof it is enough to establish that p satisfies (5.5) and inequality
(5.8). First, we point out that Mk(ye)(x) and Mk(f/)(x) are symmetric and positive
definite matrices for every x G f. Thus, applying the Cholesky method, we deduce
the existence of lower triangular matrices U and U with strictly positive elements
such that

Mk(y)(x) U(x)UT (x) and Mc(])(x) U(x)UT (x).

From (5.22) and the boundedness of {V} in Hl(ft) it follows that {uTVv}e is
bounded in (L2(Ft)) n. Furthermore, using (5.21), the expressions of the elements of
U and U as function of those of M(y) and M(), respectively, and taking a new
subsequence, if necessary, we obtain

(5.24)
IIU(x)lls <_ x/’oz- l(k + [Vy(x)l)

<_ v/c- l(k + I(x)l) ("-2)/2 a.e. x e t

(5.25) U(x) ---. U(x) a.e. x a when e -- 0,
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where I1.11 denotes the spectral matrix norm defined by

1/2
Ilgll (mx{17i[ "i is an eigenvalue of UTU})

see, for instance, Isaacson and Keller [20]. Together with the dominated convergence
theorem, this implies that

U --+ U in (L2(fl))
Since Vp + Vf weakly in (L(a)) as e + 0, we have that

(5.26) UVp UTVp weakly in

Combining (5.26) with the convergence

UV uTv in (L2 (a))n
for C() arbitrary, it follows that

and herefore fi is a solution of (5.5). inally, as a consequence of he previous relations
and convergences, hypotheses (2.4)-(2.7), the values of 7, p, and 0, and he Sobolev
imbedding heorem for H() we conclude ha, v prkl()Vdz + fa p2dx

<_ liminfo ([[UfVp, ll(a)

=liminf(Vp’Mk(y)Vpdx+Ap:dx)o
linf,0 po, N (x, y,)pedx +

+ v (,,v)x +
j=l

0 N N

(o o,, )+ D (,9,)+ (,9, vg)vcu
j=l

or equivalently, satisfies (5.8).
Remark 5.1. In the absence of equality constraints (n 0), we can derive the

optimality conditions by a direct application of the abstract Lagrange multiplier rule
given in [5, Thin. 5.2], where only Gteaux differentiability of the functions defining
the problem is required. Following this approach we derive the existence of a unique
adjoint state H9 ().
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5.2. Case c < 2. The goal of this section is to prove the following theorem.
THEOREM 5.2. Let ft be a solution of (Pe), a < 2 and k > O. Furthermore,

let us assume that l(x,y,.) R R is a convex function for all (x,y) E ft x R,
T >_ (na-a)/(na-n), p >_ (an)/(an+a-n), andO >_ a/(a-1). Then there
exist real numbers fitj, j 0, 1,..., n + hi, and elements f] wl’a() CI L(ft) and
p Wl’a() verifying (5.2)-(5.8).

As we have already mentioned, in this case we do not know if the relation control-
state is differentiable. To overcome this difficulty the state equation is perturbed in
such a way that this relation again becomes differentiable. So, given > 0, let us
consider the following operator

Ay -aiv { (e + [k + IVyl]"-)Vy} + Ay,

which satisfies hypotheses (3.2)-(3.7) with an exponent 2. Therefore the Neumann
problem

Ay- f in

(5.27)
(e + [k + IVyl] "-2) Vy. u on F

has a unique solution y(u) e HI()N L() for every u e L(r). Moreover,
since we are in the conditions of Theorem 3.2, the mapping u -- y(u) is Ggteaux

differentiable.
Now associated with the previous Neumann problem we introduce the following

family of control problems that approximate (Pc) in a sense to be specified later:

minimize J (u)

such that uKand

Gj(u) Sj, l < j < n,

Gj(u) <_ 5je ne - 1 <_ j <_ ne + ni,

where

Z(u) L(x, y(u)(x))dx + l(x, y(u)(x), u(x))da(x) +

f

bj Gj(t) if 1 j n, and 5j max{Sj, Gj()} if j > n.
TItEOREM 5.3. Under the assumptions of Theorem 5.2, for every e > 0 the

problem (Qs,) has at least one solution u. Moreover’ there exist real numbers pj,

j 0, 1,..., n + ni, and elements y H1 () L () and p HI() such that

(5.28) Po 0 and

+ + > 0,
j=l
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-div {(e + [k + IVyl]-2)Vy} + Ay f

+ + Iv  l]

(5.31)

with M given by (5.1),

(5.32) #j (/agj(x,y(x),Vy(x))dx-hj) =0, j > n,

(5.33)

Moreover,

(5.34)

Proof. Because g is a feasible control for (Qh,), we are in the conditions of
Theorem 4.1; thus we obtain the existence of a solution for (Qh,). The optimality
conditions are derived as in Theorem 5.1; see Remark 5.2 below, fl

The next result shows in what sense (Ph) is approximated by the problems (Qh,).
THEOREM 5.4. Let u. and y be as they were in the previous theorem and let us

denote f/= y. Then as e 0 we have the following convergences:

(5.35) u ---,

(5.36) y9

(5.37)

Moreover, {y} is uniformly bounded in
The proof of this theorem uses the following lemma that can be proved as in [11,

4] (see also [18]) taking into account that the condition c > n/2 assumed there can
be removed because here the controls are bounded and f LP(f) with p > n/c.

LEMMA 5.5. Let us suppose that {v} C L(F) and ve -- v in the *weak topology
of L(F). Then y(v) -- y in Wl,(ft) and in the *weak topology of L(ft).

Proof of Theorem 5.4. Taking in the previous lemma v g for all e > 0, we
deduce that y(g) --, in W’(t). Then we can extract a subsequence of {y()},
denoted in the same way, such that

(5.3S) y(ft)(x) ---, $(x) a.e.[a] x F and y(ft)(x) f](x) a.e. x a,
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V (x) x e a,

(5.40) _< c, and IVy()(x)l <_ (x) a.e. x e a Ve

for some positive constant C1 and some function 1 E L(t). From (5.38)-(5.40) and
hypotheses (2.2), (2.6), and (2.7) it follows that Gj(t) --+ Gj(t) when e tends to 0,
which implies that 5j by, 1 <_ j <_ n + ni.

On the other hand, since K is a *weakly closed bounded subset of L (F) we can

take another subsequence of {u}, again denoted in the same way, converging to an
element u E K in the *weak topology of L(F). Using Lemma 5.5 once again we

deduce, taking a new subsequence if necessary,

(5.41) y y in W’(t),

(5.42) y(x)y(x) a.e. [a]xF and y(x)y(x) a.e. x,

(5.43)

and

x e

(5.44) IlYIIL() <-- C2 and IVy,(x)]

_
2(x) a.e. x e t V

for some positive constant C. and some function 2 L(t). Arguing as above, we
obtain that Gj(u) Gj(u) for every j. Hence u is a feasible control for problem

Hypotheses (2.2)-(2.4) and the convexity of in the last variable allow us to
deduce the lower semicontinuity of J in the *weak topology of L(F); see Ekeland
and Wemam [17]. Now, remembering that u is a solution of (Qb,) and is a feasible
control for this problem, we obtain

L(x, y)dx + l(x, y, u)da(x) + -<_ liminf ](u) <_ limsup ](u) _< limsup ()- J() _< J(u)
e--0 e-0 e-0

Ja L(x, yu)dx + fr l(x, Yu, u)da(x),

which implies that u- and convergence (5.37). Finally, from the relations

we deduce the desired convergence of {u} to . 1

Proof of Theorem 5.2. The idea is to pass to the limit in (5.28)-(5.34). It follows
exactly as in Theorem 5.1, except for some peculiarities that can be summarized as
follows"
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We can suppose without loss of generality that

ne neni

j---1 j--n+l

In the other case, it is enough to divide the expressions (5.31)-(5.34) by w
and rename w-lpe and wjl#j as p and #j, respectively.
After Theorems 5.3 and 5.4 and Lemma 5.5, the main question to prove is the
boundedness of {p} in Wl,(t). First, applying gSlder’s inequality, with
q 2/a and q’= 2/(2- a), and thanks to (5.36) we obtain that

On the other hand, from hypotheses (2.4)-(2.7), the values of T, p, and 0, the
Sobolev imbedding theorem for WI,(), and Lemma 5.5, it follows that the
right-hand terms of problem (5.31) define a bounded element of (WI’())’.
Hence, with the aid of (5.34), we obtain

The weak convergence (5.26) can now be derived noting that

IIU ( )ll < a.e. x W

(with the notations established in the proof of Theorem 5.1) and therefore

U ---+ U in (Lt(gt))’x V t <

in particular, for t- a/(a- 1).
Finally, let us note that the boundedness of l/211VpllL2(n)n (that follows
from (5.34)) and HSlder’s inequality imply that

Remark 5.2. The results stated in Theorems 5.1 and 5.2 can be extended to more
general quasilinear elliptic equations such as that given in (3.1), under assumptions
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(3.2)-(3.7), following essentially the same argumentation; some technical changes ap-
pear in relation to the adjoint state equation. In this framework equation (5.5) and
inequality (5.8) become

and

a /a OaovpT _Oa X Vl V dx + -s (x, 2dx

OL
(x, 9)pdx + (x , )pda(x)

j=l

respectively.

6. Optimality conditions: k 0. When k 0 and a > 2, the operator of the
state equation (2.1) becomes degenerate in the sense that its modulus of ellipticity
vanishes in the subset {x Vy(x) 0}; when a < 2, the operator is singular
because that modulus blows up in the same subset. Nevertheless, we can still derive
some optimality conditions for (Ps) with the peculiarity that the adjoint state equation
is only satisfied in the subset 0 defined by

a0 {x e (x) 0},

where $ Y.a (this is an open set because V is continuous in ; see [32]). To do this
we introduce a family of approximate problems that belong to the case k > 0 and we
pass to the limit in their optimality systems making k 0.

We will only deal with the case a < 2. For a > 2, we can prove that the adjoint
states corresponding to the approximate problems converge in H(0), but not on
F (even when a0 ). Therefore, we are not able to derive the condition (5.7) and
the optimality conditions obtained lose interest.

THEOREM 6.1. Let be a solution of (Ps), a < 2 and k O. Let us assume
that T (ha a)/(na n), p (an)/(an + a n), 0 a/(a 1), and l(x,y,.)
R R is a convex function for all (x, y) R. Then there exist real numbers pj,
j 0, 1,..., n + n, and elements W’() L() and WI’() verifying
(5.2)-(5.4) (with k- 0), (5.6)-(5.7), and

OL
(x, )+

j=l

with Mo given by (5.1).
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Sketch of the proof. Givcn e > 0, let us consider the perturbed operator given by

Ay -div { [e + I yll -2 y} +
and the family of approximate problems (Qh,) of 5.2. The operator A now verifies
hypotheses (3.2)-(3.7) with exponent c and constant k e. Consequently, given
u E L(F), the Neumann problem

Ay f in

has a unique solution y(u) e Wl’a(f) n L(f).
Now applying Theorem 5.2 to each control problem (Qh,), we derive a result

analogous to that of Theorem 5.3 with y e WI’(Ft)N L(gt), p Wl’(ft), and
k e. Of course, the terms eAy, eVy, eAp, eVp, and e fn IVp12dx do not appear.
Furthermore, Lemma 5.5 is still valid (see [8, Lem. 4.5] for the Dirichlet problem),
and thus Theorem 5.4 is too.

We can suppose again that

ne ne nUni

j=l j=nc+l

and pass to the limit as e -- 0 without difficulty in (5.28)-(5.30) and (5.32) to obtain
(5.2)-(5.4) (with k 0) and (5.6).

The boundedness of {p} in Wl’(ft) follows exactly as in the case c < 2, k > 0.
Thus, at least for a subsequence, it follows that

p --/5 weakly in Wl’(ft)
for a certain element/ Wl’c().

To establish (6.1), we utilize a regularity result due to Tolksdorf [32]. Thanks to
this result, and y(u) belong to Cl’t(f) for some 0 < t < 1. Let ft’ be an open set
such that ft c ft c ft0. Therefore, there exists C > 0 such that

(6.2) IV.(x)l > C1 VX e ’.

Now, using the estimates given in [32, Thm. 1], we can apply the Ascoli-Arzel
theorem to the family {Vy} for deriving that {Vy} is precompact in C(f’)n.
Together with (5.36) this implies the existence of a subsequence, denoted in the same

way, such that

(6.3) Vy --, V9 in C(ft’) n.
From (6.2) and (6.3) it follows that there exists e’ > 0 such that

To deduce (6.1) it is now enough to multiply the equation of (5.31) by D(ft0),
integrate by parts, and pass to the limit as e 0 with the aid of estimate (6.4) for
ft D sop.

Finally, it is immediate to obtain (5.7) passing to the limit in (5.33).
Remark 6.1. Theorem 6.1 can be extended to a wider class of quasilinear elliptic

equations of the type

Ay -div (a(x, IVyl)Vy) + ao(x, y)

with a" f x (0, +oc) (0, +oc); see [8] for the Dirichlet problem.
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7. A qualification condition for (P). In the absence of equality constraints

(i.e., n 0), it is possible to deduce the previous optimality systems in a qualified
form (i.e., with #0 1) for almost every problem (P).

THEOREM 7.1. Let us suppose that n 0 and A is a cube of Rni such that (P)
has at least one solution for every E A. Then, Theorems 5.1, 5.2, and 6.1 remain
valid for each solution ft of (P) with #o 1 for almost every A.

Proof. The proof is a modified version of Clarke’s argument [14, 4]. Let us
consider the function :A -, R defined by

(5) inf{J(u) u K, Gj(u) <_ 5j, 1 <_ j <_ n} inf (Pb).
It is obvious that (5) is decreasing as a function of each component of 5 separately
and, thus, it is differentiable almost everywhere. Now, let us fix 5 A.such that there
exists D(5). Therefore, given a g solution of (Pb), we can argue as in [14, Thm. 2]
to derive the existence of strictly positive constants r and such that g is a solution
of the following problem:

ni

(Qb,r,)
minimize J(u) + r E(Gj(u) 6j)+

j=l

such that u K,
where K K {u e L(F)" [lu llr(r) < 7}. The proof will be completed when
we obtain the optimality system for (Q5,.,).

In the case a _> 2 and k 7(= 0, this can be done again using Ekeland’s variational
principle. To do this, let us introduce the family of problems

where s > 1 and

minimize J8 (u)(Qe,,,8) such that u E K,

g() j()+ + [(a()- 5)
8s

Obviously,/( is a complete metric space with d(u, v) lit- VllL(r), Js:/( -- _R

is a continuous function, and

ri riJ() J()+ + inf (Q,,,).
8 8

Hence, applying Ekeland’s variational principle [16], we deduce the existence of an

element u K such that

(7.) 1- 11()
with % rni/s and u is a solution of problem

minimize J(u) +u U]L(V)
such that u K.

It follows from (7.1) that the constraint I]u- 5]L(F) 7 is not active for every
s > (rni)/7. Thus we conclude the proof exactly as in the proof of Theorem 5.1,
noting that J is Gteaux differentiable,

;() ( ) ’() + a’. () .(-)
j=l
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where

{1 }
(1/s)--i

js r nt- [(lj(s) j)+]s [(lj(ts) (j)-t-]s-1

for every s > 1 and 1 < j < ni, and passing to the limit as s --If a < 2 we approximate (Qe,r,) by problems

ni

minimize (u) + r -,(Gj(u) 5d)+
j=l

such that u E K,

with je defined as in 5.2 for k > 0 and 6 for k 0. Now, (O,,r,7,) falls into the case
c >_ 2 and k 0. Therefore we can use the results established above in this proof
to obtain an optimality system for (Q,,r,7,) with Lagrange lnultipliers P0 1 and
ttj < r for all e > 0 and j 1,..., ni. Finally, we pass to tile limit as in tile proofs
of Theorems 5.2 and 6.1 to derive the desired result.

Remark 7.1. In case c >_ 2 and n 0, and under the fbllowing Slater-type
condition: there exists Uo K such that

Gj(ft) + DGj(t) (uo (t) < 5j, j 1,...,

we can obtain the optimality conditions in a qualified form by applying [5, Thm. 5.2];
see Remark 5.1.
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1. The stochastic maximum principle.

1.1. Introduction. We consider the stochastic differential equation

(1) dXt f(t, Xt, ut)dt + g(t,X,, ut)dWt,
(2) Xo x,

where W is a Brownian motion on a probability space (Q, 9r, P, (t)), u is a suitable
control process adapted to (S-t), and X is the trajectory of the system controlled by
u. We require that X take values in a fixed set V. Our problem is to choose u in such
a way as to minimize a functional of the type

(3) E L(t, Xt, ut)dt + (XT)

A control process that solves this problem is called optimal. In 1, we impose condi-
tions on f, g, L, , and V to obtain a stochastic maximum principle for our model.
Roughly speaking, this principle asserts the following: we assume that is an optimal
control, define the Hamiltonian

(4) H(t, p, q, x, u) -L(t, x, u) + p f(t, x, u) + q g(t, x, u),
and consider the solution of the adjoint equation

(5) .dpt -Hx(t, Pt, qt, f(t, tt)dt + qtdWt,

(6) PT
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for the pair of (t)-adapted processes (p, q), where ) is the trajectory of the system
controlled by . The stochastic maximum principle states roughly that, under certain
conditions on f, g, L, , and V,

(7) max H(t, pt, qt, t, u) H(t, pt, qt, f(t, tt),

i.e., that a necessary condition for the optimality of a control is to maximize the
Hamiltonian.

The initial work on the stochastic maximum principle was done by Kushner [31],
[32]. Then in the 1970s, Haussmann developed a powerful version of the stochastic
maximum principle (see [21] for an account of his theory and references to his previous
work [15]-[20] on this subject), and applied it to solve some important problems in
stochastic control [18]. The main limitation of Haussmann’s theory is that the control
does not affect the diffusion coefficient.

Versions of the stochastic maximum principle in which the diffusion coefficient
is controlled were developed by Bensoussan [4], Elliott [12], and Peng [34] in a form
weaker than (7), and by Arkin and Saksonov [1], Bismut [5], [6], [7], and Saksonov [38]
in the strong form (7). The main limitation of these approaches is that they impose
LP-bounds on the controls. Other limitations are that they assume the trajectory
to be unconstrained, and the running cost, terminal cost, and/or their derivatives to
have polynomial growth. Furthermore, only Arkin and Saksonov [1], Bismut [5], [6],
[7], and Saksonov [38] consider the case of random coefficients.

The present paper treats linear systems with random coefficients and with the
control affecting the diffusion term. Its two main contributions are the development of
a stochastic maximum principle in its strongest form (7) without imposing LP-bounds
on the controls, and the explicit solution of the adjoint equation for the resulting
model. As pointed out by Whittle [41, p. 183], the solution of the adjoint equation is
a difficult problem, and it is one of the two main difficulties that face the stochastic
maximum principle (the other being that the principle is not simple when the control
affects the diffusion coefficient). An additional contribution of our paper is that it
also allows for state-constraints and does not impose polynomial growth conditions
on the cost functions or their derivatives. Furthermore, we derive necessary as well
as sufficient conditions for optimality, and show that these coincide in the presence of
L2-bounds on the class of admissible controls.

In 2, we apply our version of the stochastic maximum principle to the consump-
tion-investment problem. This important problem could not be covered by any of the
previous versions of the stochastic maximum principle. The reasons were multiple:
in this problem the optimal control is not square-integrable, the trajectory of the
system is constrained, and the running cost, terminal cost, and their derivatives do not
necessarily obey global polynomial growth conditions. (In this problem, the typical
running cost and/or terminal cost is the negative of the logarithmic function.)

In 3, we make the additional assumption that the controls are square-integrable,
and notice that, in this particular case of our general model, a necessary and sufficient
condition for the optimality of a control is the maximization of the Hamiltonian. We
also show that this particular version of our general model may be applied to solve
completely other stochastic control problems as well, including the linear-regulator,
predicted-miss, and Bene problems.

After this paper was submitted for publication, Cadenillas and Haussmann [9]
generalized some of the results of 1 and 3 to obtain a stochastic maximum princi-
ple for a problem in which the control has both absolutely continuous and singular
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components.

1.2. Notations and assumptions. We suppose that a d-dimensional Brownian
motion W is defined on a complete probability space (t2,9r, (grt), P). Here, (grt) is
the P-augmentation of the natural filtration (grtW) defined by

GW (w(). 0 <_ < t) vt [0, ).

Let T be a fixed strictly positive real number, U a closed convex subset of R,
and let us consider the functions

A" [0, T] fl (n; }n),
B" [0, T] x (k; n),
C" [0, T] X he----+ }n,
D" [0, T] x ft --(Rn; (Rd; }n)),
E" [0, T] X - __.__(k; (d; n)),
F" [0, T] x fi (Rd; ).

Here (V; W) denotes the space of linear transformations of a vector space V into
a vector space W. We shall assume that A, B, C, D, E, and F are all progressively
measurable with respect to (9t), and bounded uniformly in (t,w) e [0, c) x t. Let
us now consider the linear stochastic differentiM equation

(8) dXt f(t, Xt, ut)dt + g(t, Xt, ut)dWt,
(9) Xo x,

where

(10) f(t,x,u) Atx + Btu + Ct,
(11) g(t,x, u) Dtx + Etu + Ft.

In order that the above stochastic differential equation make sense, we need that

and

{/o }(13) P Ig(t, Xt, ut)ldt < oc 1.

A sufficient condition for this to happen is

(14) P IBtutldt < , IEtutIdt < oc 1.

Corresponding to any (t)-adapted control process ’[0, T] x U that is

B([0, T]) /B(Rk)-measurable, and satisfies (14), we denote by X" the solution of
the linear stochastic integral equation

() x + (&x +Bu + G)& + (DX + + G)aW, 0 t T,
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and call it the trajectory of the linear system (8)-(9) controlled by u. Evidently, from
the linearity of this system and for any control processes u, v as above, we have for
any a E [0, 1]

X(u+(1-a)v ozX nt- (1 ct)Xv, a.s.

We shall restrict the class of admissible control processes u in the following manner.
DEFINITION 1.1 (admissibility). Let V be a fized, nonernpty, convez subset ofn.

For any z E V, we shall denote by bl(z, V) the class of admissible control processes
u: [0, T] x f H U that are measurable, adapted to (t), satisfy condition (14), and
are such that the corresponding trajectory X of (15) satisfies

X2V Vt[0, r] a.s.

Whenever z and V are fized, we shall denote bt(z, V) by l/l, without danger of
confusion.

Quite obviously from tliis definition and (16), we have the following remark.
controls is convex.
Let us now consider the measurable functions :2 H CI(V; N) and L:[0, T] x-- C1’1 (V x U; )). We assume that is CT-measurable, that L is (gct)-progressively

measurable, and that for each (t,c) E [0, T] x ft, L(t,.,.) CI’I(v x U;) and

(.) CI(V; ) are convex functions. This means that V(t,a) [0, T] x2, z V,y
V,u U,v U,a [0,1]:

L(t,cx + (1 -()y,cu + (1 c)v) < cL(t,x,u) + (1 -c)L(t,y,v),

and

(cx + (1 -c)y) < c(x)+ (1 -c)(y).

We say that, for each (t,w) [0, T] x a, L(t,., .) is strictly convex or (.) is strictly
convex if the first or the second inequalities, respectively, are strict. We are interested
in the functional J :b/- defined by

(17) J(u) E L(t, Xt, ut)dt + q2(XT)

The following property is then obvious.
PROPOSITION 1.1. The functional J is convex. Furthermore, if, for each (t,c)

[0, T] ft, L(t,., .) or q2(.) are strictly convex, theft J is strictly convex.

1.3. The problem. In this section we want to address the following stochastic
control problem:

(18) inf J(u)
uE/

where b/and J have been defined in 1.2. That is, we want to select the control u E b/

that minimizes the criterion J.
We are imposing minimal conditions on the admissible controls u in b/. Indeed,

all the versions of the stochastic maximum principle in which the control enters into
the diffusion coefficient (including the ones in [1], [4]-[6], [12], [34], [38]) require at
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least that the controls be square-integrable. Assuming this technical condition makes
the problem much easier, as we shall see in 3.

Furthermore, our objective function is more general than the one considered in
Saksonov’s linear problem, the linear-regulator problem, the predicted-miss problem,
or the consumption-investment problem. Indeed, if L were identically equal to zero,
and were linear and deterministic, then we would be in the linear case studied in

[38]. On the other hand, with V Nn,

L(t,x, u) x*M(t)x + u*N(t)u,

and

V(x) z*Nx,

where M, N are (’t)-progressively measurable, / is 9rT-measurable, and, for each
(t,w) e [0, T] x ft, the n x n matrices M(t) and 2 are symmetric, nonnegative-
definite, and the k x k matrix N(t) is symmetric and positive-definite, we recover
the linear-regulator problem studied, for instance, in [6], [14], and [18]. Instead, if
V n, L were identically equal to zero, and

(x) (v- x) 2 for some v E }n,

then our objective function would be the same as the one in the predicted-miss problem
studied in [3] and [18]. Finally, in the particular case of V (0,

L(t, x, u) L(t, x, (r, c)) -U1 (t, c); u (71, c) E }rn X [0, OO)

and

(x) -V(x),

where Ul(t, .) and U2 are strictly concave and strictly increasing functions, we recover
the consumption-investment model studied in [24], [27]; we shall study that model
in 2.

1.4. The adjoint processes. The purpose of the stochastic maximum principle
is to find a necessary condition for the optimality of a control. Thus, let us suppose
in this section that is a candidate for optimal control for problem (18) (i.e., that it

achieves the infimum there), and denote by J the trajectory of the system controlled
by g.

DEFINITION 1.2 (adjoint equation). The adjoint equation is the backward stochas-
tic differential equation

(9) dpt L(t,2t, t) Apt dt + qtdWt,

(20) Pr --qx(2T).

We want to find a pair of measurable, adapted processes p: [0, T] x ft Nn, q
[0, T] x ft (d;) that solve the adjoint equation. They will be called adjoint

processes. In our notation, for each j {1,2,...,d}, Dj) and qJ) are n x n and
n x 1 matrices, respectively.
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The adaptivity of the processes (p, q) is a very strong requirement. Indeed, with-
out this requirement, it would be very easy to solve the system (19)-(20): we could
take q identically equally to zero, and solve the resulting ordinary differential equa-
tion with terminal condition. Of course, that trivial solution would not be adapted!

Assumption 1.1. In this section, we shall need to assume that

(21)

and

(22)
T

E [L(t, fft, ht)ldt < oo.

set of vector-valued processes p [0, T] t }n that are measurable, adapted, and
satisfy

(23)
T

E ]p(t)]adt <

Similarly, M2(O,T;(d;)) will denote the set of matrix-valued processes q
[0, T] ft /:(d; n) that are measurable, adapted, and satisfy

(24)
T

E Iq(t)ldt < o.

The following existence and uniqueness result is proved in Theorem 3.1 of [33].
THEOREM 1.1. If assumptions (21)-(22) hold, then there exists a unique pair

(p, q) M2(0, T; }n) M2(0, T; (Nd; ))

that solves the adjoint equation (19)-(20). Furthermore, the process p satisfies

(25) E[suP0<t<T
From now on, we shall call the pair (p, q) the adjoint processes.

1.4.1. Explicit solutions. Now that we have a result about existence and unique-
ness of the adjoint processes, we would like to compute them. Let [0, T] x t H
L:(R"; R") be the solution of the matrix stochastic integral equation

(26)
d

From 5.6.D of [25], we know that the stochastic integral equation (26) has a unique,
strong solution. According to Exercise 5.6.22 of [25, pp. 362-363], (I) has an inverse,
which satisfies

(27) (I)-l(t) 1 4-L (I)-1(8) (D(J)(s))2 A(s) ds- E gP-l(s)D(J)(s)dWs"
j=l j=l
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From Corollary 2.5.12 of [30, p. 86], we also know that Vm E R:

(28)
0<t<T LO<_t<_T

Equation (27) may also be written as

(29)

p*(t)- I + (D(J)(s)*) A*(s) *(s)-ds
j--1

d

Let 0"[0, T] x ft /2(n;/2(d; n)) be any measurable, adapted process such
that

(30) P Io(J)[2ds < oc 1,
j=l

and let us denote by Zo [0, T] xft /2(n; n) the solution of the matrix stochastic
integral equation

(3)
d

zo(t) foj=l

From 5.6.D of [25], we know that the matrix stochastic integral equation (31) has a
unique, strong solution.

Also, let - be a given vector in n and consider the adapted process (I)* (t) -1Zo(t)y
+/5(t), where 15" [0, T] x ft Nn is the solution of the integral equation

(32) 15(t) {L(s, 2, fi)- A*(s)(s)}ds.

We note that for any fixed w Eft, (32) is an ordinary integral equation.
Applying the integration by parts formula (see, for instance, [25, p. 155]) to each

component of the matrix a*(t)-lZo(t) we get from (29), (31), and (32)"

d(gp*(t)-lZo(t)/ + (t))
(I)* (t) -ldZ0(t)/+ d* (t) -1Zo(t)/-+- d < (I)* (t) -1 Zo(t) > " -+- d(t)

(I)* (t) -1 E O(j) (t)Z(t)dW(J)(t) /
j=l

+ (D(J)(t)*) 2 A*(t) ap*(t)-Idt- E D(J)(t)*a2*(t)-ldW(J)(t) Z(t)/
j=l j=l

d

+E D(j) (t)* +* (t)-lo(j) (t)Zo(t)dt 7 + {Lx(t, f(t, fit) A* (t)(t)}dt
j=l
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{Lx(t,t, tt)- A*(t)[*(t)-lZo(t)’y +/5(t)]

+E D(J)(t)*[D(J)(t)**(t)-lz(t) + eP*(t)-loJ(t)Z(t)]’Y dt
j=l

d

-E[O*(t)-lo(J)(t)Zo(t) + D(J)(t)*O*(t)-lZo(t)l’ydW(J)(t).
j=l

From the above equation, we see that the measurable, adapted processes p
[0, T] x 9t H Nn and q’[0, T] x ft H (d; n) defined by

(33) p(t) (t) zo(t) +
and

d

(34) q(t)w Z[*(t)-lo(J)(t) + D(J)(t)*ep*(t)-l]Zo(t)/wj Vw E d,
j=l

satisfy equation (19). In order that they also satisfy the terminal condition (20), we
have to choose 0 and "y so that we have, almost surely,

(35)

or equivalently

(36)

* (T)-Zo(T)’7 + [(T) --9z(T),

Zo(T)7 --*(T)[9(2T) +/5(T)].

Taking t 0 in equation (33), we see that has a very simple interpretation as the
initial condition for the adjoint process p: "y p(0).

To check that such 0 and -y indeed exist under appropriate conditions, let us
consider the random vector Q defined by

(37) Q -* (T)[gx(f(T) + iS(T)].

If P{Q 0} 1, we may take -y 0 to satisfy equation (36). Thus, if

(38) P{Q 0} 1,

a solution of the adjoint equation is given by equations (33)-(34). Let us now consider
the nontrivial case in which P{Q 0} < 1. According to Assumption 1.1, inequality
(28), and Hhlder’s inequality, we have E[IQI < oo. Thus, there exists a progressively
measurable process Y’[0, T] x (d; n), with

(39) P IY(J)12ds < oc 1,
j=l

such that we have, almost surely,

(40) Q(t) E[QlJ:t E[Q] + dW(j V 0 < t < T.
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Assuming that

(41) P((E[Q])*Q>0)=I or P{(E[Q])*Q<0)=I,

the above equation may be written as

(42) Q(t) E[Q] + Q(s)

where 1) [0, T] x f ,(n;/2(Nd; n)) is the progressively measurable process
defined by

(43) (j) Y() {sgn[(EQ)*Q(s)]}(EQ)*
I(EQ)*Q(s)[

V l<_j<d, O<_s<T.

Let us consider the events A {w e ft (E[Q])*Q(w) > 0},B {w E f
(E[Q])*Q(w) < 0} so that, according to assumption (41), we have either P{A} 1
or P{B} 1. Let us suppose that P{A} 1. We claim that, under this assumption,

(E[Q])*Q(s) E[(E[Q])*QlJZs] > 0 V 0 <_ s <_ T

holds almost surely, so that we have

K K(w):= inf (E[Q])*Q(s)(w) > 0
0<s<T

for P- a.e. w E Ft. To see this, let A’ := {w A K(w) 0}, and suppose
that or(w):= inf{s G [O,T]’(E[Q])*Q(s)(w) 0} G [0, T). Since {((E[Q])*Q(t),Jzt)
0 <_ t <_ T} is a continuous nonnegative martingale, we conclude (see, for instance, [25,
Problem 1.3.29]) that (E[Q])*Q(w) 0 holds for P- a.e. w G A’. This contradicts
A’ C A, unless P{A’} O. Thus, if P{A} 1 then

[is.(y) (co)lu_ IY(J)(w)(E[Q])*[ IE[Q][ lu<- <

0 <_ s <_ T, j E {1, 2,..., d} for P- a.e. co G ft. The same result (but with a different
random variable K) is valid if we assume P{B} 1. Therefore, from equations (39)
and (43), we obtain

(44) P I()1ds < oc =P as < oc

On the other hand, equation (31) may be written as

(45)
d

Z(t) / jl o(J) (s)Z(8)/dI/V(J) (8)"

If we choose

(46) - E[Q],
(47) 0
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we see from (42) and (45) that Zo(t)’ Q(t), V 0 <_ t <_ T. From this and (40), (37),
we obtain

Zo(T) Q(T) Q -*(T)[gx(2T) + iS(T)],

so the vector 7 and the vector-valued process 0 defined by equations (46)-(47) satisfy
the terminal condition (35), or equivalently (36).

Therefore, we have proved the following result.
THEOREM 1.2 (explicit solution of the adjoint equation). Under Assumption 1.1,

if either (38) or (41) holds, then a solution of the adjoint equation is given by equations
(33)-(34).

The explicit solution of the adjoint equation (19)-(20) given by formulae (33)-
(34) is one of the contributions of this paper. To apply these formulae, we must check
that we have either (38) or (41). We now list some simple sufficient conditions for
this to happen.

COROLLARY 1.1. If one of the following nine possibilities holds, then a solution

of the adjoint equation is given by equations (33)-(34)"
1. Lx-0, gx-0;
2. D-O, A >_ O, Lx -0, I, > 0;
3. D-0, A>_0, Lx-0,9<0;
4. D-0, A>_0, L>0,9-0;
5. D-0, A>_0, Lx<0,9-0;
6. n-l, Lx>0,9>_0;
7. n-l, Lx<0,9x<0;
8. n:l, Lx>0, gx>0;
9. n-l,L <0, gx<0.
The last condition of the above corollary will be satisfied trivially in the model

of 2.
It should be noted that we cannot apply Theorem 1.1 to settle the question

of uniqueness for the explicit solution (33)-(34). The problem is that we cannot
guarantee that (p, q) defined by (33)-(34) is in M2(0, T; Nn) x M2(0, T; (d; Nn)).
Nevertheless, we can note the following remark.

Remark 1.2. If 0 given by equation (47) is uniformly bounded in (t, w) E [0, T] x t,
then (p, q) defined by equations (33)-(34) is the unique solution of the adjoint equation
in the space M2(0, T; Nn) x M2(0, T; (d; Nn)) of Theorem 1.1.

In fact, if 0 is uniformly bounded in (t, w) E [0, T] x t then, according to Corollary
2.5.12 of [30, p. 86], Vrn

(48) E[suP0<t<T
This, combined with equations (28), (22), and (32), guarantees that (p,q) defined
by equations (33)-(34) is in M(0, T; n) M2(0, T; (Rd; Rn)); and we know from
Theorem 1.1 that the solution of the adjoint equation in this space is unique.

Professor Shige Peng remarks (private communication) that it would be of interest
to find general conditions guaranteeing the boundedness of the processes Y, Y, and
0 (in L or Lp, p > 2), preferably without invoking Malliavin derivatives or the
Clark-Ocone formula of [291.

A >_ 0 means that every component of the matrix A is nonnegative. Similarly, if c is a vector,
c > 0 means that each one of its components is positive, and c < 0 means that each one of its

components is negative.
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Remark: The one-dimensional case. We can be much more explicit if we suppose
that the state of the system is one-dimensional, i.e., that n 1. Then, Q is a real-
valued random variable,

and

(49)

and

(50)

so

(51)

and

0=-?= ]ze

According to 5.6.C of [25],

}:1

D()(s)dW()()

{ Ji ljit }Zo(t) exp O(J)(s)dW()(s) - IO(J)(s)12ds
j=l j=l

q(t) -(t)-(O(t) + D(t))Zo(t),

-exp{-JitA(s)ds}
1 ]D(J)(s)12ds(e) xp

=1

D(l()dW()() +
=1

{ L lLt }exp

=
0()()dW()()

=
10()()ld [0(t) + D(t)].

We shall apply the last two formulae to solve the consumption-investment problem in

2. In that model, D 0 and L 0.
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Remark: A second representation. There exists yet another representation for the
adjoint processes. By ItS’s formula,

d(*(t)p(t)) *(t)dp(t) + d*(t)p(t) + d < *,p > (t)

(*(t) Lx(t, 2t, tt) AtPt* E DJ*)-(J)qt dt+ qtdWt
j=l

{ }+ *(t)A*(t)et + *(t)D(* (t)d( p(t)

(a) =
d

+E*(t)D(J*)(t)q()(t)dt
j=l

(*(t)Lx(t,f(t, tt)dt + (*(t)q(t)dW(t)
d

-t- (* (t) E D(J*) (t)p(t)dW(J) (t).
j-1

Thus, the process M’[0, T] x Ft :n defined by

(54) M(t) a2* (t)p(t) * (s)Lx(s, 2s, ts)ds, 0 <_ t < T

is a local martingale. According to inequality (28), Theorem 1.1, Assumption 1.1,
and HSlder’s inequality, both terms on the right-hand side are integrable. Thus,
E[suPo<t<T IM(t)l] < oc. This shows that M is a local martingale of class DE, hence
a martingale. Thus,

M(t) *(t)p(t) *(s)(s, 2, )ds

(55) E *(T)p(T) *(s)L(s, 2, s)dst

T

N -*(r)(2)- *(s)(s,2,)al

or equivalently V0 t T,

(6) *(t)p(t) -E *(r)(2r)+ *(s)(s,2,)ds2t

This gives a formula to compute p, but we still need a formula to compute q. Suppose
that for some > 0, we have

(7) lo(2r)l+e <

(58)
T

E ]L(t, 2t,t)]2+Sdt < .
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Then equation (55), together with the additional conditions (57)-(58), inequality
(28), and Hhlder’s and Minkowski’s inequalities, implies that E[IM(t)I 2] < cx for
every 0 _< t _< T. Applying the theorem on the representation of Brownian, square-
integrable martingales as stochastic integrals (see, for instance, [25, p. 182]), we see
that there exists an adapted process a {(ct, t)" 0 <_ t <_ T} such that V1 <_ j <_ d,
E[foT ]aJ)[2dt] < cx), and

(59) M(t) *(0)p(0)+ 0 < t < T.

From the uniqueness of the representation (53), we obtain

(60) (* (t)q(t) + * (t)D* (t)p(t) a(t).

Now, we summarize our results.
THEOREM 1.3. If the additional conditions (57)-(58) hold, then the adjoint pro-

cesses are given, for any 0 <_ t <_ T, by

(61)

(62)

;(t) -(*(t)-lE O*(T)x(2T) +

q(t) (*(t)-l{c(t) (*(t)D*(t)p(t)},

* (s)Lx(s, 2, ts)ds]JZt]
where c(.) is the integrand in the stochastic integral representation (59).

The explicit solution of the adjoint equation given by Theorem 1.3 is due to Arkin
and Saksonov [1], [38] under stronger conditions. Theorem 1.3 has two limitations:
The first is that to find p we have to compute a conditional expectation, and this is
not simple in applications. The second limitation is that the expression (62) for q is
not explicit; it requires the determination of the integrand process c in (59).

Other references on the adjoint equation include [13], [17], and [35]. On the other
hand, Detemple [10] has studied another class of stochastic equations with terminal
conditions and provided some economic interpretations.

1.5. The stochastic maximum principle. From Remark 1.1 and Proposition
1.1, we know that L/ is convex and J L/- is a convex functional defined on b/.

Thus, we see that our stochastic control problem is a particular case of the general
problem of minimizing a convex functional. It is then natural to investigate what
information the theory of convex analysis can provide about problem (18); we shall
do this in the remainder of this section. All the necessary results from convex analysis
can be found, for instance, in Chapters I and II of [11].

DEFINITION 1.3. The Hamiltonian is the function H [0, T] n ()d; )n)
V x U - defined by

(63)
H(t, p, q, x, u) -L(t, x, u) + p f(t, x, u) + q g(t, x, u)

-L(t,x,u)+ p. (Atx + Btu + Ct)+ q. (Dtx + Etu + Ft),

where (p, q) are the adjoint variables.
We see that the backward stochastic differential equation (19)-(20) satisfied by

the adjoint processes may be written as (5)-(6).
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(64)

(65)

Obviously,

Let us consider the functionals J1 b/H and J2 5/H defined by

J1 (u) E L(t, X, ut)dt,

J2(u) E[9(X})].

J-J +J..

Furthermore, since L(t,., .) and (.) are convex, J and J2 are both convex. On the
other hand, for every u E L/, let Xu be the trajectory of the system controlled by u,
and Z be the solution of the linear stochastic integral equation

(66) Zt (AZ + Bu)ds + (D,Z + Eu)dW,

so that u -, Z is linear. We note that for every u, v E b/,

(67) Z Z X X.
We need to impose the following assumption about the derivatives of L and .
Assumption 1.2. Let u and v be admissible controls, with corresponding trajec-

tories X and X. We shall assume that there exists a random variable Y"
and a measurable process Y’[0, T] x such that E]] < , E ff []dt < ,
and

+ pZ ),

Z L(t,X + pZ, vt + put) + ut L(t,X + pZ, vt + put)

for arbitrary u, v , p [0, 1] that satisfy X + pZ V and vt + put U.
LEMMA 1.1. J and J2 are GSteaux-differentiable with differentials J and J

given by

(68) (J(v), } E {Z (t, Xg,vt) + t (t,X,vt)}dt

(69) (J;(v), u) E[Z. (X)].

Hence J- J + J2 is Gteaux-differentiable with differential 9iven by

(J’(),)

Pro@ We start by studying the differentiability of J. We want to analyse the
limit as 0 of

Since a C(V; ) is r-measurable, for every in the interval (0, 11, there
exists a r-measurable random variable 0 0() in the interval [0, 1] such that

+ az ) + oaz  .
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Thus, for any given A E (0, 1], there exists an 9T-random variable 0 with values in

[0, 1] such that

J2(v + Au)- J2(v) E[Z x(X + Z)].

Since 9 and J. are convex, the left-hand sides of the above two expressions are

nondecreasing functions of A. Thus, .when A O these expressions possess limits.
Since, for each w E a, (.) is a differentiable convex function, x(’) is monotone (see
[11, Prop. 1.5.5]), i.e.,

(x ). ((x) ()) > 0 Vx,

In particular, for any given 0 < a </3 < 1, we can take x X. +/gZ}, y X+cZ,
and obtain

z} (x} + Zz}) >_ z} (x} + z}).

If we consider any sequence (Ak) such that Ak $ 0 as k $ , we see then

? >_ z (x +oz) z (x), ..
Applying the monotone convergence theorem, we get

lim
J2(v + Au) J2(v)

lim
J2(v + .lcu) J2(v)

,X,LO

i [z (x} +z)]

E[Z. (x)].

Thus, J2 is Gteaux-differentiable with differential J given by

{J(v), u) E[Zr 9x(X,)].

Similarly, J1 is Gteaux-differentiable with differential J given by (68), and (70)
follows.

Let us now consider the semimartingales p and X given by equations (19) and
(8). Applying the formula of integration by parts, we get, in conjunction with (8),
(19),

Pt

-Ap

+ {p 9(s, X2, u) + X2 q}dW.

The above equation may be written as

(72) Rr Po x + {Ps Cs + q F}ds + S[,
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where we denote Vu E b/, t E [0, T],

(73)

(74)

S := {ps.g(s,X:,us)+X:.qs}dWs,

If, for every admissible control u, S happens to be not only a local martingale, but
also a martingale, then Vt [0, T],

(75) /o ]E[r] E o. x + { C + q }d E[].

But, in general, Su is not necessarily a martingale, so we have to consider the following
four cases. We shall see later that in the first case we get a necessary condition for
optimality of a given control 5, while in the second case we get a sufficient one.

Case 1.1. Vu b/,

(%) [] < E[],

or equivalently,

(77)

Case 1.2. Vu

(78)

or equivalently,

(79)

(80)

or equivalently,

(81)
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Case 1.4. :tu, v E b/such that

(8) E[] < E[] < e[R].

When we study the consumption-investment problem, we shall check that inequal-
ity (79) is satisfied. On the other hand, in the case of the square-integrable controls,
we shall see that equation (81) is trivially satisfied. An example of Case 1.4 is given
in Appendix B of [8].

Now, we are ready to state and prove the most important result of this paper:
our version of the stochastic maximum principle (SMP).

Let us consider the function/" [0, T] x 9t x U defined by

(83) fI(t, w, u) L(t, 2t(w), u) pt(cd) Bt(cd)t qt(cO) Et(cd)t,

and note that (t,w, .) is convex.
PROPOSITION 1.2 (the SMP in integral form). If Case 1.1 holds, then a necessary

condition for a control t to be optimal for the problem

(84) I/0min E L(t, X ut )dt + q(X)
uEbt

is that Vu bl,

(85)
T

E {u(t,w, ftt(w)). (ut(w) tt(w))}dt >_ O.

On the other hand, if Case 1.2 holds, then inequality (85) is a sufficient condition for
a control t to be optimal for problem (84).

Proof. The optimal control problem consists of minimizing J(u) over u /g, where
J is a Gteaux-differentiable convex functional with derivative given by equation (70).
Hence, according to Proposition 2.2.1 of [11, pp. 36-37], a necessary and sufficient
condition for to be optimal for problem (84) is

(J’(),u-fi) > 0 Vub/.

Thus, according to (70) and (20), is an optimal control if and only if Vu

(86)

[/oE {(X? fit) Lx(t, 2t, tt) + (ut tt) L,(t, 2t, tt)}dt

+ (x 2).

{(x? 2/o (t, 2,) + ( ) (t, 2, )}at

+ (2r Xr) O

>0.



THE STOCHASTIC MAXIMUM PRINCIPLE 607

In Case 1.1 (see inequality (77)), we see that Vu

T

E {L(t, 2t, fit) (ut t) + pt Bt(tt ut) + qt Et(tt ut)}dt

E {Lu(t,2t,tt) . (ut tt) - Lx(t, 2t,tt) (X 2t)}dt

+ {p + 2 (t, 2,1 + q

fo {pt Btt + xi L(t,2t, t) + qt tt}dt

+ (2r X)o

Thus, in Case 1.1 and in conjunction with (86), a necessary condition for a control
to be optimal is that Vu E b/,

T

(87) E {Lu(t,2t, tt) (ut tt) + Pt Bt(tt ut) + qt Et(tt ut)}dt >_ 0,

which is equivalent to (85).
On the other hand, in Case 1.2, Yu E b/,

T

E {L(t,2t, tt) (ut tt) + pt Bt(tt ut) + qt Et(tt ut)}dt

E {Lu (t, fit, tt). (ut tt)+ Lx (t, fit, tt). (X f(t)}dt

+ {pt Btt + 2t c(t,2t,t) + qt Ett}dt

{pt Btt + X2 C(t,2t, t) + qt Ett}dt

[/o< E {(x2 2t) g(t,2t, 5t) + (ut 5t) L(t,2t, t)}dt

+(2r X.)

Thus, in Case 1.2, a sufficient condition for a control to be optimal is that (87), or
equivalently (85), holds for all u

The meaning of inequality (85), or equivalently (87), is very intriguing. It is
necessary condition for optimality in Case 1.1, and a sufficient condition for optimality
in Case 1.2. Now, we want to rewrite this inequality in a suitable form for applications.
This is the objective of the next two theorems.
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(88)

and

We should note that for a control " [0, T] x t -+ U, the statements

min/(t, w, u) =/(t, w, t (w))
uEu

(89) maxH(t, pt(w),qt(w),2t(w),u) H(t,pt(w),qt(w),2t(w),t(w))
uEu

are equivalent (recall the notation of (63), (83)). Furthermore, the theorem of measur-
able selection (see [39, Thin. 3, p. 220]) guarantees that such is adapted; nevertheless,
it does not guarantee that X V.

THEOREM 1.4 (the SMP with state-constraints). Let us assume that L(t,x,.)
U {R is strictly convex, (t, w, x) E [0, T] t V, and there exists a control such
that

(90) maxH(t, pt, qt, f(t, u) H(t, pt, qt, f(,t, t), Xt V,
uU

Leb (R) P- a.e. on [0, T] . If the admissible control t satisfies Case 1.1, then a
necessary condition for t to be optimal for problem (84) is

(91) , Leb (R) P a.e. on [0, T] .
On the other hand, if the admissible control t satisfies Case 1.2 instead of Case 1.1,
then equation (91) is a sufficient condition for the optimality of t.

Proof. Let us first consider the case in which is optimal and satisfies Case 1.1.
According to Proposition 1.2, we need to prove that inequality (85) implies that, with

as in the hypothesis of this Theorem, we have (91). Since H(t,w, .) is convex and
(88) is equivalent to (89), Proposition 2.2.1 of [11, pp. 36-37] shows that of (90)
satisfies

(92) H,,(t,w, u). (u- t(w)) >_ 0 Vu e U

for Leb(R) P-a.e. (t,w) [0, T] t (with equality if and only if u t(w), thanks to
the strict convexity of [-I(t,w, .)). To prove (91), consider the product set

A {(t, w) [0, T] x ft t() - t(w)}
e [0,T] x a. > 0},

and suppose that (Leb (R) P){A} > 0. Then

E {u(t,w, tt(w)). (St(w) tt(w))}dt < O,

contradicting inequality (85). Thus, (Leb (R) P){A} 0, or equivalently (91), holds.
Now, we consider Case 1.2, and assume that satisfies equation (91). According

to Proposition 1.2, we need to prove that inequality (85) holds. If t satisfies (91),
then for Leb (R) P- a.e. (t, w) [0, T] x ,

maxH(t, Pt, qt, flit, u) H(t, pt, qt, f(t, tt)
uU

or, equivalently,

min/7/(t, w, u) (t,w, tt(w)).uu
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According to Proposition 2.2.1 of [11, pp. 36-37],

(93) /(t,, ()). (- a()) > 0 v e u,

for Leb (9 P- a.e. (t, w) E [0, T] x 2. Therefore, inequality (85) is valid, and from the
second part of Proposition 1.2 the control it is optimal for problem (84). [3

The admissible controls that maximize the Hamiltonian (i.e., satisfy equation
(91)) are called extremal controls. Thus, the first part of Theorem 1.4 states that,
under Case 1.1, every optimal control is extremal; and the second part states that,
under Case 1.2, every extremal control is optimal. We shall apply the second part in
the next section to solve the consumption-investment problem.

COROLLARY 1.2 (Case 1.3 and state-constraints). If Case 1.3 holds and, for each
(t, w, x) E [0, T] x ft x V, the function L(t, x, .) is strictly convex, then a necessary and

sufficient condition for a control it to be optimal for problem (84) is that

(94) Leb (R) P- a.e. on [0, T]

where is a control that satisfies

(95) max H(t, Pt, qt, fit, u) H(t, Pt, qt, 2t, t), X V,
uU

Lob (R) P- a.e. on [0, T] f.
In the next theorem we shall see that, in the case of unconstrained state, it is not

necessary to assume strict convexity of L(t, x, .).
THEOREM 1.5 (the SMP without state-constraints). Let us suppose that V

If Case 1.1 holds, then a necessary condition for a control it to be optimal for problem
(84) is that, Leb (R) P- a.e. on [0, T]

(96) maxH(t, Pt, qt, 2t, u) H(t, Pt, qt, 2t, itt).
uGU

On the other hand, if Case 1.2 holds, then equation (96) is a sufficient condition for
a control it to be optimal for problem (84).

Proof. Let us first consider Case 1.1, and assume that it is an optimal control for
problem (84). Again as before, in order to prove (96), it suffices to show that

(97) })(t,, ,()) ( ,()) >_ 0 w e u

for Leb (R) P- a.e. (t, w) [0, T] ft. To do this, define for any given v U:

B {(t,) e [0,] . ,,(t, , ,()) ( ,()) < 0}.

Obviously, for each t e [0, T], B e St. Let us consider the control ): [0, T] x f U
in b/, defined by

v
(t,) := (t,)

if (t,w) B,
otherwise.

Then 5 is adapted and we have

T

E {H(t,w, itt(w)). (t(w) tt(w))}dt < O,
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contradicting (85), unless (Leb (R) Pr){Bv} 0 for every v E U. Thus, for any given
vEU"

. > o
for Leb (R) P- a.e. (t,w) e [0, T] x . The stronger result (97) follows from the
separability of U, and (96) then follows from Proposition 2.2.1 of [11, pp. 36-37].

Now, we consider Case 1.2. One shows exactly as before that (96) implies (93),
and thus the optimality of

COROLLARY 1.3 (Case 1.3 and no state-constraints). If Case 1.3 holds, and V
n, then a necessary and sufficient condition for a control fi to be a solution for
problem (84) is that

(98) maxH(t,pt, qt,f(t,u)= H(t, pt,qt,f(t,tt), Leb(R) P-a.e. on [0, T] t.
uEU

Our methodology of applying the theory of convex analysis to study the stochastic
control problem of this section can provide additional results. To obtain them it is
necessary to notice that the problem

(99) min J(u)

is equivalent to

(100) min ](u),
uV

where V- {v "[0, T] a Rk} and J" p is the function defined by

tv J(v) if re
c otherwise.

Obviously, J is also a convex function.
LEMMA 1.2. The set of optimal controls for problem (99) is convex.

Proof. The set of optimal controls for problem (99) is equal to the set of optimal
controls for problem (100). But this latter set of optimal controls is {v V" J(v) <_
}, which is convex. This proves the lemma.

THEOREM 1.6 (uniqueness). If, for each (t,w) e [0, T] , n(t,., .) or (.) are
strictly convex, then problem (99) has at most one optimal control.

Proof. Let u* =fl u2 be two optimal controls for problem (99). According to
lu u2 is also an optimal control.Lemma 1.2, +

On the other hand, according to Proposition 1.1, J is strictly convex. Hence,
lul lU2 1J(ul [:]J( + < )+ 1/2J(u2) , a contradiction. Therefore

2. The consumption-investment problem.

2.1. The financial market model. We consider a financial market in which
m + 1 securities (financial assets) are traded continuously. One of them is a pure
discount bond, with price Po(t) at time t governed by the equation

(101) dPo(t)- Po(t)r(t)dt.

There are also m risky assets called stocks with prices-per-share Pi(t) at time t gov-
erned by the linear stochastic differential equations

(102) dP(t) P(t) b(t)dt + cr(t)dW(t) {1,2 ,m}.
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These equations are driven by a d-dimensional Brownian motion W (W1,..., Wa)*,
whose components model the d independent sources of uncertainty that influence this
market.

The probabilistic setting is as follows: the Brownian motion W is defined on the
complete probability space (,9, P), and we denote by (9t) the P-augmentation of
the natural filtration (tw). The coefficients of the model (i.e., the interest rate r,
the appreciation rate vector b (bi)ml, and the volatility matrix cr (o’ij)md)
are random processes, progressively measurable with respect to (9t) and bounded
uniformly in (t,w) [0, ) Ft. We suppose that d > m, and that a has full row

rank. It is also assumed that r and the relative risk process t)" [0, cx) 9t d
defined by

(103) (t) a*(t)(a(t)a*(t))-l[b(t) r(t)l]

are bounded.
For any measurable adapted process 0 [0, cx) x t Nd, which is uniformly

bounded in (t, w) E [0, T] x t, we define the exponential martingale Zo by Vt E [0, c),

10(Y)(s)lds(104) Zo(t) exp o(Jl (s (s) - j=lj:l

This is the solution of the equation

(o) Zo(t) Zo()O*()dW().

We also define the processes and 0 by

(106) /(t) exp r(s)ds @(t)’- (t)Zo(t).

All economic activity is supposed to take place on the finite time-horizon [0, T].
For a small investor, a portfolio rule is a process whose components i represent
the amount of money invested in the corresponding stock G {1, 2,..., rn}.

NOTATION 2.1. We denote by 7) the set of all processes [0, T] t H ’ that
are progressively measurable with respect to (.t) and satisfy

{/o(107) P I(t)ledt < oc 1.

The elements of 7) are called portfolio processes.
The consumption rate rule c is the rate at which the small investor withdraws

funds for consumption.
NOTATION 2.2. We denote by C the set of all processes c [0, T] - [0, )

that are progressively measurable with respect to (t) and satisfy

{]’o }(108) P c(t)dt < 1.

The elements of C are called consumption rate processes.
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The wealth process X Xx’’c corresponding to initial capital x > O, portfolio
rule r, and consumption rate c then satisfies the equation

(109) dX(t) [r(t)X(t) -c(t)]dt + rc*(t)[b(t) r(t)l]dt + r*(t)a(t)dW(t)

with initial condition

x(0)

From now on, we are going to consider only the following portfolios and consumption
rate processes.

DEFINITION 2.1 (admissibility). A pair (Tr, c) 6 7) x C of portfolio and consump-
tion rate process is called admissible for the initial capital z > 0 if the corresponding
wealth process X given by equations (109)-(110) satisfies

(111) P{X(t) >_ 0 V0 <_ t _< T} 1.

We denote by 4(x) the class of such pairs.
DEFINITION 2.2 (utility function). A utility function is a function U 6 C ((0, oc);

) that is strictly increasing, strictly concave, and has a derivative U’ (0,
(0, ec) that satisfies limc_. U’(c) O. We shall denote by I the inverse of the
strictly decreasing function U.

From now on, we are going to consider two fixed utility functions: U1 (t, .) and
U2. That is, for every t E [0, T], U1 (t, .) is a utility function, and V (t, .) has inverse

.).
PROBLEM 2.1. The optimization problem faced by the small investor is to find a

pair (r, c) (z) which achieves the mazimum in

max E gl (t, c(t))dt + U(X(T))(112) Y(x)"
(,)eA(x)

The function (0, ) is called the value function of problem (112).
2.2. Relation between the stochastic maximum principle and the con-

sumption-investment problem. In the notation of 1, let us take u (,c),
U x [0,), V [0,), A(x), f(t,x,u) r(t)x- c + *[b(t)- r(t)l],
g(t,x, u)- *a(t), L(t,x, u)- -Ul(t,c), and (x)- -U2(x); we see then that all
the assumptions made in 1.2 hold for the model described in 2.1. To apply the
general theory of 1, it only remains to check that Assumption 1.2 holds in the fi-
nancial market model. But since both Ul(t, .) and U are utility functions, U(t, .)
and U are both positive and decreasing; in particular, Assumption 1.2 holds for the
model described in 2.1. Therefore, we are in a position to apply the stochastic max#
mum principle developed in the previous section to solve the consumption-investment
problem.

The Hamiltonian for this problem is

(113) H(t, p, q, x, (, c)) Ul(t,c)+p(r(t)x-c+ *[b(t)- r(t)l])+ q*a*(t),

and the adjoint equation takes the form

(114)
(115)

dp(t) -r(t)p(t)dt + q(t)dW(t),
p(T) U(2(T))
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for a suitable pair of processes (p, q).
Now we want to solve the adjoint equation. But in order to apply Theorem 1.2,

we have to check first that

(116) E[{U(2(T))}2] < c.

Since we do not have enough information to check this condition right now, we shall
just assume it. We shall justify our approach in the comment that follows equation
(126). According to equations (51)-(52), an adapted solution to equation (114) is
given by the processes

(117) p(t)
(118) q(t) -7(o(t)O(t)

in the notation of (106), where /= p(0). To satisfy the terminal condition (115), we
need to find 0 and such that

(119) "(o(T) U(2(T)).

Since U2 is strictly increasing, the right-hand side is positive. Hence, we require that

7 be positive. From equation (119) we obtain

(120) )(T) I2(’(0(T)).

From equations (117)-(118), and the fact that is a positive constant, condition (79)
takes the form

The second part of Theorem 1.4 then leads to the following theorem.
THEOREM 2.1. Suppose that (#,) E A(x) satisfies inequality (121) for every

(Tr, c) E A(x), and

(p(t), q(t)) (/(o(t), -7(o(t)O(t))

is a solution of the adjoint equation (114)-(115). /f

(122)

max {Ul(t,c) + 9/o(t)(r(t)f((t) c + 7r*[b(t) r(t)l]) -/o(t)Tr*cr(t)O(t)}
7rEP’s,c>0

Ul (t, (t)) + 7@(t)(r(t)(t) -(t) + #* (t)[b(t) r(t)l]) -7<o(t)#*(t)a(t)O(t),

Leb(R) P- a.e., then (r, ) is optimal for problem (112). Here, f( is the wealth process
associated with the portfolio process # and consumption rate process .
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2.3. The candidates for optimal control. In this subsection, we shall guess
the form of the optimal control from Theorem 2.1. The idea is first to find the controls
that satisfy condition (122), the so-called extremal controls, and then those which also
satisfy condition (121).

To find the controls that satisfy condition (122), we differentiate that expression,
obtaining

(123) U (t, 5(t)) 7@(t) O,
(124) @(t)[b(t) r(t)l] /@(t)(t)O(t) O.

From equation (123) we get

(125) (t) Ii(t, /@(t)),

and from equation (124) we get

(126) O(t) a*(t)(a(t)a*(t))-[b(t) r(t)l] =: t(t).

This completes the characterization of the extremal controls; it also shows, in con-

junction with (119) and the boundedness of , that they satisfy (116).
Remark 2.1. The controls that satisfy condition (122) are those controls (#, 5) E

4(x) that satisfy equations (120) and (125), with 0 as in (126) and with 7 > 0.
The controls which, in addition, satisfy condition (121) are those controls (#,5)

such that V(zr, c) A(x),

(127)

E (T)X(T) + (t)c(t)dt < E (T)2(T) + (t)(t)dt

E (T)h(/(T))+ (t)I(t,,(t))dt

Here, we denote 0, where 0 is given by equation (126).
We have easily found the controls that satisfy condition (122), but it remains to

find more explicitly the controls that, in addition, satisfy (121), or equivalently (127).
To that end, it is convenient to note the following.

LMMA 2.1. For ever (, c) (z), the process g defined b

(128) N(t) (t)X(t) + (s)c(s)ds, 0 t T,

is a continuous, nonnegative local martingale, hence a supermartingale. In particular,

Pro@ According to equations (72)-(74), and (117)-(118),

(t)X(t) z + {(s)(-c(s) + *(s)[b(s) r(s)l])

+
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From equation (124), we obtain (t)X(t) x- f (s)c(s)ds + /-1S, where S is a
local martingale.

In the remainder of this subsection, we are going to apply Remark 2.1 and Lemma
2.1 to select (heuristically) a candidate for optimal control, and in the next subsection
we are going to prove that our selected candidate is indeed optimal.

From Remark 2.1 and Lemma 2.1, we conjecture that the optimal controls (#,
satisfy

(130) E /0E ((T)2(T)+ ((s)8(s)ds x.

Let us now assume that

[ /o ]E (T)I2(y(T)) + ((s)II(s,y(s))ds < cx Vy E (0,

and define the function X: (0,) (0, c) by

(132) [ /0
T ]X(y) E (T)I2(y(T)) + (s)I (s, y(s))ds

Since X’ is strictly decreasing and surjective, it has an inverse 2 X’-1 (0, oc)
(0, oc) which is also strictly decreasing. If conjecture (130) is valid, then

(133)

and the process . defined by

y(x),

(t) .= (t)(t) + ,()e()d

will be not only a supermartingale, but also a martingale. In fact, E[/(0)] x
E[(T)]. Thus, (t)- E[(T)I.T’t], or equivalently V0 _< t _< T,

(134)
E [((T)Ie(;((T))+ f (s)Z(s, ((s))dsI.Tt].

In addition, according to the representation theorem of Brownian martingales as
stochastic integrals (see, for instance, [25, 3.4.D]), there exists a progressively mea-

surable process :[0, T] x t - Nd with

(135) {/0 }P I(s)12ds < oc 1

and

E (T)/2(-(T))+ (s)Ii(s,@(s))dsI.Tt x + (s)dWs.
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On the other hand, according to equations (72)-(74),

(137)

Thus, comparing equations (134)-(136) with (137), we see that if conjecture (130) is

valid, then the process # will satisfy

()[*()()- 2()()] ().

2.4. The complete market. In the complete market case (m d), a(t) is a

square matrix with inverse a-l(t). This case has the distinctive feature that every
contingent claim is attainable (see, e.g., [24] or [25, pp. 376-378]).

As suggested heuristically in the previous subsection, let us define the processes
: [0, T] x a - m and (: [0, T] x a - [0, c) by

(138)

(139)

(t) := (a*(t))-l { b(t) }+ i(t)(t)

(t) := (t, (t)),

where is defined by (133), is the progressively measurable process defined by
(135)-(136), is defined by (126), and 0.

We see that # and 5 are progressively measurable and satisfy (107)-(108). Further-
more, according to equations (72)-(74), (138), and (136), the control (#, 5) determines
a trajectory of the system X which satisfies

(140)

so vt e [0, T],

(141) 2(t) (E (T)I(Y(x)(T)) + (s)I(s,Y(x)(s))dslJZt

Thus, the wealth process determined by (#, 5) of (138)-(139) never takes negative val-
ues, which shows that (#, 5) is indeed admissible (that is, (#, 5) A(x)). Furthermore,
from equations (140), (132)-(133) we see that

[ /0 ]E (T)2(T)+ (s)5(s)ds X() A’(y(x)) x.

Thus, according to Remark 2.1 and Lemma 2.1, condition (121) is satisfied. From
equations (125)-(126), we see that condition (122) is also satisfied by the control (, 5)
en y (as)-(ag).

According to Theorem 2.1, we have proved the following theorem.
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THEOREM 2.2. Suppose that assumption (131) holds, and that we have a com-
plete market (i.e., rn d and a(t) invertible). Then the optimal consumption rate
process and the optimal portfolio process are given by equations (138)-(139). This
consumption-investment policy determines a wealth process X given by

(142)

2(t) -E (T)h(Y(z)(T)) + (s)(s,Y(z)(s))dst V0 t T.

We should also notice that the process described in Theorem 2.2 is the nique
soltio of Problem 2.1 (see equation (112)). In fact, since g(t, .) and U are strictly
concave functions, we may apply Theorem 1.6.

As in [8], we can obtain more results about the consumption-investment problem.
Since those results are not a direct application of Theorem 1.4, we prefer to stop here,
and refer the interested reader to [8]. Related optimization problems in financial
markets appear in [24]-[28] and [40].. he square-integrable controls.

g.1. Introduction. In this section we reduce the class of admissible controls and
obtain a stochastic maximum principle which is not only a necessary condition for
optimality, but also a sucient one. We also get some results concerning the existence
and uniqueness of optimal controls.

Although all the previous versions of the stochastic maximum principle in which
the control enters into the diffusion coecient require at least that the controls be
square-integrable, only one of them (Bismut [6]) supplies both necessary and sucient
conditions for optimality. Since that paper considers only the linear-regulator prob-
lem, we extend that work by considering general convex cost functions and allowing
state constraints. Other references in which the stochastic maximum principle is also a
sumcient condition for optimality are [19] and [21, Chap. 10], but those two references
allow neither the diffusion coecient to be controlled nor random coecients.

g.2. he problem. We are going to consider a problem similar to the one stated
in 1. The difference is that now the set of controls has more strctre, and the
terminal and running costs satisfy an additional condition.

DEFINITION 3.1. * is the set of controls u that satisfy

(143) IlulI E lutl2dt < .
As in the general theory of 1, the trajectory of the system controlled by u E 5/*

satisfies equations (8)-(9). We want to minimize the functional J:5/* R defined
by equation (17). That is, we want to select the control 5 E b/* that solves the
problem

(144) min J(u).
uE*

We impose the same assumptions about the coefficients of the system as in 1, but
now we take advantage of the restriction stated by equation (143). From Corollary
2.5.10 of [30, p. 85], we know that for every u in b/*

(145) E[suPo<t<T
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Hence, Vu E b/*,

(146)

and

E [f(t,X, ut)[dt E [AtX + Btut + Ctldt

[AtX -t- Btut + Ct[2dt <

(147) E Ig(t X 12t,ut) dt =E IDtX+Etut+Ftl2dt <oc.

We should note that the version of the stochastic maximum principle that we
are going to develop in this section cannot be applied to the consumption-investment
problem. In fact, conditions (143), (145)-(147) are not satisfied by the model of 2.

3.3. Assumptions. When we consider b/* instead of b/as our set of admissible
controls we have, in particular, that equations (146) and (147) hold. Now, we are

going to impose an additional assumption.
Assumption 3.1. In addition to Assumptions 1.1 and 1.2 of 1 we shall assume in

this section that for every u, v E/A*, p [0, 1],

(148) E fo
T

Xu 2Lx(t X+p t,vt+put)l dt

According to HSlder’s inequality and inequalities (143) and (145), a sufficient
condition for Assumption 3.1 to hold is that there exists a constant K G (0, oc) such
that for every (t, x, u) G [0, T] x V x U,

(149) Ix(x)l 2 + ILx(t,x, u)l + ]L(t,x, u)] 2 _< K(1 + Ix] +

3.4. The adjoint equation. We have already obtained some results about the
adjoint equation in 1.4. The following proposition is a consequence of Theorem 1.1.

PROPOSITION 3.1. Under the assumptions of this section, there is a unique pair

of adapted processes (p,q) that satisfies equations (19)-(20), as well as conditions
(24)-(25).

3.5. The stochastic maximum principle. The purpose of the stochastic max-
imum principle is usually to state a necessary condition for the optimality of a given
control b/. Nevertheless, the version of the stochastic maximum principle that
we are going to build provides not only a necessary but also a sufficient condition for
optimality. Let us suppose that is a fixed control, a candidate to be optimal for the
problem (144), and X is the corresponding state process. We shall start by studying
the process S defined in 1.5.

LEMMA 3.1. Under the assumptions of this section, for every u Lt* the process
Su defined by

(150) S {ps 9(s, XU, Us) + X2 q}dW, 0 <_ t <_ T

is a martingale.
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Proof. Obviously, the process S is a local martingale, but now we want to prove
that S is indeed a martingale. For that purpose it is good enough to check that S
is of class D[0,T], or even the weaker condition E[suPo<t<T IS(t)l] < oc. According
to the Burkholder-Davis-Gundy inequality (see, for instance, [25, Thm. 3.3.28]), to
check this weaker condition it is enough to verify that

E {IPs g(s,X:, u)l2 + IX2 q12}ds < c.

But this follows from HSlder’s inequality, together with inequalities (24)-(25), (145),
and (147). Hence, E[suPo<t<T Is(t)]] < oc, which implies that S is indeed a mar-
tingale.

COROLLARY 3.1. Vu

(151) E[R] E[R].

Proof. This is an immediate consequence of equation (75).
THEOREM 3.1 (state-constraints). Suppose that for each (t,w, x) [0, T] x Ft x V,

L(t, x, .) is strictly convex. Then, under the assumptions of this section, t is a solution

of the optimal control problem

](152) min E L(t X ut)dt + (X)
uEb/*

if and only if

(153) , Lcb (R) P a.e. on [O, T] x ft,

where is a control that satisfies

(154) max H(t, Pt, qt, 2t, u) H(t, Pt, qt, 2t, St), X’ e V,
uEU

Leb (R) P- a.e. on [0, T] x ft.
Proof. This is an immediate consequence of Corollaries 1.2 and 3.1. Cl

THEOREM 3.2 (no state-constraints). Suppose that V Nn. Then t is a solution

of the optimal control problem of (152) if and only if

(155) maxH(t, pt,qt,2t,u) H(t, pt, qt,fft,zt), Leb(R) P-a.e. on [0, T] x Ft.
uEu

Proof. This is an immediate consequence of Corollaries 1.3 and 3.1.
An interesting remark about this version of the stochastic maximum principle is

that it provides not only a necessary, but also a sufficient condition for optimality.
That is, a control is optimal if and only if it maximizes the Hamiltonian.

Our method of applying the theory of convex analysis to the stochastic control
problem of this paper can also provide the following result about the existence and
uniqueness of the optimal control.

THEOREM 3.3. Let us suppose that there exists a convex function k
such that limx k(x) and V(t, w, x, u) [0, T] x t x V x U,

L(t, x, u)>_
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Let us also suppose that the function (.) is bounded from below by a constant E .
Then problem (144) has at least one solution. It has a unique solution if, for each
(t,w) E [0, T] f, L(t,.,.) or (.) are strictly convex.

Proof. Applying Jensen’s inequality, Vu b/*,

J(u) E L(t,X, ut)dt + (X)

>_ E k(]ut )dt + >_ k(llu]] 2) + 7.

Thus J is coercive over hi*, that is, lim i11_o J(u) oo. Applying Proposition 2.1.2
of [11, p. 35], we get our result. [

We shall finish this paper by showing that the results of this section can be applied
to solve three problems that arise in engineering: the linear-regulator problem, the
predicted-miss problem, and the Bene problem.

3.6. Example 1: The linear regulator.

3.6.1. The model. In the linear-regulator model, b/ is the set of controls u

[0, T] x k that are measurable, (’t)-adapted, and satisfy

[/0 ](156)

Each u b/determines a trajectory of the system that is the solution of the linear
stochastic differential equation

(157)
(158)

dX (A(t)X + B(t)ut + C(t))dt + (D(t)X + E(t)ut + F(t))dWt,
X x.

We assume that A, B, C, D, E, and F are all progressively measurable with respect to
(’t), and bounded uniformly in (t, w) E [0, T] x ft. We want to minimize the criterion
J"/d -, defined by

(159) J(u) E (X?*M(t)X? + uN(t)ut)dt + XYr*igXr]
where M [0,TI x t z:(;) and N [0,T] x ft -, (k;a) are (t)-
progressively measurable, N" i2 -, (; [R) is 9T-measurable, and for each (t,w)
[0, T] x , the n x n matrices/l(t) and N are symmetric, nonnegative definite, and
the k x k matrix N(t) is symmetric and positive definite. We shall also assume that
M, N, and 29 are bounded.

3.6.2. Assumptions. Following the notation of 1, we note that U k, V
n, f(t, X, U) =-- A(t)x + B(t)u + C(t), g(t, x, u) =_ D(t)x + E(t)u + F(t), L(t, x, u) =_

x*M(t)x + u*N(t)u, and (x)
_
x*Nx.

Since we have a stochastic control problem with linear dynamics, convex cost-
criterion, and unconstrained state, we may apply the general theory of 1 to solve
this problem. In addition, since we are assuming (156), inequalities (145)-(147) are
also valid for the linear regulator. Nevertheless, to apply the theory of 3.5, we have
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to check that Assumption 3.1 also holds in this model. But this is straightforward,
applying the sufficient condition (149). Therefore, we may apply the stochastic maxi-
mum principle, as stated in Theorem 3.2. The details of the application of Theorem
3.2 to solve the linear-regulator problem can be found in Chapter 4 of [8]. The adjoint
processes are found to be

(160) p(t) -P(t)(t) R(t),
(161) q(t) -Q(t)2(t) P(t)[D(t)(t) + E(t)t(t) + F(t)]- S(t),

and the optimal control given by

(t) -IN(t)+ E*(t)P(t)E(t)]-l{[B*(t)P(t)
(162) +E*(t)Q(t) + E*(t)P(t)D(t)]2(t) + B*(t)R(t)

+E*(t)(P(t)F(t) + S(t))},

where P: [0, T] x a (}n; n), Q: [0, T] X ft ()d; (}n; }n)), are a pair of
measurable, adapted processes that solve the backward matrix stochastic differential
equation

dR(t) {P(t)d(t) + A* (t)P(t) + D* (t)P(t)D(t) + D* (t)Q(t) + Q(t)D(t)
-[D* (t)P(t)E(t) + P(t)B(t) + Q(t)E(t)][N(t) + E* (t)P(t)E(t)] -1

[E*(t)P(t)D(t) + B*(t)P(t) + E*(t)Q(t)] + 2M(t)} dt + Q(t)dW(t),

We notice that if we assume that the coefficients of the system are deterministic
and take Q _= 0, we recover the familiar Riccati equation. On the other hand, R:
[0, T] x ft Nn and S: [0, T] x gt (a; Nn) are a pair of measurable, adapted
processes that solve the backward matrix stochastic differential equation

dR(t) {[P(t)B(t) + D* (t)P(t)E(t) + Q(t)E(t)] IN(t) + E* (t)P(t)E(t)] -1 B* (t)
-A* (t) } R(t)dt
+ {[(P(t)B(t) + D*(t)P(t)E(t) + Q(t)E(t)) (N(t) + E*(t)P(t)E(t)) -1

E*(t) D*(t)] [P(t)F(t) + S(t)]- P(t)C(t) Q(t)F(t)} dt + S(t)dW(t),
o.

3.7. Example 2: The predicted-miss problem.

3.7.1. The model. In this model, N is the set of controls u [0, T] x ft
[-1, 1] k that are measurable and (grt)-adapted. Each u b/determines a trajectory
of the system that is the solution of the linear stochastic differential equation

(163) dX (A(t)X + B(t)ut)dt + r(t)dWt,
(164) X x.

We assume that A, B, and F are deterministic, bounded, and measurable.
We want to minimize the criterion J :b/ R defined by

(165) J(u) E[k(v. X,)I,

where v E R is fixed, and k R is given by k(y) y2. This means that the
controller is trying to drive the final state to the hyperplane H {x E R" v. x 0}
using bounded controls.
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3.7.2. Assumptions. Following the notation of 1, we note that U [-1, 1] k,
Y =__ ’, f(t,x,u) A(t)x + B(t)u, g(t,x,u) F(t), L(t,x,u) =_ 0, and (x)
k(v.x). We can also note that the trajectory of the system satisfies a linear stochastic
differential equation, and that the criterion that we want to minimize is a convex
functional. The trajectory of the system is unconstrained. Thus, we may apply the
general theory of 1. It is not hard to check that the assumptions made in this section
are all satisfied. Hence, we may apply Theorem 3.2 to solve the predicted-miss problem.
The details of the application of Theorem 3.2 to solve this problem can be found in
Chapter 5 of [8]. The first component of the adjoint process and the optimal control
are found to be

(166) (t) -(t)e[

and

(167) (t) -sgn{B*(t)s(t)}sgn{s(t) . 2(t)},

respectively, where s(t) O*(t)-lO*(T)v, and (I)" [0, T] (n;n)is the deter-
ministic solution of O(t) I + f A(s)ff(s)ds.

3.8. Example 3: The Bench, problem.

3.8.1. The model. In this model, b/ is the set of measurable, (t)-adnpted
processes u "[0, T] U, where U := {v e k" ]v] <_ 1}. Each u e b/determines
a trajectory of the system that satisfies the linear stochastic differential equation

(168)
(169)

dX ([H(t) + 7(t)I]X + 3(t)ut)dt + a(t)dWt,
X x.

We assume that the function H: [0, T] (n; }n) is bounded, measurable, skew
symmetric, and the functions c: [0, T] , /: [0, T] , and : [0, T]
are bounded, measurable, with c, continuous. We assume, as in [18], [22], and [23],
that the dimensions of the Brownian motion, the trajectory of the system, and the
control are equal. That is, d n k. We want to minimize the criterion J :b/
defined by

[/0 ](170) J(u) E l(t, XU(t))dt + k(XU(T))

In the above definition, l" [0, T] x n is given by

l(t,x)-- (t)lx] 2,

where r/" [0, T] [0, oc) is bounded and measurable. On the other hand, k" n
is given by

This problem was first solved by Bene [2].
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3.8.2. Assumptions. Following the notation of 1, we note that U {v E
<_ 1}, V- Rn f(t,x,u) [H(t)+ /(t)I]x + (t)u, g(t,x,u) a(t)I,

L(t,x, u) l(t,x) (t)lxl 2, and (x) k(x) Ixl 2. Since we have a stochastic
control problem with linear dynamics, convex cost criterion, and unconstrained state,
we may apply the general theory of 1 to solve this problem. It is not hard to check
that all the assumptions made in this section are also satisfied. Hence, we may apply
Theorem 3.2 to solve the Beneg problem. The details of the application of Theorem
3.2 to solve this problem can be found in Chapter 6 of [8]. The first component of
the adjoint process is found to satisfy

(171)
p(t) 2(t)
Ip(t)l

and the optimal control is found to be

(172) (t) -sgn(/(t)) 2(t)
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PERSISTENCY OF EXCITATION IN IDENTIFICATION USING
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Abstract. In this paper, identification algorithms whose convergence and rate of convergence
hinge on the regressor vector being persistently exciting are discussed. It is then shown that if
the regressor vector is constructed out of radial basis function approximants, it will be persistently
exciting, provided a kind of "ergodic" condition is satisfied. In addition, bounds on parameters
associated with the persistently exciting regressor vector are provided; these parameters are connected
with both the convergence and rates of convergence of the algorithms involved.

Key words, persistency of excitation, identification, radial basis functions
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1. Introduction. In applications to neural networks and adaptive control, the
use of radial basis function (RBF) approximants has become increasingly popular
over the past few years. This popularity can be attributed to several factors. First,
because data is collected in control applications in (near) real-time, uniform sampling
of trajectories in time naturally leads to scattered data in phase space. The utility
of radial basis approximants for scattered data is well documented [2]-[7], [10]-[15],
[17]. Second, RBF approximants appear to be particularly well suited to tracking
control. Papers by Sinner and Slotine [22]-[24], Tzirkel-Sancock and Fallside [28],
and the present authors [8] provide examples in which direct adaptive tracking control
using RBFs is achieved. Finally, several papers have appeared in the literature that use
RBFs as the foundation of neural network architectures designed for identification and
control [1], [9]. The relationship of some of these architectures and classical questions
of "hypersurface reconstruction" in approximation theory has been addressed in [16].

Algorithms for handling identification problems have been studied extensively
[22]-[25], [28].. In this paper we discuss two such algorithms, a standard least-squares
method and a gradient-descent/dead-zone method introduced by Sinner and Slotine
[22]-[24], and show that persistency of excitation of the regressor vector employed in
each of them is a suiticient condition for them to converge at an exponential rate.
(The gradient-descent/dead-zone algorithm always converges whether or not the re-
gressor vector is perisistently exciting [22]-[24].) We then proceed to show that if
the regressor vector is constructed out of RBF approximants, it will be persistently
exciting, provided a kind of "ergodic" condition is satisfied. Finally, we will provide
bounds on the parameters associated with the persistently excited regressor vector;
these parameters are associated with convergence and rates of convergence.

The remainder of the paper is organized as follows. To complete the introduction,
we will briefly discuss radial basis functions. In 2 we will provide a description of the
identification problem and discuss several algorithms for dealing with it. In 3 we will
prove the main theorem, Theorem 3.5, alluded to above. In 4 we will obtain bounds
on quantities associated with a persistently excited regressor vector.
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Radial basis functions. In this paper, we will be concerned with two classes of
RBFs. The first class comprises every nonconstant F(r) that can be represented via
the formula

e-*" Pd(p),(1.1) F(r)

where d(p) is a finite, nonnegative Borel measure on [0, cx) and r E [0, cx). (Such
functions are closely related to completely monotonic functions; see [12], [26], [29].)
RBFs have an "order" m 0, 1,..., associated with them. The functions described in
(1.1) are "order-0" RBFs, and they include the Gaussian RBFs as weli as the inverse
multiquadric, (1 + r2)-1/2. It should be mentioned that RBFs of the form (1.1) do
not exhaust the class of all possible order-0 RBFs, but they do include all of the ones
in use.

The second class comprises those order-1 RBFs that can be represented via a
formula similar to (1.1). Let d(p) be a nonnegative Borel measure on [0, oc) for
which fo p_ld(p) < oc. All functions of the form

o 1 e-rp

(1.2) F(r) F(O) + d(p)
P

such that r-lF(r) is nonconstant are order-1 RBFs that make up the second class.
We remark that the case when r-IF(r) is a constant is degenerate. Also, it should
be noted that although the constant F(0) in (1.2) can be arbitrary, it is taken to
be nonnegative. The reason for making this assumption involves the invertibility of
a certain interpolation matrix [12], [10], [13]-[15]. Finally, it is easy to show that if
F is in the first class, then F(0)- F(r) is in the second. On the other hand, there
are many order-1 RBFs in the second class that do not arise in this way. Since the
only order-0 RBFs considered here are those of the form (1.1), and the only order-1
RBFs are those of the form (1.2), we will simply refer to functions of the first class
as "order-0 RBFs," and to those of the second class as "order-1 RBFs." No confusion
should result from this minor abuse of terminology.

The most prominent members of the second class that are not in the first are the
Hardy multiquadric function, v/1 + r2, a function studied by Dyn [3], log(1 + r2), and
the distance function r. As was mentioned above in connection with the first class,
RBFs of the form (1.2) do not exhaust the class of all possible order-1 RBFs, but
they do include all the ones of practical importance. For a complete discussion of the
definition, classification, and representation of RBFs, we refer the interested reader to
the papers by Powell [17], [18].

Two important features concerning RBFs are the stability of their associated
interpolation and least-squares matrices [13], [15], [19], [27], and their ability to pro-
vide uniform approximations to smooth functions on compact sets. A typical inter-
polant/approximant L(x) is formed in the following way. Pick a set of distinct points
in Is, := {j }Y=I ;these are called the centers. The function L is then selected from
the span of the family {F(x- j)}jv=, where F is a fixed RBF.

For the case in which one wishes to use RBFs to uniformly approximate a smooth
function f defined on a compact set f C ]s, one first uniformly approximates f by
a band-limited function fB (see [24] for a discussion). For uniform approximation of
fB with RBFs, one may use a result of Madych and Nelson [11, Thm. 4.4].

Let the centers ,...,N be scattered throughout Ft in a way that makes the
quantity

d d(, t2):= sup inf [[y- xl12
yEt2 xE..
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small. Because is a subset of gt, d turns out to be the standard Hausdorff distance
between compact sets. Indeed, when the centers are placed at the vertices of an s-cube
whose sides have length h, it is easy to show that d v/ h. The result in [11] is as
follows. For certain RBFs F (including Gaussian and multiquadrics) and arbitrary k,
there exist coefficients {aj } such that

suplfB(X)- E ajF(x-
xl j

O(dk).

Thus, one may uniformly approximate the band-limited function fB by linear combi-
nations of translates of RBFs. The usual "up-over-and-around" argument then implies
that one can uniformly approximate the original function f on gt by such linear com-
binations.

2. An identification problem. Algorithms for handling identification prob-
lems have been studied extensively [22]-[25], [28]. In this section, we wish to discuss
two such algorithms, a standard least-squares method and a gradient-descent/dead-
zone method introduced by Sanner and Slotine [22]-[24]. Specifically, we wish to
analyze the problem of trying to determine the functional form of a continuous output
funtion G t 1, where t is a compact subset of the state space, I8. The informa-
tion available is the signal Y(t) G(x(t)), where x(t) denotes a continuous function
of t taking values in .

To deal with this identification problem, assume that {wk(x)}N_l is a fixed
set of continuous functions (RBFs with various centers, for example) defined on the
state space. The basis is chosen so that G(x) can be uniformly approximated to within
an acceptable level of error by (time-independent) linear combinations of the wa’s.
More precisely, given an error-level > 0, we suppose that there exist coefficients c
for which

N

a(x) <_
k--1 c,Ft

where ][, denotes the supremum norm in . Whether a given basis provides an

acceptable approximation is an issue that must be addressed. For RBFs, we discussed
the matter when we reviewed them earlier.

The coefficients c may not be unique, even if they make kN__ cwk(x) a "best
approximant" to G(x), because the unit ball in L is not strictly convex. Among all
sets of coefcients that yield a best approximant, one nlay uniquely specify a set by
imposing the additional requirement that k(c)2 be a minimum.

Because knowing c,..., cv is equivalent to knowing the function G, at least to
within the error-level, , our problem amounts to using the available information on

x(t) and the signal Y(t) G(x(t)) described above to identify approximately the
’s. We wish to discuss both continuous and discrete-time methods to identifty theseck

coefficients.
The idea common to all of these methods is to choose time-dependent coefficients

ck(t), k 1,..., N, in such a way that each ck(t) converges to a neighborhood of the

c as t -- x. Thus, for large t, the time-dependent approximation to G,

N

5(t,x)
k=l
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will then be sufficiently close to

G*(x) := E c*kwk(x)
k

to render the same level of approximation to G as G* itself.
We remark that, to bring the quantity IY(t)- ((t, x(t))] (the prediction error) to

a neighborhood of zero along a particular trajectory, it is not necessary to have each
cj(t) converge to a neighborhood of the corresponding c, at least in the case of the
gradient-descent/dead-zone algorithm [22]-[24]. For this algorithm, the convegence of
cj (t) will be an added feature that occurs when the regressors are persistently exciting.
See Proposition 2.2 below.

These methods are better formulated with the aid of additional notation, which
we now introduce. First of all, let

N

x() :: C(x)- C.(x) C(x)- , c*(x).
k:l

Our error criterion then becomes

With a slight abuse of notation, set A(t) A(x(t)). In addition, define the following
quantities:

Wl(X(t)) I(t)
(x(t))

c(t):= c*.=

(t)

In this notation, we have Y(t) w(t)Tc + A(t) and d(t, x(t)) w(t)Tc(t). We now
turn to our first identification method.

Least squares. Let c > 0 be a positive constant that is at our disposal, and let
c E NN. The object is to minimize

E(t) :: llcll - + / (w()Tc- r(-r))2d#(T)
[o,t]

where d#(T) dr in the continuous case, and d#(r) oi:o 6(T- i)d" in the discrete
case. (We will try to treat the discrete and continuous cases simultaneously when this
is possible. Doing so may require that we think of a sequence as a continuous function
evaluated at integers.) This is a straightforward task that yields [25, p. 50]

-1

Y(7)w(T)d#(7).

The parameter error is defined to be (t)’= c(t) c*. If one uses Y(7) W(T)Tc* +
A(t), then one may put the last equation in terms of (t),

(t) (OzI + J[o,t] W(T)W(T)Td#(T)) -c, + X()()d,()
,t]
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The regressor vector w(t) is persistently exciting [25, p. 72] if there exist positive
constants 5, al, and a2 such that

(2.3) 211112 IW()Tcl2@(T) alllcll 2

where II" II 112, holds for every to >_ 0 and every constant column vector c
(Cl... CN)T E NN. If persistency of excitation holds in the case at hand, then we have
the following result.

PROPOSITION 2.1. In the least-squares algorithm, if the regressor vector w(t) is
persistently exciting, then

llzll, < 4-(2.4) lim sup lie(t)II <
t---*cx O1 O1

Proof. In (2.2), the parameter error has the form (t) A(t)-l(-ac +v(t)). The
matrix A(t) being inverted in (2.2) is real, self-adjoint, and positive definite. Using
(2.3) and t >_ mS, we may estimate its lowest eigenvalue as a + rnal. Consequently,
the norm of its inverse is (a + real) -1, and so

II(t)ll < (c + mal)-l(al]c*ll + IIv(t)ll),

To obtain the norm of v(t), let b E ]1N, and note that

bTv(t) I A(-)bTw(T)d#(7)
[o,t]

Applying Schwarz’s inequality, t < (rn + 1), the inequality IA(-)I < IIAIl,fl, and
(2.3), we arrive at

(bTv(t))2 < (m + 1)llzll / (bTw(-))2@(r) < (m + 1)illAII 2,211bll l
o,

J[0,(rn+l)S]

from which it follows that

(2.6) [Iv(t) A(T)w(T)d#(7) if t<_ (m+1)6.

Combining (2.5) and (2.6) yields

(2.7) II(t)ll <
a-}-

Letting t -- above yields (2.4). l

We proved above that if the regressor vector w(t) is persistently exciting, then as
t - oc, the parameter error (t) enters a neighborhood of the origin, and c(t) enters a
neighborhood of c*. It is clear that persistency of excitation is crucial to convergence
of the method.

We remark that the algorithm treated above is least squares in its "classic" form.
In general, one would use a modified, recursive form of the algorithm [25]. Rather
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than treat one of these, we will turn to the the algorithm below, which is naturally
formulated in a recursive way.

Gradient-descent/dead-zone algorithm. Sanner and Slotine [22]-[24] have
discussed and analyzed a class of gradient-descent algorithms that employ a dead zone.
If c(t) is the parameter vector at time t and (t) is the parameter error, then define
the prediction error to be

(2.8) (t) { w(t)Tc(t)- Y(t) w(t)T(t)- A(t) (continuous time),
w(t)Tc(t- 1) Y(t) w(t)T(t- 1)- A(t) (discrete time),

and the dead-zone prediction error to be

sgn(e(t)) if lel >_
(2.9) ea(t) 0 if lel < .
To update c(t), we require that for continuous time,

(2.10) (t) --rld(t)w(t),

and for discrete time,

(2.11) c(t) c(t 1) rld(t)w(t).

Here, 1 is another positive constant that is at our disposal. Of course, we may replace
the left side in each of these equations by (t) c(t) c* because c* is constant.

For the case in which the basis comprised Gaussians centered on a discrete lattice,
both the selection of the error-level (I) and the stability of the algorithm were analyzed
in detail in [23], [24]. While more work is required in the error-level selection for
the scattered-data case, their stability analysis applies to the case at hand almost
verbatim. Here is a brief summary of that analysis.

Choose the function Y(t)"- l[(t)ll 2 as a Lyapunov function. In the continuous
case, the derivative of V is negative; indeed, it satisfies

(2.12) ? <_--r/ed(t) 2.

A similar result applies in the discrete case, although the analysis forces a restriction
on the constant . If 0 < < 2( IIw(x) 2I1,) then

(2.13) V(t)- V(t- 1) <_ --d(t)2.

Thus, in either case, V(t) is decreasing, and the algorithm is stable.
An obvious by-product of the analysis is that, in the continuous case, the dead-

zone prediction error is square integrable, and, in the discrete case it is square
summable. This observation has some important consequences. In the discrete case,
d(t) being square summable implies that ed(t) ---* 0 as t --, (x. In the continuous case,
the same conclusion can be arrived at if a few mild regularity assumptions are made.
Suppose that x(t) has a uniformly bounded, piecewise continuous derivative on [0,
and that G(x) and the basis functions wk(x) are continuously differentiable on Ft. It
easily follows that the continuous-case dead-zone prediction error e_d(t is continuous
and has a bounded, piecewise continuous derivative d(t). Following the argument in
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[24, p. 850] then yields that d(t) --* 0 as t - oc. Note that persistency of excitation
is not required for these convergence results.

As in the least-squares algorithm, persistency of excitation guarantees that the
parameter error vector will asymptotically enter a neighborhood of the origin
equivalently, c(t) will asymptotically enter a neighborhood of c*with the neigh-
borhood’s size being controlled by the level of error, (I). Indeed, we have this result.

PROPOSITION 2.2. In the gradient-descent/dead-zone algorithm, if the regressor
vector w(t) is persistently exciting, then

(2.14) limsup [[(t)[[ <2t 1
Proof. To do the continuous case, integrate (2.10) to get the equation

(t,) (t) -, J ()()&.

Fix t. By multiplying both sides of this equation by w(t)T and then rearranging and
manipulating its terms, we obtain

(2.15) w(t’)T(t) ed(t’) + 7(t’) + ((t’),

where 7(t’)’- e(t’)- ed(V)+ A(V) and ((t’)= ft ed(T)W(V)Tw(T)dT" om (2.8) and
(2.9), coupled with A(t’) , we see that

(2.16) I(t’) 2.

Let 5 be as in (2.3), which holds because w(t) is persistently exciting. Compute the
H L2([t, t + 5])-norm of both sides, and use the upper estimate on the norm of the
right side obtained with the triangle inequality to get

(2.17) JJW(’)T(t)IH IId(’)llH + II(’)H + ll(’)H"

From (2.3), we have that the left side of (2.17) satisfies

(2.18) Ilw(t’)z(t)llg (w(t’)T(t))2dt’ 2

In addition, (2.16) implies that

(2.19)

To estimate ]](’)J[H, first estimate (t’) using Schwarz’s inequality and (2.3) as follows:

;(t,) ()d ((t’)())&

ed(r)dr (w(t’)Tw(TI)2dT

,1(.),,. ( ,,(x)l,.a).
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where IIw(x)[[c, is finite because the w(x)’s are continuous on the compact set
From this inequality, we easily get an upper bound on

(.9.0) 1,(.) I1 <_ v/-&-s,,(.)ll ( ,,(x),,,).
Combining (2.18), (2.19), and (2.20)yields

2+ [1 +5(Ek I]Wk(X)],)][[ed(.)H

(e.el) e+ [1 +(Ell(x)ll )]y[+ (r)d

Since, as we mentioned above, d L2[0 ] we have that ft+5
,t (r)d 0s

t . Using this fact and taking the limsup as t in (2.21), we arrive at (2.14).
The discrete case differs only in minor ways from the continuous one, so the proof in
that case will be omitted.

In the continuous case, the convergence to such neighborhood will happen at
an exponential rate, at least in the time-regime during which the dead-zone prediction
error ed(t) is strictly bounded awy from 0. The lemms that follow are aimed toward
showing this.

LEMMA 2.3. If ed(t) 0, then the function

(.) (t) (t)
w(t)T(t)

satisfies the inequality

(2.23) 1 >_ a(t) >_

In particular, if led(t)[ >_ (I,/, where t is a positive integer, then

1
(2.24) 1 > a(t) >

-2+1

Proof. From (2.8) and (2.9), it follows that when d(t) 7 O, we have le(t)l > ,
sgn(d) sgn(e), and

(2.25) w(t)T(t) d(t) + A(t) + (I) sgn(d(t)).

This equation and the inequality IA(t)l <_ imply that

sgn(ed(t))w(t)T(t) ]d(t)[ + ( + A(t)sgn(ed(t))) _> ]ed(t)l > 0,

SO that w(t)T(t) 7 0 and sgn(w(t)T(t)) sgn(d(t)). Thus, the function a(t)
defined in (2.22) is finite and positive. Divide (2.25) by w(t)Tdp(t) and manipulate the
resulting equation as follows:

A(t) + q) sgn(d(t))
=(t)+ (t),(t)

1 (1 + A(t)sgn(ed(t))+(bsgn2(ed(t))) or(t)
d(t) sgn(d(t))

( +A(t) sgn(ed(t)))1 1 + led(t)
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Using the last equation and the inequality >_ IA(t)[, we easily get (2.23). Inequality
(2.24) is a direct consequence of the fact that the term on the right-hand side in (2.23)
decreases with decreasing ledl.

As long as we are working with a time interval, starting at t 0, during which
ed =/= 0, we may change the time variable to

(2.26) "r a(s)ds.

The next lemma addresses the persistency of excitation for the regressor vector
(t()).

LEMMA 2.4. Let w(t) be persistently exciting, so that (2.3) holds, and let c1, c2,

and 5 be as in (2.3). Ift(To+5) is in a time interval [0, t] during which led(t)l >_ /,
then w(t(T)) satisfies

(2.27)
ro+6

(2n + 1)-1a1 IIc}l 2 <_ ]W(t(T’))TcI2dT <_ (2t + 1) Ilcll 2.
1 2

Proof. Suppose that to _< tl _< t. Making the change of variables T --, t in the
integral ff2 Iw(t(’))Tcled and using (2.24)in the resulting integral yields

(2 + 1) -1 ]w(t)Tcl2dt < Iw(t(T’))Tcl2dT’ <_ Iw(t)Tcl2dt.
Jr(to)

On the other hand, from (2.24) and (2.26), we see that

1
(tl to) < T(tl)-- 7"(to) cr(s)ds < tl to,

2t+1

and so

(2.29) 7"(tl) T(t0) < tl to < (2 + 1)(T(t) 7"(t0)).

Note that the last equation implies that if -(tl) ’(t0) 5, then

5_<tl-to_< (2+1)5.

The desired inequality (2.27) is a straightforward consequence of the last inequality,
(2.28), and (2.3). B

If we make the change t ---, T in the evolution equation (2.10), then we get a new
evolution equation,

)r,(2.30)

which is prototypical of equations that are guaranteed to be exponentially stable with
exponential decay in the norm of the parameter error vector, provided the regressor
vector is persistently excited [25, p. 75]. In the case we are dealing with here, equation

(2.30) is only valid for T’S that are bounded by , f a(t)dt. If this is taken into
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account, one easily sees that the analysis given in [25, 2.5] applies as long as 5 is less
than T. More precisely, we have the following result.

PROPOSITION 2.5. Let al, 2, and 5 be as in (2.3), and let t be as in Lemma
2.4. If < f Id(S)l(ld(S)l + )-ds, then for all t < tk the norm of the parameter
error vector (t) satisfies

{ (fo Ia(s)l(2.31) II(t)ll < exp -a I’d(s)l +
The rate is given by

1
(2.32) a, In

1

2r/(2 + 1)-1c1
1-

(1 + Vr/(2 + 1)c2)2

Proof. If < f I(s)l(l(8)l+<)-ds, then (2.23) implies 5 < f (s)ds Ta.
The argument used to prove [25, Thin. 2.5.3, p. 75] applies to the evolution equation
(2.30), provided that - < T. Combining [25, Thin. 1.5.2, p. 33] with [25, Thin. 2.5.3,
p. 75], with the constants a and a2 in [25, Eq. 2.5.12] replaced by a and a from
Lemma 2.4, yields

(2.33)

The inequality in (2.31) follows from (2.23) and the definition of T(t) given in
(2.26). 13

In closing our discussion of the gradient-descent/dead-zone algorithm, we wish to
point out that, in the discrete case, a similar algorithm was analyzed by N. Sadegh [21],
who also obtained an exponential rate of convergence for the associated parameters
when the regressor vector is persistently exciting.

One unique feature of the identification algorithms presented above is the central
role played by the persistency of excitation of the regressor vector. We now turn to an
analysis of conditions sufficient to guarantee persistency of excitation when the basis

used to construct the regressor vector w consists of RBFs centered at (possibly)
scattered sites.

3. Sufficient conditions for persistency of excitation. We begin by stating
a slightly broadened version of the definition of persistency of excitation, one that
encompasses the discrete and continuous cases employed in the algorithms analyzed
above. Let # be a positive, E-finite Borel measure on [0, oc). We will say that a

continuous, vector-valued function w [0, oc) --, ]1N is persistently exciting [25, p. 72]
if there exist positive constants 5, c, and c2 such that

Iw(r)cldz(-) CelllC]l

holds for every to >_ 0 and every constant column vector c ((1 CN)T E N.
When RBFs are employed in solving the identification problem described in 2,

the vector w(t) has the form

(3.1) w(t) (F(lIx(t) 111)"" F(llx(t)
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where F is the RBF, each i is a given point in state space, termed a center, and x(t)
is the target trajectory. The function x(t) is a continuous map from [0, ec) into N8,
the state space. Furthermore, we assume that x(t) remains in a bounded subset of N8.

The N centers 1,..., N are distinct points in . We wish to show that a sufficient
condition for w of the form (3.1) to be persistently exciting amounts to an "ergodic"
condition on x(t), which we will precisely state in Theorem 3.5 below. We begin by
proving three lemmas.

LEMMA 3.1. Let c E RN and let x I be fixed. If F(r) is an order-O RBF of
the form (1.1) or an order-1 RBF of the form (1.2), then

N

j=l

N

< (j_IF([[x j[[)2)[[c[[2 < {F(O)2NIIc[[ 2 for order 0,
F(R)N[[e[[ 2 for order 1,

where in the order-1 case R is any number larger than the diameter of the set
{x, 6,

Proof. The proof of either inequality begins with an application of Schwarz’s
inequality. The top inequality then follows from the fact that an order-0 RBF attains
its maximum at r 0, and the bottom from the fact that an order-1 RBF is an

increasing function of r.

Remark 3.2. For many different order-0 RBFs, including the Gaussians, bounds
not involving N are available. See Corollary 4.2 in 4 below.

LEMMA 3.3. Let xi for 1,..., N. If F is an RBF of the form (1.1) or

(1.2), and if

A=A(zl,...,XN)= )
then there exists a number > 0 and a number 0 0(, 1, N) > 0 such that

for all c NN and for every set of xi’s that satisfy Ixi 1 <- e for 1,..., N.
Proof. It is clear that 02 is a lower estimate for the smallest eigenvalue

A(Xl,... ,XN) of A(xl,... ,XN)TA(xi,... ,XN), whose components are obviously real,
continuous functions of the xi’s. One can easily modify a theorem of Rellich [20, p. 40]
to show that A is also a continuous function of the xi’s. Moreover, A(I,..., N) > 0,
because A(I,..., N) is invertible [12], [10], [26]. One may therefore choose e > 0 so

that
1

(Xl,...,XN) > -/(I,...,N) > 0

whenever [xi-i[ _< e, i= 1,...,N. Choosing0 /A(,...,N)completes the

proof.
The lemma above is certainly not the best possible, because no estimates on the

size of 0 are given. In the next section, we shall discuss precise estimates for 0 as a
function of e and the i’s. For present purposes, this is not necessary.
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We point out that if some choice of e > 0 works in Lemma 3.3, every smaller one
will work as well. For purposes of the next lemma, we restrict our choice of so that

1
minllci-cjl I.(3.2) 0 < e < q
iCJ

Our next lemma is crucial to the proof of the main result.
LEMMA 3.4. Let I be a bounded, #-measurable subset of [0, c), and also let the

sets I be defined by

I {t E I IIx(t)-ill _< e} withi=l,...,N,

where e is as in (3.2). if #(Ii) > o for i= 1,...,N, then with O > 0 as in Lemma
3.3,

(3.3) Iw(-)Tcl2d/z() -oOllcll

holds for every constant column vector c (cl... CN)T ]1N.
Proof. The sets I are disjoint, because with e < q minj I1 J the balls

with center i and radius e are nonintersecting. Clearly, we thus have that

N

Since we have that
N

and since - E I implies that IIx(T) 1[ <- e, we immediately obtain the inequality

N

F(llx II)c
j=l

N

j=l

where the maximum and minimum are taken over all x in the ball IIx- . The
inequality above and the continuity of Ev=l F(]]x jll)cjl 2 over this compact and
connected ball allow application of the intermediate value theorem, from which we
may deduce that there exist vectors x In such that I[x [[ <_ e and

N

j=l

By assumption, #(Ii) >_ o for 1,... ,N, so

IwO-)T l d#(-) >
N

F(llx 5 II)cj
j=l

2
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Inequality (3.4) and the last inequality imply that

Iw(7)Tcl d#(T) >_ IIAcll-o,

where A is an N N matrix with i-j entry Aij F([Ixi- j]]). From the fact that

IIx- 11 <- e, where e has been chosen to satisfy the conditions of Lemma 3.3, and
from Lemma 3.3 itself, we have that

(3.6) IIAII > e-Ilcll -,
where 0 depends upon e and the i’s, but not on the xi’s or c. Using (3.6) to replace
the right-hand side of (’3.5) yields the desired inequality, (3.3).

THEOREM 3.5. Let be as in Lemma 3.3, subject to restriction (3.2). In addition,
for every to >_ 0 and every 5 > O, let

I {t [to, to + 6] IIx(t) ,11 ).

If there exists a 5 such that #(Ii) is bounded below by a positive constant that is
independent of to and i, and if #(It0, to + 5]) <_ 5, then w(t) is persistently exciting.

Proof of Theorem 3.5. Take the interval I [to, to + 5], and choose e as in (3.2)
and Lemma 3.3. By the hypotheses of the theorem, the sets Ii satisfy #(Ii) >_ TO > 0,
where TO depends upon 5, e, 1,..., N, but does not depend on to or i. Consequently,
we may apply Lemma 3.3 to get

to+5

(3.7) Iw(’r)Tcl 2 d#(7") >_ OI]]C]] 2 with O1 "-02TO
J to

On the other hand, Lemma 3.1 implies that

/]0+6 {F(O)25N for order 0,(3.8) [wO-)Tcl2d#(7) <_ a2[[c[[ 2 with a2 F(R)26N for order 1.

Here, R is the diameter of the set {x(t) t E [0, c)} U {I,...,N}. (This is a
finite number, because the trajectory x(t) is bounded.) Since both al and a2 are
independent of to, w(t) is persistently exciting. E]

As we mentioned in 1, for the regressor vector to be persistently exciting, The-
orem 3.5 requires a kind of ergodic condition. We wish to briefly discuss some con-
sequences of Theorem 3.5 for the continuous and discrete algorithms mentioned in

2.
Continuous algorithms. The theorem essentially requires that in each time

interval [to, to + 5], the vector x(t) must visit a sufficiently small e-ball about each
for a minimum amount of time that is independent of to. As a simple example of how
these conditions might be met, suppose that x(t) is periodic with period T, and # is
the Lebesgue measure. If in the time interval [0, T] the trajectory x(t) stays within a
distance e of each center i for an amount of time that is at least TO > 0, then w(t) is
persistently exciting.

Discrete algorithms and neural networks. The theory derived above yields
a strengthened version of certain results of Sanner and Slotine [23] concerning the
persistency of excitation of the sequence of hidden layer outputs of a neural network.
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The regressor vector W(T) defined in (3.1)is called g(-)in [23]; the function
F(llx()- Jll) represents the jth hidden layer node. In [23], it was shown that by
choosing the input function x" [0, oe) --. 8 so that for any integer t, {x(-)}=tN+t-1
{cj }N (equality of sets), the corresponding sequence of hidden layer outputs will be
persistently exciting.

To extend these results, first recall that the Hausdorff distance between two com-
pact sets A and B in s is given by

d(A B)= maXB{dist(x,B dist(y,A)},
xEA,y

where dist (x,B) infze x- z[. Suppose that the sequence of network inputs
satisfies an ergodic condition, namely, the input function x(7) should have the property
that for any integer t,

d({x(T)}=+N-l, {j})< .
Using Theorem 3.5 and taking the e there to be the one used in the inequality bove,
one obtains that the system is still persistently exciting.

4. Estimates on parameters. What the identification algorithms discussed in

2 converge to, and at what rate they converge, depend quantitatively on the param-
eters 5, al, and a2 that appear in the inequality defining persistency of excitation,
(2.3), and indirectly on -0 from Lemma 3.4. The parameter is a "recurrence time."
-0 represents the minimum time spent in an e-ball about each of the centers, and is
dependent on the system one is working with. On the other hand, from the proof
of Theorem 3.5, one sees that the two ratios (xl/TO and (2/5 are independent of the
behavior of x(t); indeed, using the best bounds one can get from Lemmas 3.1-3.4,
they have the following form:

(4.1) al 9(([, 1 N)2,
TO

N

.:

In this section, we wish to estimate these ratios.
Let us begin with the problem of estimating at/TO. This problem hinges on

the problem mentioned after Lemma 3.3--estimating 0 as a function of e and the ’s.
Fortunately, this problem was treated in detail in [27]. Since the technicalities involved
in it are formidable, we will confine our discussion to the case of Gaussian RBFs,

(4.) F() -,
where p > 0 is a parameter that classifies the choice of Gaussian. Concerning these
RBFs, the following result holds.

THEOREM 4.1. Let p > 0 be fixed, and let s and q be as in 3; set z pq2. For
the Gaussian RBF F given in (4.3), we may take as a lower bound in Lemma 3.3

(4.4) 0- -Cz-/ee /,

where C8 and a are constants given by

(7F2(s+2 )
1/(s+l)

a-- and Csa 12
9 28+F(_y_)8+2,



PERSISTENCY OF EXCITATION IN IDENTIFICATION 639

provided e > 0 in Lernma 3.3 is chosen to satisfy

(4.5) e< min{q, qC*e-’/z }- zl+s/2 [1 + 6sf,(z)l where f(z):= E(j + 3)e-zJ2.
j=O

Proof. We will adopt the notation used in Lemma 3.3, and we will follow the
pattern of proof used to establish similar results in [27]. To begin, split A(xl,..., XN)
into its symmetric and antisymmetric parts, A Asym + Aanti. If c E N, then, from
standard matrix theory, we have cTAc CTAsymC. Applying the Cauchy-Schwarz
inequality results in IIAc[[[[c[[ >_ cTAsymC. Because the entries of A are real, the
minimum of IIAc]l/llcll occurs for c e N. Hence, we obtain the inequality

(4.6)
IIA(xl’’’"xg)cll > min oTAsym(Xl,...,XN)O,

and our task is reduced to estimating the symmetric quadratic form on the right above.
To estimate this quadratic form, write it as

oTAsym(Xl,..., XN)O ---oTAsym(l,..., N)O-- [oTAsym(Xl, XN)O oTAsym(l,..., N)O]

where Ip and Jp denote the obvious quadratic forms, with the many arguments in-
volved suppressed. From Proposition 3.6(iv)in [27], we have that

Ip >_ Csp-S/2q-se-a2q-p-1 -Csz-S/2e-a/z.

An estimate for IJpl is given in Proposition 3.12 in [27], provided e < q. The estimate
in our setting (where the quantity lid011 in [r] and the incorrect factor rr

appearing in [27] is omitted here) becomes

z
I&l pqe[1 + 6sf,(pq2)] -[1 + 6sf,(z)], where f,(z) E(j + 3)*e-zju.

j=O

Putting the various estimates together yields

min oTAsym(Xl,... ,XN)O

_
lp- IJpl

>_ Cz-*/2e-/z z-- [1 + 6sf,(z)].
q

Picking e so that it satisfies (4.5) results in

1 s/2e a2/zmin oTAsym(Xl,... ,XN)O >_ -Csz-
The theorem then follows on combining our last estimate with (4.6). ]

We now turn to estimates for the ratio o/5. When the RBF is a Gaussian F, the
estimate for o2/5 used in Theorem 3.5 can be made independent of N. To see why, note
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that from (4.2) it suffices to show that the vector wp(x) (Fp(X-l)... Fp(X--N))T
has length independent of x and N. Set

Sk(x) "= {jl kq <_ IIx-jll <- (k + 1)q}.

Observe that the cardinality of S cannot be any more than the ratio of the volume of
the spherical shell with radii (k- 1)q and (k + 2)q to the volume of a sphere of radius
q, because IIJ k >-- 2q. It is easy to see that

card(Sk) < (k + 2) s -(k- 1)s _< 3s(k + 2)-,
where the inequality on the right follows from applying the mean value theorem. In
addition, we obviously have

U Sk[D {’l,...,eN}.
k=O

Furthermore, note that if j Sk, then

We thus have
(4.7)

N

IIw ,(x)ll F2(llx II) -<
j=l k=0 k=0

which gives us the following result.
COROLLARY 4.2. /f w(x) (F(x )... F(x N))T, then IIw,(x)ll _<

3sfs_(2pq2), where f is defined in (4.5), an.d the expression for a2/5 in (3.8) may
be replaced by

(4.8) -- 3sf-, (2pq2).

Proof. In the proof of Theorem 3.5, instead of using Lemma 3.1, use the expression
for ]]Wp(X)l] 2 given in (4.7). In addition, note that since k + 2 < k + 3,

3s(k + 2)-e-2pqk < 3s(k + 3)-e-2p
k=0 k=0

Replacing the series on right side of this inequality by fs-1 (2pq2), where fs is given
in (4.5), completes the proof.

Remark 4.3. For many order-0 RBFs, one can use Corollary 4.2 to obtain an
upper estimate on c2. To see this, note that from (1.1) and the expression for
given above, we have

W(X) F(X 1) F(x N) )T

Obviously, from Corollary 4.2, we also have

wp(x)d(p).

IIw(x)ll _< _< V/3sfs-!(2pq2)d(P),
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and so we arrive at

(/0(4.9) c2 _< V/3sfs_l (2pq2) d(p)

which will hold whenever the right side above is finite. Similar, somewhat more
complicated results can be derived for c1; we will not state them here.
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MAXIMIZING ROBUSTNESS IN NONLINEAR ILLPOSED INVERSE
PROBLEMS*
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Abstract. A framework for maximizing the robustness of nonlinear illposed inverse problems
by choosing appropriate system inputs is presented. This framework is based on maximizing the
lowest eigenvalues of the linearized and regularized nonlinear mapping. Stability and sensitivity of
the eigenvalues of the linearization are studied. The results are applied to parameter estimation
problems for elliptic partial differential equations. Numerical examples illustrating the results are

given.

Key words, nonlinear illposed inverse problems, optimal input, sensitivity measures, regular-
ization
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1. Introduction. Let f be a family of nonlinear mappings from a subset of
a Hilbert space X into a Hilbert space Y. The problem under investigation in this
paper is the choice of an optimal f such that the inversion of (I)f becomes as stable as

possible. The mapping a --, (I)f(a) can typically arise as the solution mapping for a

partial differential equation with a representing a coefficient or an inhomogeneity of
the differential equation. The functional parameter f represents a design parameter
that is chosen from a class of admissible input functions. We then study a,problem
of optimal experimental design: Which is the best choice for the input f for the
reconstruction of the coefficient a given knowledge of (I)f (a), the state of the differential
equation.

A criterion for the selection of the optimal parameter f must be specified. Here
we proceed as follows. Let (I)(a) be the linearization of (I)i at some reference point
a E X; and consider

Y(1.1) esup ! I(I)(a)hl21hl:
where V c X is a Hilbert space continuously embedded in X. Thus we propose
to maximize the lowest singular value of (a) (considered as unbounded operator
between X and Y) as f varies in F. The saddle point problem (1.1) is the focus of
attention in this paper.

Let us turn to the infimum problem

Y(1.2) inf
I(a)hl2

hO

in (1.1). Since the focuses of attention are mappings (I) that are illposed in the sense
of lack of continuous invertibility, one has to guard against the infimum being zero for
all f E 9. First, of course, this requires injectivity of (I)(a) for at least one f 9.
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Second, for (1.2) to be nonzero an estimate of the type

(1.3) I}(a)hly >_ kflhIx for all h E V,

is necessary with kf a positive constant, possibly depending on f. For illposed prob-
lems (1.3) is not feasible and the infimum in (1.2), while it may not be attained, will be
zero. To overcome this difficulty we need to change the problem formulation in such
a way that an estimate of the type (1.3) holds while simultaneously the underlying
structure of the inverse problem remains as unchanged as possible.

To be specific, let us consider the problem of estimating the functional coefficient
a in

j" -div(a grad u) f in
(1.4) ulOt o

given knowledge of u(a), where Ft is a bounded domain in Rn, n 1, 2, or 3. In this
case Pf(a) u(a) and the linearization of is given by

(a)h A-1 div(h grad u(a)),

where A(a) H(f) ---, H-l(f) is defined by A(a)u -div(a grad u), a(x) >_ > O.
For the choice X Y L2(f) an estimate of the type (1.3) is impossible. If X and Y
are chosen as L2(ft) and Hl(f) respectively and if f satisfies additional assumptions,
then for every K > 0 there exists ki > 0 such that

(1.5) If(a)hlH >_ k,lhl2L for all h E L2(), with IhlH
_
K

[IK1]. While this estimate does not give (1.3) with X, Y replaced by L(t) and Hl(t),
it indicates what can be achieved by changing the norm in image and preimage space.
In passing let us note that in the one-dimensional case (1.5) holds with the constraint

IhlH
_

t( replaced by the assumption that h lies in a subspace of L2 with codimension
1. To obtain an estimate of the type (1.3) we need to make an additional change in
the problem formulation by using a regularization term.

Returning to the general formulation, (1.2) is replaced by

inf
I)(a)hl" + 5(h, h)

where r is a nonnegative Hermitian form on V x V and fl is a small, positive parameter.
The original saddle point problem becomes

(1.7) sup inf
I(a)hl" + fl(r(h, h)

e=0 Ihlx
We can now describe our proposM to solve the optimal design problem stated at the
beginning of this section" First, find a problem formulation by restricting the class
of design functions 9r and by appropriate choice of norms for the preimage and the
image spaces X and Y of (a) to make this linearized problem as "well posed as

possible." Second, use regularization, if necessary.
Let us turn to (1.7). First, this is a difficult saddle point problem for which ques-

tions of existence and differentiability of the infimum problem with respect to f need
to be studied. This will be the focus of the present paper. Second, if regularization
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is used, the question arises whether the infimum is still sufficiently sensitive with re-
spect to different choices of f E 9. We have no analysis to answer this question, but
numerical experiments with specific problems suggest a positive answer. Finally, in
view of the fact that the mapping (Pf can be nonlinear, (1.7) is not satisfactory in as
far as it requires linearization about a reference parameter, which in practice must be
chosen as good approximation to a*, the unknown preimage of (Fj(a*) and updated
by an appropriate iterative procedure.

Let us also mention that this paper is a continuation of our work on optimal design
for inverse problems, with the first paper [IK2] focusing on the one-dimensional version
of (1.4). By allowing only a restrictive class of inputs 9, the analysis of [IK2] does not
necessitate the use of a regularization term and the infimum problem can be solved
explicitly in specific situations, thus allowing a rather detailed analysis of (1.7) with

While in our analysis we have chosen the lowest singular value of as a measure
for distinguishing the behaviour of the inverse of (I) I as f varies, other criteria may
also be of interest. One of them would be the trace of a discretization of T
(eFt(a)) (Pi(a) or the sum of the eigenvalues of T. Different choices will lead to
different optimal inputs f. This can be seen, for example, from numerical experiments,
where in some cases we calculated the complete spectrum of a discretization of
Minimizing the lowest singular value represents a conservative measure (robustness).
For parameter estimation problems such as (1.4) it requires that the reconstruction
of a* from u(a*) is uniformly "as well posed as possible" throughout the domain t.

The paper is organized in the following way. Section 2 contains a study of the
saddle point problem (1.7). In 3 we apply these results to the problem of determining
a from u(a), with u the solution of (1.4). Numerical results are given in 4.

2. The general framework. Let V and X be Hilbert spaces with V densely
and compactly imbedded in X, such that

VcXcV*

forms a Gelfand triple, with V* denoting the antidual of V. The norm and the inner
product on V are denoted by I1" and ((.,.}) and similarly those on X by and
(., .}. Further for a bounded linear operator T from V into a Hilbert space Y, we shall
write T (V, Y). By a(., .) we denote a continuous Hermitian form on V x V. In
particular a(x, y) a(y, x) and there exist a constant c > 0 such that

This implies the existence of an operator Af (V, V*) with

a(x, y) (Afx, Y)v*,v for all x and y V,

where (.,.)v.,y denotes the antiduality between V* and V. Since T /:(V, Y), it

defines a continuous Hermitian form on V V via (x, y) (Tx, Ty)..
The operator 7" /:(V, V*) representing this form satisfies

(Tx, Ty} (’-l-x, Y)v*,v for x and y E Y

and is given by 7" T’T, where T* /:(Y, V*) denotes the adjoint of T. We are now

prepared to introduce the Hermitian form a V V -- C, which will be the focus of
this section. It is defined by

a(x, y) (Tx, Ty)y + a(x, y),
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and it will be assumed that
(HI) There exists # > 0 such that a(z, z) [Tx[ + a(z, z) >_ # z 2 for

all z E V.
In the context of the introduction the present formalism will be used with T

)(a) and with the regularization term given by a(z, x) or(x, x). Neither 7" nor
a separately are assumed to be coercive. Condition (H1) requires strict coercivity of
their sum. For (x, y) E V x V we have

a(x, y) ((T + Af)x, y)v*,v,

and by the Lax-Milgram theorem A := T+N" is an isomorphism of V onto V*. In the
usual way [DL, II p. 369 and III p. 39], A can be considered a closed linear selfadjoint
operator in X with domain DA {x E X Ax X} {x V y a(x,y) with
y V, is continuous form X to C}. Alternatively, a can be treated as a densely
defined Hermitian closed form in X x X.

Example. As an example for the above formalism we may consider the special
ce X (a), V H(),

(Vx,
where H denotes the Sobolev space of order i. If T /:(Hl(f), H(ft)) satisfies

ITXlHO >_ #lXlHO for some # > 0 and all x Hi(ft)
(or if only ITllL >_ fit with 1 the constant function with value 1), then (HI) holds.

LEMMA 2.1. Let (HI) hold. Then the spectrum of the operator A is point spectrum
Crp(A) with real eigenvalues A satisfyin9

0<#_<AI<A2<...,
and no finite point of accumulation. The eigenvectors xn, normalized in X and asso-
ciated with , satisfy

a(xn, v) /n <Xn, V) for all v V.

The eigenvectors form an orthonormal basis for X. For a proof see [DL, III p.
ag].

We next introduce a family of operators Af, and we investigate continuity and
differentiability results of their spectrum.

Let $- be a metric space with metric p, and for each f 9c let Tf (V, Y).
Assume that

(HI*) There exists It > 0 such that af(x,x) [T(x)l + or(x, x) > # x 2

for all x V and f E 9c.
We introduce the notation di- T]TI + N" e (V, Y*) and

af (x, y) (Tix, Tiy + or(x, y).

Henceforth let f0 9r, let {fk}a=l be a sequence in 9r with limk__, p(f, fo) O,
let A,x be the eigenvalues and eigenfunctions of Afk enumerated as in Lemma 2.1,
and similarly let A, x be the eigenvalues and eigenfuctions of Afo.

By P we denote the orthogonal (in X) projection from X into the eigenspace

M associated with the eigenvalue A. We shall require the following condition:

(H2) limk--, Tf Tfo in (V, Y).
PROPOSITION 2.2. Let limk__, P(fk, fo) O, and let (HI*) and (H2) hold. Then
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(i) limk-oo A. --/ for every n 1, 2,
(ii) limk__+oo P PD in (X) for every n 1, 2,
(iii) dim M dimMg for every k k(n) sufficiently large and n 1, 2,
(iv) If diin M, then

in V,lim xk x0

where xr E ]t1. are eigenfunctions ofA. for the eigenvalue ;kr normalized by (x, x
1.

For the proof we refer to results in IN]; see also [C]. Specifically, the densely
defined closed symmetric forms af are relatively bounded with respect to the form

afo. It follows that Af converges in X to Afo in the generalized sense and any finite
system of eigenvalues of Afo is stable [K, pp. 202, 212, 338-340]. In particular this
implies (i)-(iii). Next assume that the multiplicity of the eigenvalue is 1. Then
dim M 1 and x ct-lpx for all k sufficiently large, where c (P.x,x}.

n nSince limk__,o Pk x0 x in X, it follows that limkc ak 1. We find

lira Ix-l- lim
k---oo k--*oo

1 Ok P xo + lira IPn n n

-o Zo-Xo]-O

and thus limk_.o x x in X. To show the final assertion of the theorem note that

(2.1)

Due to (HI*) and (2.1) it follows that {x}=l is bounded in V. Moreover, taking
the linit in (2.1) and by (H2)

lafo(X,X) aio(X,X) <laIo(X,X) af,(x,x)
+las (x, x) aso(X.,x) --, 0

Consequently aio (x, x) -+ aio (x, x) and x --* x weakly in V as k -+ oc. Since

V/{Zf0 (-, .) defines an equivalent norm on V, it follows that limk_+oo x x in V.
Strenghtening (H2) to
(H3i) There exist constants K and - > 0 such that TI Tio ]](V,y)<

Kp(fk, fo)", respectively,
(H3ii) There exist constants K and / > 0 such that ]Tix- TIoxlY e

Kp(fk, fo)lx[x for all x e V, allows us to assert
PROPOSITION 2.3. Let limk_ p(fk, fo) O, and let (HI*) and (H3i) hold. Then

for every n there exists Kn such that

lie(x)<_ f0)

and

If (H3ii) holds in place of (H3i), then there exists independent of n such that

IA Al <_ p(fk, fo).
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For the proof one notes that (H3i) implies the existence of a constant M such
that

M
I(aSo -as)(x,x)l <- MP(fk,fo) II x I1_< .---. p(S, fo)’ao(x,x),

for all x E V. The assertion under condition (H3i) then follows from the same results
in [K] as cited above. The proof of convergence of the eigenvalues under condition
(H3ii) can be based on an argument using the Raleigh quotient representation of
eigenvalues or on [K, Thm. V. 4.10]

We turn next to investigating differentiability properties of the lowest eigenvalue-
eigenvector pair at a reference value f0 E F, where F is now assumed to be a normed
linear space with norm I" IF. We drop the superscript 1 for the largest eigenvalue-
eigenvector pair and assume that the multiplicity of the smallest eigenvalue So of

ASo is one. Let xS denote the eigenvectors associated with the lowest eigenvalue/S
of AS normalized by

(xf,XSo) 1, Ixsol 1.

For f 9r we put

T;Ts e v*).

We shall employ the following hypotheses:
(H2*) The mapping f --, TS from F to (V, Y)is continuous at f0 .
(H4) The mapping f TS from 9v into (V, V*) has a Gateaux differential at

f0 in the direction fl F; i.e., f0 + -fl E 9 for I-] suificiently small and there
exists (f0, fl) (V, V*) such that

-(f0, fl) lim _1 [o+rfl :/)o]
T---0 T

in (V, V*).

Concerning the terminology of differentiability in infinite-dimensional spaces we
follow [W]. The proofs of the subsequent results of this section are given in the ap-
pendix.

THEOREM 2.4. Assume that (HI*), (H2*), and (H4) hold and that the smallest
eigenvalue associated with ASo is simple. Then the mapping f -- (AS,xs), where
AS is the smallest eigenvalue of AS and xS is the corresponding eigenfunction of AS
normalized by (XSo,XS) 1, from F to R Y has a Gateaux differential (,)
((fo, fl),ic(fo, fl)) at fo in direction fl. It is the unique solution of

(2.2) { (AS AS)2(c, Xfo}X-xf __: 0.-Y(f0, fl)Xfo,

Stronger differentiability assumptions for f -- T/ carry over to improved differ-
entiability properties of f (AS,XS). Throughout the remainder of this section we
assume that f0 is an interior point of 9. We shall use the following hypotheses:

(H5) f . TS (V, V*) has a Gateaux differential at f0 9 in every
direction fl E F, and f --* (f0, f)XSo from F to V* is linear.

(H6) f jz c F TS (V, V*) has a F%chet derivative at f0.
With these conditions we obtain the following.
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COROLLARY 2.5.
(i) Let (HI*), (H2*), (H4), and (Hh) hold. Then f (Ay,xf from jz to R V

has a Gateaux derivative at fo.
(ii) Let (HI*), (H2*), and (H6) hold. Then f (/f, xi) from F to R V has

a Frdchet derivative at fo.
The differentiability properties of the higher eigenvalue-eigenvector pairs can be

studied with no additional effort. We obtain the following corollary.
COROLLARY 2.6.

(i) Assume that (HI*), (H2*), and (H4) hold and that the eigenvalues of Ayo
are simple. Then the mapping n f _.., (,k,x) where {x,xnol 1, from F to

R V has a Gateaux differential ()n(fo, fl),gcn(fo, fl)) at fo in direction fl. It is
the unique solution of

(2.3) (ASo )fo) n,Xfo --’:l"(fo f.)Xfo,
o.

(ii) If (HI*), (H2*), (H4), and (Hh) hold, then n has a Gateaux derivative at
fo. If (HI*), (H2*), and (H6) hold, then jz has a Frdchet derivative at fo.

In the final results of this section we give conditions on

f Ty from $" C F to (V, Y),

which imply (Hh) and (H6). We shall use the following:
(A1) f T is continuous and has a Gateaux derivative at the point f0.
(A2) f TI has a Frdchet derivative depending continuously on f at the point

f0.
LEMMA 2.7. If (A1) holds, then f - 7" from F to (V, Y*) has a Gateaux

derivative at fo and

(2.4)

or equivalently

(f0, fl) b*TyoT(fo, f + (f0, fl)Tyo

((fo, f)99, }v*,v --((fo, f )99, Tfo)y

for all f e F and q, E V. Here (fo, f) denotes the Gateaux differential of Ty at
fo in direction f. In particular, (Hh) holds.

LEMMA 2.8. If (A2) holds, then f :T from F to (V, V*) has a Frdchet
derivative at fo

3. Optimal input. In this section we demonstrate the applicability of the gen-
eral results of 2 for the linearization ’ (a) of the parameter-to-solution mapping (a)
given by the elliptic boundary value problem (1.4).

First we reconsider the saddle point problem (1.7) in the form

(3.1) supGy

where

Gy- inf
h)

IbiS:
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To apply the results of 2 we make the identification T:h b)(a)h and (r(hl, h2)
/3(r(hl,h2). Let us now assume that 9r is compact, that (HI*) holds, that f --, Tf
from .T to (V, Y) is continuous, and that the smallest eigenvalues Af of Af, f ,
are distinct. In view of the Rayleigh principle [DL]

G] AS as(hi, hf ),

where hi denotes the eigenfunction associated with AI. Due to the continuity of

f AI established in Proposition 2.2, (3.1) has at least one solution f* E . An
approximate evalution of GI can be achieved by Galerkin approximation and solution
of the resulting generalized eigenvalue problems. For an approximate solution of (3.1)
one can rely on iterative techniques that require a gradient. SuMcient conditions
for the existence and characterization of the Gateaux and the Frchet derivatives of

f GI were given in Theorem 2.4 and Corollary 2.5.
The following technical lemma will be required later. We denote by 1 the constant

function with value 1 as well as the real number 1.
LEMMA 3.1. (i) Let C Rn,n E N, be a domain satisfying the cone property

if n > 1; and let e HI() with the property that/(1) 0. Then h (Vh +
]l(h)[) 1/2 defines a norm on HI() that is equivalent to the common Hilbert space
norm on Hl().

(ii) Let A be a compact metric space, and let l HI() with the property that
/(1) # 0 for all a A and such that a la from A to Hl() is continuous. Then
there exists > 0 such that

(3.2) IVhl + ]/(h)l 2 > e]hl2H for all c A and h HI().

Proof. Part (i) follows from [M, p. 27]. We turn to (ii). If (3.2) was false, then
there would exist {ci} C A and {h}= C Hl(ft) with Ihilti1 1 such that

lim ([Vhi[2 + I/i(h)l2) -0.(3.3) -Due to compactness of A it can be assumed that {} i8 convergent with limit 0.
Continuity of l from A to H() implies that

(3.4) lim [lu (h) -l (h)] 0.

From (3.3) and (3.4) it follows that

lim([Vh[ + ll (hi)l) 0,

which is a contradiction.

3.1. The one-dimensional case. Here we consider the two-point boundary
value problem

(3.5) -(aU)x f in (0, 1),
0,

where a H, a(x) u > 0 on (0, 1), and f H-. In this subsection all function
spaces are considered over the interval (0, 1). We introduce the operator
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it is an isomorphism form H to H-1. The solution u u(a, f) to (3.5) is given by
u(a, f) A-l(a)f. The mapping a u(a,f) (for a _> )is Frchet differentiable
from H to H0 and the Frchet derivative at a in the direction h E H is given by

(3.6) Ua(a, f)(h) A-l(a)D(hDu(a, f)).

Here D denotes differentiation. Henceforth a will be fixed. In the context of 2 we
choose the spaces

(3.7) X L2 V- H Y- H F- H-1

and define the operators

(3.8) Tfh A-1 (a)D(hD(u(a, f)).

Clearly Tf (V, Y) for every f . For Tf to be well defined and for the
subsequent discussion it suffices to have a L and a >_ u > 0 a.e. on (0, 1). Above
we choose a H only for the sake of consistency since the variations h of a are taken
in V H We further define

(3.9) a(h, ) (h,)L,

where is a 8mall positive parameter. To assertain continuity of the eigepvalues and
eigenfunctions of f A we verify (Hl*) and (H2*). Let us assume that f 0. Then

defines a norm on H that is equivalent to the usual Hi-norm. This implies the
existence of p > 0 such that

(3.10) hi(h, h)= IDT]h + IDhI 2,1h[ for all h H.
Using (3.10) and continuity of f u(f) from H- to H it can be shown that

there exists a neighborhood of ] in H-, such that

(3.11) af(h,h) ,]h[t for all f e and h e H,
and (Hl*) holds. Next we show the continuity of the linear mapping f Tf from F
to (V, Y). Let M -] DA-(a)D [[(L), and let kl be the embedding constant from
H intoL. ForfH-1-FandhH1-Vwefind

(3.12) [Th[H [Dd-(a)D(hDu(a, I))[L Mkh]H[u(a, f)]H

This estimate implies continuity of f TI. In particular (H2*) holds (with
f0 ]), and Proposition 2.2 is applicable. Moreover, (H3i) holds with 1. rning
to the differentiability properties of the eigenvalues and eigenfunctions of TI, we note
that f TI is in (F,(V;Y)). Thus (A2) holds at every f F and f TI
has a Frchet derivative at every f F. Thus the conclusions of Theorem 2.4 and
Corollaries 2.5 and 2.6 are applicable.

Specific examples. We discussed the case where is a subset of H-. Next we
turn to the situation that is of practical importance where f varies in a parameterized
set.
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(i) Let e e (0,1) and9r= [e,l-e] C R. For c e ’let 5 denote the delta
impulse at c. For a as above and a E 9 let u(a,) W’ denote the solution of
(3.5) with f 5. The general theory will be applied to the operators

h % (h)= A-(a)D(hDu(a, 5)), ,
which are elements of (H1, H), with X, V, Y and a as in (3.7), (3.9) and F R.
It is simple to argue that h %h[ satisfies the assumptions for l of Lemma 3.1
with A [, 1 -el. Consequently there exists > 0 such that

ah (h, h) h for all h H and a ,
i.e., (3.11) and hence (HI*) holds. Concerning the continuity assumption (H2), we
note that Th is the composition of the mappings 5 A-l(a)D(hDu(a, 5)),
which is Hhlder continuous from to (H1, H) using (3.12). In particular, Propo-
sition 2.2 is applicable. Since a 5 is not differentiable from C R to H-,
the mapping a (Ah, hh) is not differentiable for Y H as output space. In
[IK2] we derived an explicit formula for the lowest eigenvalue of T* Th and we ar-5
gued directional differentiability of the smallest eigenvalues by means of the explicit
representation. If one chooses the output space Y to be L2, then the continuity as-
sumptions (HI*), (H2*), and (H3i) as well as the differentiability hypothesis (A2)
hold. This is a consequence of the fact that a 5 is differentiable from c R to
H-2 and of Hhlder continuity and continuous differentiability of a Th from to
(H1, L2).

(ii) Again we choose e e (0, 1) and put [e, 1 -]. For a e we define

{ 1 forxe [a- ,a+ ],(x) 0 otherwise.

The inhomogeneities f in (3.5) are now chosen in the class of functions { a }.
We define the operators %h A-l(a)D(hDu(a; )). The spaces X, Y, and V and
the form a are chosen as above and > 0. Using Lemma 3.1 one can show that there
exists > 0 such that

a(h,h) (Th, Tvh}n + (Dh, Dh)n > p]hH

for all h e H and a e . Thus (HI*) holds and (H2), (H2*), and (H3i) are simple
to check. rning to (H3ii) we choose a, 5 and find for all h L2

(3.13) Th- TahH M]hDu(a, a)n

where k2 is a constant independent of a, and M was defined immediately
following (3.11). A short calculation gives WlL2 [a &[1/2. Combining
this estimate with (3.13) we have

Twh- Tvahu k2MhL=]a-/ for all h e g and a, , e .
and hence Proposition 2.3 is applicable. ConcerningThis is (H3ii) with 7 ,

differentiability we first note that a + from C R H- is differentiable with
the derivative given by d Tw is differentiable5+/2- 5-e/2 Moreover, a
with

d
daT’: %+/__/,
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and Lemma 2.7 implies

d d
%o (T,\ T,o) T*

We conclude Fr6chet differentiability of the eigenvalues and eigenvectors of Av ac-
cording to Corollaries 2.5 and 2.6.

3.2. The multidimensional case. We turn to

-div(a grad u)= f in a,(3.14) 0,

where Ft is a bounded domain in Rn, n E {2,3, 4}, with boundary Oft of class CI’e

for some 5 E (0, 1). The choice of n guarantees that H c L4. Unless specified
otherwise the function spaces in this subsection are considered over the domain ft.
The coefficient a is assumed to satisfy a L, a(x) > > 0 a.e. on ft, and f H-1.
Additional regularity for a and f will be required later. The operator A(a) H
H-1 defined by

A(a)u--div(a grad u)

is an isomorphism.
u(a, f) A-l(a)f
to H-1 with

In particular this implies that (3.14) has a unique solution
The mapping a u(a, f) is Frchet differentiable from L

(3.15) Ua(a, f)h A-I(a)V (hVu(a, f)) for h e L.
To extend (3.15) to a continuous linear operator on H additional regularity

of u(a, f) is required. For the dimensions under consideration it suffices to require
u(a, f) W1’4. This is implied by the additional assumptions

f E W-1’4 (Wg’4/3) and a G C’e

[A, T]. Henceforth we fix a C’e,a >_ u > 0, and for f W-1’4 we introduce

Tf" H --. H defined by

T:f(h) A-l(a) (hVu(a, f)).

Conditions were given in [IK1] that guarantee injectivity of TI (and IT hlH >
lhlL2, where > 0 is uniform with respect to h in bounded subsets of H1). We shall
discuss the "wellposedness" criterion (HI*) and the continuity assumption (H2*) with
the choice

(3.17) X L2, Y- H, V- H1, F- W-1’4, o(h, t) -/(Vh, Vt}L2

and

for h, H and f E F.

Let 0 - f F. Then by Lemma 3.1 there exists tt > 0 such that

af(h, h) > for all h H1.
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We shall make use of the fact that there exists a constant C such that

(3.18) lu(f)lw, < C]flw-1,4 for all f E W-1’4

[A, p. 48], IT, p. 179]. Due to (3.18) and the continuous embedding of H into L2

there exists a neighborhood Y of f in W-1’4 such that

(3.19) af(h, h) > #lhlH and f

This is (nl*). For the following estimate let M =11 VA-I(a)v with

L2 L2(R)i= and let k. denote the embedding constant of H into L4. For h H
we find

(3.20)

This estimate implies that f Tf (W-I’4,(H1,H)) is Lipschitz continu-
ous. It follows that (H2*), (H3i), and (A2) hold and that Propositions 2.2 and 2.3(i),
Theorem 2.4, and Corollaries 2.5 and 2.6 are applicable for the choice of spaces given
in (3.7).

Specific example. As in the one-dimensional case we consider a specific situation
where f varies in a parametrized set. Let n 2; let 9t be as specified above; and
choose $" [c, d], a compact interval in R. For every a e Y, F denotes a (nontrivial)
Lipschitzian curve in ft and f is given by

(3.21) (fa, > j2 qo ds for all H.

We shall make use of the fact that (W’4/3) I-1’4, with W-1’4 densely injected
into H-1. Moreover, if G is a bounded open subset of R with Lipschitz boundary OG,
then the zero-order trace operator has a unique continuous extension to an operator
form W1’4/3 onto W/4’4/3(Of’t) and W/4’4/3(0) C L2(0). This implies that (3.21)
defines an element f E W-1,4 (ft), and

h --+ T$ (h) VA-l(a)V(hVu(a, fc))

is well defined for all h H
c f from 2- to W-1’4.

We next give a condition that implies continuity of

For Co e (c, d) choose e e(Co) > 0 such that I
[c, d] and define the sets

[do, ao + ] c

(3.22) 2=int U Fandf-int U r, forcIo.

eIo

It is assumed that f and t are connected domains in R2 with 0f
Lipschitzian for all c I and such that the subdomains f and
f f lie on opposite sides of P and

O P uF u,
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with consisting of at most two connected smooth components.
Let v denote the unit normal to F pointing into t t. Assume
that v defines a vectorfield v E WI’(Ft,Rn) as a varies in I
and that it can be extended uniquely to a vectorfield on t and that
a -- a0 implies fa dx 0 and f ds ---, O. Further assume that the
analogous construction is possible with I replaced by [a0- e, a0].

Let a -- a, and without loss of generality assume that a >_ a0. Then by Green’s
formula, applied to v E wl’4/3(ta), we find for W1’4/3() and na the unit
outer normal to t"

and consequently

I(f-f’>l= Jfr ds jfr C ds

<_ div(v) dx + noV ds

with K a constant independent of W1’4/3. It follows that

fr
ds- ]

with/ independent of W1’4/3. By (3.22) continuity of a - f from to W-1’4

follows. Together with (3.20) we have

c Tf is continuous from [c, d] to (H1,H).
Thus (H2*) holds. To verify (HI*) we note that/(1) =/= 0 for all c [c, d]. Together
with compactness of 9 and (3.23), Lemma 3.1 implies the desired conclusion. Thus
Proposition 2.2 can be applied. It implies continuity of the eigenvalues and eigenfuc-
tions of Ai provided they are distinct. Moreover, since 5c is compact, the associated
saddle point problem (3.1) has a solution.

Two examples in which (3.22) holds true are given by the domain ft unit ball
in R2, and

(i)

[ 111
and
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(ii)

Ic "X O E [--2, 2]+

3.3. The multidimensional case revisited. Once again we consider the prob-
lem of the optimal choice of f for the identification of a in (3.14), but now the output
space is chosen to be H2 H rather than H. This choice of output space en-
hances the sensitivity of the parameter-to-solution mapping. We shall consider the
maximization of the measure

(3.24) G- inf
h:0 L2

with > 0 (regularized case) and/ 0 (unregularized case).
Let t be a bounded domain in Rn with Lipschitzian boundary, and fix a such that

A(a) H2H L2 is an isomorphism. Assume further that/)t is sufficiently regular
such that for an ppropriately chosen normed linear space F the linear mapping

f u(a, f)

is continuous from F to W’ W2,+ with e > 0 if n 2 and from F to W’’ if
n>3.

Here u(a, f) denotes the solution of (3.14).
It follows that h T(h) A-(a)V.(hVu(a, f)) is an element of(H, H2H)

nd that there exists a constant C independent of (h, f) H F such that

(3.25) ITj,(h)lH2nH

_
CIhlHllflF for all (h, f) E g F.

In the context of the notation of 2 we take

(3.26) X L2, Y H2 r! H, Y H, a(h, z) (Vh, V)L,
F as specified above and

(3.27) hi(h, ) (Th,TZ)H + (’h, ’)L2 for h,z e H and f e F.

First let us argue that (Hl*), (H2*), and (A2) hold for an appropriately chosen subset
9vc F, if > 0.

Let 0 = ] F. Then by Lemma 3.1 there exists # > 0 such that

hi(h, h) >_ 2#lh12H for all e H,
and due to (3.25) and bilinearity of (h, f)
such that

hi(h, h) >_ #lh[2H for all (h, f) e H ’.

Thus (nl*) is satisfied. As a consequence of (3.25) condition (H2*) holds with f0
replaced by ] and hence Propostion 2.2 is applicable. We note that (3.25) also implies
(H3i) and (A2) so that, in particular, by Corollary 2.5 Fr6chet differentiability of

f - (AI, x) at ] follows.
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Now let us turn to the case 0 in (3.24). This requires the interpretation of Ty
as an unbounded operator in L2. In [IK] sufficient conditions are given that guarantee
Ty with dom Ty H C L2 and Th A-1V (hVu(a, f)) is a closable operator in
L2 with its closure (which is again denoted by Ty) satisfying

for all h

for a constant K > 0 independent of h. Such a sufficient condition is given by assuming
that 2 C Rn, n E {1, 2, 3}, 0fl is Cl’l-smooth (if n 2, 3), and

u(a, f) W3,4(t)
Vu(x;a, f). n < 0 on
there exist constants kl R and k2 > 0 such that
klVu(x; a, f)l 2 + At(x; a, f) >_ k2 on

Let us assume henceforth that the normed linear space F is chosen such that

f u(a, f)

is continuous from F to W3’4, and let ] be a reference input for which (3.28) holds.
Then the existence of a neighborhood " of ] follows, such that Tf is closable for all

f 9r and

(3.29) ITyhlH2 >_ KlhlL. for all (h, f) e dom Ty $’.

In particular this implies that the measure

Gy inf ITYhIH
hO

is nontrivial for all f 9r. We shall argue that f - G is upper semicontinuous, so
that existence of a solution to

max Gy overfE9r

is guaranteed if C F is compact. We first show that

(3.30) lim G Gy for every f
0+

Since / --, G is monotonically decreasing, lim_,o+ G exists. Arguing by contra-

diction, assume that lim__,o+ G #0 > G. Since Hl(ft) is dense in L2(t), we
find

(3.31) Gy- inf H2

hEH

Hence there exists h =/= 0 in H(t) such that



658 KAZUFUMI ITO AND KARL KUNISCtt

where 5 (#0 G/). It follows that

(3.32) G < ITf[tl2H1 +/IVI2L 1<- + +

for all with V] 5]=. Taking the limit with respect to in (3.32) leads to
a contradiction, and hence (3.30) holds. To prove upper semicontinuity of f Gf
let {f} be a sequence in with lim f f, and let > 0 be arbitrary. By
(3.30) there exists 0 such that

Moreover, by Proposition 2.3 there exists No such that

o GOG/n I< r/ for all n > No.

Consequently we have

for all N0. Since U > 0 is arbitrary, upper semicontinuity of f C/ follows.

4. Numerical experiments. We carried out numerical tests to determine the
optimal location of the unit impulse 5 in

(4.1) { -(au)x 5 in (0, 1),
u(0) u(1) 0,

for the determination of the function a(x). Theoretical aspects for this problem were
considered in 3.1, Specific Examples (i). For c E (0, 1) the solution to (4.1) satisfies
u(a, 5) W1’, and therefore Tsh A-l(a)D(hDu(a, 5)) is well defined for
h G L2. The Hermitian forms are given by

as (h,) (T,h, T5}H +
and the saddle point problems are

as(h,h)
(4.2) sup inf

h0 L2

It is known [IK1] that a does not satisfy (H1) for/ 0. To discretize these

problems we choose subspaces HN {hN -’iN=/ hiBiN" hi}, where N is even and

BN constant functions with value 1 on 2(/’!),N2/ and value 0 outsideare piecewise

of this interval. For given c and a > 0, the approximate solution uN(a, Sc) to (4.1)
was determined as the Galerkin solution with respect to the discretization of (4.1) by

N
linear spline functions on the grid { N }i=0. The approximate minimization problems
are then given by

(4.3) min a (hN, hN)

hNo
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where aVa is defined like asa with u(a, 5,) replaced by uN (a, 5,). The solution to (4.3)
is characterized by the smallest eigenvalue of the generalized eigenvalue problem

(4.4) ANsa ftN QNftN

and the minimum in (4.3) is assumed at the eigenfunction associated with the smallest

eigenvalue. In (4.4), ftN denotes the coordinate vector of hN, and AN QNa, are the

matrix representations of the forms a (hN, itN) and {hN, itN on HN x HN.
(i) In the first test example we choose a 1. It is simple to see that 0 is

an eigenvalue of T* Tea a E (0, 1) with Tea considered as the operator form L2 to

H01. Consequently we expect that for/3 0 the lowest eigenvalues of ANSa,a E (0, 1),
approximate zero from above. Figure 1 shows the first three eigenvalues of A5 as a
varies in (0, 1) with 3 0 and N 128. The curves were obtained by solving the
generalized eigenvalue problem (4.4) for ai , 1,..., 48. This plot was already
analyzed in [IK2] where we noted that the eigenfunctions associated with the lowest
eigenvalue approximate the step function in the spectrum of A5 (considered as oper-
ator in L2) and the eigenfunctions associated with the second eigenvalue approximate
a 5-function. In [IK2] we also showed that the smallest eigenvalues of Ta T5 when
properly restriced to a subspace of codimension 1 (to eleminate 0 as eigenvalue) are

given by

{ a2 n /’/’A (a) (1 a)2 on

The graph of )0 is almost identical with the third eigenvalue of Asa, a (0, 1), seen
in Fig. 1. The elimination of a proper subspace to obtain (HI*) may be impractical
in larger problems, and then regularization can be used. In Figs. 2 and 3 we show the
results with/3 10-4 and 10-3 respectively. The remaining specifications are those
of Fig. 1. It can be observed that the lowest eigenvalue is now bounded away from
0 and that its maximum is attained at (the desired) location a* .5. A comparison
of all eigenvalues of A5 with 3 0 and/3 > 0 also shows that regularization spreads
the eigenvalues apart.

(ii) For this experiment we choose a(x) 1 + x. It is known from [IK2] that
the optimal location for the unit impulse is to the right of .5. Figure 4 depicts the
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lowest eigenvalue of the generalized eigenvalue problem (4.4) for different values of
and for N 32. The abscissa is again the a-axis, and the curves were obtained

from results for ci 9,i 1,...,48. Starting with the lowest curve, the graphs
correspond successively to/ 10-5, 5 10-5, 10-4, 5 10-4, 10-3. If/ is suificiently
large, here/ >_ 5 10-4, then we can see that c* .531, which is larger than .5,
as desired. The value for the optimal input & calculated by restricting T*T toa
proper subspace, so that (HI*) holds, was found to be & .545 [IK2, Plot 2]. The
zig-zag of the curves corresponding to small/%values is due to the relative distance

N
of the gridpoints { } of the discretization for u and h and the location for the

i--0

impulses at {}, with smaller distance giving smaller eigenvalues.

(iii) In the final two plots we compare the eigenfunctions corresponding to the
three smallest eigenvalues of the generalized eigenvalues problem (4.4) for/ 0 and
/ 10-; see Figs. 5 and 6 respectively. Here a(x) l+x, N 128, and c a*, the
optimal input location found in (ii). As expected, the eigenfunctions for/ 10-4 are
much smoother than those for D 0. We can also note that the first eigenfunction
for D 10-a is a smooth approximation to a multiple of the first eigenfunction for
/ 0, which is almost a step function.
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5. Appendix. Here we give the proof for the differentiability results of 2. The
eigenvectors x are normalized by fo)- 1 and put (A, x)- (Afo xfo)" The
superscript n 1 is deleted.

Proof of Theorem 2.4. For simplicity of notation we put f f0 + 7fl and
(Ao, xo)-(Afo,Xfo). As a consequence of Proposition 2.2 and (H2*) we find

(5.1) (,f,Xf) (Ao,xo) in R V, for - - 0.

By Lemma 2.1

(5.2) af(xf v) )f(xf
and

(5.3) afo (xo, v)- Ao(Xo, v) for all v e V.

Subtracting (5.3) from (5.2)we obtain

(5.4) a(xf xo, v) + (Tfo (xf xo), Tfov} )o(xf Xo, v)x
 o)(xs,
-(Tfx/, Tfv)y + (Tfoxf, Tfov)Y.
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The normalizing equation (xf,Xfo) 1 together with (5.4) gives the following
system of equations

(5.5) { (Af ,o)(xf xo)<xy,xs-(,f_-xo)O)Xf>x =- 0.- (7xs fxs)’

Introducting the operaters

defined by

C(xf V x R V* R

( (Ayo ,o)C(xf)

where M C(xf) C(xo) E (V x R, V* R) and I1- o with T --* 0.

From (5.7) there exists 70 > 0 and a constant K such that I + C(x0)-I: is
invertible in (V x R) and

(5.9) + C(xo)-lM’r] -1 II <v R> K

(5.7) C(xo)- C(xf)IIz:(VR,V, R)-- 0 for J- -- 0.

It is simple to verify that C(xo) is injective and surjective. It follows that C(xo) has
a bounded inverse and that (5.6) is equivalent to

(5.8) It -I- C(x0) -1MT] ,f /0
-C(x)-i

0

it can be seen that (5.5) is equivalent to

(5.6) C(xo)
Af A0

[C(x0)-C(xf)] ,f_ o 0

Due to Proposition 2.2 and the special form of C(xf) we have
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for all T with ITI < T0. Therefore, (5.8) is equivalent to

(5.10) (xf xo) _[[ + V(xo)-lM.]-lC(xo)-l (’-]Ffxf ’-]Ffoxf),f o 0

Finally observe that

l
[i + C(xo)-lM,r]-lC(xo)-l ("rfxf "J"foXfI(5.11) V 0

_C(xo)-X ((f’ fl)x)0

< C(xo)-IM’,[I + C(xo)-ljIT]-lC(xo) -1 ((fXf 0 oXS))
1
[’rfxf TfoXf] (fo, fl)xflv./ C(xo)- IIc(v*,vm I;

/ C(o)- IIc(v*a,va)1"2-(fo, fl)(Xf- Xo)tv*.

Due to (H4), (5.3), and the fact that M I1- 0 for T --, 0, the first term on the right-
hand side of (5.11) converges to zero. The second additive term tends to zero as a
consequence of (H4). Finally due to (H4) and Proposition 2.2 the last term converges
to zero as well. As a consequence of (5.10) and (5.11) it follows that f --, (A/, zy) has
a Gateaux differential (J, 2) at f0 in direction fl. It is given by

(5.12) () -C(xo)-l (/-(fof )x)
This is (2.2). Uniqueness of the solution to (2.2) follows from injectivity of C(xo).

Proof of Corollary 2.5. (i) We need to argue that fl -- ((fo, fl),2(fo, fl)) is
linear [W]. This is a direct consequence of (H5) and (5.12).

(ii) Due to (5.12) and (H6) the mapping

(5.13) fl "- ((fo, fl))- _C(xo)_l(/-(fo, fl)xo)(fo, fl) 0

is an element of (F; V R). To show that it satisfies the definition of Fr6chet
differentiability we estimate

(5.14) ( --X0) (-(f0})fl)x0)f (_C(x0)) -1

f ’0

where we put f fo + fl. By Proposition 2.2 we have that

(Af,xf) (/k0, x0) in R V if Ifll 0,

As in the proof of Theorem 2.4, C(xo) is an isomorphism from V x R to V* x R,

M(f) C(xf C(xo) 0 in ,(V. x R, V* x R) as f fo in F,
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and (I + C(xo)-l[C(xf) C(x0)]) -1 II/2(VxR) is uniformly bounded for all f suffi-
ciently close to f0. Returning to (5.14) we find (compare (5.8)

and therefore

(5.15)

where

and

z(vxR)

Cl--II (Z + C(xo)-lM(f))-lC(xo) -1 IIc(v*R,vxm

c-II C(xo)-
Since M(f) --, 0 in (V x R, V* x R) and due to (H6) the first term on the right-hand
side of (5.15) behaves like o(I/11 ). Due to (H6) and Proposition 2.3 the second term
behaves like o([A I) as wen.

Pro4 4 Corollary 2.6. For the proof it suffices to observe that (, x), (fon’ Xnyo)
satisfy

--xn) --X )
compare (5.6), where C(xI V x R V* x R is given by

<xL, .> o

It is simple to check that C(xo is an isomorphism. The assertions then follow with
the same arguments as for Theorem 2.4 and Corollary 2.5.
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Proof of Lemma 2.7. Let fl E F and T E R, and consider

1
(Tfo_lt_7.fl Tf (fo, fl

T (v,v.)

1 1
sup (Tfo+.rf eft, Tfo+.rf ) (Tfocfl, Tfo)

Iolv--1Olv--1 "r T

--((fo, fl)cfl, Tfo) (Tfo:,(fo, fl))

From (A1) the expression on the right-hand side of the last equality converges to zero
for T -- 0. Thus f --* TI is Gateaux differentiable at f0 in every direction fl 6 F.
From (2.3) it follows that fl -- r(f0, fl) is linear, and therefore f -- TI has a Gateaux
derivative at fo. []

Proof of Lemma 2.8. From (2.4) it is easily seen that (f0, ") e (F,(V, V*)). To
argue FrCchet differentiability at f0 it suffices to demonstrate continuity of f - T(f, .)
from F to/:(F,/:(V, V*)) at f0. For fo in a neighborhood of f0 we have

(fo,.) (fo,.)II(F,(v,v*))
sup (b(fo, fl) b(f0, fl):,Tfo)Y

+((fo, fl):,Tfo Tfo)y + (Tfo99 Tfo99,(fo, f1))Y
-t-(Tfo:,(fo, fl) (/,

and (A2) implies the claim.
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CORRIGENDUM: LAGRANGE MULTIPLIERS IN
STOCHASTIC PROGRAMMING*

SJUR DIDRIK FLMt

Abstract. This note deals with an error in S. D. Flm, SIAM J. Control Optim., 30 (1992), pp. 1-10. Using
approximate subdifferentials the author corrects that error by deriving a Fritz John optimality condition for abstract
programs constrained by cones which may have empty interior.

Key words. Fritz John optimality condition, nonsmooth analysis, approximate subdifferential, compactly Lip-
schitzian mappings, stochastic programming
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1. Introduction. Several scholars, notably M. Ciligot-Travain and L. Thibault, have
quickly and kindly pointed out that Theorem 3.2 in [7] concerning the Fritz John (FJ) optimality
condition needs further qualification. Also, Glover and Craven [8] provide a counterexample
to the theorem. As it stands, the theorem is valid only in finite dimensions (implying that the
probability measure should have finite support), and would then result from earlier theorems of
Clarke and Hiriart-Urruty 11 ]. In that context it can also be sharpened by replacing the Clarke
subdifferential by the generally tighter approximate subdifferential of Ioffe 13], extensively
used by Jourani and Thibault [16], [17] and Glover [9].

The error is that the set {A >_ 0 p(A) <_ 1} of multipliers A used in [7] with p(.)
stemming from a Clarkson-Rieffel renorming need not be bounded.

Therefore, a primary purpose of this note is to rectify these matters; a secondary aim is
to complement the recent results in [8] and 10]. Thus, a new FJ condition is demonstrated in
Theorem 2 below, partly motivated by stochastic programming problems, but of independent
interest and applicable in other fields as well.

To make the note self-contained, we shall deal with the abstract and genetic programming
problem

(P) minimize f(z) subject to x C and -9(x) K,

where f X -- N, 9 X -- Y are locally Lipschitz functions, X, Y are Banach spaces with
Y separable, C c X is closed, and K c Y is a closed convex cone. In the topological dual
space Y of Y, denote by

A {y’ Y"(y, y’) > 0 for all y K}
the positive dual cone of K. The following theorem, recently proven in [6, Thm. 2.6] and
[10, Thm. 5], extends a similar result in [8] and serves as a point of reference.

THEOREM 1. For problem (P) assume f is locally Lipschitz and g is locally compactly
Lipschitz. Also, assume that K has nonempty interior. Then a necessary condition for :Co to
be a local minimum of(P) is that there exists "co [0, 1], A0 A, I1 0 _< 1, 0 such
that

(1.1) 0 7-oOAf(xo) + (1 -o)OA(Aog)(xo) + N(xo, C), (A0, g(xo)) O.

Here OA denotes the approximate subdifferentialdeveloped by Ioffe [13], [141, [151, and
Mordukhovich [20]known to be weak* compact, occasionally nonconvex but always con-
tained, and possibly strictly within the Clarke subdifferential. In (1.1) Na(x, C) is the nor-
mal cone to C at x in the sense that it equals the weak* closure of I+OAd(x, C), where

Received by the editors June 30, 1994; accepted for publication July 26, 1994.
Economics Department, Bergen University, 5007 Bergen, Norway.
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d(x, C) :-- inf{llx- ell c C} is the distance function to C; see [151. Note that in Theorem
and throughout most of the section, the constraint function 9 must be locally compactly

Lipschitzian--a notion introduced by Thibault [21 ], [22].
The assumption int K 7 0 of Theorem 1 is often unfitting, however, it excludes equality

constraints and it is at variance with stochastic programming and other fields where cones K
like LP(a, Ir), p E [1, +oc[ may naturally arise. Admittedly, progress can sometimes be
made without constraint qualifications; see 1 and [3]. However, it appears difficult to obtain
results like Theorem 1 for spaces like Y LP(f, It’), p [1, +oc[ unless some condition
is placed on the criterion f also.

Therefore, we shall impose what we name an FJ qualification, motivated as follows. In
his proof of the FJ condition, Clarke [2, Thm. 6.1.1 maximized for a real e > 0 a Lagrangian-
type expression over a nonempty weak*-compact set M of multipliers to obtain the desired
conclusion by letting e 0. Two things, among others, were important then and in subsequent
extensions of Clarke’s technique [4], [8], 10] as well. First, in order to work with converging
sequences of multipliers, M should be sequentially compact. This is ensured by the separa-
bility of Y. Second, limiting multipliers must be nonzero. For this property it suffices that
int K 7 , but what seems more natural here is to let the entire problem structure, not only
If, help in avoiding degenerate multipliers. Therefore we introduce the following.

FRITZ JOHN QUALIFICATION AT A POINT 2:o. There exists a w*-compact convex set
M C A ofmultipliers such that

(1.2) (A,y) <_0 forall A M :::> -y K,

and such that among all sequences (e, xs, Ae, -) (omitting, for notational convenience,

reference to the sequence index) satisfying e 0 in I, ze -- zo strongly in C, --, o
weak* in M, >_ 7- -- 0 in ,
(1.3) (,Xe, g(x)) max{(m, g(xe)) rn e M} >_ f(xe) f(xo) + > O,

and

(1.4) 0 e 7eOAf(x) + (1 7"s)OA(,Xeg)(xe) + V/eB + Nc;(x, C),

there exists, ifany, at least one sequencefor which the limiting multiplier o is nonzero.
We remark that frequently the burden of ensuring/k0 0 is entirely carried by K or Y.
PROPOSITION 1. The FJ qualification is satisfied ifone ofthe conditions below holds:
(i) int K 0;
(ii) Y is finite-dimensional;
(iii) tf is the product of one cone having nonempty interior and another being finite

dimensional;
(iv) There exists a weak* upper semicontinuous function c A --, If, and a number X

such that the set

(1.5) {, E A: I111 and c(A) >_ X}

is nonempty, convex, does not contain O, and satisfies (1.2).
Proof. In cases (i), (ii), and (iii), take M {) A I1,11 <_ 1}. Then (1.3)implies

I1, 1, and any sequence {)} contains a weak*-convergent subsequence with nonzero
limit; see [8]. In case (iv), take M to equal the set defined in (1.5). []

Remark. In problem (P) one may accommodate more general sets If than closed convex
cones. Also, to satisfy the FJ qualification it suffices that K be epi-Lipschitz-like at -9(xo).
For details see Jourani [9].
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2. Main result. We now state the announced result on the FJ condition, quite parallel to
Theorem and applicable to stochastic programming.

THEOREM 2. For problem (P) assume f is locally Lipschitz, g is locally compactly Lip-
schitz, and the FJ qualification is satisfied at xo. Then a necessary condition for xo to be a
local minimum of (P) is that there exists 7o E [0, 1], o M, not both zero, such that (1.1)
holds.

Proof. The argument follows that of [10] with small modifications, but is given for
completeness. Define a continuous sublinear function k Y by k(y) max{ (rn, y)
rn M}, where M is the nonempty set defined in the above FJ qualification. For any positive
number e consider the function

he(x) :-- max{f(x) f(xo) + c, k(g(x))}

mapping X into . Observe that he(x) <_ 0 implies k(g(x)) < 0; then (1.2) yields -g(x)
K. It follows that he(x) > 0 for all x C sufficiently near x0. Indeed, otherwise there
would exist x C, arbitrarily close to x0, satisfying f(x) <_ f(xo) c and -g(x) K. If
so, this contradicts the local optimality of x0. Now, the fact that he (x0) c tells us that x0
furnishes a local c-minimum of he, provided that this function is restricted to C. Since he is
lower semicontinuous, we may find, by Ekeland’s variational principle [5], a point x C
within v/c-distance from x0 such that

h(x) < he(x) + v/llx xll
for all x C different fromx and sufficiently close to x0. In fact, afortiori he is Lipschitz near
x0 with some modulus L (independent of c). It follows, therefore, by the exact penalization
result of Clarke [2, Prop. 2.4.3], that the function

he(x) + v/cl]x xll + (L + c)d(x, C)

attains an unconstrained local minimum at x. Thus, since Fermat’s rule applies to OA, we get

0 e OA[he(.) + v/ll --xll / (L + c)d(-, C)](xe)
(2.6)

C (gAhe(xe) + V/CB + (L + C)OAd(xe, C),

where B* denotes the’closed unit ball in Y’. We proceed to invoke the following chain rule
of Jourani and Thibault 18].

Let g X -- Y be locally compactly Lipschitzian at x and let k Y --, be locally
Lipschitz at g(x). Then kg is locally Lipschitz at x and

(2.7) CgA(kg)(x) C U{(gA(,y)(x)" , e (gAk(y(x))}.

Letting k and g be as above, this chain rule (2.2) yields

(2.8) OA(kg)(x) C U{OA(,g)(x)’/ e M, (,,g(x)) kg(x)}.

The same rule (2.2) also implies that

(2.9) OAh(x) C conv{OAhi(x) hi(x) h(x)},

when h(x) := max{h (x), h2(x)} for locally Lipschitz functions hi X --, . For details
on these last two assertions see [8]. Employing (2.3)-(2.4) in (2.1) we find - [0, 1] and, M such that

(2.10) 0 7eOAI(xe) + (1 7e)OA(/eg)(xe) q- V/CB + (L + c)i)Ad(xe, C).
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Now let e + 0 to have z -- z0 strongly. We consider two cases.
Case 1. Assume k9(ze) < f(ze) f(zo) + e for some sequence e + 0. Then he(ze)

f(ze) f(z0) + e > 0, so that 7-e by (2.4), and we may select Ae 0 in (2.5). Passing
to the limit in (2.5) we obtain (1.1) with "r0 1, A0 0.

Case 2. kg(ze) >_ f(ze) f(:eo) + e > 0 along every sequence e + 0. Associated with
any such sequence e + 0, there are numbers 7- -- 7-0 E [0, 1], and the multipliers Ae E M
satisfying (Ae, 9(ze)) k9(ze) by (2.3). Since M is weak* sequentially compact (because Y
is separable, see 12]), we may suppose ,ke -- A0 M. We claim that limiting A0 satisfies the
complementarity condition in (1.1). In fact, (Ao, 9(z0)) _< 0 holds trivially, and the converse
inequality follows from two facts: first, (A, g(x)) kg(x) -- kg(xo) >_ O, because
kg(x) > 0, and second, (Ae, 9(x)) (Ao,9(xo)).

Next, for the inclusion in (1.1), observe that the correspondence (A, x) -- OA (Ag)(x) has
a closed graph in the (weak* x strong) product topology, see [6, Lem. 2.5] or 10].

Therefore, limit (2.5) gives the desired inclusion (1.1). Thus, it remains in this case only
to exclude the degenerate outcome (r0, A0) 0. Clearly, if for some sequence e + 0 it holds
that - --+ r0 > 0, then we are done. Otherwise the FJ qualification comes into play, ensuring
that some A0 =/= O. This completes the proof. []

Following O] we remark that if 9 is K-convex in the sense that

11,/2 O, /1 -t- 12 => #g(Xl) q-/2g(X2) g(#Xl q-/2X2) K V Xl, x2 X,

then the assumption that 9 is locally compactly Lipschitzian often becomes redundant.
COROLLARY. Forproblem (P) assume that f, 9 are locally Lipschitz, 9 is K-convex, and

the FJ qualification is satisfied at zo. IfY has a strictly convex dual norm, then a necessary
conditionfor zo to be a local minimum of(P) is that there exists ro [0, 1], Ao M, not both
zero, such that (1.1) holds.
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THE RENDEZVOUS SEARCH PROBLEM*

STEVE ALPERN

Abstract. The author considers the problem faced by two people who are placed randomly in a known search
region and move about at unit speed to find each other in the least expected time. This time is called the rendezvous
value ofthe region. It is shown how symmetries in the search region may hinder the process by preventing coordination
based on concepts such as north or clockwise. A general formulation of the rendezvous search problem is given for
a compact metric space endowed with a group of isometries which represents the spatial uncertainties of the players.
These concepts are illustrated by considering upper bounds for various rendezvous values for the circle and an arbitrary
metric network. The discrete rendezvous problem on a cycle graph for players restricted to symmetric Markovian
strategies is then solved. Finally, the author considers the problem faced by two people on an infinite line who each
know the distribution of the distance but not the direction to each other.

Key words, rendezvous, search

AMS subject classifications. 90B40, 90D26

1. Introduction. The purpose of this paper is to introduce and rigorously formulate a
new form of cooperative optimal search, which we call the rendezvous search problem. This
is the problem faced by two people placed in a known region according to some known
distribution who wish to meet in minimum time. They attempt to find each other by moving
with speed bounded by one until the first meeting time T, when the distance between them
comes within a given detection radius. The least expected meeting time that can be achieved
by allowable search strategies is called the rendezvous value R of the search region X. We
give a formal definition of the rendezvous search problem, find upper bounds on R for certain
regions or classes of regions, and consider a few related problems of rendezvous on the line
and on a cycle graph. In addition, we give a number of questions that we hope will stimulate
the development of a theory of rendezvous search.

As we shall see, there are in fact several different rendezvous values depending on which
search strategies are allowed. We shall be primarily concerned with the symmetric rendezvous
value R obtained by restricting the two players to using the same mixed search strategy.
This corresponds to the case where the players have not previously agreed which role each
should take (e.g., wait or search) in the event they become separated, or where, after becoming
separated, they both take directions from a controller who does not know their names. Without
this restriction we have the asymmetric rendezvous value R, which in general is smaller. In
addition, the rendezvous value will depend on geometric aspects ofthe information each player
has about his position in a symmetrical region X, which we will formalize by specifying a
particular subgroup G of the isomorphism group I of the metric space (X, p). For example,
the players may be lost on a circle, have no common notion of where 0 0 is, but have a
common notion of clockwise (i.e., both know which way is up). In this case a strategy of head
for 0 0 would not be allowable, but go clockwise would. In other words, the players may
have some uncertainty about how to fit the picture of the search region that they see to a map
common to both. It is the aim of this paper to formalize these notions of spatial symmetry,
to give a rigorous definition of the rendezvous value(s), and to provide some estimates or
determinations of R in some simple cases. We also suggest some extensions to the theory
given here that we hope will stimulate further work on rendezvous search theory.

From a formal point of view rendezvous problems are very close to search games with
mobile hiders (also called princess and monster games). As proposed in Isaacs’s book on
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differential games [12], and extensively analyzed in Gal’s book on search games [9] and in
the literature [1], [2], [3], [4], [11], [10], [6], [13], [17], the latter are zero-sum games where
the meeting time T is the payoff to the maximizing hider. One direct comparison is that the
value of that game (called the search value) is obviously an upper bound for the rendezvous
values. Our work on rendezvous search on the line is also closely related to the work of Beck
(e.g., [7], [8]) on the linear search problem.

No introduction to a work on rendezvous search would be complete without reference
to the examples and analysis given by Schelling in his book on the strategy of conflict [16].
His paradigm is the problem facing two parachutists who land in a field with various roads,
buildings, a river, and a single bridge. He suggests that the essential problem is to find the
uniquefocal point, which in this case is generally thought to be the bridge. The implication is
that without focal points the problem cannot be formulated, let alone solved. Our perspective
is diametrically opposed to Schelling’s. We ask how to rendezvous when the search region
is homogeneous. The difference in our analysis that enables us to tackle (sometimes) such
questions is that while Schelling considered one-shot strategies (go to point z), we consider
multistage strategies that continue to search after initial failed attempts to rendezvous. This is
not to suggest that focal points are not important in practice--surely they are--but we hope to
show that even in the absence of focal points rendezvous search is more than purely random
wanderings.

The paper is organized as follows. In 2 we define the rendezvous value for a compact
metric space endowed with a given subgroup of its isometries which reflects the players’
spatial uncertainties. In 3 we give upper bounds for the rendezvous values of a metric
network. In 4 we illustrate the definitions of 2 involving symmetries by considering various
rendezvous values for the circle with respect to different isometry groups. Up to this point
all the definitions and examples relate to continuous motion in continuous time, which is our
main interest. However, interesting search problems can also be formulated on graphs with
the players moving in integer time to adjacent nodes of a graph. An outstanding result in
this direction is the paper of Anderson and Weber [5], which gives asymptotic results for the
symmetric rendezvous value of a complete graph. In 5 we find the symmetric rendezvous
value for the cycle graph on m nodes when the players are restricted to symmetric Markovian
strategies. This result is a rendezvous version of the elegant analysis of Ruckle for the (zero-
sum) search game with the same dynamics [14], [15]. In 6 we consider rendezvous search
on the real line, where the players know the distribution of the distance between them but do
not know the direction of the other player. These problems are a rendezvous version of the
linear search problem [7], [8] mentioned above. We conclude with a short final section on

suggestions for further research on rendezvous search.

2. Rendezvous on a compact metric space. In this section we define the rendezvous
search problem (and associated values R and Ra) for a compact metric space (X, p) with a
given detection radius and a given group G of isometries (distance preserving bijections) of
X. Since it is the last of these elements that requires the most motivation, a brief discussion of
the isometry group and its connection with spatial symmetries precedes the formal argument.
Note that throughout this paper we are assuming that the players can see the whole region
X but cannot see the other player. (Without this assumption we have rendezvous search in a
maze, which will be the subject of another paper.)

Suppose the search region X is a plane (it’s not compact, but that won’t matter for this
example) with a perfectly straight canal running through it, and a single bridge over the canal.
If the water is flowing, then the two players could each determine their exact position on a map
common to both. Thus a search strategy could, in principle, depend on the exact point where
they are initially placed (where the parachutists land). Now suppose the bridge is not present.
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The players can now tell their distance from the canal and which side of the canal they are on
(the side from which the river flows right or left). The group G of isometries which describes
this lack of information is the real line , which acts on the planar region by translations
in the direction of the canal. Each real number corresponds to a possible placement of the
bridge along the canal. If the canal is the ?4-axis on the map, then each player’s information
on landing is his z-coordinate, and his information space ) is thus N X/G 2/.,
where the / indicates the equivalence classes of the set on the left via the action of the group
on the right as defined below. Now suppose the river no longer flows. The players now
know only their distance to the river, not which side they are on. Their information is now in
X + [0, c), which equals X/G, where G now also includes the reflection isometry
across the canal. Next, take away the canal. Now the region X is a featureless plane where all
points look the same. Let us assume they landed on Earth so they know where up is. Then the
relevant isometry group consists of translations and rotations of X, and the information space
2 is a singleton, meaning no information is obtained upon landing. However, since they agree
on up, they can coordinate to the extent of using, say, clockwise spirals in the symmetric game
or opposite directional spirals in the asymmetric game. Finally, if we consider two astronauts
lnnding on a planar region of space, perhaps from opposite sides, then they no longer have a
’ommon up, and a reflection of the plane must be added to the isometry group G. They can
no longer agree on the meaning of clockwise. Note that in both of the last two scenarios the
information space is trivial, but more strategies are available in the former than the latter. To
summarize, the given group G represents the players’ uncertainty (or information set) when
trying to fit their view of the search region and their position on it onto a map common to both.
We apologize to mathematicians for this lengthy discussion, but it is possible that these ideas
are new to some who could otherwise follow the arguments of the paper.

To begin the formal analysis, we first define the set of paths P that the players may use
for searching by P {p" + X, p(p(tl), p(t2)) <_ Itl t21}. The subset of paths which
start at a point :e is denoted by 19x. The meeting time T 19 19 --+ + of two paths p, q is
defined by

(1) T(p, q) min{t p(p(t), q(t)) <_ 5},
where 5 is the given detection radius. We note that in most of our examples the space X is one-
dimensional, and we will take 5 0. The group G induces an equivalence relation on X and
19 by x 1 39 G, 9() 1 and p q tee 39 G, 9(p(t) q(t). Call the associated
sets of equivalence classes X and 19, and let denote the equivalence class of an element. A
search strategy is a map s" /3 such that there is some path p s(z) with p(0) x, and
the set of all search strategies will be denoted by S. It is worth noting two important cases
in which this formalism simplifies considerably. If there is no group of isometries given (or
formally, if G is just the identity transformation), then a strategy is simply a map s X 19
satisfying s(:e) 19x. If the group G acts transitively on X (Vx, y X, 39 G" 9(x) y),
then X is a singleton and S P. The next problem is how to evaluate the (expected) meeting
time for pairs of equivalence classes of paths. Let u denote the Haar measure on G and define

(2) T([p], [q]) T(gp, q) d,(9).

The reason we must only have G act on one of the paths is that for 9, h G, T(gp, hq)
T(h-lgp, q). To obtain the normal form for the search game, assume players are placed in
X independently, according to the same measure #. Then the normal form is given by the
function T" S S defined by

(3) [ f
dxX Jy.x
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The symmetric rendezvous search problem is finding the search strategy which, when used
by both players, minimizes the expected meeting time. For some search problems (X, G) it
may be that when the same path class is chosen by both players, for some choices of 9 in
(2) the players’ initial distance is preserved in time (e.g., if both go at speed clockwise on
the circle and 9 is the identity). The result may be an infinite expected meeting time. To get
out of this enforced symmetry, the players can choose the same mixed strategy, breaking the
symmetry by independent randomization. Thus even though this is essentially a one-person
decision problem, randomization may be necessary. With this in mind, let S* denote the set of
all mixed search strategies, i.e., the set of all probability Borel measures on S. The topology
on S is defined by giving P the topology of uniform convergence on compact sets. We then
define the symmetric rendezvous value of the search problem (X, G, 6) by

The use of min rather than inf can be justified by observing that the meeting time function
T is lower semicontinuous in each variable on the path space P when the latter is given the
topology of uniform convergence on compact sets. The full argument is the same as for search
games as in [9]. For the asymmetric rendezvous problem there is no need for mixed strategies,
so the asymmetric rendezvous value is given by

(5) R R(X, (7, 6) min (r, s).
r,sES

Most of this paper is devoted to examining the efficacy of various search strategies and
establishing upper bounds on the rendezvous values for particular or specific search spaces.

2.1. Homogeneous search regions. In most of the problems to be analyzed in the paper,
the group G will act transitively on the search region X. In such cases we will say that X
is homogeneous. (Roughly speaking, the region looks the same viewed from any point.) In
these cases the definitions given above can be simplified. First, we may take the distributions
of the players as given by the one induced by the Haar measure u on G. In the cases of the
circle, torus, or sphere, this will give a uniform distribution (normalized Lebesgue measure).
The pure strategy space can be identified with the space of equivalence classes of paths/5.
Thus the normal form is given simply by (2).

2.2. Relation to search games. The reader familiar with search games with mobile
hiders may wonder why the spatial symmetries of the search region are not so important in
that theory. In search games, it is usually assumed that the hider and searcher can pick their
starting points, hence their entire paths. If there is a symmetry, say rotationally on the circle,
either player can symmetrize his strategy. If one player symmetrizes, it is the same as if the
game had been played with a symmetrical initial placement. Now in a zero-sum game, if
there is a condition (such as symmetrical-uniform initial placement) which either player can
force, then there is no loss in generality if it is assumed. Hence there is no need to make this
condition part of the definition of the game.

3. Rendezvous on a network. There are some classes of search strategies which may
be applied to a whole family of search regions. They may be used to obtain general bounds on
the rendezvous value (or the search game value V) for the whole family. For example, if the
search region is a network of unit length arcs, the following elementary estimates are easily
established.

PROPOSITION 1. Let (X, p) be a connected network consisting of m unit arcs which
intersect only at endpoints. Let G be the group ofall isometries of(X, #), the detection radius
6 be zero, and D denote the metric diameter of X. Then
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1. V(X, G) <_ 2rod <_ 2m2,
2. R (X, G) <_ 4m, and
3. n(x,) <_m.
Proof. To obtain the first estimate, consider the following search strategy. In time intervals

of length D, starting at time zero, search as follows" Pick a random arc and choose a path which
arrives at the center of this arc in time D and one of the endpoints of this arc (equiprobably)
in time D 1/2. Such a path will meet any continuously moving player with probability at
least 1/2m. Hence the independent repetition of such paths meets any continuously moving
player in expected time no more than 2roD.

For the second estimate double every arc so that the resulting network is Eulerian. Thus
it takes no more time than 2m to complete a circuit of the original network. Consider the
following mixed search strategy called Eulerian or Wait (EW): With probability p follow some
Eulerian path on the doubled graph. With probability (1 p) wait for a time period 2m. Ifp is
taken to be 1/2 (which is not optimal but gives the best simplified estimate for this proof), then
in each time period of length 2m, two players using this strategy will meet with probability
at least 1/2, i.e., the probability that one waits and one searches. Hence the expected meeting
time (neglecting meetings when both are searching) is no more than 4m.

In the asymmetric case, the players can agree on who will search and who will wait. If
some Eulerian circuit of the doubled network is traversed equiprobably in either direction by
the player who searches, the players will meet before time 2m and on average before time m,
giving the third of these elementary results. []

Since D >_ 2 (if m > 3 and there are no multiple arcs with equality for the network based
on the complete graph), the estimate for the rendezvous value is less than that for the search
value. The second estimate can be improved for the network based on the complete graph by
optimizing for p [5], and the first can be extended to networks with arcs of varying lengths [3].
One obvious improvement to investigate is for the waiter to move to a nearby node and wait,
and for the searcher to use a traveling salesman route on the nodes. All these estimates are
very crude, but it seems likely that they are better than those achieved in general by random
walks. Of course, if the network has no symmetries (G {identity}) then the players can
pick a point at which to rendezvous and the rendezvous times are much reduced as shown for
the circle in the next section.

4. Rendezvous on the circle. To illustrate the symmetry notions of 2 and show how
the general network estimates of 3 can be improved for specific cases, we now investigate
rendezvous on a circle C. For convenience we take C to have circumference 2. We will
consider three isometry groups on C: group G1 consisting of just the identity, group G2
consisting of all rotations, and group G3 consisting of all isometries of C (rotations and
reflections). We define the allowability of a search strategy (or strategy pair in the asymmetric
case) to be the highest indexed group G with which it is consistent. In this section we obtain
estimates on the rendezvous values RJ(C, G), j E {s, a}, E {1,2,3} by analyzing some

particular search strategies. But before we begin this analysis we have two observations. Since
the search value of C is known to be 3/2 (using the COHATU strategy described below) 17],
[1], this is an upper bound for all the rendezvous values. Also, by observing that C can be
viewed as a network with m 2, and the last two estimates of Proposition can be reduced
by a factor of 2 for Eulerian networks, we see that Rs(C, G) <_ 4 and Ra(X, G) <_ 1 for any
isometry group G. We now consider four search strategies (the last two are strategy pairs for
use in the asymmetric problem):

GOTOZ: This strategy takes the shortest route from the initial point to a given ren-
dezvous point Z. The allowability of GOTOZ is clearly G, since its implementation requires
the exact knowledge of both the initial point and Z. As a strategy for symmetric rendezvous
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on (C, G1) it has expected meeting time 2/3 for any (agreed) Z.
COHATU: This strategy is short for coin half tour, and has been shown to be optimal

for both the hider and the seeker in the circle search game. It moves from the initial point to
the antipodal point (distance 1) at unit speed, equiprobably via either route, and then continues
to oscillate between these points equiprobably via one of the routes. Its allowability is G3 and
results in expected meeting time of 3/2 if either player adopts it.

OPDIR: This is the strategy pair in which one player goes clockwise at unit speed and
the other goes counterclockwise at unit speed. Its allowability is G2, since it doesn’t require
knowledge of the initial position but does require knowledge of up, which is not preserved
under reflections. The expected meeting time is 1/2.

GOSTAY: This strategy pair has one player wait while the other player chooses a
random direction to go around the circle at unit speed. Its allowability is G3 and it has an
expected meeting time of 1.

The examples given here provide upper bounds (which may be exact) on the various
rendezvous values for the circle, which are summarized in Table 1.

TABLE
Rendezvous boundsfor the circle.

G1 G2 G3

t g (GOTOZ) - (COHATU) (COHATU)

/a 5 (OPDIR) 5 (OPDIR) (GOSTAY)

5. Rendezvous on a cycle graph. The problem of rendezvous may also be formulated
on a graph. Suppose at time t 0 the two players are placed independently and equiprobably
on the nodes of a given graph. At each integer time t they may move to an adjacent node until
the first time T that they occupy the same node. (If they transpose their positions on adjacent
nodes they remain unaware of the other’s position.) The problem for a complete graph has
been analyzed in [5].

In this section we recast a search problem of Ruckle [14], [15] in a rendezvous context.
Ruckle considered the problem faced by two players placed randomly on the nodes of the
cycle graph Cm with m nodes labelled 0, 1,..., m- 1, where node is adjacent to node j
if ]i j] (mod m). He restricted the players to symmetric Markovian strategies. That is,
each player picks some number p in (0,1/2) and moves counterclockwise with probability p,
clockwise with probability p, and remains still with probability 2p. Ruckle considered the
zero-sum game with payoff as expected meeting time T(p, q), where the maximizing hider
picks move probability p and the minimizing searcher picks move probability q. We use the
same game dynamics but consider the simpler rendezvous problem of minimizing the expected
meeting time f, (p) T(p, p), when both players move with probability p. Our analysis of
the dynamics is a simpler version of [14].

We consider a reduced state game where the difference between the two nodes (mod m)
is the state. At each stage the state moves according to the independent randomizations of
the players, except that the state 0 is an absorbing state. The m-state Markov chain which
describes the dynamics is given for m > 4 by the matrix A {aij }, where

(6)

if/--j --0,
0 ifi 0,j -0,
p2 ifj + 2 (mod m),

aij 2p(1 2p) ifj (mod m),
(1-2p)2+2p2 if/-j-0,
0 otherwise.
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If m 4 there is a small modification such that

(7) aij 2p2 when j +/- 2 (mod 4).

The expected meeting time is the same as the expected number of periods that the state is in
{ 1,2,..., m }. Let/3 denote the (m 1) x (m 1) submatrix of A corresponding to
these states. Then it is easy to see that the expected meeting time is given by

(8) fro(P)-- (1)__ e’Bke- (1) e’(I-B)

where e and e are the column and row vectors consisting of m ones. The full justification
of a more complicated version of this formula is given in [14], [15], where it is also shown
that f is convex. Now it is easy to see that the minimum of f cannot be at either endpoint
0 or 1. At 0 the players don’t move, so they don’t meet unless they start together. At p 1/2,
the distance between the players changes by 2 in each period. So if they started an odd
distance apart they can never meet. So we now determine the optimal rendezvous speedm
and the coesponding rendezvous value (a restricted version) R f(.) for m > 3.
For m 4, 5 we can calculate an exact value, but for m 6 we present only numerical
approximations.

5.1. Rendezvous on C4 or C5. When m is 4 we evaluate (8) using (6) with (7) to obtain
the expected meeting time function

5 9p
(9) f4(P)

4(2p 6p2 + 4p)"

This function has a local minimum (which is global between 0 and 1/2) at

(10) 4 4 f4(4)-
27

2 3.375

Similarly, the expected meeting time tbrmula for m 5 is

4 6p
(11) f(P)

4p- 10p2 + 5p’
which has a minimum at

(12) 5 - f() 4.aa.

It seems likely that with some additional work a pattern for the rational functions f could be
found, but we find it easier to proceed numerically for larger values of m.

g.. Rendezvous vs. search game n C. Since Ruckle [14], [15] has given such a
complete analysis ofthe search game on C, it is easy to compare our numerical results with his
(which he gives for m 10). In Fig. we state and plot the optimal probabilities of moving
p and q 0 for our rendezvouser and Ruckle’s searcher. Note that in each case
the move probabilities are increasing in m (presumably to a limiting value of 1/2) and the
probabilities for even m are slightly lower than the inteolated curve generated by odd values.
There is a blip in the data at m 4, which is not surising given that the Markov chain has a
different formula. The main observation is that it is necessary to move faster to catch an evader
than to meet a rendezvouser, i.e., q > p. In Fig. 2 we present our numerical results for the
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FIG. 2. Rendezvous vs. search values.

rendezvous value R R, along with Ruckle’s search values V for m _< 10. Surprisingly,
making the evader cooperate does not significantly reduce the expected meeting time, that is,
R, is not very much less than V,.

The main reason for going through the analysis of this section is that it gives us, admittedly
in a very restricted context, a direct comparison of the search game and rendezvous values,
and of the respective optimal search strategies.

6. Rendezvous search on the line. Up to this point in the paper the search region X has
been compact. We now consider the natural starting point for an investigation of noncompact
regions, the real line. There has been much work by Beck and others [7], [8] on variations of
the linear search problem, where a searcher starting at 0 and moving at unit speed attempts to
find a stationary hider whose distribution is known. The problem posed in this section may
therefore be called the linear rendezvous search problem.

The story behind this problem is as follows: Two friends have agreed to meet at noon
on a certain street but have neglected to specify a specific point on the street. Assuming they
know the distribution of their arrival points on the street (at noon), how should they move to
meet in minimum expected time?
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To formalize the problem, we first observe that everything is translation invariant, so we
need to assume only a known cumulative distribution function F for the distance between them
at time zero. Both players know F but neither knows the direction of the other player. So we
assume that their mixed strategies are invariant with respect to reflection about their starting
point. Let the rendezvous value R (F) be the minimum expected meeting time achievable by
players using the same reflection-invariant strategies. Both.bounded and unbounded distribu-
tions will be of interest, but since we have nothing to say here about the latter, we will assume
there is maximum initial distance D DF min{z F(z) 1} and hence a finite mean
initial distance # #F. Also, we may assume without loss of generality that the two players
will not be placed at the same point or F(0) 0.

One method the players may employ to keep a bound on their distance is to return
periodically to their respective starting points. However, a less obvious and perhaps more
effective way of achieving the same result is the following strategy, which I call 1F2B(z) for
one step forwards, two steps backwards: pick either direction to call forward equiprobably;
go a distance z forward at unit speed; then go a distance 2z backwards at unit speed; repeat
the entire process indefinitely with independent randomization. A player following strategy
1F2B is globally following a random walk of step length x in time unit 3z, so his position
is certainly unbounded in time. However, the relative positions of two players following this
strategy (until they meet) are maintained as described in the following proposition.

PROPOSITION 2. Suppose two players are using strategy 1F2B(z), where z >_ D/2, and
they have not met by time 3z. Then the conditional distribution oftheir distance at time 3z is
the same as their initial distance distribution F. In fact, their distance at time 3z is the same
as their initial distance.

Proof It suffices to prove the last sentence. This is easily established by considering two
cases: the players move in the same direction, or they move in opposite directions. In the latter
case we either have T _< z (if they move toward each other) or 2z <_ T <_ 3z (if they move
away from each other first). In the former case, the distance between them is preserved for all
times t E [0, 3z], and they will not meet by time 3z (since we are assuming that F(0) 0).
Hence if the game has not ended by time 3z (that is, if T > 3z) then they must have gone in
the same direction, and, therefore, their distance at time 3z equals their initial distance. []

PROPOSITION 3. For any bounded distribution F, R(F) <_ 2DF 4- #/2.
Proof We show that the bound is the expected meeting^time for two players using

1F2B(D/2), where D D and # #F. First observe that T is ceainly finite because the
probability of meeting by time 3rD/2 is at least 2-n. To calculate T we consider separately
the three cases where the players move in the same direction (probability 1/2), towards each
other (probability^l/4), or away from each other (probability 1/4). In the first case the expected
meeting time is T 4- 3D/2 by the previous proposition. In the second case the cumulative
distribution of meeting times is given by G(t) F(2t), so the expected meeting time is #/2.
Finally, the third case reduces to the second case after time D, so the expected meeting time
is D 4- #/2. Combining these observations, we obtain the equation

(1)

which has, as claimed, the unique solution

(14) 2D 4- #/2. []

A particularly simple version of the rendezvous linear search problem is one in which the
two players know the initial distance (say 1) between them, but neither knows the direction
of the other. In this case D # 1, so the above estimate gives _R <_ 5/2. We conjecture
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that the rendezvous value is in fact 5/2 for this problem and that 1F2B (1/2) is optimal. It is
also likely to be optimal for the uniform distribution over [0,1 ], in which case that rendezvous
value would be 9/4. If the initial distribution F is very sparse near D or unbounded, then of
course 1F2B is not effective. However, it can still be used with finitely many repetitions with
the step length successively increased as the conditional distribution changes.

The work done in this section is of course very preliminary. However, we are sure the
linear rendezvous search problem defined here will prove to be a very productive sidekick to
its cousin, the linear search problem.

7. Questions for further work. While we feel that the formalization of the rendezvous
search problem given here is important, we are aware of the very preliminary and exploratory
nature of the results. Even in cases (such as COHATU on the circle or 1F2B on the line) where
we think our suggested search strategies are effective, we have not shown them to be optimal.
In other cases (such as search on a network) even the suggested strategies are not very good
and serve only to give preliminary upper bounds on the generic rendezvous value. However,
we hope these first attacks on the problem of rendezvous search will stimulate further work
in this area.

We conclude the paper with a number of questions on rendezvous search that would
extend the scope of the theory.

Many players: For simplicity, we have limited the discussion in this paper to the case of
two players wishing to rendezvous. In general, when two players meet (out of r > 2) they may
exchange information about where they have been (which is their only private information).
There are two cases to consider: they may be restricted to stay together once they have met,
or they may be allowed to agree on a joint strategy which may allow separate motion. The
former is probably easier to analyze.

Local vision: The formulation given in this paper assumes the players can see the whole
search region. An alternative is to assume they know the search region but can perceive it
only locally (within a given distance). For example, our formulation, for the unit interval
X [0, 1], allows the strategy of go to 1/2 even if the isometry of reflecting about 1/2 is
given. With a local vision restriction the players would only know where 1/2 was when they
were close to 0 or 1, when they would know the whole interval (possibly up to reflection).

Rendezvous in a maze: We may further limit the players’ information by giving them
local vision and not telling them the nature of the search region X. Perhaps they are only told,
for example, that they will land in a network of total length 1. This is a two-sided version of
maze search problems.

Adversary-rendezvous games: Suppose the two searchers’ initial position in X is chosen
by another player who wishes to maximize their meeting time. This other may even choose
X, possibly in a maze or local vision scenario. This becomes a two-person zero-sum game
where the rendezvousers are a single player.

Lower bounds on R: Upper bounds on the rendezvous value may be obtained by
guessing good search strategies. How can lower bounds be obtained? (Of course half the
expected initial distance is a lower bound, but hardly a good one.)

Extremal theory: For regions which can be searched in, say, unit time, which have the
smallest and largest rendezvous values?

A calculus of rendezvous: Suppose 2X denotes the search region consisting of two

copies of X, each with the same symmetries as the original. Suppose a player may move
between (perhaps corresponding) points in the two copies in a given time L, but that two players
so moving will not meet. Furthermore, suppose the original distribution is split equiprobably
between the two copies. This defines a search game on the region 2X. Similarly, X /Y could
be defined with allowed transport between any pair of points in the two regions. This seems to
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be a good model of a couple trying to meet who have been invited to two large parties, where
the only transport between them is via taxi. The transport time L is probably significant. We
can either assume the taxi is free or add an additional cost other than time.
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1. Introduction and problem function. Let X, U, W, Z be real Hilbert spaces and A be
the infinitesimal generatorofCo-semigroupeAt onX, t31 E L(W, Z), B2 E L(U, (D(A*))),
C1 L(X, Z), D12 L(U, Z). Here A* is the adjoint of A, D(A*) is the domain of A*
endowed with the graph norm, and (D(A*)) is the dual space to D(A*). Consider the
input-output system defined by

(1.1) x’(t) Ax(t)+ Blw(t)+ Bzu(t), t R+ [0,

(1.2) z(t) ClX(t)nt- D12/z(t), t e R+.
Here x(f) E X is the state of the system, u(t) U is the control input, w(t) W is an
exogeneous input, and z(t) Z is the controlled output.

We shall assume
(i) A-1B2 L(U,X), and for every T > 0 the operator BeA*t admits a continuous

extension from X to L2(0, T; U), i.e.,

T

(1.3) B eA*txl2u CTIxl 2 V x x.

We denoted the adjoint of B2 E L(U, (D(A*))’) by B L(D(A*), U). We shall denote
the norms of X, Z, U, W by I" Ix, I" [z, I" ]u, [" Iw and the corresponding scalar products by
(’, "), (’, ")z, (’, ")u, (’, ")w. By assumption (i) it follows that for every T > 0, system (1.1)
with initial condition x(0) xo X, and inputs u L2(0, T; U), w L2(0, T; W) has a
mild solution x E C([0, T]; X) given by

(1.4) x(t) eAtx0 -+- eA(t-s)(]llW(8) + B2u(s))ds Vt [0, T].

More precisely, for every T > 0 the operator u - f eA(t-s) t32u(s)ds is continuous from
L2(0, T; U) to C([0, T]; X) (see, e.g., [5]).

This is the abstract formulation of a large class of boundary control systems with dis-
tributed disturbance input including the one governed by the wave equation with Dirichlet and
Neumann boundary control, first-order hyperbolic systems, and Euler-Bernoulli equations
(see [5], [8]). For instance, the input-output system

(1.5)
Ytt-Ay--w infxR+,
y-u in0fxR+,
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where u E L2(R+;L2(Ofl)), w L2(R+;L2(f)) can be written in the form (1.1) when
X- L2(a) x H-l(a), U- L2(0f), W L2(a), and

0 00 I Bw B2uA A 0 w -ADu

Here A is the Laplace operator with the domain Hd (f) N H2(f) (f is an open-bounded
subset of _R with a smooth boundary 0f) and D L(L2(Of), L2(f)) is the Dirichlet map,
i.e., ADu D in f, Du u in 0f (see, e.g., [5]).

We shall denote by .T" the class of feedback controllers F L(D(A), U) having the
property that As A + B2F generates an exponentially stable Co-semigroup eAvt on X
and D(AF) c D(F); FeAvt L(X, L2(R+; U)). We note that the operator A + B2F is
continuous from D(A) to (D(A*))’, so AF, which is its restriction to H, is well defined.
Since B L(W, Z), we see that for F E 9c the closed loop operator SF L2(R+; W)
L2(R+; Z), (SFw)(t) (C + D2F) f eA(t-S)BlW(S)ds; t >_ O, is well defined.

As a matter of fact x Sw is the mild solution of (1.1) with feedback control u Fx
and initial value condition x(0) 0 (see [7] for a definition of mild solutions of an infinite
dimensional Cauchy problem).

Let /> 0. Following the standardH control theory (see [2]) we say that the feedback
controller F X -- U is an Ho controller for system (1.1), (1.2) if F 9c and IIS <
Here IISII is the norm of the operator S L(L2(R+; W),L2(R+; Z)).

In addition to assumption (i), we shall assume that
(ii) The pair (A, C1) is exponentially detectable, i.e., there exists If L(Z, X) such that

A / KC1 generates an exponentially stable semigroup;
(iii) D21C, D21 10, I I.
Assumption (iii) simply says that

(1.6) IC, x + D12ul2z --[ClxI + Il V (x, ) X U.

Theorem below represents the main result of this paper.
THEOREM 1. Let 7 > 0 and suppose that assumptions (i), (ii), and (iii) hold. Then

there exists an H controller. F such that lSFll < 7 if and only if there exists P
L(X,X), P P* >_ 0 such that Ap A B2B + 7-2B1BP is the infinitesimal
generator ofan exponentially stable Co-semigroup and

(1.7) BP e L(D(A), U) L(D(Ap), U), A*P e L(D(Ap), U),

(Ax, Py) / (Px, Ay) (P(B2B  -2B1B1)Px, y) / (Clx ely) 0

for all x, y D(A) or else for all x, y D(Ap). Moreover, in this case the state feedback
F -t3P is an Hoc control, ]]SF < /, and the solution P of Riccati equation (1.8)
is unique in the class of P L(X, X*), P P* >_ O, having the property that Ap is

exponentially stable.
We note that by (1.7) the operator x -- Ax- t32t3Px /’)’-2/3/3P is continuous from

D(A) to (D(A*))’. Ap is the restriction of this operator to H.
Theorem 1 resembles the standard finite dimensional results [2]. The case B2 L(U, X),

i.e., the case of distributed input controllers, was previously studied in [9].
A standard approach to the suboptimal Ho controllers is to associate with system (1.1),

(1.2) the differential game

(1.9) sup inf
wEL2(tz+;W) uEL2(R+;U)
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and write the closed loop strategies in terms of an algebraic Riccati equation [2], [9]. However,
the extension of [9] to the present situation is not trivial and relies on some recent results [3]
on synthesis of quadratic optimal control problems with infinite horizon. Related results
were recently obtained for the differential game (1.9) by McMillan and Triggiani [6] under
the additional hypothesis that either eAt is exponentially stable or the system x A*x +
(CC1 )*v is exactly controllable in finite time.

2. The sup-inf problem. Here we shall study the differential game (1.9) under assump-
tions (i), (ii), (iii), and

(j) the pair (A, B2) is exponentially stabilizable, i.e., F E L(D(A), U) such that
A / B2F generates an exponentially stable semigroup e(A+BzF)t and the following inequality
holds:

sup inf (IClXl2z / lUl2g)dt; x’ Ax / B2 / .lW;
wEL2(t+ ;W)

}(/0(0) 0, r(+; U) I1 dt < .
In particular, assumption (j) holds if there is an H control F U for system (1.1).
LEMMA 1. Ifassumption (j) holds then

(2.1)

inf (C,yl + [u)dt; y Ay + B2u + B,w; y(O) xo, u L2(R+; U)

< (2 ) Iwl dt + CIx012 Vx0 X Vw L2(+; W)

for some e > 0 and C R independent ofw.
Pro@ If condition (j) holds, then g > 0 such that

inf (IClxl + Il)dt; x’ Ax + 2u + w,x(O) O, u L2(+; U)

Under assumptions (i), (ii), (j), Po L(X,X), Po P k 0 such that Ap
A B2BPo is exponentially stable and BPoeA’otxo L2(R+; U), V xo X (see [3]).
This implies that

inf (Iclxl + lu + BjpoeA’tZoI)dt;

e L(+; U), ’ A + +, x(0) 0}
< ( 2-e) dt + Clxol 2 w L2(+; W), xo X.

Hence

inf ClXl2z + lUl2u)dt; x’ Ax + B2(u- BPoeA’otxo) + Bw;

x(O) o, L2(/; U) < (2 2-) Iw v dt / Clxol 2,
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Since the solution y of (1.1) with the initial value condition y(0) :Co can be represented as
y(t) x(t) + eAPotxo, where x’ Ax + B2(u t3poeAPotxo) +/31w, x(0) 0, the latter
inequality implies (2.1) as desired.

Let Kxo L2(R+; U) x L2(R+; W) -- [-oc, +oc] be defined by

where :C is the mild solution of (1.1) with :C(0) :Co.
In terms of Kx0 we may equivalently write (1.9) as

(2.2) sup inf Kx0 (u, w)
wE1/V uEL/

where b/= L2(/i+; U) and 1/Y L(R+; W). In this section we shall prove the following
result.

PROPOSITION 1. Problem (2.2) has a unique solution (u*, w*) characterized by

(2.3) u* (t) Bp* (t) a.e. t > O,

(2.4) w* (t) -q,-2B’p* (t) a.e. t > O,

where p* E C(_R+; X) is the solution of

(2.5) (P*)’ -A’p* + CC X*
=o,

in R+,

and x* is the solution of(1.1) with x*(O) xo, u u*, and w w*.
Equation (2.5) should be understood, of course, in the following mild sense:

(2.6)
T

p(t) eA*(T-t)p(T) eA*(s-t)CC,x*(s)ds

for all 0 < t < T <
We shall first study the minimization problem

(2.7) inf(Kxo(U, V); u E ld},

where w E 1/V is arbitrary but fixed.
This is a linear quadratic optimal control problem on R+ [0, oc[.
LEMMA 2. For each w l/V, problem (2.7) has a unique solution g Fx0w.
Proof By assumption (j) the function u -+ Kxo (u, w) is not identically +oc for each

w 1/V.
Moreover, it is strictly convex and continuous, and

This implies that (2.7) has a unique solution g by the standard existence result.
LEMMA 3. Thefunction f, is the solution of(2.7) ifand only ifthere exists p E C(R+; X)

such that

(2.9) p’ -A*p + CC1. in R+; p(oc) 0,
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(2.10) Bp(t) t(t) a.e. t > O.

Here 2 is the solution of(1.1) with u z Fx0Z.
ProofofLemma 2. Let be the solution of (2.7). Consider the family of approximating

control problems

(2.11) (xo) --inf ClXl2z + lul)dt;x’- dx + B2u q-/31w; x(O) xo

and denote the corresponding solution by (xn, u,). We have

n(xo) <_ inf (IC, xl2z + lUl2u)dt; x’ Ax + B2u + B,w; x(O) xo

and since the function (x, u) --+ f"(lCx 2
Z + u 2u)dt is weakly lower semicontinuous we

get

un -+ strongly in L2 (R+ U),
x (t) -- 2 uniformly on compacta,

Clxn -- ClY: strongly inLZ(R+; Z).

On the other hand if we write the state system (1. l) as

(2.12) x’ (A + KC1)x- KCx + B2u + BlW,

where K E L(Z, X) is as in assumption (ii), we have

Xn(t (t) AK(t--s)((l2(2tn(8 t(8)) t(ClXn(8) C1(8))d8.

Next, by Lemma 5.2 in [3] we have

B.eA*txolu dt <_ Clxol2 VxoEX.

This yields

xn (t) - 2(t) uniformly on R+.

Moreover, since L2(R+; U) and w L2(_R+; W), by the same argument it follows that
2 Lz(R+; X)and

lim :(t) 0 strongly in X.

Moreover, according to a standard result in the theory of linear quadratic control problems
Pn C([0, n]; X) such that

(2.13)
-A*pn + Clxn in [0. hi.

--0.

(2.14) u (t) Bp(t) a.e. in (0, n).
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Equation (2.13) should be viewed in the mild sense, i.e.,

(2.15) p(t) eA*(T-t)p(T) eA*(-t)CCx(-)d-, 0 <_ t <_ T <_ n.

We set

(2.16)

9n(t, xo) --inf (ICx 2
z + lUlu)ds; x’ dx + Beu + Bwin(t,n); x(t) xo

The function p (t, .) is convex (in fact it is quadratic) and differentiable. Moreover, we have

(2.17) p(t) -Vn(t, Xn(t)) Vte [0, n].

where V stands for Fr6chet differential. Indeed since (x, u) is optimal in (2.11), where

xo x(t), we have

(t,x(t)) -(t, yo)

,in(IClXn -IClyl)dr + (Unl --[ul)dr

((ClXn, C, (x y)) + (n, n )u)dT,

where y Ay + Bu + Bw; y(t) y0.

Then, by (2.13), (2.14), and Lemma 7 in the appendix, we see that

(2.18) Fn(t, xn(t))- pn(t, yo) -(pn(t),xn(t)- YO) Vyo X

as claimed.
If in (2.18) we take Yo x(t) pO, where 101 1, we get

(2.19) IP(t)l [x(t)lP(t)[ + (t, pO)

for all t [0, n], 10 1, and p < 0. On the other hand, we have

where 2’ (A BeBPo) + B1 w,, (t) p0, and Po L(X, X) is such that APo
A BBPo generates an exponentially stable semigroup with BPoeA’otxo L2(R+; U),
Vxo X (see [3]). Here is given by (s) eA’o(-t)(pO) + f[ eA’o(-)Blw(r)dr,
s t, and, therefore,

IC(s)l + IB3Po(s)l u

(
(i )

s t 2 O, p > O,
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for some oz > 0. Hence, by the Young formula we have

(2.20) Pn (t, pO) <_ C p2 + IW]v dT- V t, p > O,

where C is independent of t and p.
In paicular, we conclude by (2.19) and (2.20) that

(2.21) p.(t) C(p-x(t))-1 p2 + [w]d Vt [0, n].

Since x (t) (t) unifoly in R+ we infer that

limsup ]p(t)] C(p- ](t)])- p2 + ]w] dr

In paicular, it follows that {p} is bounded in L(R+; X), so on a subsequence p p
weak star in L(R+;X). By (2.13) we have

z )
v c (o, ; x).

Letting n we get

T(p(t), (t) )dt

pr, eA(T-)(t)dt (t), ea*(-t)CCz(r)& dt

v c (o, ; x),

where PT w lim p(T) on a subsequence. Hence

p(t) eA*(T-t)pT- eA*(-t)CCx(r)dr a.e.t (0, T).

Extend p by continuity on [0, T] so we get p C(R+; X), which satisfies (2.9), i.e.,

p(t) eA*(T-t)p(T)- eA*(-t)C[Cz(r)dr for all0 t T < .
By (2.21) we have

Ip(t)l i Ip(t)l c(p- I(t)l)- p2 @ IW[ dT Vt O.

Since, as seen earlier, limt (t) 0,

p(t)l C p + p-1 w()l d fort r(p).
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For p (ft [w(r)I dr)’/2 we have, therefore, that

lim IP(t) o.

On the other hand, by (2.14) we have

T

un(t) --Bpn(t) BeA*(T-t)pn(T) BeA*(r-t)CCxn dr

fort e [0, T] C [0, n].

Since the map q BeA* (T-t)q is continuous from X to L2(0, T; U), and the map v

*EA*Be (-t)v(r)dr is continuous from L (0, T; X) to L2(0, T; U) (see [3]), we may pass
to limit in the previous equation to get that

u*(t) Bp(t) a.e.t>0

as claimed.
To prove that system (2.9), (2.10) is sufficient for the optimality of in problem (2.7),

consider a solution (2, , p) of (1.1), (2.9), (2.10) with 2(0) x0. We have

(2.22) ICII IC, xl2z + 2(CU,z,z- x) Vx X.

Now consider an arbitrary solution (x, u) of (1.1); it follows by Lemma 7 that

T(CC,x,x- x)dt
(2.23)

(p(T), (T) x(T)) (,- u)v dt VT > O.

Now if we write system (1.1) in the form (2.12) and use assumption (ii), it follows as above
that Y:, x L2(R+; X) for any solution x of (1.1) having the property that Cx La(R+; Z).

Since limTo p(T) 0 by (2.22) and (2.23), we see that g is optimal in problem (2.7)
as claimed.

LEMMA 4. The solution Fxo ofproblem (2.7) can be represented as

(2.24) F0w=V0w+f0 VweW,

where F0 E L(W,U) and fo arg inf{Kxo(U, 0); u E H}.
Proof Let

F0w arg inf{Ko(u, w); u E H}.

By Lemma 3 it follows that F0w + fxo Bp, where p is the solution of (2.9); this implies
(2.24). According to the same lemma, F0 is linear from W to H. It is also readily seen that

F0 is bounded.

ProofofProposition 1. Consider the function b W -- R defined by

-Kx0(rx0 , weld2.

By Lemma 4, we may write as

(w) -IIDwllv + (Dw, f)+ a Vw e V,
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where D E L(1A2, IV), f E IN, and a R. On the other hand, by assumption (j) it follows
that

() _> ll Iv + v w,
where w > 0 and E R.

This implies that D*D is positive definite, so attains its infimum on W L2(R+; W)
in a unique point w*. Clearly (u* ,0w*, w*) is the unique solution to sup-inf problem
(1.9). To conclude the proof it remains to show that

(2.25) w*(t) --2Bp*(t) a.e. t > 0.

We have

(21’1 -Iro + IClx*])dt

Vw W, R,

where

(2.26) :’ A: +/32F0w +/31w t >_ 0, (0) 0.

This yields

(2.27) (/2(w*,w)w -(r(r0w* + fxo),W)w -(CClZ*,Yc))dt=O

We note that

Vw6W.

{/o: arg inf (IC, xlZz + ]ulZ)dt; z’ Az + Bzu + BlW; z(O) 0

so C12 Lz(R+;X), row Lz(R+; U).
Next, by Lemma 7 we have

o/o’ c; c,* t

(p*(T),2(T)) (row, Bp)v dt + (Bw,p*) dt

(p*(r),(r)) (,r;(ro* + o)) et + (p*,) et.

Let w L(R+; W) be arbitrary but with compact suppog in R+. Since (A, C is detectable
and C12 L(R+; X), we infer that limt 2(t) 0. Then letting T it follows that

(CClz*,)dt ((Bp*, w)w + (w, u*)u)dt,

so by (2.27) we get

*, at o.)

This implies (2.25) as desired, and the proof of (2.4) is complete.
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Let us now prove that (2.3)-(2.5) are also sufficient for the optimality of (u*, w*) in
problem (2.2). Indeed, by Lemma 3, if (u*, w*, p*) satisfy system (2.3)-(2.5) then u* 1-’w*.
Then, since B{p -72w by Lemma 7, it follows equality (2.27) for all (:, w) satisfying
(2.26). Hence,

Equivalently,

(*) _< (* + a)+ 0(a) v w, a > 0.

Since b is convex, this implies that

w* arg inf.(w) arg sup Kxo(rxoW, w)

as claimed. This completes the proof of Proposition 1.

3. ProofofTheorem 1. Assume first that the Ho problem has a solution, i.e., hypothesis
(j) holds. Then, as seen in Proposition 1, problem (2.1) has a unique solution (u*, w* E b/xV
given by (2.2)-(2.4). We set

where p* is a solution of (2.5).
LEMMA 5. We have

(3.2) P E L(X,X), P-P*, P >_ O;

(3.3) (Pzo, zo) Kxo (u*, w* );

(3.4) p* (t) -Pz* (t) V,t >_ O.

Proof. Let us first prove that

(p* (0), 0) ;0 (*, *).

Indeed, by using the mild form of (1.1) and (2.5), we get by Lemma 7 that

(p(T), z* (T)) (p(O), z* (0))

{Cx*(t)12zdt + (IBp(t)12v --2lBp(t)lv)dt

/o
Letting T approach +oc and recalling that limT-,o p(T) limT--,oo z* (T) 0 we get
(3.5). Next, by (3.1) and (3.5) we see that P is single valued and linear. Once again using
system (2.5) we see that (Pzo, /o) (P/o, :co) for all :co, /o X, while by (3.3) we have

(P:co, zo) >_ inf{Ko(U, 0); u /g} _> 0 V:co X, i.e., P P* _> 0.
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As a supremum of lower semicontinuous convex functions xo -- Ko (l-’xo w, w), the function

x0 (Px0, :co) is itself lower semicontinuous. Since it is convex and everywhere finite we
infer that it is continuous. Hence 19 E L(X, X). Note also that by inequality (2.1) it follows
that

(3.6) (o, o) + I*l dt C X0
2

for some c > 0 and C > 0 independent of x0.
Then, again using the detectability hypothesis along with (2.12), where x x*, u u*,

and w w* we see that

0

+lh eA(t-s) z(x,x)(IKCl x (s)l + VhEX.

Hence

and by (3.6) we get

(3.7)

where C is independent of x0.
Note that for every t _> 0, (u*, w*) is the solution of the following problem:

(3.8)

We may prove (3.8) by a dynamic programming argument, but we may also use Proposition
observing that u*, w*, z*, p* satisfy on It, oc) system (1.1), (2.3)-(2.5) with the initial

condition z(t) z* (t), which is sufficient for optimality. Then (3.4) follows by (3.1).
Denote by Sp (t) X X the family of linear operators

&,(t).o x* (t) v t >_ o,

where z* is the optimal state in problem (2.2).
Since z z*(t + s) is the solution to problem (3.8), we infer that Sp(t + s)zo

s(t)s()o, v t, >_ o.
Next, by (3.7) we see that Sp(t) L(X, X), V t _> 0. Hence Sp(t) is a C0-semigroup

on X.
Let Ap be the infinitesimal generator of Sp. In Lemma 6 below we collect some properties

of Ap and B:P for later use.
LEMMA 6. We have

(3.9) D(A) C D(BP),
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(3.10) B;P L(D(Ap), U) L(D(A), U),

Apxo (A- B2BP + 7-2BBP)xo Vxo D(Ap).

Proof. This proof is essentially the same as that of Lemma 4.5 in [3]; however, we sketch
it for the reader’s convenience.

By (2.6) and (3.1) we have

(3.12)
T

Pxo --eA*TpeApTxo- eA*tCCleAptxodt VT > O.

If xo D(AF) this yields

/Px0 =teA*TpeApTxo B(A*)-I (eA*TccleApTxo CClx0)

/0 eA*tCCleAptApxodt"

Since teA*tpeAptxo Loc(R+; U), the latter makes sense for almost all T > 0, so

BPxo X. Hence D(Ap) c D(BzP). In particular, this implies that BP is densely
defined and continuous from D(Ap) to U.

On the other hand, for all x0 H and z D(A*) we have

a.e.t > 0.

Since BP L(D(Ap), U) and A-’./2 e L(X, X), we have

(3.13)
(Apxo, z) (xo, A* z) (./2./: PXo ")/--21’Pxo, z)

Vxo e D(Ap) Vz e D(A*).

By (3.10) the operator A 2JP -t- /-2lP is well defined from D(Ap) to (D(A*))’.
Then, (3.13) follows by (3.11).

Next, arguing as in the proof of Lemma 4.1 in [3], we see that

(3.14) A*P < L(D(Ap),X), A*pP L(D(A),X).

For xo D(Ap) and z X we have

(Apxo, Pz) (P(A 2]P -- -2]ltP)xo, Z

(PAxo, z)- (BPxo, BPz)+ "y-2(B;Pxo, B;Pz)w.

Hence

(BPxo, BPz)u -(Apxo, Pz) + (PAxo, z) + ?-2(B;Pxo, B;Pz)w,

and by virtue of (3.14) we get

I(BPxo, BPz)uI CIXOID(Ap)IZlD(A) Vxo D(Ap), z e D(A),
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and

I(Pxo, Byrz)vl CIXOID(A) IZlD(A) VXo D(A), z E D(Ap).

In particular, this yields B;P L(D(A), U) N L(D(Ap), U) as claimed.

Proofof Theorem (continued). To prove that P is a solution to Riccati equation (1.8),
we note first that by (3.3), (3.4), and (3.8) we have

(Pz*(t),x*(t)) (IC, x*()l + *()lr t>O.

For xo D(Ap) this yields

2(Px*(t),AFx*(t)) + IClx*(t)lz -[BPx*(t)lu --2lFrx*(t)lv a.e.t > 0,

and since BP L(D(Ap),X), we get

(3.15) 2(Pzo, Apzo) + IC, z01 -IBPzolu + -21BTPxolw o Vxo D(Ap).

By (3.10) and (3.14), the previous equality extends to all xo D(A), and in virtue of (3.11)
we may write it as

2(Pxo, Axo) + IClxo -IYol + -21BPxolv o Vxo e D(A).

If we differentiate the latter equation in the space D(A) we get (1.8).
To prove that the semigroup eApt is exponentially stable we use detectability assumption

(ii). Let K L(X, Z) as in this assumption. Then we have

x*(t) e(A+KC’)xo -Jr- e(A+KC’)(t-s)(/32l,*(8 nL-/31w*(s))ds

foo e(A+KC’)(t-s)KClX*(s)ds Vt >_ O.

Since Bw*, KClx* L2(/+; X), it remains to show that

e(A+KC,)(t-)B2u*(s)ds Lz(R+;X).

The latter follows by assumption (i) and Lemma 5.2 in [3].
Clearly A-/32/3P Ae -7-2/3BP is the infinitesimal generator of a C0-semigroup

on X. Let zo D(Ap). Then, multiplying the equation

(3.16) x’ (A- B2BP)x, x(O) xo

by Pz and using (3.15), we get

d
d(Px(t),x(t)) Cx(t) z -IBPx(t)l -7-lBPx(t) , t>0.

Hence

(IClx(t)l + IPx(t)l + IFPx(t)12w)dt <
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If we write (3.16) as

x’ Ax y-zt3Px, x(O) O,

and use the facts that BPx L2(R+; W) and eA’t is exponentially stable, we conclude
that x L2(R+; X). Hence, by Datko’s theorem, e(A-BB; P)t is exponentially stable.

Let w L2(R+; W) 7/C (R+; W) be arbitrary but fixed, and let y C (R+; X) be the
solution of the following equation:

(3.17) y’ (d- B2BP)y + Bw, y(O) xo D(dp).

This yields

d
d(Py(t), y(t))

Hence

-IC, y(t)12z -IByPy(t)lu -/-2lBTPx(t)lv + 2(BPy(t), w(t))w
-ICly(t)l -IYPy(t)l -Iw-/-lt3PY(t)lv / 3’2lWlv Vt > o.

(ICly(t)12z + 113zpy(t)12u
(3.8)

-’ I(t)lv dt + (Pxo, xo),

where w /-eBPy.
On the other hand, we have for xo 0,

because y Apy + B1.
Substituting the latter in (3.18) we get

([Cly] ]B;Pyl -721wl)dt < Vw L2(R+’W)+

where > 0 is independent of w. Hence ][S_;{ < y, which completes the "only if" pa
of the proof.

We now complete the "if" part of the proof. Suppose that P P* 0 is a solution
of (1.8) satisfying (1.7) such that Ap A BzBP + -2BBP is exponentially stable.
Then, arguing as above, we infer that A BzBP Ap ?-BBP is exponentially
stable. Then if y is the solution of Cauchy problem (3.17), we get as above (see (3.18)) that

BPe(A-BB;) u)),
i.e., -BP 7. Moreover, by (3.18) we infer as above that S_;p] < y.

Let us show now that the solution P of Riccati equation (1.8) having the propeies stated
in Theorem is unique. Indeed, if P and P2 are two such solutions of (1.8) we have

(A..x.( )v) + (( )z.A.v) -0 Vx.v (A..) D(A.).
and this yields

d
dS(eaP’x, (P P2)eApzy) 0 V, 0.

Since eaP , 1,2, are exponentially stable, we get

and by density we infer that P P2. This completes the proof of Theorem 1.
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4. Ha control with boundary disturbance input. We shall consider here system (1.1),
where assumption (i) is replaced by

(k) B2 L(U, X), A-11 L(U, X), and

T

(4.1) IBeA*tzlvdt <_ CTlZl2 Vz E X, T > O.

Then, for every w E L2(R+;W) and u L2(R+; U), system (1.1) has a unique mild
solution z given by the variation of constant formula (1.4). Given "), > 0, an Ho controller is
by definition a stabilizing feedback controller that guarantees the inequality I[SF < "Y, where
S, L(L2(R+; W), L2(R+; Z)) is the closed loop operator SF(w) Clz + D12Fz. It is
not clear whether Theorem remains valid in this case. Proposition 2 below represents only
a partial result (see [6] for other recent results on this case).

PROPOSITION 2. Let 3’ > 0 and suppose that assumptions (k), (ii), (iii), and (j) hold. Then
there exists P L(X,X) such that P P* >_ O, BP L(D(A), U) C L(D(Ap), U), P
satisfies Riccati equation (1.8), Ap A- B2BP+3,-2t1BP, and A- B2BP generates
exponentially stable semigroups. Conversely, if a such a solution P to (1.8) exists, then
f -BP is an exponentially stabilizingfeedback controller and guarantees II <_ .

Proof. Since the proofis essentially the same as that ofTheorem 1, it will only be sketched.
We note first that Proposition remains valid under present assumptions. Indeed, the proof
of Lemma remains unchanged (with some simplifications because B2 is bounded) and (2.4)
follows by the same argument; note that by assumption (k) and (2.6), BP E L2(0, T; W)
for all T > 0. Then, we define P L(X, X) by (3.1), and Lemma 5 remains valid. Define

(4.2) p(t)zo z* (t) V t >_ 0;

then p is a C0-semigroup on X. Denote by p its infinitesimal generator. Arguing as in the
proof of Lemma 6, and using assumption (k), it follows that

D(Ap) C

B’P C L(D(Ap), U) L(D(A), g),
]lpxo (A- t32P + ")’-2B1//P)xo Vxo D(Ap).

Then, as in the proof of Theorem 1, it follows that P satisfies (1.8), and the semigroups
generated by p and A B2BP are exponentially stable.

Now assume the existence of P L(X, X) satisfying Riccati equation (1.8) and the
conditions stated in Proposition 2. Then, for w Cl(R+; W) N L2(R+; W) and z0 0,
system (3.17) has a solution y E C (R+; D(A)) and y is weakly differentiable. (This follows
by assumption (4.1).) Hence B’Py Llo(R+; W), and using (1.8) we get

d
d---(Py(t), y(t)) -ICly(t) -IByPy(t)lb 7w(t) 7-1B;py(t)ly

+ ,2]w(t)lv a.e.t > 0.

This yields

T

(IC, y(t)12z -IBPy(t)lb -2lw(t)l)dt < 0 VT > O.

Hence IIS_;pII _< "7 as claimed.
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5. Some remarks on Ho control with dynamic feedback. Consider again the input-
output system

x’ Ax + B2u + BlW,(5.1)
Z Clx + D12u

with the observation

(5.2) y C2x + D127.

Here C2 E L(X, Y), D12 E L(W0, Y), /is a perturbation modelling the measurement error,
and Y, W0 are Hilbert spaces. The aim is to find a dynamic feedback controller of the form

u Lp,
(5.3) p’ (A + M)p + Ny, p(O) 0

that exponentially stabilizes the system and reduces the influence of w on z. The linear maps
M :X -- X, L :X -- U, N Y X, define a feedback controller K (M,L,N),
which substituted into system (5.1) yields

(5.4)
x’ Ax + BeLp + Bw, t R+,
p’ NC2x + (A + M)p + ND2,

x(O) o, p(O) o.

Equivalently,

where

=A +

(;),0, (00),

(5.5) A

B1w
ND2

A B2L
NC2 A + M

t E R+,

Here we shall restrict ourselves to feedback controllers K (M, L, N) with the following
properties:

(a) M L(D(A), (D(A*))’),L L(D(A),U), N L(Y,X).
(b) The operator A X X X X is the infinitesimal generator of an exponentially

stable C0-semigroup on X X.

[]0 L l[e4t is continuousfromXto L2(R+;X X).(c) D(A) c D(L) X and 0 o
For such a feedback controller K, define SK Le(R+; W) -- Le(R+; Z), Stc(w)

z Cx + DeLp, where (x,p) is the solution of (5.4).
The feedback controller K is called an H control if it satisfies (a), (b), (c), and

(5.6)

In addition to (i), (ii), and (iii), we shall assume that
(1) the pair (/3, A*) is exponentially detectable;
(ll 1,DI 10, 1.
Proposition 3 below extends only partially the standard results ofH control theory with

dynamic measurement feedback [2], [4].
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PROPOSITION 3. Let 3’ > O. If there exists an Hoo controller satisfying (5.6) then there
exist P, Q E L(X, X), P P* >_ 0, Q Q* >_ 0, which satisfy the following conditions:

(m) 13P L(D(A), U), A + (/-2Bl13 132B )P generates an exponentially stable
semigroup and

(5.7) (Ax, Py) + (Px, Ay) (P(B2B -’y-2BiB)Px, y) + (CCx,y) 0
V x, y e D(A).

(mm) A* + (3,-2CC1 CC2)Q generates an exponentially stable semigroup and

(Ax, Qy) + (Qx, Ay) ((CC2 --2CC1)Qx, Qy)--(lBlX, y --0
V x, y D(A).

(mmm) (I- 7-2PQ)- L(X, X)and
(5.9) Q(I 7-2PQ)- >_ O.

If these conditions hold then thefeedback controller K (M, L, N) given by

(5.10)
M-- (’ff--2/l/’ --/32B:)P- Q(I- "T-2PQ)-ICC2,

L=
N -Q(I-’7-2PQ)-IC,

is an Hoo controller guaranteeing the closed loop inequality IIS/ 7.
We omit the proof, which follows by Theorem and Proposition 2 by the duality arguments

developed in [2], [9], and [1].
In fact, the direct approach of can be used mutatis mutandis in the present situation,

but we do not give details.

Appendix. We shall prove here the following lemma.
LEMMA 7. Let (x, p) C([a, hi; X) C([a, hi; X) be a mild solution to the system

(6.1) x’ Ax + t32u q- f, t [a, b],

(6.2) p’ -A*p + g,

whereu LZ(a,b;U)and f, 9 L(O,T;X) Then

(6.3)
(((t),Bp(t))u + (f(t),p(t)) + (9(t),z(t)))dt

(x(b), v(b)) (x(a), p(a)).

Proof. For simplicity we take a 0 and b T. By virtue of assumption (i) and Fubini’s
theorem we may write

oT(g(t),
x(t))dt

9(t), eAtxo + eA(t-s)f(s)ds dt

(6.4) + g(t), en(t-s)B2u(s)d8 dt

9(t),eatzo + ea(t-f(s)ds dt

+ (s), Bea*(t-9(t)dt ds.
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Recalling that

t e [o, T],

and substituting the latter in (7.4) we get (7.3) as claimed. (We recall that, by virtue of
assumption (i), the operator

T

g ---+ BA* (t-s) g(t)dt

is continuous from LI(0, T; X) to L2(0, T; U).)
Acknowledgments. The author is indebted to R. Triggiani for useful remarks and for

pointing out a gap in the proof of Lemma 3 in the first draft of the manuscript. The author also
thanks the anonymous referee for numerous suggestions that helped improve the presentation
of this work.
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SYSTEMS WITH RANDOM PARAMETERS*
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Abstract. Linear systems with stationary time-varying parameters are considered. The notions of almost sure

stabilizability and almost sure detectability are explored. Under these properties the asymptotic behavior of the
associated Riccati equation is described. In particular, the stability of the Kalman filter and the convergence of linear
observers are proved.

Key words. Riccati equation, Kalman filtering, observers, stochastic parameters, stabilizability, detectability,
linear discrete-time systems
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1. Introduction. Consider either the filtering linear system

(1) Xn+l AnXn +
Yn+l CnXn + Tin,

or the linear control system

(2) Xr+l A,Xn + BnUn, Y CX,

where Xn E Ra is the state vector, Yn E Rq is an observation, (e, r/n) RP xIq is a Gaussian
white noise, and U RP is a control. We suppose that { (An, Bn, Cn), r 2;} is a stationary
ergodic sequence of matrices of appropriate dimension. Under weak conditions we show that
the error system of the Kalman filter associated with (1) is almost surely exponentially stable,
and the linear system (2) can be almost surely stabilized.

When the parameters are not random, analogous results are well known under strong
hypotheses (either uniform stabilizability and detectability or uniform controllability and ob-
servability); see, e.g., Jazwinski [10], Anderson and Moore [2], and the recent survey in the
introduction of De Nicolao [9]. These hypotheses are too stringent and usually do not hold
for systems with random parameters. We shall see that they can be significantly weakened
when the parameters are stationary by making use of ideas from ergodic theory.

Systems with stationary parameters are used in several models and are worth studying in
view of the applications. Stationary processes can be either deterministic (e.g., almost periodic
sequences) or nondeterministic (e.g., identically independent random variables, functions of
ergodic Markov chains, autoregressive moving average (ARMA) sequences, etc.). They occur,
for instance, in the descriptions of random (or multirate deterministic) sampling of the control
of failure-prone production plants, and in adaptive stochastic control. Some of these systems
are out of order at random times; this prevents them from verifying uniform assumptions.
These examples and references to previous works are described in detail in [5]. Inspired by
Snyder and Fishman 14], filtering for systems with random parameters is studied, in particular,
by Viano 15] under a strong stability hypothesis. Here we shall suppose that the parameters
are observed. The opposite situation is studied, for instance, by Wonham 17] and De Koning
[8].

Let us describe our main results. It is convenient to introduce the following, perhaps
unusual, definitions. The random matrices are defined on a probability space (f, ’, ?).

Received by the editors April 8, 1992; accepted for publication (in revised form) December 22, 1993.
Laboratoire de Probabilit6s, Universit6 Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris, France

(bougerol@ccr. jussieu, fr).
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DEFINITION 1.1. A sequence {An, n E Z} of d x d random matrices is called almost
surely weakly stable if

lim IIAA- A 0 a.s.

It is called almost surely exponentially stable ifthere exists "y > 0 with thefollowing property:
for any > 0 and almost all co , there is a C(co) > 0 such that

[IAn_, (co)An_z(co) An_m(co)ll <_ C(co)e-’e(Inl+)

for all n 75 and all m >_ 1.
Note that when (An) is almost surely exponentially stable, the solution of the linear

equation X,+ AnXn converges almost surely to 0 exponentially fast as time progresses.
It will be proven that these definitions are exactly what is needed here, where we meet random
sequences without moment. Their first properties are explored in 2. We say that the linear
systems above are almost surely weakly or exponentially stabilizable if there is a feedback
control such that the associated closed loop system is almost surely weakly or exponentially
stable, respectively (see Definition 2.4 for precision). In 3, we show using [5] that a sufficient
condition for almost sure exponential stabilizability is the existence of an integer n > such
that

]P(BB + A,B_,B_A +... + (An...A2)B1B(A... A)is invertible) : 0.

This is called weak controllability. For instance, when d this condition is always fulfilled
unless Bn 0 almost surely for all n. In 4 we prove that an almost surely weakly stabiliz-
able system is actually almost surely exponentially stabilizable. Similar results hold for the
corresponding notions of detectability and weak observability defined by duality.

In 5 we suppose that the linear system is almost surely weakly stabilizable and weakly
detectable. We study the Riccati difference equation

(3) Pn+ BnB + AnPn(I + CCnPn)-A,

where Pn, n N, are nonnegative symmetric matrices. This equation is usually written as
follows"

(4)
Pn+l BnB -Jr- (An KnCn)PnA,
Kn AnPnC(I + CnPnC) -1,

where Kn is called the gain matrix associated with Pn. Let us recall how it occurs in the
filtering of (1). We suppose that the Gaussian white noise (e, f/,) has a covariance matrix
equal to the identity and is independent of X0 and the sigma-algebra ,To generated by the
parameters. The random variable X0 is Gaussian and independent of U0. For any n N, let
9n cr(0, Y,..., Yn). This represents the observation at time n. Let

Then the Kalman recursive equations are given by (4) and

(see, e.g., Whittle 16, p. 260 and Thin. 5.7.1 ]). The main result of this section is the existence
of a unique stationary solution (/sn) of the Riccati difference equation (Theorem 5.1). It is
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analogous to the "moving equilibrium" solution defined in Kalman [11]. This solution is
attractive in the sense that if (Pn) is another solution of this equation, then/sn Pn converges
almost surely to 0 exponentially fast as n tends to +oc (Theorem 5.3). Moreover, the filter
is almost surely exponentially stable and thus efficient (Theorem 5.6). The initial conditions
are rapidly forgotten (this is useful since they are often chosen arbitrarily). For instance, let
us suppose only that E(log[IA01t < 0, or more generally that the Lyapunov exponents of
the sequence (An) are negative. This is the condition under which (Xn), given by (1), is
itself a stationary process (see, e.g., [6]). Then the system is almost surely weakly stabilizable
and weakly detectable. Thus the results above hold, although the system does not fulfill the
"uniform" conditions considered in the literature on time-varying parameter systems. In 6
we briefly consider applications to control theory. An efficient observer for linear systems
with stationary coefficients is given. We also show that the quadratic cost converges almost
surely when the horizon increases to infinity (this latter result is of limited practical interest
for nondeterministic systems since the optimal controls depend on the parameters indexed by
the future).

There are some connections between this work and multiplicative ergodic theory that are
explained in [3]. The properties ofPn are related to the hyperbolicity ofassociated Hamiltonian
matrices (see Remark 4.4), but are not only consequences of this fact. An important technical
difficulty arises from the fact that, generally, log+l Pnll is not integrable. Therefore, the
sequence (An KnCn) does not have Lyapunov exponents. This explains why some proofs
are rather involved (see also Remark 5.7).

Let us make some technical comments on our filtering linear model (1). Several variants
are often used; for instance, one could replace the second equation by Yn CnXn / r/n. Our
choice is justified by the fact that duality is more transparent here. Anyway, all the models
are essentially equivalent and it is easy to transpose our results to other ones. The hypotheses
on the random parameters model can also be weakened. It is, in fact, sufficient that there is a

sigma-algebra 9c0 such that, if 9rn cr(f’0, Y1,..., Yn), then (An, Bn, Cn) is 9rn-measurable
and (en, r/n) is independent of f’n and Xn. In that so-called conditionally Gaussian case,
the filter is also given by the previous equations (see Whittle [16], Chen, Kumar, and van
Schuppen [7]), and, therefore, our results hold true. One can also eliminate the assumption
that the white noise (en, Tn) has a unit covariance matrix at the price of some complications.
Finally, we remark that the well-known equivalence between (4) and (3) follows directly from
the relation (CCnPn + I)- I C, (I + CnPnC)-’ CnPn or from Whittle 16, Thm.
5.7.1].

This paper is a logical continuation of [5]; its results were announced in [4].

2. Preliminaries. In this section we explore the notions of stability introduced in Def-
inition 1.1. We shall also use them for nonrandom sequences (i.e., when has only one

element), in which case we do not write "almost surely." The definition of exponential sta-

bility given there is weaker than the usual one (in which e 0 is allowed); it thus deserves
some comments. Let us first note the following result, the proof of which is straightforward.
Note that the assertion is no more true with "lim sup" instead of "lim" (for instance, take

a2n a2n- ).
LEMMA 2.1. Let {an, n } be a sequence of positive real numbers. Iffor some

a,/ > O,

lim log(an ..a)---a lim
1

log(a_,...a_) -/3,
+cx /Z

then the sequence is exponentially stable.
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In this paper, we will mainly be interested in stationary (in the strict sense) sequences of
matrices. If (An) is such a sequence and log+ IlA011 is integrable, then its largest Lyapunov
exponent 7 is defined as

lim
1

E(log IIA...A,

Throughout the paper we choose the operator norm associated with the euclidean struc-
ture for a matrix (usually, this choice is not important). In this case, we also have 7

E(log IIAn A II).infn>o
PROPOSITION 2.2. Let {An, n } be a stationary ergodic sequence of matrices such

that log+ ]lA011 is integrable. Then thefollowing three conditions are equivalent:
(a) the sequence (An) is weakly stable almost surely;
(b) the Lyapunov exponents ofthe sequence (An) are negative;
(c) the sequence (An) is almost surely exponentially stable.
We need the following well-known lemma.
LEMMA 2.3. If {an, n Z} is a stationary sequence of real random variables such that

ao is integrable, then, almost surely, limln[___,+o gan 0.

Proof The proof follows from the Borel-Cantelli lemma since, for any c > 0,

<F(laol >O)+2ZF >k < l+2E I___[ <+.
k=l

Proof of Proposition 2.2. (a) :, (b) is proved in [6, Lem. 3.4]. Let us assume that
(b) holds. Then there exists k > 0 such that E(log liAr... Alll) is negative. Let Mn
A(n+) An+l. It follows from Lemma 2.1 and from Birkhoff’s ergodic theorem that the
sequence {llMnll, n Z} is almost surely exponentially stable. This easily implies that (c)
holds true by using the fact that if m < qk < pk <_ n, then

log IIAn A1 con-and Lemma 2.1 applied to the sequence an log+ IIAII. Finally, g
verges almost surely to the largest Lyapunov exponent as n +oc (see, e.g., Kingman 12]).
Thus (c) ::> (a). []

This proposition shows that "almost surely exponentially stable" is a kind of substitute for
"with negative Lyapunov exponents" for stationary sequences of matrices, the norms of which
are log integrable. It will appear in the following sections that non-log-integrable sequences
occur naturally in the control/filtering setting, and are even unavoidable. This explains the
choice of Definition 1.1. From a technical point of view the robustness properties exhibited
by Lemmas 4.1 and 5.5 will be crucial for us.

Let us give a simple natural example where only our notion of stability is fulfilled. We
consider a sequence an, n , of independent and identically distributed positive random
variables such that IF(a0 > M) > 0 for any M > 0, and E(log a0) < 0. This sequence is
almost surely exponentially stable. On the other hand, for any M > 0,

at- cx +o
P(a0 > M)-
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which implies by the Borel-Cantelli lemma that almost surely there is no C > 0 such that, for
all n E Z, lan < C. Therefore, the condition given in the definition of exponential stability
does not hold when c 0. Let us introduce some definitions.

DEFINITION 2.4. The linear system (1), (2), or the sequence {(An, Bn), n E Z}, is said
to be almost surely weakly stabilizable if there is a sequence Fn, n Z, ofp x d random
matrices such that, almost surely, the sequence {An + BnFn, n } is weakly stable. It is
called almost surely exponentially stabilizable if, moreover, {An + BnFn, n } is almost

log+ IIF II 0.surely exponentially stable and limlnl__,+
These systems, or the sequence {(An, Cn), n Z}, are said to be almost surely weakly

detectable if there is a sequence (Gn) of d q random matrices such that, almost surely,
{An + GnCn, E Z} is weakly stable. It is called almost surely exponentially detectable if,

log+moreover, {An + GnCn, n Z} is almost surely exponentially stable and limlnl__,+
IIG II--0.

For example, it follows from Proposition 2.2 that if the Lyapunov exponents of the se-

quence {An, n Z} are negative, then the system is almost surely exponentially stabilizable
and detectable. In the definition of exponential stabilizability, the condition on - log+ IIFn
indicates that these matrices are, in a sense, not too large. It replaces the boundedness as-
sumption of classical systems and can be technically useful (see the proof of Theorem 5.1, for
instance). Note that this condition is not required for weak stabilizability. The dual of linear
system (2) is

C*(5) xn+ A_nxn + _nVn, y+ B_nxn,

where x ]d, Yn ]P, and Vn ]q. Thus a system is almost surely weakly or exponen-
tially detectable if and only if its dual is almost surely weakly or exponentially stabilizable.

In the following sections the random variables are defined on a probability space
Usually, we will suppose that the following hypothesis holds (where log+ x max(0, log x)).

Hypothesis (H).
(i) The matrices An are invertible.
(ii) log+ IlA0ll, log+ IIA-11], lg+ IlB0[I, and log+ IIc0ll are integrable.
(iii) There exists a bijective ergodic transformation 0 2 ---+ f which preserves 3 such

that, for any n Z and v ,
A,() Ao(On()), Bn() Bo(On()), Cn() Co(On()).

Under condition (iii) above the sequence { (An, Bn, Cn), n Z} is stationary and ergodic.
Conversely, if this latter property holds there is no loss of generality in supposing that (iii)
is true.

3. Weak controllability implies, almost surely, stabilizability. We first define weak
controllability and weak observability. Similar notions were already introduced in [5] for
slightly different systems.

DEFINITION 3.1. Let Rn CCn and Sn BnB. The linear system (1), or the
sequence { (An, B), Z}, is said to be weakly controllable iffor some > 1,

]?(det{Sn + AnSn_,A +... + (An...Az)S,(A...A)} # 0) # 0.

This system, or the sequence {(An, Cn), n e Z}, is said to be weakly observable if, for some
n>_l,

(det{R, + AR2A, +... + (A...A_,)Rn(An_,...A,)} # O) # O.
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The dual of a weakly controllable system is weakly observable, and the converse is true
as well. The purpose of this section is to prove that a weakly controllable or observable linear
system with stationary coefficients is almost surely exponentially stabilizable or detectable,
respectively. This result will be obtained as a consequence of a more precise result that will
be very useful later. The strategy of the proof is the same as in the classical situation: we
shall associate with the system a filtering problem that admits an almost surely exponentially
stable closed loop system.

Notation. In all ofthe following sections denotes the set ofd d symmetric nonnegative
definite matrices. It is equipped with its natural order (i.e.,/9 >_ Q when/9 Q E ).

For any n E Z define Cn by

(6) Cn(P) BnB + AnP(I + CCP)-A, P .
It follows from (3) that Riccati’s difference equation can be written as

(P) P+.
We shall need the three ensuing lemmas. The first one is well known (see, e.g., Whittle 16,
Chap. 5, 2, form. (11)]).

LEMMA 3.2. Let (Pn) be a solution of the Riccati equation. For any d q matrbc If,

Pn+l < (An KCn)Pn(A KCn)* + KK* + BB,

and equality holds when If is equal to the associated gain matrix Ifn.
Let us prove the following variant of Lyapunov’s lemma.
LEMMA 3.3. Let { (An,/3n), n 7L} be a weakly controllable sequence. We suppose

that there is a sequence {Qn, n Z} of invertible matrices in with the three following
properties:

(a)for all n , (n+l AnQnA + BnB;
(b) the sequence {(An, Bn, Qn), n } is stationary and ergodic;

lg+ IlOll 0.log+ limlnl-+oo(c) almost surely, limlnl___,+o Z
Then the sequence {An, Z} is almost surely exponentially stable.

Proof. Let us introduce the following notation: for n Z and r i,

_L

BnQn+l,

Then I MnMT, +Tn and, more generally, I Mn,,-M,.+Tn,, where I is the identity ma-
trix. Hence IIM,,.ll <_ 1. On the other hand, since { (An, Bn), n Z} is weakly controllable,
there exists some k > 0 such that F(T, is invertible) # 0 and thus I?(llMn,[I < 1) : 0.
These relations imply that the Lyapunov exponents of the stationary sequence (Mn) are nega-
tive. Therefore, this sequence is almost surely exponentially stable by Proposition 2.2. Since

[IA... All I[Qn+Mn...MQ

-< IIQ,+ I[" IIM,... MII IIQ- 1[,

it then follows from (c) that (An) is almost surely exponentially stable. []

The following lemma is from Wos 18]. To obtain this formulation we apply his Theorem

2tof =9o0-9
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OLEMMA 3.4 (Wos). For any measurablefunction 9: f -- N+, if lim supn__,+o g9 o

0 almost surely then lim supn+ g9 o 0 0 almost surely.
We now derive a slight improvement of [5]. It will be generalized in 5.
THEOREM 3.5. We consider a weakly controllable and weakly observable linear system

such that Hypothesis (H) holds. Then there exists a unique solution {n, n E } ofthe Riccati
difference equation (4) with values in 3 such that { (An, t3n, Cn, Pn), n } is a stationary
and ergodic sequence. Moreover, almost surely Dn is invertible,

(7) lim
1

log+ II/11 lim
1

log+ IIP-all 0,

and the sequence {An KnCn, n Z} is almost surely exponentially stable, where Kn is
the gain matrix associated with Pn.

Proof Let Sn -/3n/3 and _R CCn. We consider the equation

(8) Qn+, (AnQnA + S)(I + R+AnQA + Rn+S)-’,

where Qn E (notice the occurrence of Rn+). It follows from [3, Thm. 2.4] that this
equation has a unique stationary solution, say {On, E Z}. By construction, 0n Q0 o

On, which implies that the sequence { (An,/3n, Cn, Qn), n E Z} is stationary and ergodic.
Moreover, by [3, Prop. 3.4 and form. (24)], almost surely,

lim
1

log+ IOnl lim
1 og+lO_ o.

n--+cx 71 n--+o ?

It follows from Lemma 3.4 that, almost surely,

lim llog+lO_l lim llog+ IIOll o.
n--+ ? n--+cx 71

Now, we remark that (Qn) is a solution of (8) if and only if Pn An_Qn_A_ + Sn-
is a solution of the Riccati recursion (4). Therefore,/3n An-On-A_ + Sn- is the
unique stationary solution of (4). We check that (7) holds true with the relations above and
Lemma 2.3. The sequence {(An, Bn), n E Z} is weakly controllable, thus the sequence
{(An, (B Kn)), n Z} is also weakly controllable. By making use of the relation

An KnCn An (BnKn)(OC)*,

it follows from Anderson and Moore [2, Lem. 3.1] that {(An nC, (Bn n)), n Z} is
also weakly controllable. Since, by Lemma 3.2,

Pn+ (An nCn)n(An nCn)* -+-n -+- t3nt3,

the almost sure exponential stability of (An KCn) is a consequence of Lemma 3.3
above. []

THEOREM 3.6. Under Hypothesis (H), a weakly controllable sequence is almost surely
exponentially stabilizable, and a weakly observable sequence is almost surely exponentially
detectable.

Proof Let us suppose that the sequence {(AN, Cn), n } is weakly observable and
show that this sequence is almost surely detectable. Let/3n be equal to the identity matrix of
order d. Then the system associated with (An, Bn, C,) is weakly observable and weakly con-
trollable. Thus, by Theorem 3.5, {An KnCn, n Z} is almost surely exponentially stable,
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where/n is the gain matrix associated with/3n. On the other hand, I1(1 + C/3nC*)-
so that

log IIR II log PII + log Ileal + log [IA I.
og+ IIRII 0. The almostUsing (7) and Lemma 2.3, we see that almost surely limll

sure exponential detectability is thus proved. The other statement follows by duality.

4. Almost sure weak stabilizability implies almost sure exponential stabiliz-
ability.

LEMMA 4.1. Consider a sequence {M, n } of d x d matrices written in block

foFm as

where the respective sizes ofthe matrices A B C are p x p, p x q, q x q (andp + q d ).
We suppose that the sequences {A, n } and {C, n } are exponentially stable and

log+ IB t-O. Then {M n } is exponentially stable.that limll+
Pro@ For all , n E such that < n, we consider the matrices A,, B,, and C,,

defined by the foula

( A’ B’ ) MM-IC,
Since the sequences (A) and (C) are exponentially stable, there exists 7 > 0 such that, for
any e > 0 and some > 0,

A, e-++1, C, e(-n+(ll+tl,
when k < n. Besides, there exists > 0 such that lIBel ell for all n Z. Let
p > 0 be a constant such that r e for anyr N. It is readily seen that B,
=+ A,BC_,, therefore,

m=k+l

2_ k e(k+l-n)e4(lkl+lnl)e

2pe(k+-n)e(lkl+lnl)e.
Since all the nos on a finite-dimensional space are equivalent, there exists a universal
constant A such that

llMM_I... M+lll Amax{lA,ll, I1, I,
Thus, the previous inequalities imply that (M) is exponentially stable.

The next proposition is inspired by the canonical structure theorem of linear systems.
PROPOSITION 4.2. Consider a linear system (1)for which Hypothesis (H) holds true. Then

there exists a random orthogonal matrix F0 such that, ifFn F0 o 0n for all n Z, we can
write the ensuing decompositions in blocks asfollows:

r1Ar_ ,1 ,2 ,3 rl ,1
0 0 A, 0
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where thefollowing three properties hold:
(a) The linear system associated with the sequence {(n,/)n, n), n E Z} is weakly

controllable, where

(b) The linear system associated with { (Aln’’ Bin,’ C’1 ), n 2;} is weakly controllable
and weakly observable.

(c) If the linear system associated with { (An, Bn, Cn), n 2; is almost surely weakly
stabilizable or almost surely weakly detectable, then {An’3 n } or {A;’2 2, n 2;} is almost
surely exponentially stable, respectively.

Proof. For each co f and each n E 2;, let Wn (co) be the linear subspace ofd spanned
by

{An(co)A-l(co)...An-+,(co)Bn_(w)x;x ]d,k I}.

Then Wn W0 o 0n, where 0 is the transformation that appears in assumption (iii) of
Hypothesis (H). We remark that A1 W0 is contained in W1. Since A is invertible, this implies
that dim W0 <_ dim W1. Thus, by ergodicity there exists an integer r [0, d] such that
dim W0 r almost surely. Let V be the linear subspace of Nd spanned by the first r vectors
of the canonical basis. We choose a random orthogonal matrix Q0 such that QoV Wo, and
set Qn Q0 o 0 for each n 2;. Then QnV Wn, and thus QIAQn-1V is contained
in V. Moreover, the image of Q-1Bn is contained in V, since the image of Bn is contained
in Wn. Therefore, we can write the following in block form:

Q-lAnQn-1
0

(5),

where, for example, the respective size of the matrices A, Bl, and C is r x r, r x p, and
q x r. Since V is spanned by the ranges of the matrices A(co) A (co)B (co) k E N,-k+l k

we see that { (Al, Bl, C)} is weakly controllable
Let us now suppose that the system associated with (An, Bn, Cn) is almost surely weakly

stabilizable. Then, by definition, there is a sequence {F, n 2;} such that {An + BFn,
n Z} is almost surely weakly stable. Of course, {Q-I (An + BnF)Q_I, n 2;} is then
also almost surely weakly stable. If we write in block form FnQn-1 (F F), where F
and F are p x r and (d p) x r matrices, respectively, then

Aln -+- BnFnQ-I (An + BnFn)Q-
0

A2 + BnF
A

This means that the sequence (A3) is almost surely weakly stable. Since log+ llA3011 is
integrable, this sequence is also almost surely exponentially stable by Proposition 2.2.

If we apply the previous construction to the dual of the system associated with { (A, B,
C’), n G 2;}, we find that there exists a sequence An, n E 2;, of p x p orthogonal matrices
such that An A0 o 0n, and we can write

AAlAn-1 2,1 0) A._, (cl ,’ o),



RICCATI’S EQUATION WITH RANDOM PARAMETERS 711

where the system {(A,1 B,1 C")} is weakly observable. Let

( 0)0 I

Then the decompositions in blocks hold. The proof is completed by simple computa-
tion. []

THEOREM 4.3. Under Hypothesis (H), an almost surely weakly stabilizable or detectable
system is almost surely exponentially stabilizable or detectable, respectively.

Proof We consider a system associated with (An,/3n, Cn) and use the decomposition
introduced in Proposition 4.2. Since { (-n,/)n, (n), r E Z} is weakly controllable, it follows
from Theorem 3.6 that this sequence is almost surely exponentially stabilizable. Thus, there

118+ II&ll- 0 and (-n +/)n/n r E Z}is a sequence {Fn, r Z} such that limlnl g
is almost surely exponentially stable. Now we suppose that the original system is weakly
stabilizable. Then (A3,3) is also almost surely exponentially stable. Let

log+ IID 0 by Lemma 2.3, andSince limlnl_,oo

A + t3F r ( A +

we deduce from Lemma 4.1 that {An + BnF, n Z} is an almost surely exponentially
stable sequence. This proves that the system is almost surely exponentially stabilizable. The
other statement is obtained by duality.

Remark 4.4. Let us consider an almost surely weakly stabilizable and detectable system.
It is possible to prove that all the Lyapunov exponents of the associated Hamiltonian matrices
are nonzero by using Proposition 4.2 and [3]. We will not use this fact and refer to [3] for the
details of this statement.

5. Asymptotic behavior ofthe Riccati difference equation. In this section we establish
the main properties of the Riccati equation under the assumption that the system is weakly
stabilizable and detectable almost surely. For each f, these conditions on the parameters
(A(),Bn(w), Cn()) are very weak. Therefore, the following theorem cannot be de-
duced from existing results on time-varying systems. Below Kn is the gain matrix associated
with Pn.

THEOREM 5.1. We consider linear system (1). We suppose that Hypothesis (H) holds
and that this system is weakly stabilizable and weakly detectable almost surely. Then there
exists a unique stationary process { ffgn, n } with values in that is a solution ofRiccati’s
difference equation (4). The process {(An, t3n, Cn, Pn), n Z} is stationary ergodic, and
{An I4nCn, n Z} is almost surely exponentially stable.

Proof It is well known that the mappings qS -- defined by (6) are increasing for
the usual order on (this follows, for instance, from Lemma 3.2). Therefore, for each fixed
n Z, the sequence of nonnegative symmetric matrices

Pn,k (n-1 o n-2 o...o n-k)(O), k>l,

is increasing in. Since, by Theorem 4.3, the system is almost surely exponentially detectable,
there exists a sequence {Gn, n Z} of d q matrices such that {An GnCn, n Z} is
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log+ IIGII- 0 Let Mn An-GnCnalmost surely exponentially stable and limlnl_+ g
and Tn GnG + BnB. Lemma 3.2 gives

Pn/ < Tn -[- Mn-lPn-l,k-1

which leads, by induction, to

Pn,k Tn-1 + mn-lTn-2m-I -3
t- + (mn-l... mf-kq-1)Tn-k(m_k+l...

Since (Mn) is almost surely exponentially stable, there exists y > 0 such that, almost surely,
for any e > 0 and some a > 1,

for all n E E and m _> 1. On the other hand, it follows from integrability condition (ii) of
Hypothesis (H) and from Lemma 2.3 that, almost surely, for some/3 > 0, ]]Tn < 3eelnl for
all r E 2;. These inequalities yield that, almost surely,

k-1

rr--0

and, if 3e < 2"7,

(9) IlPn,k

_
oz2/e3(Inl+l)e{1 c(3e-27)} -1.

This shows that the increasing sequence Pn,k, k i, is bounded. Therefore, this se-

quence converges almost surely when k + +oc to a limit in , denoted by /sn. Since
qSn(Pn) Pn+, {Pn, n 2;} is a solution of Riccati’s difference equation. It follows from
condition (iii) of Hypothesis (H) that, for each n E, P, P0 o 0n. This implies that
{(An, Bn, Cn, Pn), n 2;} is a stationary ergodic process. Inequality (9)is also satisfied by
Pn, and therefore, almost surely,

lim
1

log+ IIPII- 0.(10)
Inl-+ n

Let us now prove that {An KnCn, n E 2;} is almost surely exponentially stable. We
will use Proposition 4.2 and its notation. First, we remark that if (Pn) and (K) are
solutions of the Riccati equation associated with the sequence {(An, Bn, Cn), n Z},
then (Pn- PnI_) and (P Kn) are solutions of the Riccati equation associated with

{ (I" 1AnI’n-, 1 Bn, CnI-’n_l ), n Z). Making use of this remark and writing the matri-
ces In_Pn,kI1_ in block form, it is easily seen that we can write

(11)

where

/nl, -12

0 0

0 / K-2,1
0

is a solution ofthe Riccati equation associated with ((-n,/)n, n), n Z). Moreover, (/3nl’l)
is a stationary solution of the Riccati equation associated with the sequence (AI’ Bl’1 C1’ ),
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1,1and K is the associated gain matrix. Since {(A,’,131,’,C"),n E Z) is weakly con-
trollable and weakly observable (see Proposition 4.2), it follows from Theorem 3.5 that
{A’1 -K’C-1,1,n Z} is almost surely exponentially stable. We note that

-K C, 0 A, -K
r’(A- k.C)r._, A,’- ,’C,’ A,2 A,- ,’C,

0 0 A,
q,, (A.) ,a (A.) r most .ry po,,ti stb b Propoitio, 4.2.

On the other hand, it is easy to deduce from Lemma 2.3 and (10) that, almost surely,

im og+ IA. RC. 0.

Thus it follows from Lemma 4.1 that the sequence

K C 0

-K C A
is also almost surely exponentially stable. This in turn implies F (A C)F_, and
thus A KC is almost surely exponentially stable by another application of Lemma 4.1.
The matrices F are orthogonal, thus {A-KC, n Z} is also almost surely exponentially
stable.

Finally, let us prove that (P) is the unique stationary solution of Riccati’s equation. Let
(P) be another stationary solution. It follows from Lemma 3.2 that

(2) +, P+I (A kC)( P)(A.

This implies that, for n 0, if D (A_

_
C_ )... (A_

_
C_), then

0 P0 (- P-).

By stationarity, P_

_
is bounded in probability. Since D converges to 0 almost surely,

the right-hand side above converges to 0 in probability as +. This proves that P0 P0.
On the other hand, for all k 1, since P_} 0,

0 (+-1 o...o _)(_) (_, o...o +_)(0) 0,,

hence P0 0 since Po,} converges to P0 as k +. This proves that P0 0.
LEMMA 5.2. Consider a weakly controllable system. Let Pn, n O, be the solution of

the Riccati equation (4) such that Po O. Then, almost surely, Pn is positive definite for all
0 large enough.
Proof. The sequence Qn P(I + RP)-, n , is a solution of the difference

equation (8). Using the weak controllability assumption, we deduce from [3, Prop. 1.5 (ii)
and Lem. 2.2], that, almost surely, Q is positive definite for all n large enough, which implies
Lemma 5.2.

The following demonstration is inspired by a proof presented in Anderson and Moore
[1, 4.4] for systems with constant coefficients.

THEOREM 5.3. Under the assumptions of Theorem 5.1, there exists > 0 such that, for
any P almost surely,

lim log [IP PII -,(13)
+ n
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where Pn, n E N, is the solution of the Riccati equationfor which Po P.
Proof. We will need the following two classical relations"

(14) Pn+ >_ (An KnCn)Pn(An KC)*,
(15) Pn+l Pn+l (A KC)(P P)(A KC)*.

Relation (14) follows immediately from Lemma 3.2. On the other hand, since P and are
solutions of (4),

P+ P+ (A KC)PA; AP(A RnC)*,
(A KC)PC-* -*

which yields (15). Since the sequence (A C) is almost surely exponentially stable,
we deduce from (10) and (12) that, almost surely,

lim log+ P]- 0.

Let us first suppose that for some (maybe random) index h 0, P is positive definite. Then,
by (14) the previous relation leads to

lim 5 log+ (A KC)(A_, K-lC-l)... (A KC)]] O.
n+

In this case, the conclusion of the theorem follows immediately from (15) and the exponential
stability of the sequence (A KC). In particular, it holds tree when P is nondegenerate.

Now, let us suppose that P 0. By making use of Proposition 4.2 and its notation (see
also (11)), we can write the block decomposition

0 0
r._, -,- 0 0

where {P, n } is the solution of the Riccati equation associated with the weakly control-
lable sequence (A,, )that satisfies Pd 0, and where (P) is its stationary solution.
Therefore, in order to prove that (13) holds when P 0, it suffices to consider weakly control-
lable systems. In this case, it follows from Lemma 5.2 that, almost surely, Pk is nondegenerate
for some k > 0 large enough. Thus we deduce from the first part of the proof that the theorem
also holds when P 0.

Finally, let P be an arbitrary matrix in . Let P, P, or P, be the solutions of the
Riccati equation such that Pg 0, P0 P, or P P + I, respectively. Then the relation
Pg P0 P and the monotonicity of the transformations imply that P P P.
Thus

P l max(llP l, IIP
Since Pg 0 and P is nondegenerate, we have just proved that (13) holds for (P) and for
(P). It follows from this inequality that it also holds for (P).

We now consider the filtering setup. Let us suppose that X0 is a Gaussian vector with
mean 20 and covariance matrix P0, and let 2 N(X/U). We know that, conditionally
on U, the random vector X X has a Gaussian law with mean 0 and covariance matrix
equal to P. Therefore, for any Na,

(exp(i(,X 2))) Z((exp(i(,X

(exp (-(, P)))
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Thus the following corollary follows from the previous theorem.
COROLLARY 5.4. Under the assumptions of Theorem 5.1, Xn f(n converges in distri-

bution to the probability measure # on Ia with Fourier transform given by thefollowing: for
any y E I,

J e(’)d#(x)-E(exp(--(y, Poy})).
The adaptation of Definition 1.1 to sequences indexed by I is obvious. Of course the

following lemma also holds for sequences indexed by Z, but we shall need this setup.
LEMMA 5.5. Let {An, n l} and {Bn, n } be two sequences ofd d matrices. If

log IIB < 0, then {An +B n e{An, n I} is exponentially stable and lim supn__.+oo g
I} is also exponentially stable.

Proof There exists > 0 such that, for any e > 0 for some C > 0,

IIAp...Aq+lll <_ Cepe(q-p)",

forall0 _< q < p. When0 <_ q < p-l,letMp,q t3pZp_l...Aq+2Aq+l andMp,p_l
Then, IIMp,qll <_ (pe(q-p+l)’, where (p CePllBpll. If 0 _< k < n, then

(An+B) (A+ + B+)
n-k

Z An Arm+ J:[rm ,rm-l Mrm-l ,rm-2 Mvt ,k

Thus we have

II(A., + B)... (Ak+, +

m=0 k<r<...<rmn

c(- + )... (- ++)
+

When e is small enough the infinite product converges, since I1 tends to 0 exponentially
fast. This proves that the sequence (A + B) is exponentially stable.

THEOREM 5.6. We suppose thatHypothesis (H) holds and the system is weakly stabilizable
andweakly detectable almostsurely. Then,foranyP the sequence {A KC n }
is almost surely exponentially stable, where Kn, n N, are the gain matrices associated with
the Riccati equation (4)for which Po P.

Proof Riccati’s equation can be written as

+l . (A ,C,)P,A;, (A C)P,C;.

Therefore,K (P,.+ BnB)A-1C. This yields that, if is the gain matrix associated
with the stationary solution , then

lt(A C,)- (A,,- ,C,)ll IIP,+ P+IIIIAt-’IC;C,I[.
Thus, it follows from Theorem 5.3 and Lemma 2.3 that

lim sup log [](A KC) (A KC)[] < 0.
n+
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The proposition is now a consequence of Lemma 5.5 since we have seen in Theorem 5.1 that
the sequence (An KnCn) is almost surely exponentially stable. []

Remark 5.7. In [4] we introduced the following strong detectability condition" there is
a sequence (F-n, n E I} of random d q matrices such that supn>0  IIF_ II is finite for
some/3 > 0 and

limsup{EIl(A_l F_,C_,)(A_2 F-2C-2)... (A-n F_C_)II} -’ < .
There we gave an easy direct proof of the fact that, under this condition, if for some c >
0, IlAnl], ]]Bn s, ]]Cnll are integrable and the system is almost surely exponentially sta-

bilizable, then the results of this section hold true. Moreover, Ell/sn is finite when r

min(c,/3)/4.

6. Application to control. Let us first provide an efficient observer for systems with
stationary coefficients. We consider the linear control system

We suppose that { (An, Cn), n e Z}, is a stationary ergodic process. The sequence (Vn) is
arbitrary. These parameters are known at time n. The question is whether it is possible to

approach the Xn’s if only the Yn’s are available. An observer is a linear system of the form

Zn+l DnZn + FnYn + Wn

such that, for any initial condition, IlXn Z ll 0 as n +oc (see, e.g., Luenberger
13] or, recently, Yaz [19], who studies systems with random parameters). It thus provides an

approximation of the unknown states Xn. We consider the Riccati equation (4) in which we
replace BnB by the identity matrix of order d. For any P , let Kn, n I, be the gain
matrices obtained by this Riccati equation when P0 P. The following proposition provides
an explicit observer.

PROPOSITION 6.1. We suppose that Hypothesis (H) holds and the linear system is almost
surely weakly detectable. For n I, let Dn An KnCn, Fn Kn, and
Then, there exists "7 > 0 such thatfor any initial condition, almost surely,

lim sup log IIX 

Proof. The proof readily follows from Theorem 5.6, since, with the chosen coefficients,

Xn+l Zn+l (An InCn)(Xn Zn). []

Finally, we consider the quadratic control problem. For any P and n E N, we define
matrices p(n) by the formula

p(n) (-1 o -2 o...o -n)(P).

It is straightforward to adapt the proof of uniqueness in Theorem 5.1 to see that, under the
hypotheses of this theorem, almost surely,

(16) lim p(n) o.
We define transformations of by the formula

(17) (P) CCn + AP(I + BnBP)-An,
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It is well known that

min {XPXn +(UU + YYk); E P) XQ(n)x’

where Q(n) (q o q o. c q_l)(P) (see, e.g., Whittle [16]). Since the mappings (q*_)
are dual to the mappings (qn), it follows from (16) applied to the dual system that Q()
converges almost surely to a random matrix Q that does not depend on P as n tends to
In the same way it can be seen that the optimal controls converge almost surely. They depend
on the future and can usually be directly implemented only for some deterministic systems,
such as almost periodic ones.
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ON EXTREMAL SOLUTIONS OF CONTROLLED NONLINEAR
FILTERING EQUATIONS*
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Abstract. Controlled nonlinear filtering equations with "relaxed controls" arising out of the separated control
problem for partially observed diffusions are considered. An equivalence relation is defined on the attainable laws
of the joint state and control process by identifying any two of the latter when their one-dimensional marginals
agree almost everywhere. Extreme points of the set of such equivalence classes (for fixed initial laws) are shown to
correspond to Markov processes.
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extremal measures
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1. Introduction. Consider a controlled, possibly degenerate diffusion controlled through
its drift by a nonanticipative relaxed control with the initial law fixed. The set of all possible
laws of thejoint state and control process can be shown to be compact in the Prohorov topology.
Identifying two elements of this set if their one-dimensional marginals agree a.e., the set of
corresponding equivalence classes is convex compact in the quotient topology. The extremal
elements of the latter were shown to correspond to Markov solutions in [2]. The aim of
this paper is to extend this result to controlled nonlinear filtering equations arising out of the
separated control problem for a controlled nondegenerate diffusion with partial observations
[3, Chap. V], [6]. We begin with some notation.

For a compact metric "control" space V, let
(i) m(., .) [m (., .),..., ma(., .)IT 7a X U -- 7a, where U P(V) (here and later,

P(S) for a Polish space S will be the space of probability measures on S with the Prohorov
topology) and is of the form

<_i<_d, x7d, uU

for rh E Cb(Ttd x V), which are Lipschitz in the first argument uniformly with respect to the
second (this is the relaxed control paradigm);

(ii) or(.) [[crj(.)]],j=l ,d Td Ttdxd is bounded Lipschitz with the least eigen-
value of eaT (.) bounded uniformly away from zero;

(iii) l(.) [(/, (.),...,/(.)]T d 7Z, is bounded and twice continuously differen-
tiable with bounded first and second derivatives.

For # E P(Td), let #(f) .f f d# for f Cb([d). Also, forf Co(Td) {bounded
continuous functions 7d 7 with bounded continuous first and second partial derivatives,
all vanishing at infinity}, let

Lf(x) mi(x, u) Of O2f+
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for x [x,..., Xd]T C Td. Then the controlled nonlinear filtering equation describes a
P(7d)-valued process 7r(.) by

() 7r(t)(f) 7co(f)+ 7r(s)(L()f)ds + (Tr(s)(lf) 7c(s)(f)Tc(s)(l), d(s)),

where 7r()(/f), 7r(s)(f), and 7r(s)(1) imply componentwise multiplication and integration.
(.) [y (.),..., y. (.)IT is the "innovations process," which is a standard Wiener process,
and u(.) is a U-valued measurable "control" process satisfying the wide-sense admissibility
conditions of [6]. See [3, V. 1] for a detailed derivation of the nonlinear filtering equation
(1). We shall call u(.) a Markov control if u(t) vffr(t),t), > 0 for a measurable
v P(7a) 7+ -- U.

Remark. Under our hypotheses, the solution -(.) of (1)is a.s. unique when both u(.) and
I(.) are prescribed processes [3, V.1]. When u(.) is Markov, however, neither existence nor
uniqueness is guaranteed for a given choice of v above.

Topologize the path space of u(.) as follows. (This topology is the same as that introduced
in [7].) For T > 0, denote by B the closed unit ball of Loci0, T] with the weak topology
of Le[0, T] relativized to it. By is compact metrizable and therefore Polish. Let B denote
the closed unit ball in L[0, oc) with the coarsest topology to render continuous the maps
B -- BT, T >_ O, that map f(.) C B to f([0, T]) BT. Let {fi} be a countable dense
set in the unit ball of C(V). It is then a convergence-determining class for U. Let a(.)
f fi d(.), 1. Then ai(.) B for each and a(.) [al (.), a2(.),...] B. B, B
are compact Polish spaces, as well. The map b" # U -- If fl d#, f f2 d#,...] c [- 1, 1]
is a homeomorphism between U and qS(U) by virtue of being a continuous injection with
a compact domain. We identify u(.), a(.) via this homeomorphism and use the notation to
denote either, depending on the context. Similarly, u([0, t]) may be viewed as a B-valued
random variable for t > 0.

The path space of 7r(.) is ’ C([0, o);P(Td)). Let T C([O,T];P(Td)) Let
/2(...) denote the "law of Define 1 {/2(7r(.), u(.))ltt(.) is wide-sense admissible,

/2(7r(0)) /}, viewed as a subset ofP( x Bc).
LEMMA 1. 1-’/ is compact convex.

The proof ofLemma is postponed to the end of this section. Define an equivalence rela-

tiononF as follows: (7r(.), u(.)), (7r’(.), u’(.)) I’ (or, equivalently, (Tr(.), u(.)), (Tr’(.),
u’(.)) themselves) are said to be marginally equivalent if (7r(.), u(.)) (7r’(.), u’(.)) a.e.
It is easy to see that this is indeed an equivalence relation. The corresponding equivalence
classes are said to be marginal classes. Let Fv denote the set of marginal classes with the
quotient topology inherited from Fv. Then it is compact convex as well. Let (7r(.), u(.))
(or equivalently ((7r(.), u(.)))) denote the marginal class containing (Tr(.), u(.)) (resp.,
(7c(.), u(.))). Our main result is the following theorem.

THEOREM 1. Every representative ofan extremal element of [’v is a Markov process.
Theorem will be proved in the next section. The rest of this section is devoted to a proof

of Lemma and another result which will be used later. Let C* C([0, oo); 7r’*), C
C([O, T]; 7).

ProofofLemma 1. It suffices to prove that f’v {/2(7r(.), (.), u(.))lu(. is wide-sense

admissible and (-(0)) =^} C P(d x C* x B) is convex compact. Let ’t, t >_ 0, be the
natural filtration of (r(.), Y(.), u(.)). For f C2o(Td), define

M(t, f) 7r(t)(f) 7c(s)(L()f)ds, t>0.
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To prove the convexity of w, observe that (1) is equivalent (up to a change of probability
space) to the following "martingale formulation": for h E Cb(P(7d)),

(2) E[h(Tr(0))] f hd,

and the following are {get }-martingales:

M(t,f),

M(t, f)(t) (Tr(s)(fli) 7r(s)(f)zr(s)(li))ds, l<_i_<m,

(M(t, f) ro(f)) 1lTr(s)(fl) 7r(s)(f)r(s)(l)ll ds

(this equivalence can be proved as in [3, pp. 116-118]; see also [4, p. 1051]). The latter is in
turn equivalent to the following: for t >_ s _> 0, 9 E Cb(8 C /3),

(3) e[(z(t) z())(([0, ]), ?([0, ]), ([0, ]))] 0,

where Z(.) is any of the above processes claimed to be martingale. (Thus (3) is a family of
equations and not a single equation.) If (2), (3) hold under two elements ofP(C x C* x B),
they do so under any convex combination thereof. The convexity of f’v follows. Equations
(2), (3) are preserved under convergence in P( C* x B) and hence f’ is closed. Thus,
to prove its compactness, it suffices to prove that it is tight. Since (I?(.)) is constant (i.e., the
Wiener measure) and P(B) is compact, we only need to show the tightness of {(7r(.)) lu(.
is wide-sense admissible, (7r(0)) r/}. This is proved as in [3, Lem. 3.7, pp. 128-129]
(see also ], [4]). []

Note that the well-posedness of (1) for prescribed (]Y(.), u(.)) (see [3, V.1])implies that
7c(.) is adapted to the natural filtration of (]Y(.), u(.)) and, therefore, {,T’t } is in fact the natural
filtration of (Y (.), u(.)). The last result of this section is a technical lemma needed later. This
is quite standard; see, for example, [4, p. 1.043].

LEMMA 2. For (Tr(.), Y(.), u(.)) as in (1), t >_ O, and t a sub-a-field of f’t containing
cr(Tr(t)), the regular conditional law of (r(t + .), fr(t + .) ?(t), U(t + .)) is a.s. the law of
a triplet (Tr’(.), ’(.), ’(.)) satisfying (1) with 7r’(O) 7r(t) and ’(.) wide-sense admissible.

2. Proof of Theorem 1. We shall prove this theorem through a sequence of lemmas. Let
{hi} be a countable subset of Cb(P(d) x U) that separates points of P(P(7d) U). For

P(P(7d the map> 1, a (0, oc), let Fa Fv -- T, 7 )) be

[/o((.), u(.)) F, E e hi(Tr(t), u(t))dt

This map is constant on marginal classes and therefore can be viewed as a map Fv 7-.
LEMMA 3. If#l, #2 [’rl satisfy Fci(#l) Fai(#z) for >_ 1, and rational a

then #1 #2.
This follows easily from the injectivity of the Laplace transform on 7+ and our choice

of {hi}. Let 5 denote the Dirac measure at 7r P(7"cd). For a given ;(r(.), u(.)) F, let
p(Tr, dy) denote a representative of the regular conditional law of (7c(.), u(.)) given -(0) 7r.

From Lemma 2, one may suppose that p(Tc, dy) Fs for each 7r.
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LEMMA 4. Suppose thatfor rc in a set ofstrictly positive rl-measures, (p(rc, dy)) is not
an extreme point ofF&. Then there exists relatively compact A C p(a) with 7(A) > O, >_
1, a rational in (0, 1), e > 0, andfor any rc E A, there exists ul,u2 F5 forwhich

(4) p(rr, dy) (/]lrr _qL /]2rr)

and

(5) IFci(/]lvr)- .Fozi(/]2rr) e.

Proof. LetF" 1-’6 r6 -- r6 denote the map (l,’l, /]2) -’+ (/]l+/]z)/2. Let(i, n, a)
{(/]1,/]2) 1-’6T X lm6t IF(,) F(u)l > l/n},

U
i,n,oz

Suppose r/({rr (P(, du)) F(A)}) 0. Then for rr-a,s, z, the following holds: for all
i, n >_ 1, and all rational a > 0,

7l,

whenever ul,/]2 VeT satisfy (p(Tr, dy)) (/]1 -}- /]2)/2. By Lemma 3, /]1 /]2,

which contradicts the hypothesis that (p(r, dy)) is not an extreme point of PeT. There-
fore 7({rr (p(rr, dy)) F()}) > 0. Hence for some i, n >_ 1, rational a > 0,

w({l(v(, dy)) F(ft(i, n, a))}) > 0.

Clearly, (i, n, a) is closed. Let A {l(p(, dy)) e F(fl(i,n, a))}. Since r/ is a
probability measure on a Polish space P(TCa), 7(U,K,) for some compact K, p(a).
By replacing with A its intersection with an appropriate finite union of K,’s, we may
suppose that A is compact with r/(A) > 0. This A satisfies the claim. []

Let A’ C P(’ x B) be defined by

A’- U p’

r6A

The arguments of the proof of Lemma can be adapated to show that A’ is compact. We
define marginal equivalence on the whole of P(’ x Boo) by deeming two elements thereof
to be marginally equivalent whenever the P(7a) x U-valued canonical processes have the
same one-dimensional marginals a.e. Let S indicate the space of corresponding equivalence
classes with the quotient topology and A E S indicate the set corresponding to A’. Then A
is compact. Define F A x A - S by (/],/]2) --+ (/]1 @ /]2)/2 and let

for a, i, e as in (5).
LEMMA 5. If (re(.), u(.)) is an extreme point ofr, thenfor 7-a.s. re, (p(rc, dy)) is an

extreme point of FeT.
Proof. Suppose Lemma 5 does not hold. Let A, e, a, i, Fi be as above. For rr A, let

/ {(u,, u2) e r’e rel(4), (5) hold with (/]l,/]2) in
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By Lemma 4,/f 0. It is also compact because (4), (5) are preserved under convergence
in F F, which is compact. Let G c A A be closed and therefore compact. Note that

(6) {Tr E AIKfG }- {Tr Al(p(Tc, dy)) e F(GfG’)}.
Since G’ is closed, F(G f G’) is compact. The map r -- p(Tr, dy) and, therefore, the map
7r -+ (p(Tc, dy))’ is measurable. Thus the set in (6) is measurable. We conclude that the map
r A K C A A is measurable and, therefore, weakly measurable in the sense of [8,
p. 862], in view of the remarks in paragraph 5 of [8, p. 862]. By Theorem 4.1 of [8, p. 867],

II IIthere exists a measurable map r -- (u, u A A A such that (4), (5) hold with u, u
in place of Ul, u2. Define

A+ {r AIF(u)- F(u) > c}

and A- analogously with -c, _< in place of e, >. Since 7(A) > 0 and A A+ U A-, at least
one of rl(A+), (A-)is strictly positive. Suppose /(A+) > 0. (If not, replace A+ by A-.)
Define

7tEA+
otherwise,

-EA+

otherwise,

Since /(A+) > 0, (#1} (#2} ". Clearly, @(.),u(.)} ((#l}~ + (#2})/2. Since
), D Fa for each 7r, (#}~ F, 1,2. Thus (Tr(.), u(.)} is not an extreme point of

F. This contradiction establishes the claim. []

The following is a special case of [4, Thm. 3.2, p. 1044]. Let (r(.), u(.)), 1,2 be
two pairs that satisfy (1).

LEMMA 6. If/2(7rl(T), u, (T)) (7r2(0), 22,2(0))for some T > 0, then there exists a

(7c(.), u(.)) satisfying (1) such that

(TF(t), t(t)) (TT1 (t), tl (t)) for t C [0, T] and

(Tr(t- T), u2(t- T)) fort >_ T.

LEMMA 7. Let @(.), (.)) be an extreme point of rv with/2(Tr(T)) /3 for some
T > O. Then (Tr(T + .), u(T + .)) is an extreme point ofr.

This follows easily from Lemma 6 (cf. [2]). Henceforth, let/Tr(.), u(.)) be an extreme

point of Fn. Fix T > 0. Let 7rT(.) 7r([0, T]) and #0 (Trr(.)) P(T). Let

f" T P(7a) denote the map 7rT(.) -- (Tr(T), 7rT(.)). Let # denote the image of #0
under f. Let Q denote the set of measurable maps P(a) Cr such that q5 E Q implies that
for all u P(Ta), qS(u) evaluated at T coincides with u. Let u0 (Tr(T)) and A/I c P()
be the set of probability measures obtainable as the image of u0 under some map belonging
to .

LEMMA 8. (resp., #o) is the barycenter ofsome probability measure supported on

f.(Ad) {#1# it is the image ofsome element of.All under f} (resp., ]M).

Proof In the setup of Lemma 2.2 in [2], let S1 P(T/a), 5’2 T, and 1, 2 equal
their respective Borel a-fields. By Lemmas 2.2 and 2.4 of [2], it follows that is the barycenter
of a probability measure { on

A- {# P(P(7d)xT)lp(dx, dy)- uo(dx)v(x, dy), wherev(x, .)is Dirac for u0-a.s, x}.
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Let

A’ f, (P(T)) {# E p(p(d)XT) # is the image of some element ofP(T)under f}.

If (A’) < 1, (A’c) > 0. This means that

((P(7d) x OT)\f(T)) > O,

which is a contradiction. Hence is supported on A’ and therefore on A N A, which is easi)y
seen to be identical to f, (.M). This proves the first claim. Since f is a bijection between CT
and its image under f, the map f, that maps elements of P(T) to their images under f is
a bijection between P(T) and f, (P(7)). Let (0 be the image of ( under f-l. Then 0 is

supported on A//and #0 is the barycenter of 0, proving the second claim. []

Let (z,y) E P(T) x T q((z,y),dz) P(’ x /3) by any version of the
regular conditional law of (r(T + .), u(T + .)) given (Tr(T), 7rT(.)). Thus the law of
(71-(T), T-T(.), (7t-(T --.), u(T --.))) is P(P(7a) x OT x C x B) Q, given by

(dx, dy, dz)- #(dx, dy)q((x, y), dz).

Let H C Q be the set of measures V of the form

?(dx, dy, dz) uo(dx)8(x)(dx)q((x, y), dz)

for some Q, S(x) being the Dirac measure at (x). By the above lemma, is the
barycenter of a probability measure l on H.

LEMMA 9. With l-probability one, the probability measure/ P( /3) defined by

for f e Cb(P() t3) is in r’ Furthermore, q((x g(x)) dz) can be chosen to be in r’uo" 6x
by choosing an appropriate version.

This is a straightforward consequence of Lemma 2. Denote ,/3 above as v, fly to
make explicit the ]2 dependence. Recall that is the barycenter of a probability measure l
on H.

LEMMA 10. For x outside a set ofzero pc-measure, <q((x, pv(x)), dz)> is the samefor
Cl-a.s. ]2.

Proof Note that fl -/(r(T + .), u(T + .)) given by

i l/f(z)/3(dz) #(dx, dy)q( (x, y), dz) f(z)

for f Cb( B) is an extreme point ofF, by Lemma 7. Disintegrate/ as uo(dx)p(x, dz),
where p(x, dz) is a representative of the regular conditional law of (Tr(T + .), u(T + .)) given
that 7r(T) x. By Lemma 5, (p(x, dz)) is an extreme point of F6 for u0-a.s.x. Now
is the barycenter of a probability measure l on H. Thus/ is the barycenter of a probability
measure on {fly, V H}. By Lemma 2.3 of [2], for 0-a.s. x, p(x, dz) is the barycenter
of a probability measure on {q((x,v(x)),dz), V H} and, in turn, (p(x, dz)) is the
barycenter of a probability measure on {(q((x, (?(x)), dz))}. For x outside a set of zero
u0-measure, outside of which the foregoing holds and p(x, dz)) is extremal in F6, we must
have

(p(x, dz)) (q((x, ?v(x)), dz))

for l-a.s. ]2, thus proving the claim. []
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Proof of Theorem 1. Fix t > 0 and let/3(x, dz), (l((X, y), dz) E P(P(nd)) denote the
images of p(x, dz) and q((x, y), dz), resp., under the map (x(.), y(.)) C B x(t)
p(d). Then the law of (Tr(T), 7rT(.), 7r(T + t)) is

#(dx, dy)(l((X, y), dz) / c, (d’P)uo(dx)5,zv()(dy)q((x, gv(x)), dz)

by the above lemma, where

dr) /
Thus 7r(T + t), 7rT(.) are conditionally independent given 7r(T). Given the arbitrary choice
of T, t, the claim follows. []
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STRONG STABILITY IN VARIATIONAL INEQUALITIES*
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Abstract. In this paper we consider a generalization of Kojima’s strong stability in nonlinear programs to
variational inequalities constrained by a system of equations and inequalities. Roughly speaking, strong stability
refers to the local existence and uniqueness of a solution of a system under small perturbations. The purpose of the
paper is to establish a new and complete characterization for strongly stable generalized Karush-Kuhn-Tucker points
and to give a complete characterization for strongly stable stationary solutions under the Mangasarian-Fromovitz
constraint qualification.

Key words, strongly stable generalized Karush-Kuhn-Tucker (GKKT) point, strongly stable stationary solution,
variational inequality problem, perturbation
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1. Introduction. The notions of strong regularity and strong stability are perhaps the two
most important concepts in the stability theory of optimization. The former was introduced
by Robinson [22] from an analytic viewpoint as a concept in generalized equations analogous
to the classical nonsingularity concept in nonlinear equations, and the latter was proposed
by Kojima [8] from a topological point of view attempting to characterize the existence and
local uniqueness of the perturbed local solutions of a nonlinear program. These two concepts
are equivalent for polyhedrally constrained nonlinear programs [16]. For general nonlin-
ear programs, strong regularity is referred to the nonsingularity of the Karush-Kuhn-Tucker
(KKT) points, while the concept of strong stability has more flexibility; a local minimizer with
nonunique multipliers, which is not strongly regular, may still have strong stability. These
two concepts have been extensively studied in the context of nonlinear programming; see
[5], [6], [7], [8], [9], [19], and [24]. Actually, the notion of strong regularity was originally
proposed in the framework of generalized equations, or variational inequalities, and a com-
plete characterization for strong regularity was obtained in [22]. In recent years the natural
generalizations of strong stability and its related theory to variational inequalities have been
addressed in several works [1], [3], [13], [25]. The conceptual aspect of the generalizations
is rather straightforward. However, some technical difficulties exist in establishing complete
characterizations for strong stability in variational inequalities. Only very recently was a
complete characterization for local homeomorphism of normal maps, or equivalently, strong
stability of the solutions of the corresponding variational inequalities over polyhedral sets,
obtained by Robinson [26] with a very penetrating analysis of the structures of linear normal
maps and polyhedral sets; even a short proof of this result is a very challenging task [20],
[21 ], [27]. The major difficulty in this kind of generalization mainly stems from the additional
complexity of asymmetric matrices versus symmetric matrices. This difficulty also exists in
matrix theory and linear algebra.

The major objectives of this paper are to establish a new and complete characterization of
strongly stable generalized Karush-Kuhn-Tucker (GKKT) points and to give the first complete
characterization of strongly stable stationary solutions in variational inequalities defined on
perturbed sets. To achieve these objectives, some new ideas are needed. We shall first
examine the differences between a variational inequality problem and a nonlinear program. It
is well known that the Karush-Kuhn-Tucker conditions or stationary conditions of a nonlinear
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program can be expressed by a variational inequality. Let us look at the simplest case first.
Consider an unconstrained quadratic program,

minimize O(:r) zT(Am b) s.t. z R’,

where A is a symmetric r x n matrix. The stationary conditions of the above program are
equivalent to the following variational inequality"

find z R such that (f(z) (2Az b))r(z z) >_ 0 for all z’ R’.

If we regard the vector b as the perturbation parameter, then for a particular value, say b0 0,
the condition which ensures that the above nonlinear program has a unique solution for all
b near b0 is the requirement that A, the Hessian of 0, be positive definite; however, for the
above variational inequality, the corresponding condition is that A, the Jacobian matrix of
f, is nonsingular. Here the distinction between these two conditions is due to the fact that a
solution of a nonlinear program must satisfy some necessary optimality conditions. Now let
us examine a more complicated situation:

minimize O(z) z-r(Am b) s.t. a: R.
The stationary conditions of this problem can be written down as a linear complementarity
problem,

find z R; such that (2Az b)-r(z’ z) >_ 0 for all z’ R.
Now, let the vector b be the perturbation parameter and let the unperturbed parameter b0 be zero.
We know that local uniqueness of solutions of the above nonlinear program requires that A be
positive definite, and that the corresponding condition for the above linear complementarity
problem is that A is a P matrix, i.e., A has positive principal minors. This property is equivalent
to the positive definiteness of A in our case since A is symmetric. However, the matrix A
is generally asymmetric if the above linear complementarity problem arises in equilibrium
problems, and in such cases this property is strictly weaker than the positive definiteness of A.
These two examples demonstrate the substantial differences between nonlinear programs and
variational inequalities. In the author’s opinion, the present stability and sensitivity theory
of variational inequalities (see the recent survey paper Kyparisis [13] in this field) follows
the stability and sensitivity theory of nonlinear programs too heavily and does not reflect the
substantial differences very well.

Now we consider the following more general variational inequality:

find z C such that (Am b)v(:c’ a:) >_ 0 for all z’ C,

where C is a convex polyhedral cone, and A is an n x n matrix. Again, let the vector b be
the perturbation parameter and let the unperturbed parameter b0 be zero. Recently, Robinson
[26] showed that the condition that completely characterizes the existence and uniqueness of
solutions of the above variational inequality for all b R is exactly the coherent orientedness
condition (Robinson did not restrict C to a cone). To be precise, we shall briefly review the
coherent orientedness condition. In what follows, for a p x q matrix/3 we shall use/3 to refer
to the matrix/3 itself or the linear transformation from/iq to Rp represented by the matrix/3

according to the context. The orientation of a linear transformation/3 from R to R is defined
to be the sign of the determinant of/3, which takes three possible values, 1, 0, and / 1. Let
L be a subspace of R and Q be an orthogonal matrix whose columns form a basis for L. The
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linear transformation represented by QVAQ is called the section of A in the subspace L [4].
The coherent orientedness condition is the requirement that the orientations of the sections of
A in the subspaces spanned by all faces of C all have a common nonzero sign.

Originally, the coherent orientedness condition was introduced 11 ], [26] from a piecewise
affine map perspective. It is instructive to explain it from a geometric point of view, as we
will do here. The advantage of this viewpoint is that it enables us to generalize this important
notion to the case where C is not a polyhedral set. In what follows we shall sketch the ideas.
Let A be a linear transformation in R and let C be a convex cone in R.n. Suppose z is a
nonzero vector in C. We say that z is in general positive position with respect to (w.r.t.) a
vector set {y,..., Ym} C C if there exist ai > 0, 1,..., rn, such that

z alYl + + amy.,

and the vector set {Yl,..., Ym} is linearly independent. If z is in general positive position
w.r.t. {Yl,..., ym} C C, and z is not in general positive position w.r.t. {YI,..., V} c C
such that m’ > m, then we say that the vector set {y,..., m} is a frame of z on C. Now
let {y,,..., m} be a frame of z on C and let L be the subspace spanned by {V,,..., Vm}.
Suppose z aly /... / amym. We first assume that {yl,..., m} is an orthonormal basis
of L. The linear transformation A maps z to Az. Consider the rectangular parallelepiped
D {tlYl / - tmYm:O <_ t <_ al,..., 0 <_ tm <_ am}. It is the image of the rectangle
I {(tl,...,tm)r:0 _< tl _< al,...,0 _< tm <_ am} under the matrix Y (y,,...,ym).
Suppose the linear transformation A maps D onto D. Then D {tAt +... +tmAIm’t
(tl,..., tin)T I} {AYt’t I}. Now we project D’ on L and obtain the projection/).
Then D {(yAYt,... ,yrAYt)T’t I} {YVAYt’t I} in Y space. This means that
D can be regarded as the image of I under the linear transformation YrAY. Obviously, it is
also a rectangular parallelepiped in L. It is not hard to see that the directed volume of/) in Y
space, denoted by DV(/)), is equal to al X-’’ X amdet(YrAY), and the directed volume of D
in Y space, denoted by DV(D), is equal to al X... 3< amdet(YvY). We define GAR(A, Y, z),
called the general amplification rate of A in the direction z w.r.t. Y, as follows"

DV(/)) det(YTAY)
(1.1) GAR(A, Y, z)

DV(D) det(yTY)

The equation above explains the geometric meaning of the determinant of the section of A in
the subspace L. Note that although we have assumed that Y is an orthonormal basis of L
span(Y), the definition is valid even when Y is not orthonormal. To see this, note that there
exists an m m nonsingular matrix T such that X YT and X is orthonormal. Substituting
X YT into (1.1) we obtain the same formula. Actually, if two vector sets Y and y2 span
the same subspace then one has GAR(A, y1, z) GAR(A, y2, z). This means that if two
vector sets Y and y2 are frames of z on C, then GAR(A, Y, z) GAR(A, y2, z) since by
the definition of frame, Y and y2 span the same subspace. Therefore, for any z C\{0},
we define the general amplification rate of A in the direction z w.r.t. C by

DV(D) det(yVAy)
(1.2) GAR(A, C,z) DV(.D) det(YvY)

where Y is a frame of z on C.
We now introduce the notion of coherent orientedness of a linear transformation on a

convex cone in terms of the general amplification rate of the linear transformation w.r.t.
this cone. For a polyhedral convex cone C, denote by rif(C) the set of relative interior
points of various faces of C. Then rif(C) C if C f3 (-C) {0}, i.e., C contains
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no lines and rif(C) C\{0} if C N (-C) {0}. So for a convex cone C we define

rif(C) (C\{0})U (C N (-C)). In stating the definition, we assume that GAR(A, C, 0)
or 0 for any linear transformation A and any convex cone C for the sake of convenience. For
simplicity we shall abbreviate the terms "coherently oriented" to "cooriented" and "coherent
orientedness" to "coorientedness," etc.

DEFINITION 1.1. A linear transformation A in R is said to be positively (negatively)
cooriented on a convex cone C in I iffor all z E rif(G’),

GAR(A, C,z) > (<)0;

A is said to be positively (negatively) semicooriented on C if the above inequality holds for
all z rif(C) with the replacement of

GAR(A, C,z)>_ (_<)0;

A is said to be cooriented (semicooriented) on C ifA is either positively cooriented (semi-
cooriented or negatively cooriented (semicooriented on C.

In view of (1.2) and the definition of frame, the above definition of coorientedness of a
linear transformation on a polyhedral convex cone is equivalent to that of [26]. Evidently,
a positive definite (semidefinite) matrix A is positively cooriented (semicooriented) on any
convex cone C since we always have

GAR(A, C,z) > (>_)0

for all z rif(C). The converse is not true; examine the following matrix:

A_[ 1]-4

It is not difficult to check that A is positively cooriented on R_. However, taking z 1, )v
_R_, we then have z-rAz -1 < 0. Also, we note that A is not positively cooriented on
the convex cone C {(Xl,X2)’x2 Xl O, -x2 0}, which is a subset of R_. This
suggests that the coorientedness of a linear transformation on a convex cone is an incorporating
property of the linear transformation and the cone. This property of coorientedness differs
substantially from that of positive definiteness. However, it was proved very recently [27] that
if the linear transformation can be represented by a symmetric matrix, then the coorientedness
of the linear transformation on a polyhedral convex cone containing no lines reduces to positive
definiteness.

At this point let us explain our reason for attempting to draw the reader’s attention to the
notion of coorientedness at the very beginning of the paper. It is perhaps very well known
that for nonlinear programs, the combination of the linear independence condition and strong
second-order sufficient condition, and the combination of the Mangasarian-Fromovitz con-
straint qualification and general strong second-order sufficient condition, are necessary and
sufficient conditions for strong regularity of KKT points and strong stability of local minimiz-
ers, respectively. It is natural to predict that for variational inequality problems a combination
ofthe linear independence condition and a certain coorientedness condition, and a combination
of the Mangasarian-Fromovitz constraint qualification and a certain general coorientedness
condition, would provide complete characterizations for strongly regular GKKT points and
strongly stable stationary solutions, respectively. This is true, as we will see in the following
sections.

We organize the rest of the paper in three sections. In 2 we introduce the notions of
strong stability in variational inequalities and review the known notation and basic results.
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Two results that are useful in understanding strong stability are also given in this section. In
3 we establish a new and complete characterization for strongly stable GKKT points. Other
characterizations are discussed. Finally, in 4 we consider strongly stable stationary solutions
in the framework of the Mangasarian-Fromovitz constraint qualification and show that the
so-called general coorientedness condition completely characterizes the strong stability of
stationary solutions.

2. Preliminaries. The variational inequality problems we shall deal with are of the form

VI(f, 9) find x E R(9) such that f(x)r(x’ x) >_ 0 for all x’ R(9),

where 9 :-- (91,...,g), R(9) := {x Rn gi(x) <_ O, L1;9i(x) --O,
L2}, L1 := {1,...,k}, L2 := {k + 1,...,k + 1}, m k + l, f R -+ Rn is once
continuously differentiable, and 9 R’ --+ R (i 1,2,..., m) are twice continuously
differentiable.

Given a VI(f, 9), if x is a local solution to VI(f, 9) and an appropriate regularity condition
holds at x, then the GKKT conditions or stationary conditions hold at x [13]: there exist
multipliers u Rm such that

(2.1)
f(x) + Z uVg(x) O,

i--1

_< o, _> o, o,
g(x) --O, L2,

iL1,

where (here and in what follows) the notation 7 always denotes the derivative with respect
to the variable x. It is known that system (2.1) can be expressed in an equivalent form via
generalized equations [22]:

(2.2)
f(x) + ZO

-9(x)
+

where the notation N denotes the normal cone operator. For a convex set C C R,
(yRt.yv(z_x) <_OforallzC}Nc(x) 0

if x E C,
ifxC.

The above generalized equation can be transformed to its corresponding normal equation [26].
To state it, define the normal map

(2.3) F(x,y)
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for x y) E R R", where for # E R,

#+ max{#, 0}, #- min{#, 0}.

Then the normal equation of VI(f, 9) is the following nonlinear equation:

(2.4) F(x, y) O.

The relation of solutions between (2.2) and (2.4) is rather simple: suppose (x, u) is a solution
of (2.2), then (x, g) with g u + 9(x) (i 1,..., m) solves (2.4); if (x, g) is a solution of
(2.4) then (x, u) with

y+ ifiL,
Ui y if L2,

solves (2.2). At this point let us remark that the major advantage of using a normal equation
approach is that the normal map is piecewise differentiable provided that the functions involved
are differentiable. We shall discuss this in a little more detail later. In this paper we mainly use
the normal equation to express the stationary conditions. Therefore, we shall use somewhat
different but equivalent terminology. A point x R satisfying (2.4) with some g _R

is said to be a stationary solution of VI(f, 9), in symbols, x E S(f, 9), and in such a case
the pair (x, g) is said to be a GKKT point of VI(f, 9), in symbols, (x, g) GKKT(f, 9).
Let x be a stationary solution of VI(f, 9). Denote the set of its associated multipliers by
M(x, f, g) :: {y R: (x, y) GKKT(f, g)} and the set of extreme points of M(x, f, g)
by E(x, f, 9). Note that the solution conditions that ensure a stationary solution x to be a local
solution of VI(f, 9) are generally stronger than those in nonlinear programs. For a convex-
constrained variational inequality CCVI(f, 9) (i.e., each inequality constraint 9, L, is
convex in x, and each equation constraint 9, E L2, is affine in x) a stationary solution x is
then a local solution of CCVI(f, 9).

For convenience, let

LD(X, y)"-- f(x) + Z y+Vgi(x) + Z yiVgi(x).
iGL iGL2

For each (x, y) R R", some characteristic index sets are defined by

Io(x, g)"- L2 {i L gi(x)
I+(y) {i L, "yi >

IN(y) L2 I+(y).

Consider the following classes of perturbations of VI(f, 9)"

7 {(Af, Ag)- (Af Ag,, Ag). Af R -- R is once continuously differentiable,

Ag" R -- R, {1,..., m} are twice continuously differentiable},

equipped with the family of seminorms

norm(Af, Ag, U)
sup supmax{llAf(x)ll,
<i<rn xU
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where U is a subset of Rn, and a subclass 7-)* of 7) defined by

7)* {(/kf,/kg) 7). Af(x) Dx + c, /kg(x) d (1 < _< m)
for some n n matrix D, some vector c E R and d (d d,) RTM }

For each perturbation (Af, Ag) 7) of the problem VI(f, g), we define the map AF
R R Rn+’ as follows"

(2.5) AF(x,y)

AS(x) + Z y+VAg(x) + yVAg(x)
iGLi iGL2

-Ag (x)

--Agk+(x)

(x)

Then the normal, equation for the perturbed problem VI(f / Af, 9 / Ag) can be written as

F(x, V) + V) 0.

We now generalize the notion of Kojima’s strong stability to variational inequalities In
what follows, we use B(z, 5) to denote {z’ R IIz’ zll _< 5} for any positive number
and z Rt.

DEFINITION 2.1. Let T) be a subclass of 7). We say that a stationary solution x* to

VI(f, 9) is strongly stable w.r.t. 7)’ iffor some r > 0 and each c (0, r] there exists a
5 5() such that whenever (Af, Ag) 7)’ and norm (Af, Ag, B(x*, r)) <_ 5, B(x*, )
contains a stationary solution x(Af, Ag) to VI (f / Af, 9 / Ag), which is unique in
t3(x*, r). Similarly, a GKKT point (x*, y*) of VI(f, 9) is said to be ’strongly stable w.r.t.

7)’ iffor some r > 0 and each (0, r] there exists a 5 5() > 0 such that whenever
(Af, Ag) 7)’ and norm(Af, Ag, B(x*,r)) <_ 5, B((x*,y*),) contains a GKKTpoint
(x(Af, Ag), y(Af, Ag)) to Vl(f + Af, g + Ag), which is unique in B((x*, y*), r).

To explain this important concept, we shall make several remarks in the following sec-
tions. In the rest of the paper, when we say that x* is strongly stable without specifying the
perturbation class, we simply mean that the perturbation class is 7)

Remark 2.2. From Definition 2.1, if x* is a strongly stable stationary solution (w.r.t. 7)),
then there are some r, s > 0, and some mapping x(.) defined on W(0, s) := { (Af, A9) 7)’:
norm(f, Ag, B(x*, r)) < } such that

(1) x(.) is continuous at (Af, Ag) 0 (w.r.t. the above norm) with x(0) x*;
(2) S(f+Af, 9+Ag)NB(x*, r) {x(Af, Ag) } for all (Af, Ag) belonging to W(0, s).

Properties (1) and (2) may be explained informally as follows: if a stationary solution is
strongly stable, then the slightly perturbed stationary solution is locally unique and continuous
as a function of the perturbation.

Remark 2.3. The above definition about strong stability ofGKKT points is different from
Kojima’s definition when restricted to nonlinear programs According to Kojima [8], a KKT
point (x*, y*) of a nonlinear program NLP(f, 9) with objective function f and feasible set

R(9) is said to be strongly stable (w.r.t. 7)) if and only if x* is a strongly stable stationary
solution to NLP(f, g) (w.r.t. 7)’).

Remark 2.4. (1) If 7)’ and 7’’ are subclasses of 7) such that 7)’ C 7)’’, then strong stability
w.r.t. 7)’’ implies strong stability w.r.t. 7)’. (2) Strong stability of GKKT points implies local
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uniqueness of the perturbed stationary solution as well as local uniqueness of the perturbed
multipliers. However, a strongly stable stationary solution may have nonunique associated
multipliers.

We now turn to discuss an important property, called piecewise differentiability, of the
normal map F(-, .), which plays a key role in the study of normal maps. We first define the
following matrices: Given a GKKT point (x*, y*), define

C(J) -(Vg(x*)), E J
for J c Io(x*, g)\IN(y*);

and

VLD B C(J)
M(J) -BT 0 0

-C(J)r 0 0

for J c Io(x*,g)\Ig(y*), where VLD VLD(x*, y* ). For the given GKKT point
(x*, y*), we can induce a subdivision K ofR R as follows: for any J c I0 (x*, g)\IN (y*)
define

"r(J) R {y e R yi >_ O, JU IN(y*); yi <_ O, e {1,...,m}\(JU IN(y*))}.

Let

/4-- {-(J) J C Io(X*,9)\IN(y*)}.

Then K is a subdivision of Rn+’ [8], and F(., .) is continuously differentiable in each piece
z-(J) f B((x*, y*), 6), where is a positive number, and the corresponding Jacobian matrix
DF(x,y;’r(J)) at a point (x,y) 7(J) N B((x*,y*),6) is

ETLD B C(J) 0
--13r 0 0 0

M(J)- -C(J)v 0 0 0
0 0

where B (Vg(x)), IN(y*); C(J) (Vg(x)), e J, C(J) (Vg(x)),i
J, 7LD is evaluated at (x,y), and J (Io(x*,g)\IN(y*))\g. It is easy to see that
det/17/(g) detM(J). The signs of the determinants of F(x*,y*;’r(J)) are closely re-
lated to the strong stability at (x*, y*) and will be demonstrated later. For convenience we
shall assume that the sign of the determinant of the matrix (0) is plus one.

According to the subdivision K, we can naturally induce a piecewise affine map LF
about the point (x*, y*) as follows:

LF(x, y) F(x*, y*) + DF(x*, y* cr)((x, y) (x*, y*))

for every (x, y) r and cr /(, which is the linearization of the normal map F(., .) about
the point (x*, y*).

Several commonly used regularity conditions which may hold at a stationary solution x*
to VI(f, g) are as follows:

(a) The linear independence condition (LI) holds at x* if the set
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is linearly independent.
(b) The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x* if

(i) the set {279i(x*) E L2} is linearly independent,
(ii) there exists z such that Vgi(x*)rz 0, E L2; 79(x*)rz < 0, i L1 fq

z0(*,g).
(c) The strong second-order condition (SSOC) holds at (x*, y*) if

ZVVxLD(x*, y*)z > 0 for all z O, z e Z(x*, y*),

where

Z(x*,y*) {z Rn vgi(X*)Tz- O, IN(y*)}.

(d) The general strong second-order condition (GSSOC) holds at x* if SSOC holds at

(x*, y*) for every y* E M(x*, f, 9).
It is worth pointing out that strong stability is an "open" property. To be precise we have

the following result, which is similar to the one given by Klatte and Tammer [7] for strong
stability in nonlinear programs.

PROPOSITION 2.5. Suppose that x* is a strongly stable stationary solution to VI(f, 9)
(w.r.t. 79) and that MFCQ holds at x*. Let x(.) be the mapping appearing in Remark 2.2.
Thenfor any (Af, A9) I/V(O, s)

(i) x(.) is continuous at (Af, Ag) w.r.t, the norm used in Definition 2.1;
(ii) x(Af Ag) is a strongly stable stationary solution to VI(f / Af, 9 + Ag) (w.r.t. 79’).
As in nonlinear programs (see Klatte and Tammer [7]) we have a relation between strongly

stable GKKT points and strongly stable stationary solutions.
PROPOSITION 2.6. Consider a GKKTpoint (x*, y*) to VI(f, 9). Then the following two

conditions are equivalent:
(1) (x*, y*) is a strongly stable GKKTpoint to VI(f, g) (w.r.t. 79’ 79*).
(2) x* is a strongly stable stationary solution with associated multipliers y* to VI(f, 9)

(w.r.t. 79’ 79.) and the LI condition holds at x* for VI(f, 9).
A major tool that we use in this study is degree theory. We shall briefly review the general

conditions under which a degree of a continuous function can be defined and some important
properties of degrees of continuous functions. For more information the interested reader may
consult Lloyd [16] and Ortega and Rheinboldt [17]. For each subset D of Rt, we use int D,
bd D and/3 to denote the interior of D, the boundary of D, and the closure of D, respectively.
Let R R be a continuous function, D be a bounded open subset of R, and p be a
point in Rt. If p (bd D), then the Brouwer degree of the map at p with respect to D,
denoted by deg(, D, p), is well defined. Some properties of degree are as follows:

(i) If deg(, D, p) 0 then there is a solution of (x) p in D.
(ii) Suppose deg(, D, p) is defined. Let be a continuous function on D. If sup{ (x)-

(x)l x D} < d(p, (bd D)), then deg(, D,p) is defined and is equal to deg(, D,p).
(iii) Suppose that H" [0, 1] D - R is continuous and p H(t,bd D) for all/ [0, 1].

Then deg(H(t, .), D, p)is independent of t.
(iv) Suppose that deg(, D, p) is defined. Let S be a compact subset of D such that there

are no solutions of the equation (x) p in S. Then deg(, D\S, p) is defined and is equal
to deg(, D, 0).

Note that from (i) we know that if deg(, D, 0) 0, then (x) 0 is solvable in
D. Moreover, it follows from (ii) that the solvability is preserved if the function is slightly
perturbed. This fact is particularly useful for stability analysis.
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3. Characterizations of strongly stable GKKT points. In the context of nonlinear
programming, a strongly stable KKT point is a strongly regular KKT point and vice versa
[7]. It is now well known that both concepts are related to the local homeomorphism of the
linearization of the normal map F(x, y) at a solution of the normal equation in question.
It is not difficult to show that these relations are also retained in the context of variational
inequalities. So in this section we sometimes use the term "strongly regular" and at other
times we use "strongly stable" according to the context, assuming the reader is well aware of
this fact. In Robinson’s original paper on generalized equations [22], he obtained a complete
characterization for strongly regular GKKT points, which we will state first. Then, we shall
establish a new and complete characterization for strongly stable GKKT points with the aid
of the idea of coorientedness. Some results in this section are direct extensions of known
results from nonlinear programs. We present them here for the sake of completeness and easy
reference.

We first recall Robinson’s definition of a strongly regular GKKT point. Adapting Robin-
son’s general definition of a strongly regular generalized equation [22] to our case, we say that
a GKKT point (x*, y*) of VX(f, 9) is strongly regular if the normal map FL (’, ") corresponding
to the following affine variational inequality:

LVI(f, g) find x E LR(g) such that Lf(x)v(x’ x) >_ 0 for all x’ LR(g),

where Lf(x) := f(x*) + Vf(x*)(x x*) and LR(g) := {x Rn Lg(x) := g(x*) +
Vgi(x*)V(x x*) <_ O, e L,; Lgi(x) := g(x*) + Vg(x*)V(x x*)= O, e L2}, is
Lipschitzian invertible at (x*, y*).

Recall that if a matrix H is partitioned as

A

with A nonsingular, then the Schur complement of A in H, written (H/A), is defined as
D CA-B. An excellent and extensive study of this concept may be found in Oullette [18].

Below we summarize several basic results about strongly stable GKKTpoints and strongly
regular GKKT points. A similar theorem was given by Klatte and Tammer [7] in the context
of nonlinear programs.

THEOREM 3.1. Suppose that (x*, y*) is a GKKTpoint of VI(f, 9). Then the following
are equivalent:

(1) (x*, y*) is a strongly regular GKKTpoint;
(2) (Robinson [22])

(i) M(O) is nonsingular,
(ii) Io(x*, 9)\Iu(y*) 0 or M(Io(x*, g)\IN(y*))/M(O) has positive principal

minors;
(3) (x*, y*) is a strongly stable GKKTpoint (w.r.t. 79);
(4) (x*, y*) is a strongly stable GKKTpoint (w.r.t. 7)*);
(5) LF(. .) is a homeomorphismfrom Rn+m to Rn+m.
We postpone giving the proof until we establish some basic facts for variational inequal-

ities.
Robinson [22] applied the equivalence of (1) and (2) in Theorem 3.1 to nonlinear program-

ming problems and proved that the LI condition and strong second-order sufficient condition
are sufficient for (2). He also gave an example to show that these conditions are not necessary
in general. However, combining the above theorem with Corollary 6.6 of Kojima [8], we see
that if a stationary solution of a nonlinear program is known to be a local minimizer a priori,



STRONG STABILITY IN VARIATIONAL INEQUALITIES 735

then the LI condition and strong second-order sufficient condition are also necessary for strong
regularity.

The main drawback of the above characterization (Theorem 3.1 (2)) for strongly regular
GKKT points may be that it uses higher-dimensional matrices instead of the Jacobian of the
Lagrange function LD(X*, y*). Kyparisis [13] extended Robinson’s results to variational
inequalities showing that the LI condition and strong second-order condition are sufficient for
strongly regular GKKT points. As was explained in the introduction, the strong second-order
condition, although quite suitable for nonlinear programs, may not be very effective in stability
analysis of variational inequalities. However, the concept of coorientedness, as we will see
in the following theorem, can completely characterize the strong regularity of variational
inequalities. In stating this result, for a given GKKT point (x*, y*), we use C(x*, y*) to
denote the critical cone at this point:

C(x*,v*)
e o, e _< o, e

THEOREM 3.2. Let (x*, y*) be a GKKT point of VI(f, 9). Then (x*, y*) is a strongly
regular GKKTpoint ifand only if: (1) The LI condition holds at x*; and (2) the coorientedness
condition (CC) holds at (x*, y*), i.e., VLD(x*, y*) is cooriented on C(x*, y*).

The coorientedness condition may not be easy to verify in general. However, in some
particular cases the difficulty can be reduced. Let us see two extreme cases first. If Io(x*, 9)
IN (y*), i.e., the strict complementary slackness condition holds, then CC is equivalent to the
condition that the restriction of VLz)(x*, y*) on the subspace C(x*, y*) is nonsingular (in
this case C(x*, y*) is a subspace); if Io(x*, 9) , then CC is just the nonsingular condition
in the standard calculus. For the general case, we can perform the reduction procedure [27]
as follows: Let E be the affine hull of C(x*, y*), i.e., E {z E R Vgi(x*)rz O,
IN(y*)}; let L be the lineality spaceof C(x*,y*),i.e., L {z R Vgi(x*)Vz O,
Io(x*, 9)}. Now choose an orthonormal matrix partitioned as (L M T) such that the columns
of L, E (L M), and (L M T) form the bases of the subspaces L, E, and Rn, respectively.
Let dL and dE be the dimensions of L and E, respectively. If dL > 0, then the section of
VLD (x*, y* in the subspace E is

ETVLD(x*,y*)F_, LrVLD(x*, y*)L
MrVLD(x*, y* )L

LrVLD(x*’ ]MrVLD(x*;!M)M
Denote by aft(M) the subspace spanned by M. If the dimension of aft(M) that is equal to

(de dc) is much smaller than that of C(z*, y*) then the difficulty of checking CC can be
reduced, as we will see in the following result.

THEOREM 3.2’. Let (x*,y*) be a GKKTpoint of Vl(f, 9). Then (z*,y*) is a strongly
regular GKKTpoint ifand only if:

(1) the LI condition holds at z*;
(2i) when dr O, ETVLD(x y*)E is positively cooriented on aff(M) n C(x*, y*);
(2ii) when dL > O, LTVLD(x*,y*)L is nonsingular, and ErVLD(x*,y*)E/

L-rVLD(x y* )L is positively cooriented on aff(M) f-) C(x*, y* ).
Before proceeding to prove the theorems, we give an example to demonstrate a situation

where the GKKT point being considered is strongly regular, but SSOC does not hold. Note
that SSOC implies CC and not vice versa.

Example 3.3. Consider the following VI(f, g) with f(x) (1, X2 + X3, --4X2 -+- X3),
gl (X) --Xl, g2(X) --X:z, g3(X) --X3, L1 { 1,2, 3}, and L2 . Let x* (0, 0, 0)r.
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It is easy to check that the point (x*, y*) with y* (1,0, 0)r is a GKKT point, and that

VLD(z*, y*) 0
0 -4

and Io(z*,9) {1,2,3}, IN(y*) {1}. It is not difficult to check that C(z*,y*) {z
R’z -0, z > 0, z _> 0}, L- {0}, aff(M) {z R’z -0, z R, z R},
and Z(z*, y*) aff(M). Obviously, LI holds at z0. Also, we can easily verify that condition
(2i) in Theorem 3.U holds. Therefore, it follows that (z*, y*) is a strongly regular GKKT
point.

We now show that SSOC does not hold at :co. Take z (0, 1, 1) Z(z*,y*). An
algebraic calculation yields that zVLD(z*,y*)z -1 < 0. Thus .SSOC does not hold
at :co.

To prove Theorem 3.2 we need several technical lemmas. The first one below presents
an alternative form of characterization (2) in Theorem 3.1.

LEMMA 3.4. Suppose (x*, y* is a aKKTpoint ofVI(f g). It is a strongly regular GKKT
point ifand only if signdetM(J) is a nonzero constantfor all J C Io(x*, 9)\IN(y*).

Proof. It is obvious that under the hypotheses of Lemma 3.4, M(O) must be non-
singular. Note that any principal submatrix of M(Io(x*,9)\Iu(y*))/M(O) takes the
form C(J)VM(O)-C(J) for some J c Io(x*,g)\IN(y*). Conversely, for any J c
Io(x*, 9)\IN(y*), there is a principal submatrix of M(Io(x*, 9)\IN(y*))/M(O)which takes
the form C(J)rM(o)-C(J). In addition, by the determinant formula of the Schur comple-
ment, we have

detM(J) det(C(J)VM(O)-’C(J))detM(O).
Therefore, signdetM(J)has the common sign- signdetM(O)for all J c Io(x*, 9)\IN(y*)
if and only if M(Io(x*, 9)\IN(y*))/M(O) has positive principal minors. Hence the desired
conclusion follows from (2) in Theorem 3.1. []

The next lemma says that if the orientation of the section of a linear transformation
in a subspace is zero, then small perturbations to the linear transformation can make the
orientations of the sections of the perturbed linear transformations take any value. This
lemma is an extension of Lemma 3.4 in [8].

LEMMA 3.5. Let N be an n n square matrix and C an n p matrix with rank(C) p
and p <_ n. Assume that det(CvNC) O. Then there exist n n matrices Q+ and Q- such
thatfor any 7 > O,

(3.1) det(CV(N + 7Q+)C) > 0

and

(3.2) det(C (N + 7Q-)C) < 0.

Proof. Since CVNC is a p p matrix with det(CrNC) 0, it is similar to a unique
Jordan matrix D, i.e., there exists a p p nonsingular matrix P such that

C-rNC_ pDp-1

where D is a block-diagonal matrix of the form

D1 0 0
0 D2 0

D--

0 0 D8
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Each Di is a pi x pi Jordan matrix of a common (complex) eigenvalue ,kj (j pl 4- 4-
pi- 4- 1,..., pl 4-" 4- p- 4- p); , and Aj belonging to different Di and Dj are distinct;
pl 4- p2 4- 4- ps P; and there is at least one j such that ,5 0. Without loss of
generality we assume that, 0(1 < k) and0 Aj (k+l _< j _< p). Choose

#i E {-1,0, 1} (1 < <_ p)such that

(3.3) #1"’" #k/k+l "’"/p ) 0 and #j 0 (k + < j < p).

Now define a p x p matrix

#l 0 1V+ p ... p-1

0

From this construction, it is not difficult to see that

det(CVNC + 7V+) @det(P)det(P-1)#l... #kA+l... Ap > 0.

On the .other hand, since C has full column rank, without loss of generality we can assume
that the set of the first p rows of C is linearly independent, and then partition the matrix C into

with p x p matrix CI nonsingular. Define the n x n matrix Q+ as follows:

Q+_ [ (cl)-rV+C{-1 0 ]0 0

Then a simple calculation shows that Q+ satisfies (3.1) for every -y > 0. The existence of an
n x n matrix Q- satisfying (3.2) for any "y > 0 can be proved similarly by replacing (3.3)
with

#l...#a,kk+l.../p<O and #j O (k + <_ j < p).

This completes the proof. []

The following lemma presents a connection between the orientation of a linear transfor-
mation with a particular form and the orientation of the section of the linear transformation in
a particular subspace. This lemma extends Theorem 3.5 of Kojima [8], where he considered
the symmetric case. The proof is analogous to that of the aforementioned result in [8] except
that it uses Lemma 3.5 instead of the results in [8].

LEMMA 3.6. Consider thefollowing square matrix M:

with an n x n square matrix N and an n x m matrix B, and n >_ m. If rank(B) m
then signdet(M) signdet(N(ker(BT))), where U(ker(BT)) is a matrix that represents the
section ofthe linear transformation N in the subspace ker(BT).

Using Lemma 3.6, we can easily give the proof of Theorem 3.2.

ProofofTheorem 3.2. We prove this theorem by showing the equivalence of the hypothe-
ses ofthe theorem and those ofLemma 3.4. We shall show first that the assumptions ofTheorem
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3.2 imply those of Lemma 3.4. Take any J c Io(x*, 9)\IN(y*). Let N VLD(x*, y*) and
let B (Vgi(x*)), (i E IN(y*)) and C(J) (Vgi(x*)), (i E J). Then

ker((B C(J))T) {z e R: Vgi(x*)Vz O, e IN(y*);
Vg(x*)Tz O, . J}.

Denote ker((B C(J))T) by L. It is easy to see that F L fq C(x*, y*) is a face of C(x*, y*).
Choose an orthogonal basis V (vi) of the subspace L. By definition VTNV is a section
of N in the subspace L. Since the LI condition holds, Lemma 3.6 is applicable here, and
consequently we obtain that signdet(M(J)) signdet(VvNV). Therefore, CC implies that
signdetM(J) is a nonzero constant for all J c Io(x*, 9)\IN(y*).

Similarly it is not hard to show that the hypotheses ofLemma 3.6 imply those of Theorem
3.2; we omit the details. []

Proof of the equivalence of Theorems 3.2 and 3.U. The equivalence of Theorems 3.2
and 3.U readily follows from some results in Robinson [27]. Note that the homeomorphism
condition of a normal map induced by a linear transformation A on a polyhedral convex cone
C is equivalent to the coorientedness of A on C. Therefore, Propositions 2.2 and 2.3 in
[27] imply that VLD(x*,y*) is cooriented on C(x*, y*) if and only if EVLD(X*,y*)E
is cooriented on all(M) fq C(x*,y*) if dL O, LrVLD(x*, y* )L is nonsingular, and
EVVLD(x*,y*)E/LTVLD(X*,y*)L is cooriented on aff(M) f) C(x*,y*) if dL > O. On
the other hand, since aft(M) f? C(x*, y*) is a polyhedral convex cone containing no lines,
any linear transformation B is cooriented on aft(M) C(x*, y*) if and only if it is positively
cooriented. This completes the proof. []

Below we cite two results from [8] that are applicable here. The first one says that the
linearization LF(.,.) of the normal map F(-,.) about the point (z*, y*) is a homeomorphism
if and only if the determinants of DF(z*, y*; or) for all pieces r in K have a common sign.

PROPOSITION 3.7 [8, Thm. 3.3]. Let (z*, y*) be a GKKTpoint to VI(f, 9). The lineariza-
tion LF(. .) is a homeomorphism ifand only if signdetDF(z*, V*; or) is a nonzero constant

for all If.
The second proposition below says that if the normal map itself is a local homeomor-

phism then the local degree of the normal map is 1 and the determinants of DF(z*, y*; or)
obey some inequality. Note that the homeomorphism property of LF(., .) implies the local
homeomorphism property of F(.,.) but the converse is not true in general.

PROPOSITION 3.8 [8, Lem. 2.3]. Suppose that F(. .) is a local homeomorphismat (x*, y* ).
Then, for some (5* > 0 one has

(3.4) deg(F, intB(x*, y*, 6), 0) +1 for all 5 (0, g*]

or

deg(F, intB(x*,y*,5),O) -1 for all (5 (0,5"].

Moreover, if (3.4) (or (3.5)) holds then

detDF(x, y; a) >0 (or<O)

for all (x, V) cr A int B(x*, y*, 6*) and cr K.
Now we are ready to prove Theorem 3.1.
Proofof Theorem 3.1. The equivalence of (1) (2) was shown in [22] and the equiva-

lence of (2) = (5) follows from Lemma 3.4 and Proposition 3.7. To complete the proof, we
shall show the following implications: (1) = (3), (3) = (4), and (4) = (5).
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(1) => (3): This implication readily follows from Theorem 2.1 of [22].
(3) => (4): Since 7* c 79, the implication is obvious.
(4) => (5): From Proposition 2.6 we see that the LI condition holds at a*. The rest of

the proof is similar to that of Theorem 4.2 in [8] except that it uses Lemma 3.5, Lemma 3.6,
Proposition 3.7, and Proposition 3.8 instead of Lemma 3.4, Theorem 3.5, Theorem 3.3, and
Lemma 2.3 in [8], respectively. []

From Theorem 3.1 and Proposition 3.8 we know that the local degree of the normal map
at a strongly stable GKKT point is either + or -1. We now claim that the sign of the local
degree of the normal map at a strongly stable GKKT point can be determined if we have
additional information about the coorientedness condition.

COROLLARY 3.9. Let (oc*, gl*) be a strongly stable GKKT point of VI(f, 9). Then for
some 5" > 0 one has

deg(F, intB(x*,y*,6),O) +(-)1 forall (0,*]

ifand only if VLD(x*, y*) is positively (negatively) cooriented on C(x*, y* ).
Proof Since (x*, y*) is a strongly stable GKKT point, the normal map F(., .) is then a

local homeomorphism. Therefore, by Proposition 3.8 there exists 5" > 0 such that

deg(F, intB(x*, y*, 5), 0) +1

or

deg(F, intB(a*, /*, 6), 0)

for all 5 E (0,5"]. By Theorem 3.2 we know that VLD(ae*,!I*) is either positively or
negatively cooriented on C(a;*, 1/*). On the other hand, choose any cr E K. If LD(a*, 1")
is positively (negatively) cooriented on C(a*, /*), from the proofofTheorem 3.2 we know that
signdetDF(a*, g/*; a) +(-) 1. Then the desired result follows from the second conclusion
in Proposition 3.8. []

Finally, we note a connection of strongly stable GKKT points with Clark’s notion of
nonsingularity of nondifferentiable maps: a GKKT point (z*, /*) is strongly stable if and only
if 0F(z*, /*), the generalized Jacobian of the normal map F(., .) at (z*, *), is nonsingular.
The interested reader may consult Jongen, Klatte, and Tammer [6] for details.

4. Strongly stable stationary solutions. As we have seen in the previous section, various
complete characterizations for strongly stable GKKT points from different perspectives have
been established, and strong stability behavior of GKKT points has been more or less well
understood. However, when we are concerned with a parametric variational inequality, the
assumption of the LI condition seems to be too strong because at some value of the parameter
more than constraints can be active, and in such a case the LI condition certainly fails. A
reasonable replacement of the LI condition will be MFCQ. It is now known that the latter
constraint qualification is necessary and sufficient for the topological stability of the feasible
set [2]. In this section we shall establish the first complete characterization of strongly stable
stationary solutions in the framework of MFCQ.

For convenience of reference, we list below some important properties of MFCQ.
PROPOSITION 4.1. Suppose z* is a feasible point ofVI(f 9) and MFCQ holds at z* for

VI(f, 9). Then there exist some r, 5 > 0 such that
(i) M(oc*, f, 9) is bounded;
(ii) MFCQ holds at any feasible point a B(ae*,r) of VI(f / Af, 9 / A9) provided

that norm(Af, Ag, B(x*, r)) < 6;
(iii) M(x, f / Af, g 4- Ag) as afunction of (x, Af, Ag) is upper semicontinuous.
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Our characterization for strongly stable stationary solutions under MFCQ should reduce
to the one for strongly stable stationary solutions under the LI condition when MFCQ reduces
to the LI condition. Note that under MFCQ the set of associated multipliers with a stationary
solution may not be a singleton. Therefore, it is reasonable to imagine that when MFCQ
holds, but the LI condition does not, we shall impose a condition similar to the LI case for all
GKKT points associated with the stationary solution in question. Such a condition, called the
general coorientedness condition, together with MFCQ provides a complete characterization
for strongly stable stationary solutions.

To motivate the general coorientedness condition, we shall briefly examine what additional
difficulties would occur if the LI condition were weakened to MFCQ. We have seen in the
previous sections that the coorientedness condition requires that the sections of the Jacobian
matrix VLD(x, y) in all subspaces spanned by the faces of the polyhedral cone C(x, y) have
the same nonzero orientation, so it is indeed closely related to the combinatorial structures of
C(z, y). Note that although both the LI condition and MFCQ are sufficient for the topological
stability of the feasible set, an essential difference between the LI condition and MFCQ is that
the former ensures the stability of the combinatorial structure of the polyhedral set C(z, y)
but the latter does not. Therefore, in the case in which MFCQ holds but the LI condition
does not, we have to take care of all possible combinatorial structures that a slightly perturbed
polyhedral cone C(z, y) can have.

We now introduce the general coorientedness condition.
DEFINITION 4.2. Let z E R be a stationary solution to VI(f, 9). We say that the general

positive (or negative) coorientedness condition (GPCC or GNCC) holds at z iffor each
y E M(x, f g),

VLD(X,y) is positively (or negatively) cooriented on C(x,y; J)
for all J C Io(x, g)\IN(y),

where C(x, y; J) is defined as

C(x,y; J)= {z e R Vgi(x)Vz O, IN(y); Vgi(x)z < O, e J}.

We say that the general coorientedness condition (GCC) holds at x ifeither GPCC or GNCC
holds at x.

Here is the main result of the paper.
THEOREM 4.3. Suppose that x* is a stationary solution ofVI(f 9) and thatMFCQ holds

there. Then z* is a strongly stable stationary solution ifand only ifGCC holds at z*.
The verification of GCC involves checking CC for each multiplier in M(z*, f, 9), and

this may not be an easy task. We will give more verifiable sufficient conditions later. Note that
the reduction procedure described in 3 is applicable for verifying CC at a particular GKKT
point (x*, y*) on C(x*, y*; J).

The proof of our main result is rather long. We shall first establish some technical lemmas
and then go to the main part of the proof. Although an elementary and self-contained proof is
possible, we have decided to present a proof which relies on degree theory. The reasons for
this choice are not only that such a proof is much shorter, but that we think the generic nature
of the LI condition is the essence of the problem here. This is more in keeping with the spirit
of degree theory.

An important property of GCC is that it is locally preservable. To be precise, we have the
following result.

LEMMA 4.4. Assume that x* is a stationary solution to VI(f, g) and that MFCQ holds
at x*. Assume further that GPCC (or GNCC) holds at x* for VI(f, g). Then there exist
some r, > 0 such thatfor any stationary solution x B(x*, r) to VI(f 4- Af, g 4- Ag)
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satisfying (Af, Ag) 79 and norm(Af, Ag, B(x*, r)) <_ , GPCC (or GNCC) holds at x

for VI(f + Af, g + Ag).
Proof. We only prove the case where GPCC holds at x*. The other case can be shown

similarly. Suppose the contrary. Then there exist sequences of perturbations { (AJ f, AJg)} C
79, stationary solutions {xj} C S(f + AJ f, g + AJg), multipliers {yj} M(xj, f +
AJf, g q- AJg), index sets {Jj} C Io(xj,g -+- AJg)\IN(Yj), and some orthonormal ma-
trices {Wj} such that norm(AJ f, AJg, B(x*,r)) O, xj -- x*, the columns of the ma-
trices {Wj} form bases of the subspaces spanned by some faces Fj of C(x, y; Jj), and
det((Wj)VVLD(xj, yj)(Wj)) <_ O. Without loss of generality we may assume that

(1) yj --+ y* (Proposition 4.1);
(2) Jj -- J c Io(x*,g);
(3) {Wj } -- some matrix W.

Then J c Io(x*,g)\Ig(y*), the columns of the matrix W form a basis for a face of
C(x*,y*;J),anddet(WVVLD(x*,y*)W) <_ O. This contradicts GPCC. []

In addition to the hypotheses ofLemma 4.4, if the multiplier setM(x*, f, g) is a singleton,
say {y* }, then (x*, y*) is a strongly stable GKKT point; if M(x*, f, g) is not a singleton, we
can take an extreme point of M(x*, f, g), say y*. We then perturb the original problem by
defining

Af(x) --0,
(4.1) Agi(x)- { -e0 if/otherwiseIN(y*),

fori=l,...,m, e>_0, andxRn.Let

] y’ if/ IN(y*),Y y’ e otherwise

fori 1,...,m. Then

(4.2)

for all e _> 0. This shows that x* is also a stationary solution to VI(f + Aef, g + Aeg) for all
>_ 0. Actually, we can obtain more than this conclusion.
LEMMA 4.5. Assume the hypotheses ofLemma 4.4. Then in the above setting there exist

(, * > 0 such that x* is the unique stationary solution to VI(f + Aef 9 / Ae9) in B(x*, )
for all [0, e*].

Proof To avoid piecewise differentiability arguments, we shall use the generalized equa-
tion (2.2) to express the stationary conditions in the proof. Also, we shall assume without
loss of generality that all constraints are active at x*, i.e., Io(x*, 9) { 1,..., m}. Suppose
the assertion is false. Then there exist sequences of perturbations { (AJ f, AJ g) } 7) and
GKKT points { (xj, uj) } to VI(f + A f, 9 + A9) such that ej 0 and xJ : x*. Note
that for all x Rn, (f + A f)(x) f(x) and V(9 + A9)(x) Vg(x). Hence for each
j the point (xj, u) satisfies

LD(xJ,ujo e +

where LD(Xj, uj) f(xj) / im=l uJiVgi(xJ). Without loss of generality we can assume
that

(i)uJ ---, e M(z*, I, g) and I+(uJ) I+ for all j;
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(ii) zj (xj x*)/I (xy x*)ll Zo

Then we claim that
(iii) I+ D I+(z), IN D IN(Z) and z 0, where IN I+ U L2;
(iv) Vg(x*)-rz 0 for E IN() and Vg(x*)rz >_ 0 for IN\IN(Z);
(V) (VxLD(x*, z)z)ry >_ 0ify satisfies Vg(x*)Vy 0fori IN(Z) and Vg(x*)-ry <_

0 for I\().
Conclusion (iii) above is obvious. To prove (iv), we note first that for any I+ (y*),

g() _< 0,

and for any L2,

g(z) o.

Therefore, for I+ (y*),

(4.3) gi(xj) gi(x*) + Vgi(x*)-r(xj x*) + o( xj x*ll Vgi(x*)rz < O,

and for E L2,

(4.4) gi(xj) gi(x*) + Vgi(x*)(xj x*) + o(llxJ x*lI) Vgi(x*Dz O.

Since

f(x*) / yVg(x*) / yVg(x*) 0,
iEI+(y*) iEL2

we obtain from (4.3) and (4.4) that

(4.5) f (x* )-rz Z ;v(x*)- ;v(*)z _> 0.
iL2

On the other hand, we have that for any I+ I+ (uj),

gi(xJ)--cj or 0>_0.

Using the above argument we can deduce that for any I+,

(4.6) Vgi(x*)rz >_ O.

From

(4.7) f (x*) +
iI+(z) iL2

we have that using (4.4), (4.6), and the fact that I+ (g) C I+,

(4.8) f(x*)-z- zVg(x*)-rz- zVg(x*)-rz <_ O.
iEI+ (z) iL2

Inequalities (4.5) and (4.8) imply that

(4.9) f (x* )Vz -0.



STRONG STABILITY IN VARIATIONAL INEQUALITIES 743

Then from (4.4), (4.6), (4.8), and (4.9) we can deduce that for any E Iv()

Vg(z*)z -0.

Hence conclusion (iv) readily follows from the above assertion and (4.6).
We now proceed to prove conclusion (v). Since

0 LD (xj, uj) LD (x*,

Jv9(xJ) + Z uJV9(xJ) If(x*)+ Z V9(x*)]f(xj) + ui
ieIu() iu\I()

ieIN()

+ +o(llx -x*ll),
iIuZu()

it follows that for any y such that Vgi(x*)Vy 0 for IN(,) and Vgi(x*)Vy 0 for

YVg(z*)Vy > O.
iGIN ) iIN Ig ()

Dividing by lzj z* and passing to the limit, we obtain

Hence we have completed the proof of conclusion (v).
Now consider the following affine variational inequality:

find z K such that (VLD(z*, 5)z + b)v(z’ z) 0 for all z’ K,

where K- {z R’Vgi(z*)vz- 0fori IN(5) andVgi(z*)vz 0fori IN’IN(g)}
and b R. By assumption we know that VLD(z*, ) is cooriented on K. Therefore, it
follows from Robinson’s homeomohism theorem [26, Thm. 4.3] that the above variational
inequality has a unique solution for each b R. However, it is easy to verify that both z 0
and z -z are solutions of the above variational inequality when b VL(z*, g)z. Thus
we have a contradiction.

The reason for our interest in the perturbed problems is that in addition to the fact that for
small e k 0, z* is the unique stationary solution to VI(f + f, 9 + eg) in a neighborhood
of z*, the LI condition holds at z* for VI(f +ef, 9 + V 9) provided that e > 0. Since GCC
is an open propey, under the hypotheses of Lemma 4.4, GCC and the LI condition hold at z*
for VI(f + 5f, g + g) with small e > 0, and, consequently, in such a case (z*, e) is a

strongly stable GKKT point to VI(f + ef, 9 + 9). Therefore, we can find a sequence of
strongly stable GKKT points (z*, e)to VI(f + ef, 9 + aeg) which converges to (z*, *).
This fact readily leads to the following degree conclusion, which plays a key role in deriving
the existence result for our main theorem.

LEMMA 4.6. Assume that z* is a stationa solution to VI(f, 9) and that MFCQ holds at

z*. IfGPCC (or GNCC) holds at
and * > 0 such that M(z*, f, 9) C intC and

deg(F, int(B(z*,) x C),0)- +(or-)l forall (0,*].
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Proof We only prove the result when GPCC holds at x* for VI(f, g); the other case can
be proved similarly. From Proposition 4.1 and Lemmas 4.4 and 4.5 we conclude that there
exist positive numbers a, 6", c*, and a compact set C c R such that for any x E B(x*, 6")
and (Af Ag) 79 with norm(Af Ag, B(x*, 6*)) <_ a one has

(i) m(x’, f + Af, 9 + Ag) C intC;
(ii) MFCQ and GPCC hold at x for VI(f + Af, 9 + Ag) provided that x is a stationary

solution to VI(f + Af, 9 + A9);
(iii) x* is the unique stationary solution to VX(f + Aef, 9 + Aeg) in B(x*,6*) for all

c [0, *], where (Aef, Aeg) was defined by (4.1).
From (i) and (iii) we have that

GKKT(f, g) V (B(x*, 6) C) {x* } M(x*, f, g) C int(B(x*, ) C)

for all (0, 6"],

so deg(F, int(B(x*, 8) C), 0) is well defined for 6 e (0, 6*].
Without loss of generality we may assume that norm(Aef,/keg, B(x*, 6*)) <_ a for all
[0, *]. Now let 6 E (0, 6*]. From (i) and (iii) we see that for each [0, c*] the map

F + AeF cannot take the zero value on bd(B(x*, 6) C). Hence from degree property (iii)
listed in 2 we deduce that

(4.10) deg(F, int(B(x*, 6) C), 0) deg(F -+- AeF, int(B(x*, 6) C), 0) constant

for any [0, *]. On the other hand, since LI and GPCC hold at x* for VI(f+/ke f, g+ Aeg),
if is positive and sufficiently small, it follows from Corollary 3.9 and the fact that in such a
case the map F +/keF takes the zero value only at (x*, ye) in B(x*, 6) C that

deg(F + AeF, int(B(x*, 6) C), 0) +
for sufficiently small (0, c*]. Thus from (4.10) we obtain

deg(F, int(B(x*, 6) C), 0) +1.

This completes the proof. []

The following lemma gives a result concerning the subspaces spanned by the faces of a

polyhedral set.
LEMMA 4.7. Let I, J be finite index sets and let ai Rt, I, and bj Rt, j J.

Assume that the set {hi, I} is linearly independent. Consider a polyhedral cone P
defined by P- {z R’az -O, I; bz <_ O, j J}. Suppose thatF isaface
of P and L is the subspace in R spanned by F. Then there is a subset JL of J such that
L- {z R az O, I; bz O, j Jn} and the set {a, I; bj, j Jg} is

linearly independent.
Proof Note that L can be expressed by {z R az O, I; bz 0, j J0},

where J0 (maybe empty) is a subset of J. Therefore, we can choose a subset JL of J0
such that the set {a, I; bj, j JL} is a maximal linearly independent subset of
{a, I; bj, j J0}. Obviously we have L- {z R* az- 0, I; bz- O,
j Jr}. []

The next lemma provides necessary conditions for strongly stable stationary solutions
under MFCQ.

LEMMA 4.8. Assume that x* is a strongly stable stationary solution to VI(f, g) and that
MFCQ holds at x*. Then there exist some compact set C c Rm and 5" > 0 such that
M(x*, f, g) c intC and

(4.11) deg(F, int(B(x*,6) C),O) +1 for all6 (0,5"]
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or

(4.12) deg(F, int(B(x*,6) x C),0)-- -1 for all(5 e (0,6*].

Furthermore, if (4.11) (or (4.12)) holds then for any y* E M(x*,f,g) and any J c
Io(x*, 9)\IN(y*), VLD(x*, y*) is positively (or negatively) cooriented on C(x*, y*; J).

Proof Without loss of generality we assume that Io(x*, 9) {1,..-, m}. Since x* is a
strongly stable stationary solution to VI(f, g) and MFCQ holds at x* for VI(f, g), it follows
from Propositions 2.5 and 4.1 that there exist positive numbers c, 6*, a compact set C c R",
and a mapping x(.)defined on U(0, c) {(Af, Ag) E 7) norm(Af, Ag, B(x*,6*)) <_
such that for any x’ B(x*, 6*) and (Af, Ag) U(0, c) one has

(i) M(x’, f + Af, 9 + Ag) C intC;
(ii) x(Af, Ag) is the unique stationary solution and a strongly stable stationary solution

to VI(f + Af, 9 + Ag) in B(x*, *).
Let 6 (0, 6*]. Choose an extreme point of M(x*, f, 9), say y* E(x*, f, g). Consider

the perturbed problem VI(f+Ae f, 9+Ae9) defined by (4.1) for e > 0. Then x* is a stationary
solution with associated multipliers ye to VI(f + Aef, 9 + Aeg) and the LI condition holds
at x* for VI(f + Aef, 9 + Aeg). On the other hand, for every sufficiently small e satisfying
(Aef, zXeg) E U(0, c), statement (ii) above implies {x* } x(Aef, Aeg). Hence, for
such an e, it follows from Proposition 2.6 that (x*, ye) is a strongly stable GKKT point to

VI(f + zef, g +/keg).
By (i) and (ii) weknow that deg(F, int(B(x*, 6) x C’), 0) and deg(F+AeF, int(13 (x*, (5) x

C), 0) are well defined for every sufficiently small . Using degree property (iii) in 2 and the
above properties (i) and (ii) again, we can deduce from Corollary 3.9 that

deg(F, int(B(x*, 6) x C), 0) deg(F + AeF, int(B(x*, g) x C), 0) +1

for sufficiently small 6‘. This proves the first conclusion.
For the second conclusion we only prove the case when (4.11) holds. The other case can

be proved in the same way. Suppose (4.11) holds. For the desired conclusion we shall divide
our proof into three steps. In the first step we consider any extreme point of M(z*, f, 9). In
the second step we show that for any y* M(x*,f, 9) and any d C Io(x*,g)\IN(y*),
VLD(z*,y*) is cooriented on C(x*, y*; J). In the third and final step we prove that
VLD (x*, y* is positively cooriented on C(x*, y*; J).

Take any y* E(x*,f,9) and any J c Io(X*,9)\IN(y*). To show that VLD(x*,y*)
is positively cooriented on C(x*, y*; J), it is sufficient to prove that for any face F of
C(x*, y*; J), letting L be the subspace spanned by F, and Q be a matrix whose columns
form a basis for L, we have that det(QTVLD(x*, y*)Q) > 0. Now by Lemma 4.7 we
find that there exists a subset JL of J such that L {z R Vg(x*)rz 0,
IN(y*); Vgi(x*)Vz 0, j JL} and the set {Vg(x*), i IN(y*); Vgi(x*), j 6 JL} is
linearly independent. Define the following perturbations:

Af(z) --0,

and

zX(x) { 0
--6"

for 1,...,m, 6‘ >_ 0, and x E Rn. Let

if/ IN(y*) kJ JL,
otherwise

if/ IN(y*) U JL,
otherwise
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for 1,..., m. Then we have

F(x*, YL) -5 ALF(X*, YL F(x*, y") 0

for all > 0. This means that x is a stationary solution to VI(f + ALf g + ALg for all
e _> 0. Also, the LI condition holds at x* for VI(f + AeLf g + AeLg when e > 0 since

I0(x*, g -5 AeLg) IN(y*) U JL. From assertion (ii) above and Proposition 2.6 we conclude
that (x*, y},) is a strongly stable GKKT point to VI (f + Af, g + A},g) for every sufficiently
small > 0. Using the same reasoning as we did in the first part of the proof yields that for
5 E (0, *] we have

(4.13) deg(F + ALF, int(B(x*, 5) x C), 0) +1

for sufficiently small e > 0. Note that the function LD(X, y) takes the same value at (x*, y*)
for the problem VI(f, g) and at (x*, y) for the problem VI(f -5 Af, g -5 A},g), and that
L itself is a face of C(x, y) at (x*, y) for VI(f -5 Af, g + Ag). Therefore, using (4.13)
we find from Corollary 3.9 that det(QTVLD(x*, y*)Q) > 0. Hence we have proved that
for any y* E(x*,f,g), VLD(x*,y*) is positively cooriented on C(x*, y*; J), where
J c I0(x*, g)\IN(y*).

We now show that for any y* e M(x*, f, g), any J c I0 (x*, g) \IN (Y*), VLD (x*, y*
is cooriented on C(x*, y*; J). To do so, note that for polyhedrally constrained variational
inequalities, strong stability is equivalent to the coorientedness condition 16]. We shall first
relax the original problem to discard those inequality constraints whose indexes are not in
IN(y*) kJ J, and then consider the linearization of the relaxed problem about (x*, y*) to
obtain the desired conclusion. Define

if(x) f(x*) + VLD(x*,y*)(x x*),
g(x) gi(x*) -5 Vgi(x*)r(x x*) if/ IN(y*) J,

9 (x) gi(x) , otherwise

for all e _> 0 and x Rn. Consider the following VI problem:

VI(e) findxK such thatfe(x)r(x’-x) >_0 for allx’EK,
where K {x ]n g(x) O, L1;.q(x)- 0, L2}. The normal map
corresponding to VI(e) takes the following form:

F(x,y)

f(x*) -5 VLD(x*, y*)(x x*) -5 y+Vg (x) -5 yVg (x)
iEL1 iEL2

(x) +

For any "7 > 0 such that B(x*, 23’) a B(x*, 6"), define

fT’e(x) := A(x, "7)fe(x) + (1 A(x, 7))f(x),
gr, (x) A(x, 7)g (x) + (1 A(x, 7))gi(x),
F"r’e (x, y) := A(x, 7)Fe (x, y) + (1 A(x, 7))F(x, y),

where the function A(x, "7) is defined on R such that A(x, 7) C2, 0 /(x, ")/) 1, and

for any x B(x*, 7) A(x, "7) 1,
for any x B(x*, 27) => A(x, 3’) O.
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The existence of such functions ,(x, 7) is obvious. Define the following VI problem:

VI(7, s) find x E K"’ such that f’’ (x)T (x’ x) _> 0 for all x’ E Kv’,

where K", { R g’e(x) O, L,; g’e(x) O, L2}. Note first that *,
together with

f y if IN(y*) J,Y y e otherwise,

is a solution to F (x, y) 0 and F7’ (x, y) 0. Hence x* is a stationary solution to Vl(e)
and VI(7, e). Furthermore, we can choose sufficiently small 7’ and e’ such that (.fT’,’ f,
g’ s’ g) U(0 a). Then x* is a strongly stable stationary solution to VI(5’, ’) from
statement (ii). However, from the definitions of VI(a) and VI(7, e) we know that there exists
a neighborhood N of x* such that for all x N, fe (x) f’e (x) and g (x) g{’e (x), and
hence VI(g) is equivalent to VI(7, ’) in this neighborhood. So x* is also a strongly stable
stationary solution of VI (e’). Now note that for VI(e’) the possible nonlinear constraints are
those whose indexes do not belong to the set IN (y*)U J, and these constraints can be eliminated
locally at x* without loss of generality. Therefore, VI(e) can be treated as a polyhedrally
constrained variational inequality in a small neighborhood (depending on ) of x*. Hence,
from the fact that x* is a strongly stable stationary solution to VI(a), we can deduce that the
cooriented condition holds at x* for VI(a’) [15], [26]. Therefore, LD(x*, y*) is cooriented
onC(x*,y*;J).

Finally, we prove that for any y* M(x*, f, g) and any J c Io(x*, g)IN(y*
LD(x*,y*) is positively cooriented on C(x*, y*; J). Suppose the contrary. Then
L(x*,y*) is negatively cooriented on C(x*,y*;J) since we have shown that
LD(x*, y*) is cooriented on C(x*,y*; J). Therefore, there exist a subspace L spanned
by a face of C(x*,y*; J) and a matrix Q whose columns form a basis of L such that
det(QVL(x*, y*)Q) < 0. Choose a face F of M(x*, f, g) such that y* is in the rela-
tive interior of F, and choose an extreme point y of M(x*, f, g) such that y F. Then
we have I+(y) C I+(y*) and thus IN(y’) C IN(y*). Therefore, there exists a face of
C(x*, y’; J) that spans L. Recall that in the second step we showed that LD(x*, y’) is
positively cooriented on C(x*, y’; J). This implies that det(QVL(x y’)Q) > 0. Define

:= +
d(A) := det(QVVnD(x*, y(A))Q)

for A e [0,1]. Then for any A e (0,1), we have that y(A)e M(x*,f,g)and d(A)is
contiuous on [0, 1]. Therefore, since d(0) d(1) < 0 we can find a ’ e (0, 1) such that
d(A’) 0. However, it is easy to see that there exists a face of C(x*, y(A’); J) that spans L.
Hence VLD(x*, y(A’)) is not cooriented on C(x*, y(A’); J). This is a contradiction.

Now we are ready to give the proof of our main result, Theorem 4.3.
ProofofTheorem 4.3. The "if" part of the proof is as follows. Under the hypotheses we

know that either GPCC or GNCC holds at x*. We only show the case where GPCC holds.
The other case can be proved in the same way. From the proof ofLemma 4.6 we find that there
exist positive numbers *, *, and a compact set C c R such that for any x B(x*, *)
and (Af, Ag) e with norm(Af, Ag, B(x*, 6")) a*, one has

(i) M(x’, f + Af, g + Ag) C intC;
(ii) MFCQ and GPCC hold at x’ for VI(f + Af, g + Ag) provided that x is a stationary

solution of VI(f + Af, g +
(iii) x* is the unique stationary solution of VI(f, g) in B(x*, *);
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(iv) deg(F, int(B(x*,6*) C))= +1.
Then we have

GKKT(f,g) (B(x*,5*) C)= {x*} M(x*,f,g) C int(B(x*,(5*) C).

Hence, from degree property (iii) there exists an c E (0, c*] such that if norm(Af, Ag,
B(x*, 6" < c, one has

F(x, y) + AF(x, y) 0 for any (x, y) (B(x*, *) C)\int(B(x*, 572) C)

and

(4.14) deg(F + AF, int(B(x*,5*/2) x C))= +1.

Then by degree property (i) we conclude that there exists a solution (x’, y’) int(B(x*, 572)
C) to F(x, y) + AF(x, y) 0. So x’ is a stationary solution to VI(f + Af, g + Ag).

Now we shall show the uniqueness of the stationary solution to VI(f + Af,
Since MFCQ and GPCC hold at any stationary solution x’ to VI(f + zf, g + Ag), by Lemma
4.5 we find that x’ is isolated. So B(x*, 5"/2) contains at most a finite number of stationary
solutions of VI(f / Af, g + Ag), say xl,... ,xt.

For each p 1,..., t by statement (ii) we know that MFCQ and GPCC hold at each xp,
p 1,..., t for VI(f + Af, 9 + Ag). Hence there exist positive numbers 51,..., 5 such that

B(x*,SP) xCcB(x*,8*/2)xC and (B(x*,Si) xC)N(B(x*,6J)xc)=O (ij),

and

(4.15) deg(F + AF, int(B(x*, 5i) x C), 0) + 1.

Using the degree we deduce that

Z deg(F + AF, int(B(x*, 5i) x C), 0) deg(F + AF, int(B(x*, g3/2) x C), 0).
p=l

From (4.14) and (4.15) we find that t 1. This completes the "if" part of the proof.
The "only if" part readily follows from Lemma 4.8. []

Below we present a verifiable sufficient condition for strongly stable stationary solutions.
It is a direct consequence of Theorem 4.3 and the fact that GSSOC implies GPCC.

THEOREM 4.9. Suppose x* is a stationary solution to VI(f, 9). IfMFCQ and GSSOC
hold at x*, then x* is a strongly stable stationary solution to VI(f, 9).

We conclude the paper by mentioning the article 10] in which the notion of a strongly
stable Nash equilibrium point of an n-person noncooperative game was introduced and char-
acterized.
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THE DISTURBANCE DECOUPLING PROBLEM FOR SYSTEMS OVER A RING*

G. CONTEt AND A. M. PERDON

Abstract. Up to now the use of geometric methods in the study of disturbance decoupling problems (DDPs)
for systems over a ring has provided only necessary conditions for the existence of solutions. In this paper we study
such problems, considering separately the case in which only static feedback solutions are allowed, and the one in
which dynamic feedback solutions are admitted. In the first case, we give a complete geometric characterization of
the solvability conditions of such problems for injective systems with coefficients in a commutative ring. Practical
procedures for testing the solvability conditions and for constructing solutions, if any exist, are given in the case
of systems with coefficients in a principal ideal domain (PID). In the second case, we give a complete geometric
characterization of the solvability conditions for systems with coefficients in a PID.

Key words, systems over rings, dynamical feedback disturbance decoupling, invariant subspaces
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1. Introduction. In the last decade the geometric approach to the theory oflinear dynam-
ical systems has provided deep insights and elegant solutions to many synthesis and control
problems, such as the disturbance decoupling problem (DDP), the model matching problem,
and the tracking and regulation problem (see [10] and the references therein).

Systems with coefficients in a ring turn out to be useful in many interesting situations for
modeling, e.g., delay-differential systems, families of systems depending on one parameter,
and time-varying systems (see [7], [8], [9]). This motivates attempts to extend the geometric
approach to the theory of systems with coefficients in a ring. The first results in this direction
were obtained by M. Hautus (see [5] and [6]) and by the authors in 1982. The main difference
encountered in dealing with coefficients in a ring instead of coefficients in a field concerns the
fundamental notion of (A,/3)-invariant subspace or controlled invariant subspace [1], [10].
From a dynamical point of view, the controlled invariance property for a subspace V of the
state space of a system E means that the trajectories starting in V can be kept inside V by
a suitable choice of the control. What makes the (A,/3)-invariant subspaces so useful in the
theory of systems with coefficients in a field is the fact that a control with the above property
can be generated using a state feedback. This means, in other words, that by choosing a
suitable state feedback, any (A, B)-invariant subspace can be made invariant with respect to
the resulting closed loop dynamics. Unfortunately, such a crucial feature is generally lost in
the framework of systems with coefficients in a ring, where only the so-called (A, B)-invariant
submodules of feedback type [5] can be made invariant by means of a state feedback.

For that reason, the classical results obtained by means ofgeometric techniques for systems
with coefficients in a field can be generalized only partially to systems with coefficients in a
ring. An illustration of this is provided in [5] in the section devoted to the DDP and in [6]. It
turns out that the well-known geometric conditions which characterize the solvability of such
a problem in the case of systems with coefficients in a field ], 10] by means of a static state
feedback are necessary but not sufficient, except in restricted classes of systems, for assuring
the existence of solutions in the case of coefficients in a ring.

For the case of systems with coefficients in a principal ideal domain (PID), the solvability
of the DDP by means of a static state feedback was characterized in [4] in terms of a necessary
and sufficient condition based on the outcome of a recursive procedure. Unlike the field case,
when the coefficients are taken in a ring, one can reasonably expect to achieve more using
dynamic feedback rather than just static feedback. However, no general results on the DDP

Received by the editors August 6, 1992; accepted for publication (in revised form) January 21, 1994.
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seem to be known if dynamic feedback is allowed. So, in general, the problem of finding a
complete characterization in geometric terms of the solvability conditions of that problem has
remained open up to now (see the discussion in 2).

In this paper we consider the DDP for systems with coefficients in a ring from a geometric
point of view, taking into account a restrictive formulation in which only static feedback
solutions are allowed, and a more general one in which dynamic feedback solutions are
accepted.

In the first case, the approach we develop differs slightly from the classical one. More
precisely, instead of looking for solutions based on the properties of some maximal controlled
invariant submodule (cf. 10]), we consider, as was partially done in [4], solutions constructed
by means of minimal elements in particular lattices of controlled invariant submodules. This
approach turns out to be feasible for systems that verify a mild geometric condition, which
from a practical point of view is essentially equivalent to injectivity. For systems of this
kind, in fact, it is possible to define the smallest controlled invariant submodule containing a
given module. The properties of this geometric object allow us to obtain in 3 the first main
result of the paper (Theorem 3.4), which provides a complete geometric characterization of
the solvability conditions for the DDP by means of a static state feedback for systems with
coefficients in a commutative ring under the sole assumption of injectivity.

Sections 4 and 5 are concerned with the problems of checking the solvability conditions
mentioned above and constructing a static feedback solution, if any exists, to a given DDP.
More precisely, in 4 we describe the computation of the relevant controlled invariant submod-
ules, while in 5 we focus on the case of systems with coefficients in a PID. For these systems,
we show that all the steps required for checking the solvability conditions of Theorem 3.4
and finding a solution can be performed by suitable algorithms, except for the construction
of the maximal controlled invariant submodules contained in a given module. Actually, the
algorithm used for this purpose in the case of coefficients in a field needs to be substituted by
a procedure, described in this paper, that involves the computation of the limit of a possibly
infinite sequence of submodules.

In 6 we look for solutions consisting of a dynamic state feedback and restrict our at-
tention to the case of systems with coefficients in a PID. In this way we can take for granted
that the submodules we need to consider have a basis and all the relevant constructions can be
practically performed. The main result we obtain in this section is a complete geometric char-
acterization of the solvability conditions for the DDP by means of a dynamic state feedback for
systems with coefficients in a PID. If the disturbance is measurable, the solvability conditions
are the same as those in the case of coefficients in a field. If the disturbance is not measurable,
the solvability conditions are only technically more restrictive than the corresponding ones in
the case of coefficients in a field. In conclusion, we can say that, allowing dynamic feedback
solutions, the disturbance decoupling problem for systems with coefficients in a PID behaves
essentially as it does in the case of coefficients in a field.

The last section describes some applications ofthe results ofthe paper to delay-differential
systems and to families of parameter dependent systems.

2. Preliminaries and statement ot" the problems. Let R denote a commutative ring. By
a system with coefficients in R, or a system over R, we mean a discrete-time linear dynamical
system whose evolution is described by a set of difference equations of the form

(2.1)
x(t + 1) Az(t)+ Bu(t),
V(t)

where z belongs to the free state module X R, u belongs to the free input module
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U R, / belongs to the free output module Y Rp, and A, B, C are matrices of suitable
dimensions with entries in R.

The control problems we want to consider in the framework of the systems over R are
stated in the following section.

2.1. Statement of the DDPs. Given a system E over R, described by the equations

(2.2) x(t + 1) Ax(t)+ Bu(t)+ Dq(t),
v(t)

where q E Q Rq is a disturbance, let us consider the feedback law

(2.3) z(t + 1) A21x(t) + A22z(t) + Gq(t),
r,x(t) + r z(t) +

where z belongs to the free module Z Rn’, and A21, A22, F1, F2, G1, G2 are matrices of
suitable dimensions with entries in R.

The DDPs we consider consist, from a general point of view, of finding a feedback law
of the form (2.3) such that the output of the closed loop system obtained by compensating E
does not depend on q.

More precisely, we will speak of
(i) the disturbance decoupling problem by static feedback (static feedback DDP) if the

class of solutions is restricted by requiring that n equal zero and G2 be the null matrix;
(ii) the disturbance decoupling problem by static feedback with measurable disturbance

(static feedback DDPMD) if the class of solution is restricted by requiring that rd equal zero;
(iii) disturbance decoupling problems by dynamic feedback (dynamic feedback DDP) if

the class of solutions is restricted by requiring that G1 and G2 be null matrices;
(iv) disturbance decoupling problems by dynamic feedback with measurable disturbance

(dynamic feedback DDPMD) in the general case.
In the case of linear systems with coefficients in a field, a DDP that is solvable by means

of a dynamic feedback law, i.e., a feedback law of the form (2.3) with n different from zero,
is also solvable by means of a static feedback law, i.e., a feedback law of the form (2.3) with
n equal to zero. As shown in Example 7.3, this is not the case for systems over a ring. In
the field case, elegant solutions to the above control problems are provided by the so-called
geometric approach (see [1], [10]). Early attempts to extend the geometric approach to the
framework of systems over a ring and to apply geometric techniques to the solutions of the
static feedback DDP and the static feedback DDPMD are reported in [5]. In order to describe
the results obtained and to discuss the differences and the difficulties encountered in dealing
with systems over a ring instead of a field, let us recall the following definition.

DEFINITION 2.1 [5]. Given a system E over R described by (2.1), a submodule V of the
state module X is called

(i) (A, B)-invariant, or controlled invariant, ifand only ifAV c V+ Im B;
(ii) (A, B)-invariant offeedback type ifand only ifthere exists an R-linear map F X --U such that (A + BF)V c V.

Afeedback F, ifany exists, with the property described in (ii) above is called afriend of V.
The proof of the following proposition follows immediately from ], 10].
PROPOSITION 2.2. Given a system over R described by (2.2), the staticfeedback DDP

(respectively, the static feedback DDPMD) is solvable if and only if there exists an (A, 13)-
invariant submodule V offeedback type such that Im D C V c Ker C (respectively, such
that Im D c V+ Im B and V c Ker C).
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For systems with coefficients in a field, the notions of (A, B)-invariance and (A,/3)-
invariance of feedback type described in Definition 2.1 are known to coincide. Moreover, the
family of the (A, B)-invariant subspaces contained in ker C has a maximum element, usually
denoted by V*, which can be found as the limit of the sequence of subspaces Vk defined
recursively by

(2.4) V0 Ker C,
V+ V A-(V + ImB).

Then, the necessary and sufficient condition of Proposition 2.2 can be stated as Im D c V*
(respectively, Im D c V*+ Im B) and, since the sequence (2.4) converges in a finite number
of steps, it can be easily checked.

For systems with coefficients in a ring, the two notions described in Definition 2.1 do not

coincide. In fact, any (A,/3)-invariant submodule of feedback type is, in particular, (A,/3)-
invariant, but the converse is not true. The family of (A, B)-invariant submodules contained
in Ker C also has in this case a maximum element V* (see [5, Prop. 2.5]), but the condition
ImD C V* (respectively, ImD C V*/ Im B), which is, ofcourse, necessary for the existence
of solutions to the static feedback DDP (respectively, the static feedback DDPMD), is sufficient
only if V* happens to be of feedback type. Unfortunately, this is generally untrue for systems
with coefficients in a ring (see [5], in particular, Ex. 5.6). Hence, the geometric conditions
which characterize the existence of static solutions to the DDP in the case of coefficients in
a field are too weak to provide a complete characterization of the solvability in the case of
coefficients in a ring. Moreover, since, in general, a maximum (A,/3)-invariant submodule of
feedback type contained in Ker C does not exist (see [5, 5]), the above conditions cannot be
modified in a straightforward way.

3. Solvability conditions for the static feedback DDPs. In order to overcome the diffi-
culties we pointed out in the previous section, the strategy employed in [5] and [6] consists in
characterizing those systems for which V* turns out to be of feedback type. Systems of this
kind, however, form only a small subset of the class at issue and, therefore, such an attempt
does not provide a completely satisfactory result. Here we develop a different approach, based
on a particular (A, B)-invariant submodule, that allows us to state a necessary and sufficient
condition for the solvability of the static feedback DDP and the static feedback DDPMD for
injective systems.

Let us start by stating some preliminary results about the lattice of (A, B)-invariant sub-
modules of the state module X of a system E described by (2.1).

PROPOSITION 3.1. Given , let V C X be an (A, B)-invariant submodule such that VN
Im/3 {0}. Then, we have thefollowing:

(i) if V’ V and V’t C V are two (A,/3)-invariant submodules, then V’ N V" is an
A, /3)-invariant submodule;

(ii) ifV is offeedback type, then any (A, /3)-invariant submodule V such that V V
is offeedback type; moreover, ifF X - U is afriend of V, then F is also afriend ofV;

(iii) if U --+ X is injective, F X -- U is afriend of V, and F X -- U is afriend
of V’ C V, then FIv, F(v,.

Remark 3.2. The above results are a slight generalization ofthe results about self-bounded
invariant subspaces given in [2] for systems with coefficients in a field. The condition
Im B {0} implies, in fact, that the invariant subspaces contained in V are self-bounded
with respect to V, i.e., they are such that a trajectory starting in one of them, say Vt, and
remaining in V, cannot escape from V. The proofs given in [2] for the field case also work
in our situation, and are reported here just for completeness and easy reference.
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Proof of Proposition 3.1. (i) Given an element v E V’ fq V", by the (A, B)-invariance
ofVrandV",wehaveAv-v+b-v"+b"forsomev E V,v" V",andU, b"
Im/3. Sincev,v" V, andVfqlm/3 {0), it follows that v v" VV" and
A(V’ V") c (V’ V V")+ Im/3.

(ii) Given an element v E V c V, let F X -+ U be a friend of V. By the (A,/3)-
invariance of V and the property of F, we have (A + BF)v v + U + BFv v" for some
v’ V, v" V, and b’ Im/3. By Vfq Im/3 {0}, it follows that v v" V and
b -BFv, hence (A + BF)V c V’.

(iii) By applying the same arguments as above, it is easy to get/3Fv -/3Fv, and hence
Fv Fry for any v E V.

Remark 3.3. We recall that a system E described by (2.1) is said to be injective if for
any state x0 in X and any pair of input sequences u {u(t), 0 <_ t}, v {v(t), 0 _< t}
the equality y(x0, u) y(x0, v) of the corresponding output sequences implies u v. If E
is injective and V* denotes the maximum (A,/3)-invariant submodule contained in Ker C,
then V* Im/3 {0} and/3 is injective. In fact, the injectivity of/3 is obviously implied
from that of E and, if B z0 V*, and u {u(t) ut, 0 <_ t} is an input sequence
that keeps the state trajectory starting at the initial state x0 inside V*, by y(0, u’) y(0, 0u),
where u’ {u(0) , u(t + 1) us, 0 <_ t} and 0,, is the null input sequence, we have

0 and/3 z0 0. The results of the above proposition, therefore, apply to the
(A,/3)-invariant submodules contained in Ker C. In particular, by Proposition 3.1 (i), we
have that any nonempty lattice of (A,/3)-invariant submodules contained in Ker C has a
minimal element. From a practical point of view, injectivity is a very weak assumption since
input sequences that produce the same output can be identified.

Notation. In the following, given a system for which the condition V* Im/3 {0}
holds, and given a lattice/2 of (A, B)-invariant submodules of Ker C, we will denote by V, ()
the minimal element in the lattice.

We can now state the main result of this section.
THEOREM 3.4. Let be the system described by (2.2) and assume that V*fq Im/3 {0},

where V* is the maximum (A,/3)-invariant submodule of Ker C. Then, the static feedback
DDPfor is solvable if and only ifIm D C V* and V,(,), where , is the lattice of all the
(A,/3)-invariant submodules of Ker C containing Im D, is offeedback type. Analogously,
the staticfeedback DDPMD is solvable ifand only ifIm D C V*+ Im B and V, (), where
is the lattice ofall the (A, /3)-invariant submodules V ofKer C such that Im D C V+ Im/3,
is offeedback type.

Proof. The proof follows from Propositions 2.2 and 3.1 (ii).
The above theorem gives a complete geometric characterization of the solvability condi-

tions of the static feedback DDP and static feedback DDPMD. By comparing it to the results
of [5], it appears clear that Theorem 3.4 represents a substantial improvement over what was
previously known. In order for us to use it to solve the static feedback DDP and the static
feedback DDPMD, we should be able to construct the submodules V* and V, (/2) for the lattice
/2 we are interested in, and check whether the latter is of feedback type. These problems are
considered in the next sections.

4. Properties and computation of V, (/). The results ofTheorem 3.4 assume a practical
relevance if a procedure for computing V, (/) is given. In order to relate V, () to other known
geometric objects, let us recall the following definition.

DEFINITION 4.1. Given a system over 1 described by (2.1), a submodule S ofthe state
module X is called (A, C)-invariant ifand only ifA(S Ker (7) C S’.

As in the case of systems with coefficients in a field, the existence of the minimum
(A, C)-invariant submodule containing a given submodule K C X, denoted by S* (K), is
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easily proved. For the construction of S* (K), let us consider the sequence of submodules Sk
of X defined recursively by

(4.) { S0 K,
Sk+ S + A (S q Ker C).

As in the case of coefficients in a field 1 ], {S} is a nondecreasing sequence and becomes
stationary for k >_ k if S+ S. If R is a Noetherian ring we can therefore state that
{S } converges in a finite number of steps, and, moreover, we can prove in the same way as
in [1] that the limit of {Sk} is S*(K). The computation of S*(K) as the limit of {S} is
usually referred to, in the case of coefficients in a field, as the conditionally invariant subspace
algorithm.

It will be useful in the following sections to note the following facts about the submodule
V* A S* (Im/3).

LEMMA 4.2. (i) The submodule V* S* (Im B) is the smallest (A, B)-invariant submod-
ule containing V* fq Im B.

(ii) The condition V* NIm B {0} is equivalent to the condition V* S* (Im B) {0}.
Proof. (i) Let us first show that any element :e E S, the kth element in the sequence

defined by (4.1) with/( Im B, can be written as c b + As with b EImB and s S_1
Ker C. The statement is true for k 1. Then, assuming it holds for k- 1, and writing :e S
as c s + As with s Sk_ and s S_ Ker C, one has, by s b + As" with b E Im B
ands" S_.2 Ker C c S_I Ker C, z- b+A(s" + s’)with (s" +s’) S_(q Ker C.

By the above result it follows that any element :e V* Y S* (Im B) can be written, for
some integer k, as c bk + Ask_ b + A(b_l + As_2) b + Abk_ + A2b_2 +

+ A-b + Aso, where bi E Im/3 for <_ <_ k, si bi / Asi_ S q KerC
for 1 <_ <_ k 1, and so Im/3 Ker C. In particular, the above relations imply that a
trajectory starting at s for 0 <_ <_ k can be kept by a suitable input inside Ker C. Then,
since V* is the largest submodule of Ker C whose points have that property [5, 2], all the
points s for 0 _< <_ k turn out to belong to V* and, in particular, so belongs to V* Im
/3.

Now, let V c V* be an (A,/3)-invariant submodule containing V* Im/3 and let v be a
point of V* S’* (Im/3). With the above notation, letting z b + Abk_ + A2bk_2 +... +
A-bl / Aso, we have that so belongs to V. Choosing ul such that (/3ul / Aso) belongs
to V, we have (hi / Aso) (Bu + Aso) (hi -/3Ul) V* f-) Im B C V. It also follows
that s bl / Aso belongs to V and, iterating this argument, that x belongs to V. Hence
V* (q S* (Im B) is contained in all the (A, B)-invariant submodules containing V* (q Im B.

(ii) This part is proved by (i) and the fact that {0} is obviously an (A, B)-invariant
submodule.

Then, if we restrict our attention to systems for which the condition V* fq Im/3 {0}
holds, recalling Theorem 3.4 we have the following results (see [2] for the case of systems
with coefficients in a field).

PROPOSITION 4.3. Given a system over R described by (2.2), assume that V* f3 Im B
0}, where V* is the maximum (A, /3)-invariant submodule of Ker C, and ImD C V*. IfF
denotes the lattice ofall the (A,/3)-invariant submodules ofKer C containing Im D, then we
have V,(12) V* S*(Im D + ImB).

Proof. The proof given in the field case in [2, Thm. 2.3] works in our situation.
PROPOSITION 4.4. Given a system E over R described by (2.2), assume that V* fq Im B

{0), where V* is the maximum (A, B)-invariant submodule ofKer C, andlm D C V* +Im B.
If denotes the lattice of all the (A, B)-invariant submodules V ofKer C such that ImD C
V + Im B, then we have V,() V* S* (Im D + Im B).

Proof Let us temporarily denote V* S* (Im D + Im B) by V. Then, by
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AV A(V* ( S*(ImD + ImB))
c (V* + ImB) C S*(ImD + ImB)
c (V* C S*(ImD + ImB)) + ImB
V + ImB,

V is shown to be (A, B)-invariant. By Im D C V* + Im B and Im D C S*(Im D + Im B)
we have

ImD C (V* + ImB) N S*(ImD + ImB)
(V* N S*(ImD + ImB)) + ImB
V + ImB,

hence V belongs to/2.

Now, if V belongs to/2, the submodule V1 V N V is also (A, B)-invariant and such
that Im D C V1 + Im B. By

A((V1 + S*(ImB)) 71KerC) A(V1 + (S*(ImB) N KerC))
c A(V)+ S*(ImB)
c V + ImB + S*(ImB)
C V1 + S*(ImB),

the submodule (V + S* (Im B)) is shown to be (A, C)-invariant. Moreover, by

ImD + ImB C V1 + ImB C (V + S*(ImB))

and the minimality of S*(ImD + ImB), recalling that V* N ImB {0} implies V* t
S* (Im B) {0), we have

(V* S*(ImD + ImB)) + ImB C (V* (V1 + S*(ImB))) + ImB V1 + ImB;

then, by Im B V* {0}, it follows that V V1 C V’. This implies that V is minimal in
/2, that is V, (Z3) V* S* (Im D + Im B).

As a result of the above propositions, the computation of V, (Z3) for the lattice we are
interested in is reduced to the computation of V* and S* (Im D + Im B).

For the computation of S*(ImD + ImB), we have that (4.1) initialized with S0
Im D + ImB yields, if R is a Noetherian ring, S* (Im D + Im B) S, where k is the
smallest integer for which

The situation is quite different for the computation of V*. In the case of coefficients in a
field, as already mentioned, V* can be computed as the limit of the sequence of submodules
Vk defined recursively by (2.4), which converges in a finite number of steps. This is no longer
true for systems over a ring R, since the convergence of (Vk } in a finite number of steps is
not guaranteed. In the next section we will give a procedure for finding V* when R is a PID,
but in general its construction remains a difficult problem.

Finally, for solving a given static feedback DDP or static feedback DDPMD by means of
Theorem 3.4, one needs to check whether the submodule V, (/2) is of feedback type or not.
Since no alternative general characterization of Definition 2.1 (ii) is known, this may be a quite
difficult task. In the next section we will show how to accomplish this when the coefficient
ring R is a PID.
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5. Static feedback DDPs for systems over a PID. In this section we will consider
the static feedback DDP and the static feedback DDPMD in the case in which R is a PID.
This assumption gives us the possibility of characterizing the (A, B)-invariant submodules
of feedback type in a quite simple way and, moreover, allows us to find a procedure for the
construction of V*. To this end, let us first recall the following notions and results of the
authors from [3] and [5].

DEFINITION 5.1 [3, Def. 1.9]. Let R be a PID and let V c X 1 be a submodule. By
the closure ofV in X we mean the submodule

V {:c X, such that z:c Vfor some

IfV coincides with its closure V, we say that V is closed in X.
Remark 5.2. It is useful to note the following [3, Prop. 1.10]"
(i) the closure V of V in X is the smallest closed submodule of X containing V;
(ii) any submodule V of the finitely generated free module X over a PID R is closed if

and only if it is a direct summand of X;
(iii) for any submodule V of X, one has dimR V dimR V.
In addition to Remark 5.2, we point out that the computation of the closure of a submodule

V can be performed by computing the Smith factorization of a suitable matrix. In fact, if D is a
square matrix whose first k columns form a basis of V and whose remaining columns are zero,
and if D PSQ with 5’ diag(al,..., a, 0,..., 0) is a Smith factorization, then the first
k columns of D PSQ with S diag(1,..., 1,0..., 0) form a basis of V. Algorithms
for constructing a Smith factorization of D are known.

PROPOSITION 5.3 [5, Prop. 5.3]. Let R be a PID and let V be an (A, B)-invariant sub-
module ofX. Then V is offeedback type only if its closure V is (A, B)-invariant.

PROPOSITION 5.4 [5, Prop. 5.2]. Let R be a PID and let V be a closed (A, 13)-invariant
submodule ofX; then V is offeedback type.

After constructing V, (), the notion ofclosure and Proposition 5.3 gives us the possibility,
when R is a PID, of checking the solvability condition for the DDP and the DDPMD stated
in Theorem 3.4. More precisely, Theorem 3.4 becomes the following theorem.

THEOREM 5.5. Let be the system described by (2.2) over the PID _R, and assume that
V* ImB {0}, where V* is the maximum (A, B)-invariant submodule ofKer C. Then,
the DDPfor is solvable if and only iflmD c V* and the closure V,(E) of V,(E) in X,
where E is the lattice of all the (A, B)-invariant submoduies of Ker C containing Im D, is

(A,B)-invariant. Analogously, the DDPMD is solvable if and only if lm D c V* + ImB
and V, (E), where is the lattice ofall the (A, B)-invariant submodules V ofKer C such that
Im D C V + Im B, is (A, B)-invariant.

As a result, we are now left with the problem of constructing V* in the case in which R
is a PID. To this end, let us consider the following result.

PROPOSITION 5.6. Given a system described by (2.2) over a PID R, consider the
sequence of submodules {V} ofX defined recursively by (2.4) and denote its limit by V
c3;%o V

(i) ifV V+l for some k, then V V V*, that is, the sequence {V} converges
in a finite number ofsteps to the maximum (A, 13)-invariant submodule ofKer (7.

(ii) IfV V+l for all k, then V Ker C.
Proof (i) The proof is the same as that in [1 ].
(ii) Let dimRV r and S be an n r matrix whose columns span V. Choose an

r r minor SM of 5’ whose determinant is nonzero and let det SM dl d2... dq be a prime
decomposition of det S. Now assume that V Ker C; since V c V c V0 Ker C for all
k and dim V dim V, this implies that r dim V dim V dim Ker C dim V for all k.
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Denoting by Sk an n r matrix whose columns span Vk, since V C V C V_ C C V0
Ker C for all k, we have S SQ Sk-IQ-IQ SoQ1Q2... Q, where Qi denotes
a nonsingular r r matrix for 0,..., k. In particular SM SOMQ1Q2... Q, where
S0M is a suitable minor of So, and det SM (det SoM)(det Q1)(det Q2)... (det Qk). Now,
since prime decompositions in R are unique, if k > q det Qi is a unit in R for some and
V V+, we have a contradiction.

A procedure for constructing V* in the case in which R is a PID can now be described as
follows.

Step 1. By (2.4) compute the sequence {V) and its limit V A%0 V. If V is

(A, B)-invariant, in particular, if V V for some k, V V* and the procedure stops.
Step q. In (2.4) set V0 Vq-1 and compute the resulting sequence (Vk) and its limit

vq %o V. If Vq is (A, B)-invariant, in particular, if Vq V for some k, then Vq V*
and the procedure stops.

The key fact to point out in the above procedure is that at each step either the procedure
stops or the dimension of the submodule that is used for initializing (2.4) is reduced by at
least one. Hence, if r dim Ker C, r steps of the above procedure allow us to find V*. No
algorithm for computing the limit of {V } can obviously be given, and, in general, one has to
find an explicit description of Vk that facilitates the computation of the limit.

So, in conclusion, the solvability condition for the static feedback DDP and the static
feedback DDPMD for a system over a PID R can be checked, and a solution can possibly be
constructed by using (4. l) and the above procedure, Propositions 4.3 or 4.4, Proposition 5.3,
and finally Theorem 5.5.

Remark 5.7. Let us assume for a given system E described by (2.2) over the PID R
with V* Im B {0}, that the static feedback DDP is solvable with a static feedback F.
Choosing a basis of X whose first elements are a basis of V,(), being the lattice of all
the (A, B)-invariant submodules of Ker C containing Im D, the compensated system EF is
described by equations of the form

(5.1)
:Cl(t -+- 1) lZl(t) + 12z2(t) +/)lq(t),

y(t) dX2(t).

The subsystem Xl(t + 1) filx(t) evolves on V,() with a dynamic described, up to a
change of basis, by the restriction of (A+ BF) to such a submodule. The minimality of V, ()
implies that this is a fixed dynamic for the considered static feedback DDP in the sense that it
is present in the compensated system for any solution F. This has important consequences if
we modify the static feedback DDP or the static feedback DDPMD by requiring the additional
condition that det(zI A BF) belongs to some specific subset D of R[z]. In particular, D
can be chosen as in [6] to characterize a notion of internal stability. Then, the static feedback
DDP or the static feedback DDPMD with the additional requirement of internal stability can
be solved only if det(zI All) belongs to D.

6. Solvability conditions for the dynamic feedback DDPs. In this section we consider
the dynamic feedback DDPs described in 2.1 (iii) and (iv) for a system over a PID R. Let
us first remark that, quite obviously, we can view such problems as the search for a suitable
dynamic extension E of of the form

(6.1)
x(t + 1) Ax(t)+ Bu(t)+ Dq(t),
z(t + 1) A21x(t) + A2zz(t) + Clq(t),
v(t) Cx(t),
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where possibly, if the disturbance is not measurable, G1 is the null matrix, for which the
resulting DDP admits a static feedback solution. Adopting this point of view, we are able to
make use of the results of the previous sections. The first main result we obtain in this section
is the following theorem.

THEOREM 6.1. Let E be a system described by (2.2) over the PID R. Then, the dynamic
feedback DDPfor is solvable ifand only ifIm D C V*, where V* is the maximum (A, 13)-
invariant submodule ofKer C.

Proof. We first prove sufficiency. The proof is constructive and consists of finding a
suitable dynamic extension EE of for which the resulting DDP admits a static feedback
solution. To this end, let us assume without loss of generality that the columns of

where Ih denotes the h x h identity matrix, form a basis of Im D, and the columns of

where V is a suitable (n h) x k matrix, form a basis of V*. By (A, 13)-invariance, there
exist a suitable (h + k) x (h + k) matrix G and a suitable m x (h + k) matrix H such that
the following matrix equality holds:

0 V 0 V G+13H.

Then, partitioning [0k x h I] G, where 0k h is the null matrix with k rows and h columns, as

[0xh Ik] G [A0 A22], where Ao and A22 have, respectively, h and k columns, it is easy to
see that the following matrix equality holds:

(6.3) [Ao Okx(n-h)] A22
0 V 0 V G -Jr-

Okxm0 I 0 Ik

Now, letting A21 [A0 0k x (n-h)], we get the dynamic extension

x(t + 1) Ax(t)+ Bu(t)+ Dq(t),
EE z(t + 1) A2x(t) + A2z(t),

(t) c(t),

which exhibits the desired property. In fact, the submodule Ve, spanned in Xz X (R) Rk

by the columns of the matrix

Ih 0 ]0 V
0

is easily seen by (6.3) to be

([AA21 0 ]) -invariant;



760 G. CONTE AND A. M. PERDON

it is contained in Ker CE Ker [C Opk] and contains

ImDE Im
0kxq

Moreover, since its basis can be completed to a basis ofXE, V is offeedback type by Remark
5.2(ii) and Proposition 5.4. A solution to the dynamic feedback DDDP is then given by N
and any friend IF1F] X R U of V.

We now prove necessity. Assume that a solution of the dynamic feedback DDP consists,
in paicular, of a dynamic extension N of the form (6.1), with G equal to the null matrix
and state module X X @ Rk. Also, recalling Proposition 2.2, let V be an

( AA21 A220 B ) -invariantsubmdule’0x

of feedback type, contained in Ker Cz Ker [C 0px] and containing

ImD Im
0xq

Since KerC is closed, by Propositions 5.3 and 5.4 we can assume without loss of generality
that V contains Im D. Denoting the canonical projection by X @ R X, we have
that ImD (ImD) c (V) c (KerC) C KerC. Moreover, letting

for any element v V we have

for some v’ V and U, hence (V)is (A, B)-invariant and ImD c V*.
PROPOSITION 6.2. Let be a system described by (2.2) over the PID R, and let V*

ImB {0}, where V* is the maximum (A, B)-invariant submodule 4 Ker C. Assuming
Im D is contained in V*, let dim V, () dim(Im D), where is the lattice of all the

(A, B)-invariant submodules of Ker C containing Im D. Then, the dynamic feedback DDP
for 2 can be solved by a dynamicfeedback law of theform (2.3) with dim Z k.

Pro@ The proof is obvious when we substitute V, () for V* in the proof of Theorem
6.1.

Remark 6.3. The key point in constructing a solution to the dynamic feedback DDDP in
Theorem 6.1 is the possibility of finding an integer h and a matrix V such that, in a suitable
basis, Im D is contained in the submodule spanned by the columns of

and the columns of

Ih 0
0 V

form a basis of an (A, B)-invariant submodule of Ker C. If such a condition holds, the
construction of a solution can be carried on in the same way as in the proof of the theorem on
any ring R.
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The above theorem shows that, allowing dynamic feedback, we get a solvability condition
for the DDP akin to the one we have in the case of coefficients in a field. The situation is
even better if the disturbance is measurable, since in this case the condition is the same as in
the field case, the only difference being that, in the latter, the existence of dynamic feedback
solutions is equivalent to the existence of static feedback solutions.

THEOREM 6.4. Let E be a system described by (2.2) over the PID R. Then, the dynamic
feedback DDPMD for is solvable if and only if Im D C V*+ Im 13, where V* is the
maximum (A, 13)-invariant submodule ofKer (7.

Proof We first prove sufficiency. The proof is constructive and consists of finding a
suitable dynamic extension EE of E for which the resulting DDP admits a static feedback
solution. To this end, let V be a suitable n k matrix whose columns form a basis of V*.
By (A, 13)-invariance, there exist a suitable k k matrix A22 and a suitable m k matrix H
such that the following matrix equality holds:

(6.4) AV VA22 + BH;

hence, by

(6.5)
A 0 V V

A22 / H,0 A22 Ia Ia 0x,

we have that the submodule VE spanned by the columns of

in XE X (R) R is

(IA o

Since its basis can be completed to a basis of XE, VE is of feedback type and is clearly
contained in Ker Cz [C 0pxk]. Now, let G1 and K be matrices of dimensions k q and
m q, respectively, such that D VG1 / BK. Then, in the extended system E: given by

x(t + 1) Ax(t)+ Bu(t)+ Dq(t),
(6.6) z(t + 1) A22z(t) + Glq(t),

v(t) Cx(t),

the image of the disturbance

is contained in V as shown by the equality

D V
GI+ K,

G I 0x
and the DDP admits a static feedback solution.

We now prove necessity. Assume that a solution of the dynamic feedback DDPMD
consists, in particular, of a dynamic extension E of the form (6.1) with state space Xz
X @ R. Also, recalling Proposition 2.2, let V be an

([ AAI AO B,Okx)-invariantsubmdule
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of feedback type, contained in Ker Ce Ker [C Op x k] such that

]ImDe Im
G

is contained in Ve + Im Be, where

Be- 0k"

Denoting by 7r X (R) _R --. X the canonical projection, we have that Im D 7r(Im De) c
7r(Ve + ImBE) (V) + (ImB) (V) + ImB. As shown in the proof of Theorem
6.1, (V) is (A, B)-invariant and hence Im D c V* + Im B.

7. Examples.
Example 7.1. Let 2 be the delay-differential system defined by

1 (t) q(t 20) + q(t 0),
2(t) q(t 20) + 2q(t O) + q(t),
3(t) Xl (t) @ 1 (t 0),

where 0 represents a fixed delay and q is a disturbance. By introducing the delay operator A,
defined for any time function f by A(f)(t) f(t-O), the static feedback DDP for 2 consists
of finding a delay feedback law u(t) F(A)(x(t)), where F(A) is a matrix of polynomials
in A such that the output of the compensated system NF() does not depend on q. Formally,
we can associate with 2 a system of the form (2.2) defined over the ring of polynomials R[A]
by the matrices

0 o 0 o o o
A- 0 o 0 0 B-

o o D- (A+l)2
0 0 0 A 0 0

0 0 0 0 0

0 0 0C-
0 0 0

The static feedback DDP for N can then be dealt with using the methods we developed in the
previous sections.

First, an easy computation shows that Ker C {(a,b, O, o)T;a,b E R[A]} and that
V* { (Aa, b, 0, 0)T; a, b E R[A]}. Clearly, Im D is contained in V*, whose closure V*
coincides with Ker C. Since Ker C is not (A, B)-invariant, V* is not of feedback type and,
therefore, the condition Im D C V* is not sufficient for assuring the solvability of the static
feedback DDR

Note, moreover, that for this example there does not exist a maximum (A, B)-invariant
submodule of feedback type contained in Ker C. In fact, both submodules Vl { (Aa, (A +
1)a, 0, 0)T; a R[A]} and V2 {(A2a, (A / 1)a, 0, 0)T; a R[A]} are (A, B)-invariant
and closed. Hence, the maximum (A, B)-invariant submodule of feedback type contained in
Ker C, if it exists, must contain both 1/2 and V2. Then, since it may be assumed to be closed,
it must also contain V / V2, but as V / V2 coincides with Ker C, no maximum exists.
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A simple computation shows that Im D is (A, B)-invariant, hence, denoting by/2 the
lattice of all the (A, B)-invariant submodules of Ker C containing Im D, we have V. (/2)
ImD. Since D, V.(E) {(Aa, (A + 1)a,0,0)T;a E R[A]} is (A, B)-invariant, V.()
is of feedback type, and there exists a solution to the considered static feedback DDE

In order to compute a solution, let us extend the basis { (A, A + 1,0, 0)T) of V. (/2) to
a basis {(A,A + 1,0, 0)T, (1, 1,0, 0)T, (0,0, 1,0)T, (0, 0, 0, 1)T} of (R[A])4, and, noting
that A((A, A + 1,0,0)y) B((1, A + 1)T), let us define a map f: (R[A])4 (R[A])2

by f((A,A+ 1,0,0)T) (1,A+ 1)T, and, e.g., f((1,1, 0, 0)T) f((0, 0,1, 0)T)
f((0, 0, 0, 1)T) (0, 0) T. The matrix F associated with f with respect to the canonical basis
is

-1 0 0F-
-A-1 A+I 0 0

The compensated system E, now takes the following form:

51 (t) q(t 20) + q(t 0),
22(t) q(t 20) + 2q(t- O) + q(t),
(t) (t) + (t o) (t o),
&4(t) Zl (t) -[- 1 (t 0) Z2(t 0),
l (t) X(t),
y2(t) X4(t),

from which one can check that the second derivative )(t) of the output y(t) is equal to zero,
thus proving that y(t) is actually independent of q.

Example 7.2. Let E(p) be the family of parameter dependent systems defined by

21 (t) p(p -+- 1)q(t),
22(t) (p+ 1)2q(t),
23(t) ;el (t) + pul (t),
(t) (t)+ (t),
y (t) z3(t),
p2(t) z4(t),

where p represents a parameter which may take values in a fixed set P, and q is a disturbance.
The static feedback DDP for the E we are interested in solving consists of finding a feedback
law u(t) F(p)(e(t)), where F(p) is a matrix that depends polynomially on p such that the
output of the compensated system EF(p) does not depend on q. Formally, we can associate
with E a system of the form (2.2) defined over the ring of polynomials RiP] by the same
matrices A, B, C, D as in Example 7.1 with A replaced by p. The conclusion follows as in
Example 7.1 and the following solution is found:

-p-1 p+l 0 0

Example 7.3. Let us consider the PID R[X] consisting of the polynomials in one variable
with real coefficients, and the system E over R[X] given by

m2(t +
E-

v(t) [o ] ]l (t)
.(t)

x2(t)J
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where q is a disturbance. One can interpret , e.g., as the system formally associated with
a delay-differential system (cf. Example 7.1) or with a family of systems depending on a
parameter (cf. Example 7.2). The analysis of the DDP for is easily done. The maximum
(A, B)-invariant submodule contained in Ker C is the submodule V* spanned by Ix0] and
verifies the condition V* fq ImB {0). We have that ImD V* and V* V,(/), if
/2 is either the lattice of all the (A, B)-invariant submodules of Ker C containing Im D, or
the lattice of all the (A,/3)-invariant submodules V of Ker C such that Im D C V+ Im/3.

Moreover, V* is not closed and its closure V* is not (A,/3)-invariant. As a consequence,
the static feedback DDP, the static feedback DDPMD, and the dynamic feedback DDP are
not solvable, respectively, by Theorem 5.5(i), (ii) and Theorem 6.1. However, the dynamic
feedbackDDPMD is solvable, and a solution, obtained by means of a suitable system extension
as in the proof of Theorem 6.4, is given by the dynamic feedback
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CONTROL OF TRUNK LINE SYSTEMS IN HEAVY TRAFFIC*
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Abstract. The paper deals with the heavy traffic modelling and optimal control of trunk line
networks. The controls concern either acceptance or rerouting. Both discounted and ergodic cost
functions are used. It is shown that the sequence of optimal value functions of the physical process
converges to the optimal value function for the limit model. Also, good controls for the limit system
are good for the physical system. Single trunk systems with both priority and other inputs as well
as networks are addressed. For the network case, the limit model is nonstandard, since the control
occurs only on the boundary, and is a control over the direction of reflection.

Key words, trunk line networks, loss networks, queueing networks, optimal routing, heavy
traffic limits, ergodic control, singular control, rerouting strategies, weak convergence
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1. Introduction. This paper deals with a variety of questions concerning the
modelling and optimal control of large trunk line systems under heavy traffic. The
basic physical structure is that of a telephone or data communications network where
there are several nodes or sources of calls or data, each of which is connected to many
others via a trunk line, and each trunk line contains many individual circuits. Loosely
speaking, each trunk has a primary purpose, which is to handle the traffic of a priority
source that wishes to communicate between its end nodes. However, the trunks are
also asked to carry other calls. For example, there might be calls or data of lower
priority. In addition, if the circuits in some trunk are all occupied when a request for
service between its end nodes arrives, then one might attempt to reroute that request
via a pair of lines through some intermediate node and that connect the end nodes of
interest. One wishes to operate the network with minimal cost or loss. The control
problem consists in the decisions concerning admission of the lower priority requests
or of the rerouting.

There is a very large literature on the subject, e.g., [10], [20], [21], [25], [26], [23],
[7], [6]. A wealth of material is in [11]. The actual physical problem is quite difficult
to treat due to the sizes of the networks and the large number of individual lines.
Frequently, some sort o "fluid" model or aggregation approach is taken, and the
analysis presumes stationarity. Nevertheless, a good analysis from a control theory
perspective seems to be lacking, and many basic questions concerning approximations
and the use of the approximations to deduce good policies remain to be answered.
In particular, there does not seem to be a rigorous justification of the heavy traffic
limits (i.e., when the number of lines goes to infinity) for the control and network
problems. This is particularly true when the system is to be used for a long time, and
the ergodic control problem is of interest.

The papers [25], [26], [7], [6] do treat heavy traffic limits. They deal with a

single trunk line with a main source and (in some cases) with an extra source that is
modelled essentially as a "fluid" source. [25] and [26] show via numerical comparisons
that the limit model can be used to obtain nearly optimal threshold policies. For
the network, the optimal policies are not usually of the threshold type and need to
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be deduced. [7] and [6] contain a heavy traffic analysis of a single trunk line when
all the interarrival and service times are exponentially distributed but do not deal
explicitly with controls. The methods do not seem to be powerful enough to deal
with the general control problelns. The heavy traffic limits are particularly useful
since numerical methods are available for the solution of the optimal control problems
for the type of reflected diffusions that arise. These processes might have their control
on the boundary and so are nonstandard in the control literature. They raise new
questions that are of theoretical importance. Further details on the numerical methods
will appear in another paper [18].

This paper starts with the analysis of a single trunk line, since this is of practical
interest and since the basic ideas for the more complicated networks can be more
easily developed for this simpler case. Section 2 introduces the terminology for the
uncontrolled single trunk line case. The weak convergence arguments that are basic
to getting the limit models are in 3. It is simpler to get the basic weak convergence
ideas without a control and then to extend to the controlled case, so these early
sections do not involve controls. Section 4 introduces the control problem for the
single trunk line case and gives the basic stability and weak convergence result. In
this case, the control concerns only the admission of the low-priority class. It is shown
that the sequence of controlled physical systems converges to a well-defined controlled
reflected diffusion as the number of individual circuits goes to infinity. The ergodic
control problem is defined in 5. This is of particular interest if the system is to be
operated over a long time period. Basically, via an occupation measure argument,
it is shown that the sequence of average costs per unit time for the physical system
converges to the ergodic cost for a limit process. Quite similar arguments will be.,

used for the more complex network case. Section 6 deals with the convergence of
the sequence of optimal costs for the trunk lines to the optimal cost for the control
problem for the limit model, under a discounted cost criterion.

The controlled network is introduced in 7. We work with a three-node network,
which thus forms a triangle. This is the simplest network of interest, but all of the
results and methods work without change (except for the more complex notation)
for arbitrary networks. Here the control is the decision whether to reroute or not,
although admission of low-priority inputs can be added with little extra complication.
The basic weak convergence result is proved, and it is seen that the limit model has
certain "singular" features, since the reflection term is what is being controlled. The
control occurs on the boundary of the state space, since it is only when one trunk
is fully occupied that the control question arises. Optimality results for the network
under a discounted cost criterion are given in 8. It is shown that the optional costs
for the network are well approximated by optimal costs for the heavy traffic limit. We
emphasize that very similar methods can be used to show the convergence of numerical
approximations via the Markov chain approximation method discussed in [13], [15],
[16]. Indeed, we have conducted extensive numerical studies of the three-dimensional
system in order to get guides concerning the structure of good policies for systems of
arbitrary sizes. Some comments appear below the statement of Theorem 8.3. Controls
for the three-dimensional system were adapted for use on general networks. The
resulting performance on large systems (with hundreds of trunks) was very good
(and relatively easy to implement), when compared in simulations to several current
alternatives. The details are in [18].

The ergodic cost problem for the network is dealt with in 9 and in the Appendix
(10). We do not require that the systems be stationary. The ergodic problem is par-



HEAVY-TRAFFIC APPROXIMATIONS 767

ticularly difficult, since little is known about ergodic properties of boundary-controlled
reflected diffusions. An outline of the results and basic ideas is given in 9, and one
half of the desired convergence result is proved there. The other half is proved in the
Appendix, where we use a natural "barrier" method to approximate the system by
one that is better understood and to which standard "Girsanov measure transforma-
tion" methods can be used. The proof is completed by exploiting the ideas for the
ergodic control problem for recurrent strong Feller processes that were developed in

[12]. The major point of the Appendix is the demonstration that, for each e > 0, there
is a smooth e-optimal control for the heavy traffic limit. The reader who is willing to
accept this can skip the Appendix.

We note that appropriate jump terms can be added to account for sudden changes,
without changing the machinery significantly, as can state dependent arrival and
service rates. Also, discrete approximations to the heavy traffic limit can be used to
explore rerouting strategies via simulation, and these might be simpler than simulating
the actual physical system directly. Indeed, they provide a natural aggregation of the
state space.

2. An uncontrolled trunk line system: Introduction and terminology.
This section defines the form of the uncontrolled one-dimensional system whose weak
convergence will be proved in the next section. Controls will be added in 4. Let the
trunk line contain iV individual lines, with the service time on each being exponentially
distributed with rate # > 0 (the mean service time is 1/#). Let (v, k _> 1 denote
the sequence of interarrival intervals of the requests for service, assumed mutually
independent and identically distributed (i.i.d.) for each N and independent of the
service times. The sequence of service times are also i.i.d, for each N. The system
starts at time zero with some given number of lines already occupied. Define N
Ecv. On arrival of a request, if any line is available, then the arrival is assigned to
some available line and service begins. Otherwise the arrival is rejected and disappears
from the system.

In the heavy traffic regime in which we will be working, the mean service rate
(over all lines) needs to be "nearly" equal to the mean arrival rate. If all individual
lines are occupied, then the mean rate of completion of service is Nit. Thus, we

suppose that the mean arrival rate (KN)-I satisfies

for some given real number bl. The O(x/) difference between the service and arrival
rates is essential if the heavy traffic limit is to be nontrivial. In particular, it can be
shown that if the difference were of a larger order, then the system would be fully
occupied as N - cc if b < 0 and a negligible percentage would be occupied if b > 0.
We also will use the condition that the set of random variables

-W ;k < c,N < cx

is uniformly integrable and that there is a2 < (x) such that

Define
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AN (t) [number of arrivals by time t] /v/,
DN (t)= [number of service completions by time t]/v/-,
QN (t) [number of circuits occupied at t]/x/,
XN (t) v/ QN(t) [free circuits at t]/x/,
yN (t) [number of arrivals rejected by time t]/v/.
Now, we can write the dynamical equation

QN (t) QN (0) + AN (t) DN (t) yN (t),

or equivalently for the normalized number of available lines,

(2.4) XN (t) XN (0) AN (t) -t- DN (t) -t- yN (t).

The above arrival model is used because it describes common situations. In fact,
AN (.) can be any sequence such that the process N(.) defined by

ffiN (t) AN (t)

converges weakly to a Wiener process with constant drift and the increments

{N(n -- 1) 2N (n) n, N}

are uniformly integrable.
In order to simplify the notation, we assume that only one arrival or departure

event can occur at a time. The general case only requires that we define an order for
the events that occur simultaneously. This is not hard to do, but it does complicate
the notation.

.3. Weak convergence of {XN (.)}. The basic ideas of the weak convergence
methods for the more complex network and controlled problems starting in 4 are
essentially contained in the development in this section. In all of the weak conver-
.gence analysis to follow, for appropriate values of k we use the Skorohod topology on

Dk[O, oc), the space of k-valued functions that are right continuous and have left
hand limits [4], [1]. If k 1, we write just D[0, x). For each t > O, both AN(t) and
DN (t) go to infinity as N c. In order to prove the weak convergence of {XN (.)}
and get the desired representation for the limit process, we first need to go through
the "usual" procedure of representing AN (t) and DN (t) in more useful forms; i.e.,
as sums of the dominant part of their values (namely, #x/t, which will cancel each
other) plus terms that will converge to either a (bounded) drift or a martingale in the
limit.

Tightness in D[0, x) will be proved via the following special case of the "Aldous-
Kurtz" criterion [4, Chap. 3, Thm. 8.6c]: Let Zn(.),n 1,2 be a sequence of
processes with paths in D[0, c) w.p.1. For each T < c, let the set of random
variables {Zn(s),s <_ T,n >_ 1} be tight and suppose that

(3.1) lim sup sup sup Emin{1, ]Zn(T + s) Zn(’)l} 0,
A’-’+O n T<T s<A

where T is an arbitrary stopping time bounded by T. Then {Zn(.)} is tight.
Representation of the arrival process AN (.). If c is a positive real number,

E always denotes the sum up to the integer part of c. Let BtN denote the a-algebra
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induced by {AN (s), DN (s), s <_ t; Xg (0)}. Define the auxiliary process

.N (t) 1 a

Let/)r (t) denote the a-algebra that measures {N(s), s t}. Then the sequence of
sampled values {N(i/N), O, 1,...} is a (i/N)-martingale. Define

1 N< tS(t)=Nxmax n"

k=l

Since by definition

[number of arrivals by time t].

NsN(t)
AN(t)= Z 1/v/-,

i--1

we can write

1
(3.2) AN (t) ftN (SN (t)) + 4-

NsN(t)

k--1

By (2.1), the last term on the right-hand side can be written as

NsN($)
1 E aN (#N bl x/).(3.3) 4N
_

To simplify (3.3), we will use the relationship (which follows from the definition of
s(t))

(3.4) t + o (t)Ozk
k--1

where ON(t) --It- time of last arrival before t] and EON(t) O(1/N), EO2N(t)
O(1/N2).

Representation of the departure process DN(.). Using the fact that the
service intervals are mutually independent and exponentially distributed with rate
we can decompose DN (.) in "martingale" form as

DN (t) #]ItQN (s)ds + DN (t)

- x ()d + v,t + b (t),

where bN (.) is a BiN-martingale with quadratic variation

(3.6) (DN)(t) # (s)ds/x/ # 1
XN (8) ] ds.
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Define .0N(t) fiN (sN (t)). Note that 0N(.) is BtN-measurable. Finally, using
(3.2)-(3.5), (2.4) can be rewritten in the more useful form

(3.7)
xg(t)--xY(o) + bit- # XN(s)ds + ftNo (t)

+ bN(t)+ yN(t)+ v/ON(t) yN(t)+ ZN (t),

where ZN(.) is defined in the obvious way.
The first convergence theorem. We can now state the basic weak convergence

theorem.
THEOREM 3.1. Assume the conditions of this section and 2, and let

suPN E[xN(o)[2 < (x. Then {xN(.),No (.),DN(.),YN(.)} is tight. Let (X(.),WI(.),
W2(-), Y(.)) denote the limit of a weakly convergent subsequence. Then the limit pro-
cesses have continuous paths w.p.1 and satisfy

X(t) X(O) + blt # X(s)ds + WI (t) + W2(t) + Y(t), X(t) > O,

where the Wi(.) are mutually independent Wiener processes with quadratic variations

(W)(t) a2#t, (W2)(t) #t. The other processes are nonanticipative with respect
to the Wiener processes. Also Y(.) can increase only at those t for which X(t) O.
The set {XN (t); N < o0, t < oo} is tight.

Proof. Since the proof is essentially "classical" and closely related arguments
are in [24], [17], [19], we only give the outline. It can easily be shown that {sN(.)}
converges weakly to the function with values #t, the limit of the mean number of
arrivals on [0, t] divided by N, and we omit the details.

Note that, for any bounded/AN (t)-stopping time T,

(3.9a) E[( iu + t) N N _<

and the left-hand side converges to a2t. For any bounded BtN-stopping time T,

(3.9b)

E[(DN(T -]- t) bN(T))2[TN tt S xN(8)ds/V/-IJNT

E[<bN>(T + t)- (bN>(T)IU],

E[(20N(T -[- t) No (T))(DN(T + t) bN (T))IUN] O.

Since xN(t) < V/, (3.9a and the first two lines of (3.9b) and the criterion (3.1)
yield tightnesS-of {N(.),DN(.)}. (To get a bound on the expectation in (3.1) take
expectations above and use Shwarz’s inequality.)

The weak limits of {/)N (.)} are continuous because of the tightness and the fact
that the "jumps" are of order O(1/x/). Next we show the continuity of the weak
limits of {.N(.)}. To do this, it is sufficient to show that the jumps of N(.) go to
zero as N --, oo, in the sense that for any fixed t < oo and > 0

L0.(3.10) P k<_NtSUp Nv/
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Define the set

N, OkK ’Nv--
By Chebychev’s inequality, we write (and define

N, 1 /KP{Kk } <_ , -N] dP=bN/N,

where by the uniform integrability of the set (2.2), 5N N_ 0. Thus the left-hand side of
(3.10) is bounded above by (bN/N)gt, which goes to zero as N --. cx. Hence (3.10)
holds. By the weak convergence of {SN (.)} to the function with value #t at t and the
continuity of the limits of N(.), the limits of/i0N(.) have continuous paths w.p.1.

It will be shown below that the mean-square values of XN(t) are bounded uni-
formly in N, t. Assuming this fact in this paragraph, we see that the term Xg(s)/v/-
disappears from (3.6) as N c. The limit of any weakly convergent subsequence
of {/N (.)} is a martingale (all the appropriate filtrations will be identified at the
end of the proof). Since 0N(.) is a martingale and Sg(.) converges as stated, the
weak limits of 0N (.) are also marting_ales. By the last line of (3.9b), the limit of any
weakly convergent subsequence of {Av (.),/N (.)} is orthogonal. By (3.9a) together
with (3.6) (with XN(s)/x/ dropped), (2.3), the convergence of Sy (.), and the con-

tinuity of the limits, the limit martingales have the quadratic variations asserted in
the theorem; hence they are Wiener processes.

Boundedness of {EXN(t)2}. Suppose that suPN EIxN(o)I2 < cx. Let toN 0,
and let {tN, i > 0} denote the ordered sequence of event times (times of arrivals or

departures). Then

IXN N(ti+l)] 2 IXN (t/N)] 2 2xN(tiN)(xN N N N(t))(t+) x
q-(XN (t/l) XN (t/N)) 2.

Note that if a rejection of an arrival occurs at ti1, then XN (tiN) must equal 0. Thus

2XN (tiN)(yN (t/l) yN (t/N)) 0. Note that xN(ti+l)N XN (tiN
Using these observations, (3.7), and the martingale property, for any t _> 0 and

T > 0 the previous expression leads to

(3.11) ft+" [t+"EXy (t + T)2 EXg (t)2 2, E(XN (s))2ds + 2blE Xg (s)ds
Jt Jt

q_ gN (t, t -}- T) q- 6N,

where 5N 0 uniformly in (t, T) as N --, o and gN (t, t -I- ) is bounded in absolute
value by

3
E (number of arrivals and departures on It, t +

This last expression is O(T)+ O(1/N). The O(.) functions might differ from case
to case, but they will always be uniform in the sense that there is k < cx such that
in all cases, for a _> 0, IO(a)] G ka. For any Cl E (0,#) there is c2 > 0 such
that 2bllXl <_ c2 + cx2, Using this bound and the fact that xg(s) >_ 0 in (3.11),
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redefining (N to account for the O(1/N) and writing raN(t) ExN(t)2 yields that
there is c3 > 0 such that

(3.12a) mN (t + T) <_ mN (t) mN (s)ds + C3T + 5N,
dt

(3.12b) (t + ) _> (t) # ()a ca- + .
Jt

The nonnegativity of mN (t) and (3.12a) yield

(3.12c) mN(t+T) <_mN(t)+c37+

Substituting mg(s)= raN(t)+ IroN(s)- mN(t)] in (3.12b)and using (3.12c)yield

(3.12d) m
g (t + 7) >_ (1 2#7)mN (t) + O(T) + 5N.

Now, write mN (s) mN (t) + [mN (s) mN (t)] in (3.12a) and use (3.12d) to get

(3.13a) mN (t + 7) <_ (1 #7 + 0(72))mN (7) + 0(7) + 5N.

Let A > 0 be small and N large enough so that ](NI --< A. Then by (3.13a) there is

positive c4 such that

(3.13b) ?nN(t + A) <_ mN(t) [1 #/ + O(A2)] + 54/.

Now, letting t nA in (3.13b) and iterating yield supn mN (hA) < c for large N.
Combining this with (3.12c) yields that, for some c5 < c and large N,

(3.14) sup mN (t) <_ c5.

A similar proof yields that, for each T

(3.15) sup E maxXN (t)2 < cxo
N t<_T

Tightness of {xN (.)). It follows from (3.15), the properties of AoN (.) and bx (.),
and the form (3.7) that sUPNE[yN(T)I2 <: c for each T <: c. Thus, to prove
tightness of {yN(.)} via (3.1) it is enough to show that

(,) lim sup sup p{yN (7 + A) yN (T) >_ } 0
A--O N ’<T

for each > 0, T < c, where 7 are stopping times. It is sufficient to use T such that
XN (7) 0. Recalling the definition of Zg (.) in (3.7) and the definition of yN (.), we
have

+ >_ <_ e {su,lZ ( + >_
s_<

Now, the properties of zg(.) imply (*). Then {yN(.)} is tight. From here, it is

straightforward to show tightness of {XN (.)}, and we omit the details.
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The nonanticipativeness property. Let t _> 0, s > 0; and let {ti} be real numbers
no bigger than t. For an integer k, let h(.) be a real-vMued, bounded, and continuous
function of {XN (ti), (ti), DN (t), yN (t), <_ k}. Then

Eh(XN(t),(t),[gN(ti),yN(t),i <_ k)[DY(t + s) Dg(t)] 0.

Let (X (.), W1 (’), W2 (.), Y(’)) denote the limit of a weakly convergent subsequence.
Then by the weak convergence

(3.16) Eh(X(t), W1 (t), W2(t), Y(ti), < k)[W2(t + s) W2(t)] 0.

Let 13t denote the a-algebra induced by {X(s),W(s),W2(s),Y(s),s <_ t}. Since
k, {ti}, t, s, h(.) are arbitrary, (3.16) implies that W2(.) is a Bt-Wiener process. A
similar proof is used for W (.). This yields the nonanticipativeness assertion.

DEFINITION. Stationary solution. A solution of (3.8) is said to be stationary if
the distribution of {X(t +.), Wl(t +.)- W1 (t), W2(t +.)- W2 (t), Y(t +.)- Y(t)} does
not depend on t. For a sequence of real numbers {tN}, define the "shifted" processes

HN (’) (XN (tN + "), (tN + ") t0N (’), [9N (tN + ") [9N (tN),

+ .)

The following theorem will not be used in the sequel but is of interest if the
process and the approximations are of concern over a long time period.

THEOREM 3.2. Assume the conditions of Theorem 3.1. Let tN be a sequence
of real numbers tending to infinity. Then the set of "shiftea’ processes {HN(.)} is
tight. It converges weakly to the unique stationary solution (X(.), W(.), W2(.), Y(.))
of (3.8). The process X(.) satisfying (3.8) is a strong Feller process.

Proof. The tightness follows from Theorem 3.1 and the mean square boundedness
of {XN(s), s < cx,N < x}. By Theorem 3.1, any subsequence of {HN(.)} has a
further subsequence that converges weakly to a solution of (3.8). Next, fix T
and extract a weakly convergent subsequence of {XN (tN + .), XN (tN T + .)}, with
the limit denoted by ()(’), T(’)). Both of these processes satisfy equation (3.8) for
some Wiener processes, and XT(T) _(0). Also, for each initial condition x, the
solution process X(t) of (3.8) is bounded in mean, uniformly in t. It can be shown
either directly or via a Girsanov transformation technique (starting with the system
X(t) X(O) + W(t) + W2(t) + Y(t)) that the solution of (3.8) is a strong Feller
process and that for t > 0 it has a transition density p(x, t, y) that is nonzero for
all x E [0, x) and y [0, x). The last two sentences imply that there is a unique
invariant measure (.) and [3, Thm. 4]

/ f(y)p(x, t, y)dy / f(y)(dy)(3.17)

for each x and bounded continuous real-valued f(.). The set of all possible values
of {T(0),T < oc} is tight since {xN(t);N < c,t < c} is tight. Owing to this
tightness and the arbitrariness of T, to show that (0) is the stationary random
variable it is enough to show that the convergence in (3.17) is uniform in each com-
pact x-set K. Given K, tl > 0, and 5 > 0, there is a compact set K such that

fK1 p(x, tl, y)dy > 1 -5 for all x K. Now, let t > t and use the representation

f p(x, t l, y)dyl f f(y2)p(y, t t, y2)dy2, t > t,
J J
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of the left-hand side of (3.17), the arbitrariness of 5, and the pointwise convergence
(3.17), to get the desired uniform convergence, cl

4. A one-dimensional canonical control problem. In addition to the pri-
mary input source AN (.) of 2, let there be an "exogenous" source of competing
requests for the use of the N individual lines that arrive one at a time. The one-at-
a-time assumption is not required, but it does save on the notation. In particular,
define GN (t) [number of requests from the exogenous source by time t]/V/-. The
interarrival times for this source might be correlated, and in this section we assume
either

(a) that there is b0 > 0 such that for any positive T1

[GN (t + T) GN (T)] -- bot

uniformly for t < T1, T < oc, or, more generally;
(b) that {GN (.)} is tight and converges weakly to a continuous process G(.). Also,

suppose that the set

(4.1b) {GN(n + 1)- GN(n); N < oc, n < oc}

is uniformly integrable.
We also assume that GN (.) is independent of AN (.), XN (0), and the sequence of

service intervals. Equation (4.1a) is similar to the "fluid" model used in [25], [26], [20],
[21]. Commonly, the GN (.) process is an "overflow" from another system and (4.1a)
would not hold since GN (.) would behave like our yN (.). The second case covers this.
We note that (4.1a) might hold "approximately," if GN(.) were the sum of inputs
from many independent sources. The uniform integrability in condition (4.1b) holds
for overflows from "trunk line" systems, as seen by the uniform integrability of the
set (4.7) below.

The weak convergence assumed in (b) above implies that the mean rate of the
exogenous source is O(v/N). The basic control question is whether or not to accept any
particular request from the exogenous sequence. Arrivals from the original sequence
AN( are always accepted if any line is available. If the order of the number of
exogenous inputs per unit time were larger than O(/-), then the fraction rejected
would go to unity as N --* oc. Let jN(.) denote the acceptance process defined as
follows: If an exogenous arrival that occurs at time t is accepted, then JN(t) 1;
otherwise jN (t) 0. Then the (scaled by 1/v/) number of acceptances from the
exogenous source by time t can be written as (note the definition of the Stieltjes
integral)

E JN(s)[GN(s) GN(s-)] jN (s)dGg (s) FN (t).

Now we can write

(4.2)
XN (t) XN (0) + bit #jo xN(s)ds

+ (t) + b (t) (t) + (t) +

The ON(.) is the same as in (3.7).
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A cost function. An average cost per unit time criterion will be dealt with
in 5. Here, we formulate a "discounted" criterion. Recall that yN(t) equals the
(scaled) number of rejects from the primary source, due to arrivals when all lines are
occupied. Let Cl > co > 0, > 0, and define the cost

(4.3) E fo e-Zt[cldyN(t) + c0(1 jN(t))dGg(t)].

Thus 51 (C0, resp.) is the per unit cost of rejecting a request from the primary (exoge-
nous, resp.) source. Redefine BtN so that it measures {GN (s), FN (s), AN (s), DN (S),
XN(O), s <_ t}. Thus, BtN also measures {JN(s), s <_ t}. We say that jN(.) is admis-
sible if the following holds: jN (t) 0 if there is no exogeneous arrival at t; for t at
which there is an exogeneous arrival, jN (t) depends only on the arrival and departure
data up to and including t and on the acceptance data to t-. Since the events occur
discretely in time, jN (.) is well defined.

THEOREM 4.1. Assume the conditions of Theorem 3.1 and the assumptions on
Gg (.) of this section. Let the jg (.) be admissible. Then {Xg (.), fi,0g (.), /N (.),
YN(.),FN(.), GN(.)} is tight. If (X(.), WI(.), W2(.), Y(.),F(.), G(.)) denotes the limit

of a weakly convergent subsequence, then

(4.4) x (t) x(0) + , Jl X(s)ds + WI (t) + W2(t) F(t) + Y(t),

where the WI (’) are as in Theorem 3.1. All other processes are continuous and non-
anticipative with respect to the Wi(.), and F(.) has the form (under (4.1a))

(4.5a) F(t) bo J(s)ds

for some nonanticipative process J(.) with J(t) e [0, 1]. More generally (under con-
dition (4.1b) above),

(4.5b) F(t) J(s)dG(s).

Also, if N indexes the convergent subsequence, then cN(jN,xN(o)) ---+ C(J,X(O))
where

(4.6) C(J,X(O)) Jl e-t[cldY(t) + c0(1 J(t))dG(t)].

The set {EXN(t)2; N < oc, t < oc} is bounded.
Remark. Note that J(t) can be any value in [0, 1]. The quantity boJ(t) in (4.5a)

can be viewed as the "local intensity" of the acceptance process for the exogenous
requests at time t, in the limit. In (4.5b), J(t) can be viewed as the "local probability"
of acceptances at t when there are exogenous inputs. In typical applications where
there is input control, the acceptance "local probability" is either zero or unity (i.e.,
reject or accept), but the theoretical development here requires that we allow the
possibility of arbitrary values in [0, 1].

Proof. The boundedness of {EXN(t)2;N < oc, t < cx} follows from Theorem
3.1, since the expectations are no larger when the exogenous inputs are introduced.
Actually, all the assertions, except those concerning F(.) and the convergence of the
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costs, are proved in Theorem 3.1. {FN(.)} is obviously tight by the assumed tightness
of {GN(.)}. The nonanticipativeness property of (X(.), Y(.),F(.), G(.)) follows from
the arguments used in connection with (3.16) and the independence assumptions put
on GN(.), since (3.16) continues to hold if F(t), G(t) are added to the arguments
of h(.). Equation (4.1a) implies that F(.) is absolutely continuous with respect to
Lebesgue measure, with derivative bounded by b0, hence the representation (4.5a).
Analogously, (4.5b) holds since F(.) is always absolutely continuous with respect to
(7(.) with derivative in [0, 1].

If the set of increments (4.7)

+ < <

is uniformly integrable, then the weak convergence implies the convergence of the
costs CN(JN,xN (0)) to C(J, X(0)). To prove the uniform integrability, write

n+l
yN (n -- 1) yN (n) (XN (Tt -- 1) XN (7)) 2r- # XN (s)ds bl

(20N(n - 1) 0N(?’t))- (N(n -k- 1) DN(n))

+ (FN (n + 1) FN (n)) ON(t)V/.

Using the uniform integrability of the set (4.1b), the boundedness of the EXN (t), in
N and t, and the fact that the sup over N and n of the squares of the last four terms
on the right are bounded, we get the uniform integrability of (4.7). v1

Remark. The above development can clearly be extended to multiple exogenous
sources GN(.), G2N(.),..., each with its own cost and "acceptance" control.

Uniqueness. We say that the solution to system (4.4) is unique in the weak
sense if the probability law of (WI(.), W2(.),F(.),X(O)) determines the probability
law of (X(.), W1 (.), W2(.), F(.)). "Weak sense uniqueness can easily be proved via the
Girsanov measure transformation method [8, Chap. 4.4], for any F(.) of the form in

(4.55). To see this, let W(.) be a Wiener process and G(.) a nonnegative and non-
anticipative (with respect to W(.)) process with nondecreasing and continuous paths
with G(0) 0. Let J(.) be nonanticipative (with respect to W(.)) and bounded.
Consider the equation

X(t) X(O) + W(t) J(s)dG(s) + Y(t), X(t) > O,

where Y(.) is the reflection term that is allowed to increase only when X(t) 0. The
equation has a weak sense unique solution. The Girsanov transformation method
can now be used to add the drift terms bt and -# f X(s)ds, exactly as done in [8,
Chap. 4.4], and get the weak sense uniqueness for (4.4).

5. An ergodie control problem. We continue with the controlled single trunk
problem of the last section. Let GN(.) be a process satisfying the conditions of 4.
For T > 0, define the cost (for x XN (0) initial condition)

(5.1) /(JN,x) E [cdyN(t) -k- c0(1 JN(t))dGN(t)]

In this and in 9 and 10, it will be shown that stationary controlled processes satis-
fying (4.4) provide very good approximations to the performance of XN (.) for large
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N and time. The trunk line systems tend to be of interest for a long time period,
and virtually all of the current analyses assume some sort of stationarity. Here we
concern ourselves with the ergodic cost problem for the single trunk case, but with
an arbitrary starting state. Sections 9 and 10 are concerned with the ergodic control
problem for the network. The very useful "occupation measure" method will be used,
although we work with measures over the path space rather than over the value spaces
of the state and control functions. We first introduce the needed notation.

DEFINITIONS. Stationary controlled process. We say that the solution to (4.4) is
stationary if the distribution of

R(.) (X(t + .), W(t + .)- W(t), W(t + .)- W.(t),
F(t + .) F(t), Y(t + .) Y(t), G(t + .) G(t))

does not depend on t.
Assumptions and notation. Now we set up some notation for the functional

occupation measure development. We need to define the canonical variables of the
sample space of the above set of the six processes that are the components of Rt (.). We
will use the 6-tuple p(.) ((.), 1(’), 2(’), b(.),y(.),c(.)) to denote the canonical
element of D6[0, c), where each of the six components is a canonical element of
D[0, c). The element (.) will represent the canonical sample path of either X(.) or
XN (.) or of appropriate "time-shifted" forms such as XN (t + .). Similarly, 1 (’) will
denote the canonical sample path of either W1 (.) or .oN(.) or of appropriate time-
shifted and centered forms such as .0N (t + .) .v(t). Analogously, 2(’), (’), Y(’),
and c(.) will denote (resp.) the canonical sample paths of either W2(.) or N(.),
either F(.) or FN(.), either Y(.) or yN(.), and either GN(.) or G(.), or appropriately
time-shifted and centered forms of these processes. For t >_ 0, define the processes
RtN(.) by

RN (.) (X (t + .), ioN (t + .) iou (t), Z) (t + .) Z) (t),

FN (t -- .) FN (t), yN (t -- .) yN (t), GN (t -]- .) GN (t)).

Effectively, RN(.) are the original processes but shifted left by t. Let pN,t(.) denote
the measure that is induced by the process RtN (.), and define the occupation measure

PTN(’):

1 fo
T
pN,tP(.) (.)dt.

Occupation measures on the path space provide a convenient method of dealing with
approximations to ergodic cost problems in a variety of contexts [14].

The cost function. Let us write the cost function (5.1) in terms of PTN (.). Note
that

1/0T(5.)
1 FNIFN (t + 1) FN (t)]dt - (T) +

where

(5.2b) (FN(t) FN(T))dt- ]i FN(t)dt]
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Thus, we can write

/(JN,XN(O)) --E [clyN(T) + Co(GN(T) FN(T))] /T

l
-E [cl (yN (t + 1) yN (t)) + co(GN (t + 1) GN (t))

c0(FN (t + 1) FN (t))]dt + NT,
where the "error term" TN can be obtained from the type of calculation done in
connection with (5.2). Under the uniform integrability properties of (4.1b) and (4.7),
TN -- 0 as T - 0, uniformly in N. Now we can write (5.1) in terms of the occupation
measure as

(5.3) /NT (JN,xN(o)) j [cly(1) + c0(a(1) (1))] PTN(dp) + NT

Thus, the asymptotic behavior of the costs depends on the asymptotic behavior of
{pV (.)}. The next theorem tells us that the long-term averages are well approximated
by those of a stationary limit problem. We note that the occupation measure method
used in Theorem 5.1 will also be used in 9 and 10 in essentially the same way.
It is easier to understand in the context of the one-dimensional problem here. The
next theorem justifies using the stationary limit problem to get approximations to the
physical problems when the latter is of interest over a long time period.

THEOREM 5.1. Assume the conditions of Theorem 3.1, as well as the assumptions
on GN(.) stated in 4. Let the jN(.) be admissible. Then {PTN(.); N < c, T < c} is
tight. Let P(.) denote the limit of a weakly convergent subsequence (as N -- oc, T
ec). There exists a stationary process, which we denote by R(.) (X(.), W (.), W2(.),
F(.),Y(.),G(.)), that induces the measure P(.) and satisfies (4.4), where F(.) has
the representation (4.5b) for a nonanticipative process J(.) with values in [0, 1]. The
Wiener processes Wi(.) have the quadratic variation properties cited in Theorem 3.1,
and the other processes are nonanticipative with respect to the Wiener processes. Also,
as N --. c and T -- c through the convergent subsequence,

7NT(JN,xN(o)) -- 7(J)=_ f-fi(dp) [cly(1) -- c0(a(1) (1))]

=E cY(1) + co [1- J(s)]dG(s)l
Proof. By Theorem 4.1, the set of random variables {XN (t); N < c, t < c} is

tight. By the proof in Theorem 4.1, this implies that the set of processes {RtN (.); N <
c, t < o} is tight; i.e., the set of measures {pN,t(.); N < ec, t < c} is tight. The
latter assertion implies the tightness of the set of occupation measures {pV (.); N <

Now, abusing terminology, let N, T (both going to infinity) index a weakly con-
vergent subsequence with limit denoted by P(.). Let R(.) (X(.),..., G(.)) denote
the process that induces (.). Note that the measure PTN (.) is that of a process/TN (.)
that is constructed exactly as RN (.) R0N (.) is but where one randomizes the initial
time; i.e., P{initial time E It, t + A]} A/T for 0 <_ t _< t + A <_ T, and the initial
time is independent of all other random variables in the system. By the tightness
of the set {XN (t); N < cx, t < cx}, the set of initial conditions for the "randomized
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initial time" processes {/TN(.);N < o,T < } is tight. Then the fact that (.)
satisfies (4.4) with the representation (4.5b) follows from the proofs of Theorems 3.1
and 4.1.

The paths of R(.) are continuous w.p.1. Hence the functions with values y(1), a(1),
and (1) are continuous in the Skorohod topology almost everywhere with respect to
the measure of R(.). Thus [1, Tam. 5.1] the convergence (5.4) follows from the weak
convergence, the continuity-of the paths of R(.), the uniform integrability of the set
{yN(n + 1)- Yg(n);N < cx,n < } (see Theorem 4.1), and the assumed uniform
integrability of {GN(n + 1)- GN(n);N < (x,n < oc}. We need only prove the
stationarity properties of R(.).

For g(.) e D6[0, c) and c > 0, define the left shift go(’) g(c + .). For a Borel
set K C D6[0, (x), define the left shift Kc {g(.) go(.) e K}. Then we can write

(5.5)

PTN(K) - (K)dt - P{RNt+(’) e K}dt,

1 P{RtN(.) E K}dt
1 T+

P{RtN+c(") e K}dt-PTN Kc PTN K - JT

Let f(.) be a bounded continuous real-valued function on D6[0, cx). Then the "error"
estimate (5.5) and the continuity of the limit process R(.) imply that

lim I f(P)PTN (dp) Ef(-(.)).
N,T

Since c > 0 is arbitrary, this last equation implies the stationarity. [:]

It can be shown that infgTN(jN,x) --* infgT(J). The details are omitted since a
harder problem is dealt with in Theorem 9.1.

6. Convergence and approximation of the controls: Discounted cost.
We return to the discounted cost problem of 4. This section concerns convergence of
the optimal costs for the physical problem to that for the limit problem. This topic is
continued in 8, where the more complex network case of 7 is dealt with, and given
in more detail.

DEFINITION. A control J(.) for (4.4) is said to be admissible if it is a measurable
process that takes values in [0, 1] and is nonanticipative with respect to the Wi(.)o
We were able to represent the limit F(.) in Theorems 4.1 and 5.1 in terms of an
admissible control, since both F(.) and G(.) were nonanticipative with respect to the
Wi(.). Define

g(x) inf{CN(JN, x)" jg (.) admissible},

C(x) inf{C(J, x)" J(.) admissible},

where cN(.) and C(.) are defined by (4.3) and (4.6), respectively. We wish to show
next that

(6.1) g(x) (x).
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Note that no Markovian-type assumption is made on GN(.) or on G(.).
THEOREM 6.1. Assume the conditions of Theorem 4.1. Then (6.1) holds.
Discussion of the proof. Theorem 4.1 implies that

lim infN(x) >_ (x).
N

Thus, we need only prove the "reverse" inequality

(6.2) limsup -N (x) <_ -(x).
N

This is the usual problem in getting results like (6.1). In order to prove (6.2), one
can proceed as follows. Let e > 0. A particular e-optimal control (denoted by J(.))
for the system X(.) of (4.4), (4.5b), and cost (4.6) is obtained. This control must be
such that there is an adaptation, to be denoted by j,N (.), that can be used on the
physical processes xN(.). The adaptation should be such that, under j,N(.),

cN(je,Nx) C(J,x).

Since J(.) is -optimal, we will then have

limsup (N(x) _< limCN(j’N,x) C(J,x) <_ (x) + .
N N

Since e. is arbitrary, this proves (6.2). The control J(.) is not to be considered to be
a "practical" control. Its purpose is only to help prove (6.2).

A similar problem occurs in the proofs of the convergence of "computational
approximations" to optimal stochastic control problems, and, indeed, the method of
[13, Thm. 7.1] can be used to construct the desired J(.). In fact, the only difference
between the requirements in [13, Thm. 7.1] and our requirements here is the need to
take the input G(.) into account. The adaptation of the cited proof to our problem
is not hard. But since an analogous problem for the more complicated controlled
network will be dealt with in detail in 8 via a related approximation method, we will
not pursue the matter further here but refer the reader to 8. This type of result is an
important consequence of the heavy traffic analysis since useful numerical methods
are available to get the optimal value functions and controls for control problems for
the limit models [13], [15], [16].

DEFINITION. A control J(.) for X(.) is said to be a feedback control if there is a
measurable function u(.) with values in [0, 1] and such that J(t) u(X(t),t). If u(.)
depends only on x, we say that it is a state feedback control. For feedback controls,
we write the associated costs as CN(u,x), C(u,x). If G(t) equals bot (as in (4.5a)) or
is the "overflow" from another trunk line system, then one might expect J(.) to be
of state feedback form and, more particularly, to be of the "threshold" form; namely,
there is Bo > 0 such that J(t) 1 if Z(t) >_ Bo and J(t) 0 otherwise. Such
threshold policies are a common occurrence for queueing problems when the input can
be controlled [9], [22]. For the network problem the optimal control will not be of the
threshold type.

For the next result, we need the following construction. Let u(.) be a state
feedback control that is piecewise continuous in x.. We can define a control jN(.)
from u(.) for use in (4.2) such that cN(jN,x) C(J,x). If u(.) is an indicator
function, then the adaptation is obvious; we use JN(t) u(xN(t)). Otherwise, we
use a randomization rule of the type that will be used in Theorem 8.3 below and
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where more detail will be given: In particular, use the following rule. Let there be an
arrival from GN(.) at t; then accept it with the conditional probability

P{accept data(t)} u(XN(t-)),
where data(t) is all the systems data up to and including time t, except for the accep-
tance or rejection of the request from GN (.) at t. The weak convergence arguments
can be carried through since u(.) is continuous w.p.1 with respect to the measure of
X(.).

We can state the following extension of Theorem 6.1. Again, we omit the proof
in view of the development in 8. The corollary asserts that a "nice" nearly optimal
control for x(.), C(.) is also nearly optimal for XN (.) CN (.). If u(.) is of the threshold
type, then its adaptation for use on the network does not require a randomization.

COROLLARY. Assume the conditions of Theorem 4.1. Suppose that u(.) is a
piecewise continuous state feedback control for X(.). Let jN(.) denote its adaptation
to x (.).

Then CN(JN, x) C(u, x). If u(.) is -optimal for (4.4), (4.6), then jN (.) will
be 2s-optimal for (4.2), (4.3), for large No

7. A simple controlled network. Description. The network will be defined
and the basic weak convergence results of the past sections will be extended. It will be
shown that the limit processes lead to well-defined control problems and that the costs
converge to the cost for the limit problem. We consider a three-node network (i.e.,
a triangle). However, the methods and results hold for arbitrary networks provided
that the basic heavy traffic conditions hold. The exogenous requests GN(.) in the
previous sections are now replaced by explicit requests from other trunk lines of the
network. Numerical studies of the triangular network have shown how to devise very
good and relatively easily implementable policies for arbitrary (hundreds of trunks)
networks. Details of the numerical method and the simulation studies are given in

[lS].
Let the nodes be labelled A, B, C and the links 1, 2, 3 with link I connecting (A, B)

and links 2, 3, respectively, connecting (B, C) and (C,A). The trunk lines labelled
1, 2, 3 have N individual bidirectional lines, where / > 0 and N is a size

parameter. The service time distribution of each individual line is exponential with
rate # > 0. External arrivals appear at the nodes A, B, C. An arrival at A can be a

request for service to either B or C. As far as the trunk line is concerned, it does not
matter at which end the service request originates. Thus, we use the following model
for requests for service on trunk line i. Let {a’N, k < oo} denote the sequence of
interarrivM times for trunk i, and suppose that they are independent and identically
distributed and independent of all other service and interarrival times of the system.
The set of all service and interarrival times are assumed to be independent.

Let Q’N(t) denote the scaled (by 1/v/) number of lines in the ith trunk that
are used by rerouted requests at time t. We make the unrestrictive assumption that

sup EI# 
N

Set ,N E(’N, and assume (see (2.1)) that

(7.1) (i,g)-i #iN b:v/, 1, 2, 3,

for real bi. This is the natural heavy traffic condition, since it implies that (modulo
O(v/)) the mean arrival rate to trunk equals the mean service rate when all lines
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are occupied. Indeed, the heavy traffic analysis suggests that a "well-engineered"
system will satisfy (7.1). Also, suppose (an unrestrictive assumption) that the sets

(7.2) {(C’N/-i’N)2; k
2are uniformly integrable and that (see (2.3)) for some a < cx

(7.3) El1-c’ /

For 1, 2, 3, define the system variables:

A’’N (t) [number of external arrivals to trunk by t] /v/,
D’N (t) [number of service completions at trunk by t] /V,
Q,N (t) [number of lines of trunk occupied at t] /v/,
x (t) (t),
yi,N (t) [number of external arrivals to by t when is full ]/v/-.

x’N(t) is the (scaled by 1/v/) number of available circuits at trunk at time
t. We write xN(.) (x,N(.),x2’N(.),x3’N(.)) and similarly define the vectors for
the other quantities defined above. Let (xl,x2,x3) denote the canonical components
of the vector x. Thus g(.) and/g(.) are redefined to be the vectors of arrivals and
departures, respectively.

Rerouting. Suppose that a request for service between A and B arrives but all
N lines of the connecting trunk 1 are occupied. We allow the possibility that the
call can be routed between A and B by going through C, thus using one line on each
trunk 2 and 3, if available. If not rerouted, the call is rejected from the system and
disappears. The control problem is to determine when to reroute and when to reject.
The same considerations apply to requests for service between A and C and between
C and B.

An important restriction. We place one additional restriction on the system"
There is A0 > 0 such that a requested rerouting from any trunk to the alternative
pair j, k will not be accepted if either Xj’g (t)

_
A0 or Xk’g (t)

_
AO. This restriction

is not serious since A0 can be made as small as desired, but it should be kept in mind
since it will be exploited frequently and heavily in the sequel. It serves to prevent
explosions of yN(.), FN(.) at the boundary that might be caused by the repeated
rerouting of the same call. Note that this restriction is not a trunk reservation policy,
since otherwise the controls are arbitrary.

An alternate assumption (which is not used here) would be to assign a small cost
to each rerouting request. This would have a small effect on the limit but seems to
require a more complex machinery.

Notation and the dynamical model. We use the convention that the st-

perscript indexing the trunk line is interpreted modulo 3. Thus, if 2, then
X(i+l)’N X3’N and X(i+2)’N XI’N. Let J’N(t) denote the indicator function
of the event that (an external) service request arrives at trunk at time t, that
the trunk is full, but that rerouting is accepted by the alternative pair. In order
to avoid a minor notational complication, we suppose that only one event can oc-
cur at a time in the network (w.p.1). Otherwise, we need to define priorities in the
timing. This is not hard to do, but it would complicate the notation. The control
,iN (.) (j1,N (.),...) is said to be admissible if: (a) ji,N (t) 0 if there is no external
arrival to trunk at time t, j,N (t) takes only the values 0 and 1 (b) j,N (t) depends
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only on {AN (s), DX (s), s

_
t, JN(s),s < t}; (c) ji’N(t) 0 if either X(i+l)’N(t) or

X(i+2)’N (t) is less than A0. Since the events occur singly and discretely in time, the
jN (.) are well defined.

Define the normalized overflow from trunk that is actually rerouted:

(7.4) Fi’N (t) ji,N (s)dy,N (s).

We have

Q1,N (t) Q1,N (0) + AI’N (t) DI’N (t) y1,N (t) -Jl- F2’N (t) -}- F3,N (t),

since rerouted items from trunks 2 and 3 both use trunk 1. In general,

(7.5) Qi,N (t) Qi,N (0) + Ai’N (t) Di’N (t) yi,N (t)

+ F(i+l)’N (t) -t- F(i+2)’N (t).

Let BtN denote the minimal a-algebra that measures {x’N(s),Ai’N(s),
j,N(s), s _< t,i 1, 2, 3}. Analogously to the definitions in 3 and 4, define the
processes

Nt
1

k /-i,N),t’N(t)
X/ (1 a’N

,i,N(t) max n" a’N_t

/i0’ (t) -A,(s, (t)).

Write the martingale decomposition of D’N (.) analogously to the form (3.5)"

tQi,N i ND’N (t)= # (s)ds + (t)

(7.6) - x,(s)ds +t+,(t),

where ’(t) is a B-martingale with quadratic variation

(.

it o X’(s)ds.

Now, analogously to (g.7), we have the system equations

(7.sl x(tl x,(o + t f2 x,(+ (;, (t + b,
+ ,(t) (+1:(t) (+,(t.
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Define the process

nN (.) (xi,N (.), o,g (.), Di,N (.), yi,N (.), Fi,N (.);i 1, 2, 3}.

DEFINITION. A measurable process J(.) (jl(.),j2(.),j3(.)) is said to be an
admissible control for (7.10) below if the J(t) are [0, 1J-valued, nonanticipative with
respect to the Wiener processes WJ(.) and Ji(t) 0 if either X(i+l)(t) or X(i+2)(t)
are less than Ao. The control is said to be state feedback if there is measurable
u(.)--(u(.),u2(.),u3(.)) where ui(.) is a [O, 1]-valued function of x(i+),x(i+2), and
Ji (t) u (X(i+ 1) (t), X(i+2) (t)), For ,simplicity, we often write this as u (X (t)). Since
ui(.) will occur only in the combination ui(X(t))dYi(t), the xi-dependence of ui(.) is
irrelevent.

THEOREM 7.1. Assume the conditions stated above in this section and let the
jN(.) be admissible and suPNEIXN(o)l 2 < o. Then (RN(.)} is tight and

(7.9) sup supEXi’N(t) 2 < oo for all i.
N

Let R(.) (Xi(.), W(.), W(.), yi(.), Fi(.), 1, 2, 3) denote the limit of a weakly
convergent subsequence of {RN(.)}. Write Wi(t) W(t) + W(t), W(.) (WI(.),
W2(.), W3(-)). Then

Xi(t) Xi(O) + bit- # Xi(s)ds + Wi(t)

+ Yi(t)- F(i+I)(t F(i+2)(t).

The W(.) are mutually independent Wiener processes with quadratic variations

(7.11)
2

There is an admissible control J(.)such that

(7.12) Fi(t) Ji(s)dYi(s),

and the X (.) and Yi (.) are nonanticipative with respect to the Wiener processes. The
set

(7.13) {Yi’N(n + 1)- Y’N(n);n < oo, N < oo, i- 1,2,3}

is uniformly integrable.
Proof. Equation (7.9) holds by Theorems 3.1 and 4.1 and the fact that the Xi’N (t)

are no greater than the values of the state when there is no rerouting.
The uniform integrability of (7.13) is proved by an argument like that below (4.7),

using the fact that J,N(t) 0 if either x(i+l)’N(t) or X(i+2)’N(t) are less than A0.
Now we elaborate this argument by working with a "bounding system." Let N(.)
and lyN (.), respectively, denote the state and reflection processes for the system (7.8)
that is altered as follows. The state is reset to zero at t 1, 2, 3,.... Also, for each
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i,fi’N(t) is constrained to [0, A0] by adding a reflection at A0. (Thus, the F-terms
do not appear in the dynamical equation.)

Note that Yi’g(n+ 1) Yi’N (n) <_ z’Y(n+ 1) ]Y’N (n). We outline the proof of
the uniform integrability for the altered system. Fix and n; and define the stopping
times a n and for each k >_ 0, 7.+1N min{t > akN 2i,N (t) 0} A (n+ 1), ffk+lN

f(,g max{k’ak < (n+l)}.min{t > -kl (t) >_ A0} A (n + 1). Define M,N N

Since ,N (.) cannot increase on the excursions from A0 to next contact with 0, there
is K < oc such that we can write

]Yi,N (n + 1) ],,N (n) <_ E[.’g (akN) ,V
k--1

+ a similar sum for bi’N (.) + KM’N + K.

The mean square value of the sums on the right are all bounded uniformly in
n, i. Now, given 50 > 0 it is not hard to show that there is To > 0 such that with
probability one

(7.14) P{T+ k
N < T01 data to av }

__
1 50

for all k, i, n and large N. By a recursion argument, this inequality can be used to
show that each moment of Min’N is bounded uniformly in n, i, N and we omit the
details Thus the second moments of the set of increments in (7.13) are bounded
uniformly.

The rest of the proof is like that of Theorems 3.1 and 4.1. Let - be a (bounded)
stopping time with respect to the filtration generated by the {’N(t)}. Then from
(7.3) we get

+ t) _< <_

(and the left side converges to at), which implies the tightness of {i,N(.)} via the
criterion (3.1), analogous to the situation in Theorem 3.1. Continuity of the limits
of {i,N (.)} follows from the uniform integrability of (7.2), again analogously to the
situation in Theorem 3.1. The results for the /)i,N (.) sequence are also obtained
essentially like that in Theorem 3.1. It can also be shown that si’N(.) converges
weakly to the (deterministic) process with values #it; i.e., the limit is just the limit
of (l/N) times the mean number of external arrivals to trunk by time t. We have
df(+l)’N(t) dF(+2)’N(t) 0 for all t such that Xi’N(t) E [0, A0]. This remark
and a proof like that in Theorem 3.1 can be used to get the tightness of yi,N (.). The
tightness of Fi’N (.) follows from this. These facts and the tightness of {0N (.)} and
{/)N (.)} imply the tightness of {Xi’N (.)}. The representation (7.12) follows from the
fact that F(t + s) Fi(t) <_ Yi(t + s) Y(t), for all t, s >_ 0.

Using calculations analogous to (3.9) and those leading to (3.16), we get that the

We(.) are Wiener processes with the asserted variances as well as the nonanticipative-
ness assertion and the independence of the four groups of processes

(.), (.), (.), (.), (.)}.

The processes Di’N (’) are not mutually independent since a rerouting involves the use
of a line on two trunks for the same request. But the parts of, say, /l,N (.), D2,N (.),
which are due to the input F3’N (.), will be shown in the next paragraph to have
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variance O(1/V/-), and similarly for the other cases. This implies that the {W(.),
1, 2, 3} are also mutually independent.

To prove the desired assertion, first recall the definition of Q,N(.) above (7.1).
We can decompose this process similarly to what was done in (3.5), (3.6). This yields

(7.15) Q,N (t) Q,N(0)+ F(i+l)’N (t) + F(i+2)’N (t) # (s)ds + D (t),

where ,N(.) is a martingale and is the contribution to i,N (t) of the rerouting from
other trunks. Its quadratic variation is

(7.16) # Ji Q’N(s)ds"

By (7.15) and the uniform integrability properties of the increments of the Fj’N(.)
(a consequence of (7.13)), we have that suPN,EQ’N(t) < . Thus the quadratic
variation of ,y(.) has the asserted order and we are done.

Note. The fact that the asymptotic effects of Q(.) are zero was a long-standing
conjecture. But this seems to be the first proof.

8. Optimality results for the discounted cost problem. In this section, it
is shown that the optimal costs for the network converge to that for the limit control
problem. This is useful since numerical and analytical methods are available for the
limit problem.

The cost function. We define the analogs of the costs (4.3) and (4.6) for the
network. Let xN(o) X(O)= x and > 0: For admissible jN(.) and g(.), set

C(J, x)= E e-zt E(1- Ji(t))dYi(t),

N(X) infg Cg(jg x), (x) infj C(J, x),

where the infs are over the admissible controls. (8.1) is the normalized mean dis-
counted total number of external arrivals that are rejected from the system.

We wish to show the analog of (6.1) for the network problem. As in 6, the main
problem is proving (6.2). To do this, we will need to introduce a "comparison" control,
as discussed in 6, and Theorem 8.1 is a preliminary result in that direction. The
"comparison" controls that will be used in the convergence Theorem 8.3 are based on
those constructed in Theorem 8.1.

DEFINITION. Let g(.) be Lipschitz continuous [0, 1J-valued functions of (x(+1),
x(i+2)) that equal zero if either X(i+1) A0 or x(+2) _< A0. For simplicity, we often
write just g(x). In fact, since this function only occurs in the form g(X(t))dY(t),
the x-dependence of gi(.) is irrelevant. Let e [0, 1] and define the control J (.)
by J(t) cg(X(t)) and the transition probability under JR(’) by P(x,t,.Ic
P{X(t) e .l JR used, X(O)= x).

THEOREM 8.1. Assume the conditions of Theorem 7.1 and let J(.) be an admis-
sible control for (7.10). Then a solution to (7.10) exists (in the strong sense) and
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is weak sense unique For t > O, P(x, t,.Is) is mutually absolutely continuous with
respect to Lebesgue measure and is continuous in x, in the weak sense.

Proof. The key to analyzing (7.10) is the fact that for each at most one of
the processes Yi(.), F(i+I)(.), and F(i+2)(.) can increase at any given time, analogous
to the situation, in Theorem 7.1. This observation will be used several times in the
sequel, since it enables us to divide up time into disjoint intervals on each of which
only one of these processes can change and to examine Xi(.) in "pieces."

The uniqueness can be established by a direct construction. For specificity, let
1 and XI(0) < /0. Define a0 0, and for n > 0 set Tn+l min{t >_ an Xl(t) 0}

xl(t) A0} The solution to (7.10) can be constructedand crn+l min{t >_ Tn+l
by "pieces." On [an, T+I),XI(.) is a function of X(an) and the increments of
WI(.),F2(.),F3(.) on that interval and dYe(t) 0 there. On [Tn, crn), J2(t) J3a(t
0 since Xl(t) < A0. Thus, dF2(t) dF3(t) 0 on that interval, and XI(.) is
uncontrolled and uncoupled to X2(.),X3(.) there. A continuation of this argument
yields the existence and uniqueness, as asserted. The existence and uniqueness under
J(.) is proved in the same way.

Let t > 0. The fact that P(x,t, .Is) is mutually absolutely continuous with
respect to Lebesgue measure for each x and c follows from the arguments in [5, 7]
for a related problem and the above observations concerning the examination of the
process in "pieces."

The asserted uniform weak continuity of P(x, t, .Ic) can be proved by a weak con-
vergence argument: Let Xn --’ x and Cn -- a, and use a weak convergence argument
and the weak sense uniqueness of the solution to (7.10) under the given form of the
control; we omit the details.

THEOREM 8.2. Assume the conditions of Theorem 7.1, and let {RN(.)} converge
weakly to R(.) (defined in Theorem 7.1). Then there is admissible J(.) such that

(s.a) cN(jN, x)-C(J,x).

There exists an optimal admissible control for (7.10), (8.2). Also, C(x) is continuous
in x and in Ao (for Ao > 0).

Proof. Equation (8.3) is a consequence of Theorem 7.1. The existence of an
optimal admissible control for (7.10), (8.2) can be shown by a weak convergence
argument analogous to that used in Theorem 7.1 (but with system (7.10) and a

minimizing sequence of controls used), and the details are omitted.
Perhaps the simplest way to prove the continuity of C(x) in x involves a change

in the structure of the problem. For the physical network, the change is to allow
the possibility of rejecting external inputs to a link when Xi’y (t) > 0 and without
attempting rerouting for such rejections. For co > 1, assign a cost co/x/ per call
rejected from when Xilg (t) > 0, for each i. The corresponding modification to model
the limit (7.10) and cost (8.2) allows instantaneous increases in the components of
the state, with the following cost: Let the impulsive increment move the state from
x to y with yi >_ x for each i. Then we let the associated "impulsive" cost be
coi(y -xi). Such a "reject" option would never be exercised in an optimal policy,
so the modification does not alter the minimum costs. Now given x, let xn -- x.
A weak convergence argument can be used to show that there exists admissible ](.)
such that (x,) C(,x). Hence, liminf(x) >_ (x). Also, (y) _< (x)if
yi >_ x for all i. These facts hold for both the original and the modified problems.
The last three sentences imply that it is enough to show continuity in each component
x separately and as x increases. But such continuity is guaranteed for the modified
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problem, since for that problem and ti :> 0

U(X1, X2, X3)
__
U(X

__
(1, X2 t_ (2, X3

_
(3) + C0(1

__
2 _. (3),

(x, x:, xa) > (x + , x: + 5, xa + a).

The continuity in A0 can be shown by a related argument, and the details are
omitted.

The optimality theorem. Theorem 8.3 shows that the optimum cost for the
network is well approximated by the optimum for the limit problem. This helps justify
the use of the heavy traffic limit. We also note that the randomization technique used
to get the comparison control in the theorem seems to be a basic technique in getting
limit theorems for the trunk line type of problem.

For controls Jia(t --g(X(t)),i-= 1,2,3, and X(0)-= x, define the function

E

THEOREM 8.3. Under the conditions of Theorem 7.1,

(8.4) N(x) (x).

Given > O, suppose that there is a state feedback control u(.) for (7.10), (8.2),
which is -optimat and for which (7.10) has a unique weak sense solution. Write
u(x) (ul(x2,x3), u2(xl,xa), ua(x,x2)), and suppose that the ui(x) take values 0 or
1 and the boundary of the set where ui(x(i+l),x(+2)) 0 is piecewise C2 and there
are no cusps at the corners of the "pieces". Then u(.) is 2-optimal for (7.8), (8.1)
for large N.

Remark on the control. By an essentially classical argument of the type used
for It5 equations, and working in "pieces" as in Theorem 8.1, it can be shown that
(7.10) has a unique strong sense solution (in sense of [8]) if the ui(.) are Lipschitz
continuous. The discontinuous control described in the theorem statement is typical
in applications, as seen from numerical results for the limit problem.

Numerical experiments support the conditions put on the e-optimal control below
(8.4). Indeed, the switching curve for a typical optimal control for a three-dimensional
heavy traffic limit system is graphed in Fig. 1, where the upper region is "accept
rerouting" and the lower is "reject rerouting." The graphed case is for an ergodic
cost criterion, but similar results hold for the discounted cost case. For the graphed
case, link 1 is full and the other axes are the state values for links two and three,
respectively. The plotted contours are those of the "relative value function" from the
dynamic programming equation and are used in the adaptation of the results for the
three-dimensional case to the general network. Details of the numerics and algorithms
will be given in a subsequent paper.

Remark on the proof. The proof of the first assertion will be done in sev-
eral steps. First, an -optimal feedback control for (7.10), (8.2) of a special form is
obtained. Then a piecewise constant approximation is derived. Then we get a con-
tinuous -optimal control for a time sampled form of (7.10), (8.2). Finally, this latter
control is adapted for use on XN(.). These controls are for theoretical use only and
are not intended to be practical.s
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0 0.5 1.5 2 2.5 3

State of link 2

FIG. 1. Decision curve for a particular three-dimensional system: Link full.

Proof. Equation (8.3) implies that

lim infN(x) (X)
N

(for arbitrary > 0, simply let the jN(.) in Theorem 8.2 be an optimal or e-optimal
policy). Thus, we need only prove

(8.5) limsupN(x) (x).
N

Let e > 0. To prove (8.5), a special 3-optimal policy J(.) for the limit problem will
be constructed. J(.) will be such that we can find an adaptation je,N(.) for use in

(7.8) such that

(8.6) Cg (j,g, x) C(J, x)o

Since C(J,x) _< (x)+ 3 and Cg(J’N,x) >_ g(x), (8.5) will follow
Let 51 > 0, and set A1 A0+51 andX(0) =x. In view of the continuity of

(x) in Ao (Theorem 8.2), there is 51 > 0 and an -optimM admissible policy if(-)
such that ]i(t) 0 if either X(i+l)(t) _< A1 or X(i+2)(t) <_ A. For each i, let
be a function of the type introduced in Theorem 8.1 and taking the value unity when
x(i+1) >_ A and x(i+2) _> A. Recall that gi(.)is Lipschitz continuous, [0, 1]-valued
and has the value zero if x(i+) <_ A0 or x(i+2) < A0. We suppose (without loss
of generality) that the processes (7.10) for the various controls that will be used are
defined on the same probability space and with the same Wiener processes
The initial condition will always be x X(0). With if(.) given, let )(.),/(.), and
(-) denote the associated state, control, and reflection processes, with .(0) x;

i.e.

ti W .ri (i-t-1) (ih-2)2i(t) x + bit- # (s)ds + (t) + (t) (t) (t).
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The control functions have the form

fi’i(t) i(s)gi(f(s))di(s).

Given g(.), let Cg(x, J) denote the cost (8.2) for (7.10) when the control functions are
retricted to the form

(8.7) Fi(t) Ji(s)gi(X(s))dY(s),

with J(.) admissible. Define C(x) infgC(J,x). Then C(x) >_ C(x). Also,
C(J,x) C(J,x) <_ C(x) + by the definition of J(.).

In the next paragraph we define an approximation to (.),)(.). We will denote
this new policy and associated control function, reflection, and state processes by
/(.), ](.),)(.), respectively. Thus the new approximating processes will satisfy

(8.8)

(i+1) (i+2)bit # )(s)ds + W(t) + Y(t) (t) (t),

’0
fi(t) (s)g(f(5(s))d5(s).

If ](t) --./(t) as 5 -, 0, for each t and all i, then 5(t), 5(t) converge to )(t), (t)
for each t.

Define 0(.) as follows. Given 5 > 0, define 0(.) recursively on the intervals

InS, n5 + 5). On [0, 5), set 0}(s) 0. For n > 0 and on [nh, n5 + 5), set (s) 1 until

either (whichever comes first)" (a) t n5+5, or (b) the first time t that/(t) ]i(t).
As 5 0, an argument by contradiction can be used to show that for each and t

(8.9) P(t), 6 0.

A contradiction can be shown if one supposes that the convergence (8.9) does not hold
for some i, since in that case lim60(t) would equal unity for t >_ inf{s" lim6/(s) <
/i(s)}. By (8.9), (.), 6(.) converge to )(.), (.). This convergence, (8.9), and
the uniform integrability of (7.13) imply that Cg(6,x) Cg(,x) as 5 0. Now
given this result, and letting 6 be small, we see that the fraction of intervals on
which some 0(.) takes both values 1 and 0 goes to zero as 6 --. 0. Thus, we can

suppose that O6(t) equals identically either 1 or 0 on the intervals [n6, n5 + 5) and
that Cg(06,x) <_ Cg(,x + and that (8.9) holds. The value of 6 will be fixed
henceforth in this proof.

Let C6g(J,x) denote the cost for input functions of the form in (8.7) but where the

J(.) process is constant on each interval InS, n6 + 5). Let Cg(x denote the infimum

over this class. Note that Cg(x) >_ C(x), Cg(x <_ (x)+ 2e. If there is a measurable
function u(.) such that the control on InS, n6 + 5) can be written as u(X(nh)), then
we abuse notation and call the control state feedback and write the costs as C96 (u, x).

The optimization problem for cost C69(J, x) can be reduced to a discrete time

problem by working with the samples {X6(n6),n 0, 1,...} and an appropriate
discrete time form of the cost, and we now do this.
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For the discrete time-approximating problem, we can suppose that the dynamic
programming equation for the discrete time problem is

(8.10) Cg(x) mn
where k5 (.) is defined above the theorem. A weak convergence argument can be used

to get the continuity of k(.). The continuity of ;(.) can be proved by the method
used in Theorem 8.2. It can be shown that there is a continuous state feedback
control u(.) that is -optimal with respect to all controls for the problem whose
dynamic programming equation is (8.10). Thus C(ue,x) <_-(x) + 3.

Now we are prepared to adapt ue(.) (u’(.),u2’(.),u3’e(.)) to the physical
model (7.8). The adapted control law will be called jN (.) and the associated state and
reflection processes called Xg (.), yN (.), respectively. The jN (.) will be a randomized
control. It will take values 0 or 1 and will be determined by the following conditional
probability law: For t e (nb, n5 + 5], we use (and define (.))
(8.11)

P{Ji’N(t)= llAN(s),DN(s),s <_ t, JN(s),s < t;dAi’N(t) > O, xi’N(t-) 0}

u,(xg(nb))g(Xg(t-)) t,N(t).
Note that the conditioning event implies that there is an arrival to at t and no

available capacity there. Since the events occur one at a time and are separated in
time, the conditional expectation is well defined.

Next we put the control terms Fi,N (.) into a manageable form by showing that
the effects of the randomization disappear as N oo. Let T’N denote the time of
the nth arrival to trunk i from the external sequence Ai’N(.). Let I’N denote the
indicator of the set where xi’N(Ti’N-) 0, and set ji,;N ji,N(r,N). Then we can
write (possibly modulo 1/v/)

NSi’N

1 X: +/-i

NS’ (t)

fot 1
Fi’g(t) ji,N(s)dyi,N(s) E

n--1

JNIN

NSi’N (t) NSi’N (t)
1 ,N ,N 1

n--1 n--1

The first sum on the last line equals f ti’N(s)dyi’N(8). Owing to the definition of
ji,N via a conditional probability, the second sum is a martingale (when a discrete
index is used in place of NSi’N (t)) and its variance is bounded by

const Elyi,y (t) I.

Thus, the evolution equation for Xn(.) under (8.11) can be written as (7.8) but
with Fi’N (t) replaced by f ti’N (s)dYi’N (s) plus a "noise" term that goes to zero as
N --, o.
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Now, take a weakly convergent subsequence of the set {RN (.)} and let R(.)
(X(.),... ,F(.)) denote the limit processes. Then the limit satisfies (7.10) where on

[nh, n5 + )

Owing to the continuity of ,s(.) and Lipschit continuity of 9(.), the solution
(7.10) with these input functions is weak sense unique. This uniqueness implies that
RN(.) = R(.), as N --, c. Also by the weak convergence and uniform integrability
of (7.1a),

cN(jN,x) C(u,x)
_
-(x) + 3.

Since -Y(x) <_ cN(Jg,x) and is arbitrary, we have (8.5). The proof of the last
assertion of the theorem uses a weak convergence argument and depends on the local
properties of the Wiener process and [1, Theorem 5.1] to deal with the discontinuous
control, and we omit the details.

9. The ergodic cost function. Now we treat the ergodic cost problem for the
network and show that the optimal costs for the network converge to the optimal
cost for the ergodic control problem for the limit process. The method of proof
is somewhat indirect, since there does not seem to be any available technique for
dealing with controlled reflection directions with the ergodic cost criterion. Owing to
the many details required, the major details are in the Appendix. Again, numerical
methods of the "Markov chain approximation type" are available.

The cost function. Define the cost (the mean number of rejections from the
entire system per unit time for (7.8))

(9.1) "(JN,x) -E E(1- Ji’g(s))dYi’g(s), xY(o) x,

7N(jNx) limsupT(Jg,x),
T

(x) x).

For (7.10) and X(0) x, define the costs

(9.2)
"YT(J,x) -E E(1 Ji(s))dYi(s)

7(J,x) limsup/T(J,x), (x)= ifT(J,x),T

where all the infs are over the admissible controls. The occupation measure arguments
of Theorem 5.1 can be adapted to the current problem. Let jN(.) be a sequence of
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admissible controls for (7.8). Analogously to what was done in 5, define

(.) (X (t + .), (t + .) (t), b (t + .) b (t),

Fi’N (t + .) Fi’N (t), yi,N (t + .) yi,N (t), 1, 2, 3)

and let pN,t(.) denote the measure of RtN(.). Define the occupation measure PTN(.)
from pN,t(.) as (5.2a). We have the following theorem.

THEOREM 9.1. Assume the conditions of Theorem 7.1. Then {PTN(.);N <
oc, T < oc} is tight. Let P(.) denote the limit of a weakly convergent subsequence.
Then P(.) is the measure induced by a process

R(.) (X(.),W[(.),W(.),Fi(.),Yi(.),i 1,2,3),

which satisfies (7.10) with the representation (7.12), with admissible J(.). The W(.)
are as in Theorem 7.1, and we write Wi(.) W(.) + W(.). The limit process is
stationary. Let N,T index the weakly convergent subsequence. Then

(9.3) yNT (jN X) y(J) as N ---, oc, T oo

where (J) is the cost for the limit stationary process.
Remark on the proof. The proof follows very closely the lines of the occupation

measure argument of Theorem 5.1 together with the details in Theorem 7.1 concerning
the weak convergence, and the details are omitted.

Convergence of the optimal costs. Theorem 9.1 yields

(9.4) liminfTN(x) >_ (X).

Thus, in order to prove

(9.5) (x) ---, (x), as N oc, T

one needs the analog of (8.5) and, in particular, some "comparison" control, which
serves the same purpose as that constructed in Theorem 8.3. Suppose that for each
e > 0 there is an e-optimal state feedback control u(.) that has an "adaptation"
je,N(.) such that "y(je’N,x) --+ "7(ue,x). Then, as in Theorem 8.3, one has

(9.6) lim supTN (x) <_ (x)
N,T

and (9.5) follows.
Getting the comparison control u (.) seems to be much harder for the ergodic cost

problem, due to difficulties in dealing with approximations of stationary solutions
to (7.10). Consequently, an indirect approach is used in the Appendix where the
control inputs are approximated by nicer functions and classical methods are used to
get (9.5). The reader who is willing to accept the existence of a smooth e-optimal
feedback comparison control can omit the Appendix. The thrust of the arguments in
the appendix is essentially to replace the reflection by a "barrier," adjust the control
accordingly, and then apply the methods of [8] for the unreflected problem.
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10. Appendix. A modified limit system and the ergodic problem:
Proof of (9.5), (9.6). In this section, we prove (9.6) and hence obtain the result
(9.5). To do this we first approximate the input functions Fi’N(.),Fi(.) for (7.8)
and (7.10), respectively, by functions that are easier to handle. Essentially, a natural
"barrier" method will be used. Then we prove that the associated costs provide good
approximations. Finally, we prove the desired result for the approximating system
using results that are known for the ergodic problem for nondegenerate diffusions.
Most of this section will be devoted to defining the approximation and discussing its
most important properties. The approximations will be such that the associated op-
timal costs provide upper and lower bounds for (x). The bounds will be arbitrarily
close. Then a "nice" approximating control for the bounding system can be used to
complete the proof of (9.6).

For large k0 > 0 and small 5ko > 0, define the real-valued function kl(.) on

[0, cx) kl(t) ko for t [0, 5o], ki(t) 0 for t > 5ko. Let 5ko < Ao. Recall the
notation Wi(t)= W(t)+ W(t) and W(.)= (Wi(.), i= 1,2, 3). Let E =cov W(1).

Recall that if J(.) is an admissible control, then we require Ji(t) 0 if either

X(+)(t) or X(+2)(t) are less than A0. The approximating system to (7.10) is

(10.1) Xi(t) Xi(O) + bit- # Xi(s)ds + Yi(t) + Wi(t)

+ kl(Xi(s))ds k(X(i+)(s))J(i+)(s)ds

k(X(i+2)(s))j(i+2)(s)ds.

The motivation for the approximation appears in the paragraph below (10.3). Next we
put (10.1) into a more convenient vector form. Define k(x) (k(xl),k(x2),kl(x3))
and the matrix

K(x)

0 :)

]gl(X 0 ]g(X3)

]gl xl k (X2) 0

Then we can write (10.1) in the compact vector form

(10.2)

X(t) X(O) + bt # X(s)ds + Y(t) + W(t)

+ k(X(s))ds K(X(s))J(s)ds.

In (10.2), the control Ji(t) might be nonzero even if Xi(t) O. Of course, if Xi(t) >
5ko, then the value of J(t) is irrelevent since k(X(t)) 0 there. Define the costs
for the approximating problem, for X(0) x,

/T(kO, J,x)= -E (1 Ji(s))kl(Xi(s))ds

/(ko, J, x) lim sup 9/T(ko, J, x).
T
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If J(.) is of state feedback form (i.e., there is measurable [0, 1]3-valued u(.), such that
J(t) u(X(t)) for some u(.)), we write the cost as y(ko, u,x). Define (ko, x)
infg(k0, J,x) where the inf is over the admissible controls. If they do not depend on
the initial condition x, then we drop the x-argument from ’(k0, J, x) or (k0, x).

Motivation. The basic motivation for the approximation (10.2) is that for ap-
propriately large k0 and small 5ko, the reflection term Y(.) there is small and the
reflection term in (7.10) is effectively replaced by the integral f k(X(s))ds. Since
the reflection term can be made as small as desired by making k0 large (Theorem
10.5), ignoring it in the cost function (10.3) is unimportant. Loosely speaking, the
approximation is equivalent to not accepting external requests on the direct trunk
and requesting rerouting starting "just before" a trunk fills up, with "intensity" de-
termined by kl (’), and not requesting rerouting for arrivals to a full trunk. With these
approximations, the acceptances and decisions do not take place on the boundary but
just before the boundary. This "smoothing" greatly facilitates the analysis.

Theorems 10.1-10.4 concern regularity, stationarity, and ergodic properties of
(10.2). Theorem 10.5 is used to show that (10.2) well approximates (7.10) for large
k0 and small 5ko. Theorem 10.6 establishes that (k0, x) is also the inf over all state
feedback controls, and Theorem 10.7 yields the final convergence result. It is of general
interest to know that some problems with controlled reflections can be approximated
in this way.

The control problem with system (10.2) and cost (10.3). The control
problem (10.2), (10.3) is relatively easy to study via existing "Girsanov measure
transformation" methods, in essentially the same way as done for the "unreflected"
problem, and we now show how to do this. Let W0(.) be a Wiener process with
covariance matrix Et, define the solution to the uncontrolled problem by the equation

(10.4) X(t) X(O) + bt # X(s)ds -[- Wo(t) - Y(t) -- kl(X(s))ds,

and let p0 denote the measure of the (X(.), Y(.)) in (10.4) when X(0) x. This
process (10.4) is very simple since it is actually composed of three mutually inde-
pendent one-dimensional processes. For all x and all t > 0, the transition function
P(x, t, .) P{X(t) E .} is mutually absolutely continuous with respect to Lebesque
measure. The process is a strong Markov and strong Feller process and the solution
to (10.4) is weak sense unique. If kl(.) were Lipschitz continuous, then the solution
would be strong sense unique Girsanov transformation methods can be used since
we need only shift the drift and not the singular component Y(.) to get the control
term in (10.2).

Following a well-known procedure for the unreflected problem, the controlled
system (10.2) will be defined from the solution of (10.4) via a Girsanov measure
transformation. For an admissible (with respect to W0(.)) control J(.), define

[K(X(s))(s)]’E-idWo(s)

l foo [K(X(s) )J(s)]’E-l [K(X (s) J(s)]ds,

((J) exp
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For admissible (with respect to W0(.)) J(.), define the measure PJ via its restrictions
to functions on the intervals [0, t] for each t by the Radon-Nikodym derivatives that
take the values dPxg/dP (J) at such points. Then PJ is induced by a process
(X(.), Y(.)) solving (10.2) for appropriate W(.) [8, Chapter IV.4]. If J(t) u(X(t))
for a state feedback u(.), we write (u) and P in lieu of (J) and PJ, respectively.
The following result holds due to the properties of the Girsanov transformation, just
as for the unreflected system, since all of the properties of the solution to (10.4) that
were cited in the last paragraph (except for the strong sense uniqueness) carry over
to the solution of (10.2).

THEOREM 10.1. Let u(.) be a state feedback control. The process X(.) with
transition function P(x,t,.) P{X(t) e} is a strong Markov and strong Feller
process. For all x and all t > O, pu(x,t, .) is mutually absolutely continuous with
respect to Lebesgue measure, and it is weakly continuous in x. Also, (10.2) has a weak
sense unique solution.

Due to Theorem 10.1, the analysis of the ergodic control problem is virtually
identical to that for the unreflected problem in [12]. In fact, the only properties used
in [12] are those asserted in Theorem 10.1 and certain stability properties, which will
be stated in the next theorem. Theorems 10.3, 10.4, and 10.6 essentially rewrite the
results of [12] in the terms of the problem of this paper. For future reference, note
that the control term called b(x) in [12] is our K(x)u(x).

THEOREM 10.2. Let EIX(0)I2 < c. Then there is Mo < c such that for (10.2)
and admissible J(.),

(10.5) sup E;lX(t)l <_ Mo

and Mo can be chosen independently of J(.), ko, 5ko. For each state feedback u(.),
there is a unique invariant measure ru(.), which is mutually absolutely continuous
with respect to Lebesgue measure. Also, for each Borel set A

(10.6) P(x, t, A) ru(A)

as t--- oc.

In addition, for (10.2) and J(.) admissible

(10.7) sup E kl(X(s))ds + [Y(n + 1) Y(n)] < c.
J,i,n,ko,6ko

For each state feedback control u(.), X(.) is recurrent in the sense that for any mea-
surable set K of nonzero Lebesgue measure

E IK(X(s))ds cx:).

Proof. Define

v(z)

Let J(.) be admissible for (10.2). Since -V(X(s))K(X(s))J(s) <_ 0 for all s, ItS’s
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lemma yields

V(X()) <_ V(X(O)) + [
do
V (X(s))[b- #X(s)]ds + (trace E)t

+ Vx (X(s))[dY(s) + dW(s)].

Since V(X(s))dY(s) 0, (10.5) follows from the last inequality via the Bellman-
Gronwall ineqality. (Note that the same proof can be used to show that all moments
of X(t) are bounded uniformly in t.) The assertions below (10.5) up to and including
(10.6) follow from the stability and Theorem 10.1, exactly as in [12, Thm. 3.1], which
requires only the stability and strong Markov and Feller properties. The proof of
(10.7) is the same as that used to prove uniform integrability of (7.13) using the
fact that 6ko < A0. The recurrence property is a consequence of (10.5), the weak
continuity of pu(x,t,.) in x, and the fact that PU(x,t,.) is absolutely continuous
with respect to Lebesgue measure.

THEOREM 10.3. Let the sequence of state feedback controls u,(.) converge to a
state feedback control u(.) in the sense that

(10.8) fAUn(x)dx--- fAu(X)dx
for each Borel A. Then

exp (tn exp (u)(10.9)

in L1 (measure POx) for each t and x. Also, for each Borel set A,

PU (x, t, A) PU(x, t, A),(10.10)

(10.11) (A)(A).

Proof. The proof is that of [12, Thm. 4.3], which only requires the strong Feller
and strong Markov and stability properties. Hence it only needs the assertions of
Theorem 10.1. The only part of the proof of [8, Thm. 4.3] that is not in that paper
is a reference to [2, Thm. IV-3] for the proof of (10.9). But the proof of (10.9) in [2]
also requires only the strong Feller and strong Markov properties.

THEOREM 10.4. Let EIX(0)I2 < oo. Let un(.) and u(.) be state feedback controls.
Then /(ko, u,X(O)) does not depend on X(O). Under (10.8),

(10.12)  (k0,  (k0,
There exists an optimal admissible state feedback control; i.e., there is a state feedback
control (.) such that (ko) infu(.) adm.(ko, u) /(k0, ).

For any s > O, there is a Lipschitz continuous s-optimal state feedback control
u(.); i.e.,

 (k0, <_  (k0) +
Proof. The proof is that of [12, Thm. 4.4], and we just review its structure. For

state feedback control u(.), the integrand in the first line of (10.3) can be written

as f cu(X(s))ds, where

c(x) E(1 ui(x))kl (x).
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In [8, Thm. 4.4], Fn is used for our c(.), where the n there refers to the use of a
control Un(’). Then, for each state feedback control u(’),3’(k0, u) f c(x)Tr(dx).
Let Un(’), u(.) be any state feedback controls satisfying (10.8). Then the proof of the
assertion (10.12) is in the proof of Theorem 4.4 in [12]. That proof is self-contained
and uses only assertions analogous to those in Theorems 10.3 and 10.2 (up to (10.6)),
except for a reference to [2, Prop. IV-4] for a proof of a proposition analogous to the
convergence

in probability (P-measure) for each t, x. This proof of this latter fact in [2, Prop.
IV-4] requires only the strong Feller and strong Markov properties, hence it needs only
the assertions in Theorems 10.1 and 10.2. Now let {un(’)} be a minimizing sequence
of admissible state feedback controls. There is (.) such that (choose a subsequence,
if necessary) (10.8) holds for (.) replacing u(.). The last assertion of the theorem
then follows from (10.12), since for any state feedback u(.) there are un(’), arbitrarily
smooth, such that (10.8) holds with (.) replacing u(.).

THEOREM 10.5. Let 5ko --* 0 as ko oe such that ko(exp-qikobko) O, where
qi 2/E[W(1)]2. Then for z E (0, A0) and as ko cx ((10.13) defines Go(ko, z))

(10.13) PJ{x(t) reaches A0 before 01X(0)= z} =_ Go(ko, z) 1,

(10.14) sup E[Y(n + 1) Y(n)] ---, 0,
n>_l,i

uniformly in J(.).
Proof. Equation (10.13) follows from a direct calculation of the value. In fact,

J(.) is not relevant since Z(t) e [0, Ao] in the calculation. For simplicity, sup-
pose that we have transformed the measure so that the system on the spacial in-
terval of concern [0, A0] (with absorbtion on the boundary) can be written as dz
kl(z)dt + dW, varWl(1) 2/qi. Let G(.) denote the probability Go(.) for the
new system. The measures of the transformed and the original systems are mu-

tually absolutely continuous, and the Radon-Nikodyn is bounded in mean square,
uniformly in J(’),k0,6o. Then, if (10.13) holds for the transformed system, it
will hold for the originM system. Then G(ko, z) satisfies the differential equation
qkl (z)Gz(ko, z) +Gzz(ko, z) 0, z (0, A0), with the boundary condition G(ko, O)
O, G(ko, A0) 1. Define V(ko, z) Gx(ko, z). Then since ]1 (Z) ]0 for z _< 5k and
it equals zero otherwise:

Z

U(ko, z) U(ko, 0) exp qikl (y)dy

U(ko, 0) exp -qikoz (z <_ 5o)

U(k0, 0) exp -qkO6ko (z > 6o),

and

(10.15) G(ko,5o) (1 e-qk6ko

(1 e-q’k6o + qiko(Ao 5ko)e-qzk6o
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from which (10.13) follows for z 5ko. A similar calculation yields (10.13), for all
z (0, A0).

Let T1 > 0. Then (10.13) can be used to show that the probability that Xi(t) 0
somewhere on the interval [T, T + T1] goes to zero uniformly in T, J(.) (provided T
is bounded away from zero if Xi(0) 0 with a positive probability). This, together
with the uniform integrability of {Y(n + 1)- Y(n),n < c} which is implied by
(10.7) yields (10.14).

A maximum principle. For our purposes, it is necessary to know that (k0, x) is
also the infimum over all state feedback controls (in which case, it would not depend
on x). Such a result was not explicitly shown in [12] that worked only with state
feedback controls, but it is readily obtainable from the results of that paper; we give
the required adaptation here. Let (.) be an optimal state feedback control. Let (.)
be a measurable /i3-valued function of x, which will be defined further below. We
adjust the terminology to conform with that in [8] when possible. For a state feedback
control v(.), define (c(.) was defined in Theorem 10.4)

(10.16) ,-,(x) [-(x) (x)] + "()K()[() ()].

This is the same as the eu’v(x) in [8, (6.3)] with u .
In [12, Thm. 6.1] it is shown that there exists a Borel (.) such that the condition

that en,V(x) <_ 0 for almost all x for each admissible state feedback v(.) is both
necessary and sufficient for (.) to be optimal for the system (10.2) and cost (10.3) in
the class of state feedback controls. The proofs in [8] are for the unreflected diffusion.
But, as noted earlier, the development in that paper also holds for the approximating
models (10.2). The proof of the cited theorem can be adapted to show that (.)
is optimal with respect to all admissible controls, and now we outline the required
alterations. Henceforth (.) will denote the cited function. The reader who is willing
to accept that the infima of the costs over feedback and general admissible controls
are equal can skip the next theorem.

THEOREM 10.6. (k0) is the infimurn of (ko, J, xo) either over all admissible
controls or over all state feedback controls, for each initial condition X(O) xo.

Proof. Only an outline of the adaptation of the proofs in [12] will be given. Let
J(.) be admissible with X(0) x0, and let tn -- oc be a sequence of real numbers
such that t,(ko, J, xo) --* (ko, J, xo). Let (.) be optimal for (10.2),(10.3) in the
class of state feedback controls. Then, as noted above the theorem, e’(x) <_ 0 for
almost all x for each admissible state feedback v(.).

Define the "centered" cost rate

() () (0, ).

Following a procedure very close to that which led to the fourth equation from the
bottom of [12, p. 343] (where our 5u is their ), for admissible J(-) we have

(10.17) n-+lim -nl Ej/0
t"

{5(X(s)) + (X(s))K(X(s))[(X(s)) J(s)] } ds O.

Analogous to the definition of 5(x), define the "centered" cost rate

5J(s),-- E(1 Ji(s))kl(Xi(s)) ")’(]0, J, xo)
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and note that EJ fn 5j (s)ds/tn --, 0 by the centering of 5g (.) and the definitions of
(k0, J, xo) and tn. Then by (10.17), we can write

(10.18)

nlim t-l Ej --]i
t’

{5(X(8) 5j(8, -- )(X(8))t((X(8))[(X(8)) J(s)]} ds 0].

There is a measurable function w(.) mapping [0, )3 [0, c) into [0, 1] a such that
with probability one for each s not in a set of measure zero,

w(Z(s), s) Eg[g(s)[X(s)].

For almost all s, w(.(s) is defined for almost all x, since X(s) has a positive density
with respect to Lebesgue measure. Fix the values on the exceptional set so that it is
defined for all x for almost all s.

Using the definition of eu’V(x) for each s and with v(.) w(.,s), (10.18) can be
written as

lim
1 Ej fo

t

--. t-- [eU’V(s)(X(s)) 7(k0,) +7(ko, J, xo)]ds O.

By the optimality of (.) in the class of feedback controls and the above part of the
proof, for almost all s en’W(S)(x) <_ 0 for almost all x. Thus ee’w()(X(s)) <_ 0 w.p.1
for almost all s. Hence the last displayed equation yields

")/(ko,) <_ 7(ko, g, xo),

which proves that (.) is optimal with respect to M1 admissible controls.
The convergence of the costs. We are finally prepared to prove (9.6). The

system (10.2) will provide an upper bound to the cost (x). First, we need to introduce
a "lower bounding" system. This will be of the form (10.2) but with (effectively)
slightly larger state space. Let 5/# > 5ko, let 5 denote the vector with components
and define the "5-perturbed" form of (10.2) for state feedback u(.)"

(10.19) dX bdt+-dt-#Xdt+dY+dW+k(X)dt-K(X)u(X)dt, .X(t) >_

Let /(ko,5, u) denote the cost (10.3) for this system. We note the fact that the
ergodic cost under state feedback controls does not depend on the initial condition.
Set (k0, 5) inf-(k0, 5, u), where the inf is over all state feedback controls. By
Theorem 10.6, the inf is the same over admissible controls.

THEOREM 10.7. Let sUPNEIXN(O)I 2 < oc. Then 6/(x) does not depend on x and
(writing /(x) )

(10.20) (x) --. ,
as N- oc, T- c.

Proof. First, we get a "lower boundary" system. Let .u denote the expectation
operator for functionals of the stationary process (10.2), under state feedback control
u(.). We have

(10.21) (ko,5) <_ <_ (ko) + E()Yi(1),
where (k0, .) is the optimal control for cost 7(k0, u) and system (10.2). The right
side of (10.21) should be clear. To see the left-hand side, proceed as follows: First,
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define the system (10.2) on the spacial set [-/#, c) instead of on [0, cx); i.e., the
reflection is at -/#. Let Ao -5/# replace Ao. Write the resulting system as

dr( bdt + dW + d #f(dt + kl (f( + 5/#)dt
-kl((i+l)

__
5/#)(+)dt k (j(+2) + 5/#)(+2)dt"

Recall that 5/# > 50. Then clearly the inf of the cost (ko, 5, u) for the new system is no
greater than . (Loosely speaking, this is true since trunk of the new system "rejects
and requests rerouting" at rate k (x + 5/#); i.e., it "rejects and requests rerouting"
only when the state value is negative, and the reflection term is not counted in the
cost.) Now change variables x + 5/# to get (10.19) and the cost /(ko, 5, u).

It is also true that

(10.22)  (ko, 5)  (ko) 0

as 5 --, 0, uniformly in k0. In fact, the difference is bounded above by 35. (A remark
on the network analog of this appears after the proof.) To see this bound, add a
nondecreasing control function H(.) satisfying H(t) <_ 5t, H(O) 0 to (10.2), and
use the same cost (k0, J, x). The best that we can do with the additional control is
to reduce the minimum ergodic cost by 35.

Now that we have a bounding system (10.2), we can proceed to get a "nice"
e-optimal control for this system. Let > 0, and let k0 and 5ko satisfy the re-
quirements of Theorem 10.5. By Theorem 10.5, we can choose k0 large enough such
that EUy(1) _< for all u(.). Suppose that I(k0, 5)- (k0)l _< , and let ue(.)

2 3(u (.), ue (.), ue(.)) be a state feedback Lipschitz continuous e-optimal for cost (k0, u).
Such a control exists by Theorem 10.4 together with the fact (Theorem 10.6) that
(k0) is the infimum over both all admissible controls and the state feedback controls.

Now we adapt ue(.) to the physical network by "randomizing" as done in Theorem
8.3. Recall that we supposed that only one arrival/departure event can occur in
the network at a time (w.p.1). Define dataN(t) {AN (s), DN (s), s <_ t, rerouting
decisions for s < t.} Then adapt u(.) as follows. Let N be large enough so that
k0 < v/-. Suppose that there is an external arrival to trunk at time t. If the trunk
is full, reject it with no request for rerouting. Otherwise, reject from and request
rerouting with the conditional probability

P{reject from and request reroutingldataN (t)} kl (X’N(t-))/x/.

The request is accepted on the alternative route with conditional probability

P{request from accepted on alternate routeldata
g (t)} ue

Since the events are separated in time, the conditional probability is well defined.
The rest of the details are similar to those in Theorems 8.3 and 9.1, and only a

few comments will be made. Analogous to the case at the end of the proof of Theorem
8.3 where the rerouting policy was also randomized, we can write (1/V)x (number
of rerouting requests made by trunk by time t) as the sum of the compensator or
conditional mean value, which is (mod O(1/x/))

Xi’N]gl (s))ds,
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and a martingale ("noise") term. Similarly, 1/Vx(number of rerouting requests
made by trunk by t that are accepted by the alternative path) can be written as

io
(X(s))ds,

plus a "noise" term. As in Theorein 8.3, the variances of these "noise" terms go to
zero as N -- 0.

Let xN(o) x, and define
(10.23)

](xN (8)))]gl (Xi’N (s))ds + E yi,N (T)

Then, obviously,

(10.24) yN (k0, u x) > #(x)

By an occupation measure argument of the type required for Theorem 5.1, we get
that

(10.25)

as N , T --, x. Now (10.21), (10.24), (10.25), and the fact that the right-hand
sum in (10.21) and the difference in (10.22) are both less than give

lim supTN (x) _< + 3.
N,T

This together with (9.4) yields the theorem, since is arbitrary.
Note. It is worth adding a comment on the analog of (10.19), (10.22) for the

network. Adding 5 to b is equivalent to cutting out external inputs to each trunk
randomly so that the effective (external) arrival rate to each is reduced by 6v/. This
reduces the cost due to subsequent losses to the three-trunk network by at most 36. An
alternative interpretation is provided by simply increasing the number of lines in each
trunk by 5r/’y and using the definition Xi’N (t) [fliN +Sv/-/#-number occupied
]/v/. Then the mean total loss is also reduced by at most 35. If /# > 50, then the
rejections/requests for rerouting from trunk can occur only when the original iN
lines are fully occupied. This implies that (k0, 5) <_ #.
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Abstract. It is proven that, if, for any positive time T, there exists an open-loop control u(a, t)
depending continuously on the initial data a, vanishing for a 0, and steering a small neighborhood
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continuous time-varying feedback law, provided that the dimension of the state space is at least 4
and the strong accessibility rank condition holds.
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1. Introduction and statements of the main results. Let E be the control
system

(1.1) & f(x, u),

where x E ]1n is the state, u E ]1m is the control, and f :It(n ]I In satisfies

(1.2) f(0, 0) 0.

Using small controls we want to steer to 0 states close to 0 and always stay close
to 0. This is clearly possible by means of open-loop controls if 0 is locally reachable
in small time and with small control, i.e., for any point a in a small neighborhood of
0 in n there exists a small open-loop control ua(.) that steers this point a to 0 in
small time. Unfortunately, for "real" systems it is well known that, for example, due
to random perturbations, open-loop controls can lead to very bad practical results;
see, e.g., [So2, Chap. 1, 4]. To take care of this problem one usually tries to find a

closed-loop control or feedback law that asymptotically stabilizes the system; indeed,
compared to open-loop control, such a feedback law has the advantage of compensating
automatically for these perturbations--at least if they are small. A classical result is
that for a linear system this local reachability implies that E can be asymptotically
stabilized by means of stationary feedback law; see, e.g., [So2; TAm. 7, p. 134]. Let us
recall that M. Sawski has proved in [Sawl] (see also [DMK]) that this result still holds
if f is nonlinear provided that f is analytic, n 2, rn 1, and f(x, u) fo(x)+ufl (x).
Unfortunately, it has been shown by R. erockett in [Br] (see also [Sul, Appendix])
that this is no longer true in the general case, even if f is analytic. The goal of this
paper is to show that the situation is much better if, following E. Sontag and H.
Sussmann [SS] (see also [Sa] and [Col]), one allows the feedback law to depend on
time. Indeed, we will see that "many" sufficient conditions for this local reachability
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(including, e.g., the Hermes condition [He2] or [Su3]) imply that, if the dimension of
the state space is at least 4, then E can be locally asymptotically--and even in finite
time--stabilized by means of a continuous periodic time-varying feedback law.

In order to state precisely our main results let us first introduce three definitions.
DEFINITION 1.1. The origin (of ]Rn) is locally reachable (for E) in small time

and with small control if, for any positive real number T, there exist u n
LI((O,T);Nm) and a positive real number such that

(1.3) Ilu(a)ll := ass. sup{lu(a)(t)l;t e (0, T)} 0 as a -- O,

(1.4) ( f(x,u(x(O))(t)) and Ix(O)l < ) x(T) O.

If, moreover, u can be chosen in C(]n; LI((O,T);IRm)), we say that 0 is locally con-
tinuously reachable in small time and with small control.

Of course, in (1.4) x is any maximal solution, and by x(T) 0 we mean that
x(T) exists and is equal to zero. We use these standard conventions throughout this
paper (even for vector fields that are only continuous with respect to x). Let us note
that, following a method of M. Kawski [Kaw2] (see also [Hell), we have proved in
[Co2, Lem. 3.1 and 5] that "many" sufficient conditions for locally reachability of
0 in small time and with small control imply that 0 is locally continuously reachable
in small time and with small control. In particular, this is the case for the Hermes
condition [He2] or [Su3] and its generalization due to H. J. Sussmann [Su4, Tam. 7.3];
this is, in fact, also the case for the Bianchini and Stefani condition [BS, Cor., p.
970] which extends [Su4, Thm. 7.3]. We conjecture that, if f is analytic, 0 is locally
continuously reachable in small time and with small control if 0 is locally reachable in
small time and with small control.

DEFINITION 1.2. System E is locally smoothly stabilizable in small time by means

of periodic time-varying feedback law if, for any positive real number T, there exists u
in C (]n I; m) of class C on (In\{O}) , vanishing on {0} I, T-periodic
in time, and such that, for some positive real number ,

((ic=f(x,u(x,t)) and x(s)=O)(X(T)=O VT>_s)) Vse,

(2 f(x,u(x,t)) and Ix(T)I < ) (X(T + T) O) VT e IR.

In particular (see Lemma 2.15) 0 is a uniformly locally asymptotically stable point for
5c f (x, u(x, t)).

Let us recall that 0 is a uniformly locally asymptotically stable point for
X(x, t) with X in C(In IR; In) if it is a uniformly locally stable point (i.e., V e >
0,5 > 0 s.t., ’s e , X(x,t) and Ix(s)l < 5 imply IX(T)I < VT > S) and
a uniformly locally attractive point with respect to time and state (i.e., 5 > 0 s.t.,
V>0M>0s.t.,Vse,2=X(x,t) andlx(s)l<bimplylx(T)l <VT>s+M).
Note that "uniformly locally attractive" follows directly from (1.5) and (1.6); for
"uniformly locally stable," see Lemma 2.15. Our last definition is as follows.

DEFINITION 1.3 [Co3]. System E satisfies the strong jet accessibility rank condi-
tion at (2, t) if

(1.7) a(2,5):= Span {Ollf Nm, } Br( )}h(2); h E
Ou. (., t), a lal >_ 1 U f, Rn,
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where Br(f, ) is the set of iterated Lie brackets of vector fields in {(Oll f/Ou) (., ); a E
.}.

Let us point out that, in general, f(2, ) does not belong to a(2, ): we do not
consider Ollf/Ou as an iterated Lie bracket. Let us also note that the sufficient
conditions for local reachability of 0 in small time and with small control mentioned
above imply that the strong jet accessibility rank condition at (0, 0) holds. Finally,
note that, if E is locally smoothly stabilizable in small time by means of periodic
time-varying feedback law, then 0 E ln is locally continuously reachable in small time
and with small control. Our main result is that the converse holds if n > 4 and if E
satisfies the strong jet accessibility rank condition at (0, 0), i.e., we have the following
theorem.

THEOREM 1.4. Assume n > 4 and

(.s) 0 is locally continuously reachable in small time and with small control,

(1.9) E satisfies the strong jet accessibility rank condition at (0, 0).

Then E is locally smoothly stabilizable in small time by means of periodic time-varying

feedback law.
This theorem is proved in 2. We do not know if the assumption n >_ 4 can be

removed. It is proved in [Co4] that this is the case if n 1 and f is analytic--in this
case the stabilizing feedback law can be chosen independent of time. In 3 we give
other cases where the assumption n _> 4 can be removed; in particular, we prove the
following propositions.

PROPOSITION 1.5. If f(x, U) -.im=l uifi(x) for some functions fi in C(Nn; Nn)
with [1, m], and if (1.9) holds, then E is locally smoothly stabilizable in small time
by means of periodic time-varying feedback law.

PROPOSITION 1.6. Assume that (1.8) and (1.9) hold. Assume that, with x-
(xl,x2) e Nn- and u (ul,u2) e ]m-1 ], f(x,u) (fl(Xl,Ul),t2)
Nn- X for some function fl in C (In- x Nm- Nn-- 1). Then E is locally smoothly
stabilizable in small time by means of periodic time-varying feedback law.

Remark 1.7. (a) Theorem 1.4 is related to the previous result [Sul] by Sussmann,
where, roughly speaking, it is proved that controllability implies that the system can
be steered to the origin by means of discontinuous--stationary--feedback law. Note
that [Sul] has the advantage of leading to a global result, which is not the case with
our theorem; on the other hand, our feedback law is continuous and 0 is uniformly
locally asymptotically stable for the closed-loop system, which gives some kind of
robustness, since, by a theorem of J. Kurzweil [Ku], it implies the existence of a

Lyapunov function. (b) One easily checks that the usual strong accessibility subspace
of E at (see, e.g., [SJ, p. 101] or [Sol, p. 549]) contains a(, ) for all in Im
and that, if f is a polynomial with respect to u or if f is analytic with respect to x
and u, these inclusions are all equalities; hence, by a theorem of H. Sussmann and
V. Jurdjevic ISJ], (1.8) implies (1.9) if f is analytic. (c) For f as in Proposition 1.6,
(1.9) implies (1.8) (see [Co2]), and it has already been proved in [Co3] that for such
an f, (1.9) implies that E is uniformly locally asymptotically stabilizable by means
of periodic time-varying feedback law of class C. (d) This paper is a detailed and
improved version of [Co2], where a weaker but related result [Co2, Thm. 1.8] has been
stated with a sketch of proof. (e) The stabilization problem is a field of research that
expands very quickly; for a survey on this subject see [Ba].
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2. Proof of Theorem 1.4. Let I be an interval of N. By a trajectory of the
control system E on I we mean (7, u) E C(I; ]n Rm) satisfying (t) f(7(t), u(t))
for all t in I. The linearized control system around (7, u) is A(t) + B(t)w, where
the state is E n, the control is w ITM, and A(t) Of/Ox(7(t), u(t))
B(t) Of/Ou(7(t), u(t)) (R’;In) for all t in I. We first introduce the following
definition.

DEFINITION 2.1. The trajectory (7, u) is supple on S c I if, for all s in S,

(2.1) Span{((d/dt) A(t))iB(t)]t=sw; w e R", >_ 0} Rn.

In (2.1) we use the classical convention (d/dt A(t)) B(t) B(t). Let us recall
that L. Silverman and H. Meadows have shown in [SM] that (2.1) implies that the
linearized control system around (7, u) is controllable with impulsive controls at time
s (in the sense of [Kai, p. 614]). Let T be a positive real number. For u in C(
[0, T]; RTM) and a in In, let x(a, .; u) be the maximal solution of Ox/Ot f(x, u(a, t)),
x(a,O;u) a. Also, let C* be the set of u E C( [0, T];Im) of class C on

(\{0}) [0, T] and vanishing on {0} [0, T]. Unless otherwise specified we assume

(1.8) and (1.9). To try to make the arguments clearer we first sketch the four steps
of the proof. For simplicity, in this sketch of proof we omit some details that are
important for taking care of the uniqueness property (1.5) (note that without (1.5)
one does not have stability).
Step 1. Using (1.8), (1.9), and [Co2] or [Co3], one proves that there exist
and Ul in C*, vanishing on n {T}, such that

(2.2) [a[

_
= x(a, T; Ul) O,

(2.3) 0 < lal < 1 (x(a, .; tl), tl (a, .)) is supple on [0, T].

Step 2. Let F be a closed submanifold of R\{0} of dimension 1 such that F C {x
]Rn;0 < Ix] < el} Perturbing Ul in a suitable way, one obtains a map u2 in C*,
vanishing on IRn x {T}, such that

(2.4) la[ <_ E1 == x(a, T; u2) 0,

0 < lal < (x(a, .; u2), u2(a, .))is supple on [0, T),

(2.6) a F x(t, a; u2) N is an embedding of F into N\{0} Vt [0, T].

Here one uses the assumption n >_ 4 and proceeds as in the classical proof of the
Whitney embedding theorem (see, e.g., [GG, Chap. II, 5]). Let us emphasize that
we use this assumption only in this step.
Step 3. From Step 2 one deduces the existence of u in C*, vanishing on Rn x {T},
and an open neighborhood Af* of F in Nn\{0} such that

(e.7) a E 3/* = x (a, T; u) 0,

(2.s) a e Af* - x(a, t; u) is an embedding of Af* into ]R\{0} Vt e [0, T).
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This embedding property allows one to transform, on {(x(a, t; ua), t); a EAf, t E
[0, T)}, the open-loop control u into a feedback law u3. So (see, in particular, (2.7)
and note that u vanishes on Nn x {T}) there exist u3 in C* and an open neighborhood
Af of F in n\{0} such that

(2.9) (x(0) Af and 5 f(x, u3(x, t)))= (x(T)= 0).

One can also impose, for all - in [0, T],

(5 f(x, u3(x, t)) and x(T) O) (x(t) 0 Vt e IT, T]).

Step 4. In this last step one shows the existence of a closed submanifold of "\{0} of
dimension 1 included in {x Rn; 0 < Ixl < el} such that, for any neighborhood Af of
F in Rn\{0}, there exists t4 in C* such that, for some G4 in (0,--(:x:)),

(2.11) (5 f(x, u4(x,t)) and Ix(0)l < G4)== (x(T) e Jf [-J {0}),

(2.12) ((5 f(x, lt4(X, t)) and X(T) O) =V (x(t)= O) Vt e [7, T]))YT e [0, T].

Finally, let u ]tn x ] ]m be equal to u4 on ]n X [0, T], 2T-periodic with respect to
time, and such that u(x,t) u3(x,t-T) for all (x,t) in n (T, 2T). Then u vanishes
on {0} I, is continuous on ]ln (]I\T), is of class C on (n\{0}) (\ZT), and
satisfies

(2.13) (5- f(x, u(x, t)) and ]x(0)l < G4) == (x(2T)= 0),

(2.14) (5-- f(x,u(x,t)) andx(T)--0)=V(x(t)--0, Vt>_T) W-e,

which implies, as we will see, that (1.6) holds, with 4T instead of T and G > 0 small
enough, and that 0 is uniformly locally asymptotically stable for 5 f(x, u(x, t)).
Since T is arbitrary, Theorem 1.4 is proved (modulo a problem of regularity of u at
(x, t) in n ZT that we will fix).

We now give the proofs of Steps 1 to 4.

Proof of Step 1. We prove the existence of ul. For a positive real number G, let

B {x e ; Ixl < G} and B B\{0}. Let T be a positive real number. The goal
of this step is to prove the following proposition.

PROPOSITION 2.2. There exist ul in C*, vanishing on In {T}, and G in

(0, +oc) such that (2.2) and (2.3) hold, and

(2.15) Ul/la[ 2 e L(BI [0,-]) VT e [0, T).

By (2.15) we mean that, for all T in [0, T), there exists M in [0, +oc) such that

lu (a, t)l < Mlal 2 for all (a, t) in B [0, T]. To prove Proposition 2.2 one first proves
the following lemma.

LEMMA 2.3. There exists uo in C(n [0, T);]TM N C(n [O,T];m), van-

ishing on In {T} and on a neighborhood of {0} [0, T) in .n [0, T), such that,

for some Go in (0, +oc), x(a, T; to) 0 for all a in In with lal < Go.

Proof. Without loss of generality we may assume that T 1. Let be a positive
integer. Since 0 n iS locally continuously reachable in small time and with small
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control, there exist vi .in C(Rn; L1((1-21-i, 1-2-); m)) and a positive real number
5 in (0, l/i) such that

(2.16) Ilvi(a)llo < 1/i Va e In,

(2.17) [Iv (a)Iloo --* o a --, 0,

(2.18) (5c f(x, vi(x(1 21-i))(t)) and Ix(1 21-i)l _< 5i) (x(1 2-i) 0).

Let K be the set of u in ’ of norm less than or equal to 2, and let, for a in ]n and
v in LI((1 21-i, 1 2-i); K), P(a, v) y(a, 1 2-i; v) e n, where y is defined by
Oy/Ot f(y, v(t)), y(a, 1 2-i) a. Since g is compact, the map P is defined on
an open subset of In L((1 2-i, 1 2-i); K) LI((1 21-i, 1 2-i); K) being
equipped with the L norm--and is continuous on this subset; so, by the continuity of
v, (2.16), (2.17), and (2.18), there exists wi in C (I" [1 2-i, 1 2-i]; ITM) such
that wi vanishes on a neighborhood of {0} [1- 2-, 1- 2-i] in I" [1- 2-i, 1- 2-i]
and

Oawi 0 on n x {1 21-i, 1 2-i} a Nrt+l,

(c f(x, w(x(1 2-), t)), Ix(1 2-) _< &) (Ix(1 2-)] < (iA-1).

We now define w on Be, [0, 1- 2-i] by induction on i >_ 2 by requiring w Wl on

Be, [0, 1/2] and w(a, t) w(x(a, 1 21-; t0), t) if t is in [1 21-, 1 2-]. One
easily checks that w is well defined on Be, [0, 1) and is of class C on this set. Using
(2.19) one deduces that there exists u0 in 6( [0, 1);m) 9 C(R [0, 1]; ’)
vanishing on R {T} and equal to w on Be, [0, 1). Then u0 satisfies all the
properties mentioned in Lemma 2.3--with 0 51/2. [3

Our next lemma is as follows.
LEMMA 2.4. There exists to in C(]n [0, T];RTM) and’go in (0, +(x) such that

(2.22) I o(a, t)l _< lal e V(a, t) e ]1n X [0, T],

(2.23) (x(a, .; t0), t0(a, .)) is supple on [0, T) Va e Bo,

(2.24) Oato 0 on ]1n X {T} VO Nn+lo

Proof. Let us first recall the definition of saturation introduced in [Co3, Def. 1.2].
Let p be a positive integer, let X be in C(]p I’; Ip), let N be an open subset of
Ip, and let u be in C(N;]m). We say that u saturates X on N if

(2.25) aX(l,u()) Span adx-u(.,u(.)) ();i e [1,m],k > 0 V e N
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with X(y) X(y, u(y)), and where az is defined by replacing f by X in the definition
of a given in (1.7). Note that the right-hand side of (2.25) is the strong accessibility
algebra evaluated at time 0 of the linearized control system around the trajectory
(’y, u(’y)) of X where -), is defined by -) X(-y, u(-y)), "y(0) . The right-hand side of
(2.25) is always included in the left-hand side of (2.25).

We take p 2n + 1 and, for all (x, a, s, u) E IR x ]R x I x IR
_

IR2n+1 x ]Rm,
let Zo(x,a,s, u) (f(x, u), 0, 1) E 1n x In x IR

_
112n+1. For the control system

) Xo(y, u), the state is y (x, a, s) in ]Rn x Nn x ]R
_

]R2n+1 and the control is u in
Im, We take N n x (n\{0}) x (-cx, T). Let h in Cc(In x In x I; ]I x I) be
defined by h(x, a, s)= (a, s) for all (x, a, s) in In . Note that

(2.26) h’(x, a, s)Xo(x, a, s, u) 7 0 V(x, a, s, u) E n x ]tn X ]1 X ]m.

Let Y (JRn\{0}) x (-oo, T) and let ft be the set of u in C (Y; IRTM) such that

(2.27) IOu(a,s)[ < lal(T-s)/T V(a, s, a) Y x 11+1 with Illal(T- s) <_ 1.

We equip C(Y; Im) with the C-topology defined in [Co3, 1]. For convenience let
us recall the definition of this topology. Let (9 be an open subset of ]tp and V be in
C(O;IRq); V is a neighborhood of if there exist two maps, A in C(O; (0, +oc))
and e in C(O; (0, +cx)), such that all v in C(O; Iq), satisfying IO(v-)(x)l <_ (x)
for all (x, c) in O Np such that ]c] _< A(x), are in V. Let us remark that gt is an

open neighborhood of 0 in C(Y; Im). Applying [Co3, Thm. 1.3J--note in particular
(2.26)--we get the existence of G in t such that

(2.28) saturates X0 on N.

Let G0: ]R x [0, T] - Nm be defined by G0 G on Y and G0 0 on ({0} x [0, T])U
(I x {T}). By (2.27) G0 is of class C on ]ln X [0, T] and satisfies (2.22) and (2.24).
The existence of g0 in (0, +o) such that (2.23) holds follows from (1.2), (1.9), (2.22),
and (2.28).

From Lemmas 2.3 and 2.4 we will deduce the following lemma.
LEMMA 2.5. There exists G1 in C*, vanishing on In x {T}, and

such that (2.2) and (2.15) hold with G1 and 1 instead of u and 1 and such that

(2.29) (x(a,.;G),Gl(a,.)) is supple on {0, T} Va e B-,.

Before proving Lemma 2.5 let us first explain how to get Proposition 2.2 from
Lemma 2.5. Again we apply [Co3, Thm. 1.3] to (2,/,) Xo(x, a, s, u) with X0
still defined as above; h is also unchanged but we define N, Y, and Ft in the following
ways: N is now R (n {0}) (0, T), Y ( {0}) (0, T), and is an open
neighborhood of G--restricted to Y--in C(Y;R’). We will say that a property
P holds if is small enough, if there exists an open neighborhood 1 of G (for the
C-topology) such that P holds if C gt. For example, if is small enough, any u
in t extended by G1 on ({0} [0, T])U (]1n {0, T}) is in C*. Indeed, in this case it
suffices for us to choose to be the set of u in C (Y; R’) such that

(2.30) IO(u-e)(a,s)l < lals(T-s) V(a,s,a) e YxNn+l with lallals(T-s) <_ 1.

Hence, if ft is small enough, we have, with a slight abuse of notation, f C C*.
We now assume that f C C*. For u in ft let y IRn x [0, T] --, IR be defined by
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Oy/Ot y(y, u(a,t)), y(a, T) 0. The domain of definition of y is an open subset
of It(n [0, T] containing ({0} [0, T]) U (1n {T}). One easily checks that, if Ft is
small enough, for any u in f/there exists an open neighborhood w of 0 in l" such
that, with defined by (a) y(a, 0), is an homeomorphism from w onto B1/2
and is a diffeomorphism of class C from w\{0} onto B C*,1/2" Let Ul E vanishing
on In {T}, be such that ul(a, t) u(-l(a),t) for all (a,t) in B (0, T) with
gl gl/4. Then we have (2.2) and, since satisfies (2.15), u also satisfies (2.15) if
gt is small enough. Moreover, by (2.29), if is small enough, we have

(x(a,-; ltl)); ltl(a, .)) is supple on {0 T} ’a . B(
El"

Finally, applying [Co3, Thm. 1.3], we get the existence of u in t such that u o h
saturates X0 on N, which, with (1.2), (1.9), and the fact that u vanishes on {0} [0, T],
implies that, for la small enough but not zero, (y(a, .), u(a, .)) is supple on (0, T) and,
therefore, if ]a] is small enough but not zero,

(2.32) (x(a,.;ul),ul(a,.)) is supple on (0, T).

Finally, (2.32) and (2.31) imply (2.3) if 1 is small enough. This ends the proof of
Proposition 2.2 if Lemma 2.5 is proved.

Let us prove Lemma 2.5. We now take N n (n\{0}) and consider
the system (,&,) Xl (x, a, s, u) := (f(x, (s 2T)u), 0,1) E n n I. We
take Y (In\{0}) , h(x,a,s) (a,s). By [Co3, Thm. 1.3] there exists v in
C((In\{0}) 1t;1TM) such that

(2.33) v o h saturates X1 on N.

Let 5 e Ccxa((In\{0}) ]t{;I[m) be defined by (a,s) (s- 2T)v(a,s), then (2.33)
gives

(2.34) saturates X0 on N.

Note that

(2.35) 5(a, 2T)=0.

From (1.9), (2.34), and (2.35) we get that

(2.36) (z(a, .), (a, .)) is supple on {2T} Va e I\{0},

where z is defined by Oz/Ot f(z,t(a,.)), z(a, 2T) 0. Let 5 be in C(]ln\{0};
(0, +oc)). Using Lemma 2.3 with [T, 2T] instead of [0, T] and modifying u0 in a small
neighborhood of (\{0}) x {T, 2T} in (Nn\{0}) IT, 2T], we get the existence of g0
in C(]1,n x [T, 2T];]I,m) of class C on (Rn x IT, 2T])\{(0,2T)} such that for some
positive real number go,

(2.37) 0"(50 5) 0 on (]n\{0}) X {2T} Vo e 1n+l,

(2.38)
fi0 vanishes on a neighborhood of({O} IT, 2T)) U 0Itn {T}) in It(n IT, 2T),
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(2.39) 0 < lal <_ o I(a,T)- a < (a),

where is defined by Oc/Ot f(hc,(to(a,t)) and (a, 2T) 0. Now let to and o
be as in Lemma 2.4. Using (2.22), (2.23), and Lemma A.1 in Appendix A (with
T1 O, T2 T/3, T3 2T/3 T4 T, A B- we get the following lemma.

LEMMA 2.6. There exist in C(In\{0}; (0, +cx3)) and e C(& x [0, T];m),
with & {(a, b) e In x Ha; 0 < lal < o/2, Ibl < (a)} LJ {(0, 0)}, such that

H e C((&\{0, 0}) x [0, T];Im),

H(a, b, t) to(a, t) V(a, b) e & kit e [0, T/3] tJ [2T/3, T],

(2.42) H(a, O, t) to(a, t) kia e Bo/2 Vt 6 [0, T],

(2.43) lEt(a, b, t)l < 21al 2 ki(a, b, t) e & [0, T],

(2.44) z(a, b, T) x(a, T; to) + b V(a, b) ,
where z is defined by Oz/Ot f(z,[-I(a,b,t)) and z(a,b,O) a.

Let O(a) x(a,T;to) and let e C(n\{0}; (0,+oc)) be such that (O(a)) <
5(a) if lal is small enough but positive. Using (2.24), (2.35), (2.37), (2.38), (2.39),
and Lemma 2.6 we get that there exists 1 in C((n\{0}) [0; 2T]; Im) 3 C(I
[0, 2T]; ’), which vanishes on ]1n {2T) and satifies, if ]a is small enough,

(2.45) tl (a, t) [-I(a, 5c(O(a), T) O(a), t) Vte [0, T],

(2.46) tl (a, t) to(c(O(a), T), t) kit e (T, 2T).

Using (2.44), (2.45), and (2.46) we get that, if lal is small enough, x(a, 2T; tl) O.
Using (2.23), (2.36), (2.37), (2.45), and (2.46) we get that, if ]al is small enough but
positive, x(a, .; 1) is supple on {0, 2T}. Finally, using (2.38), (2.43), (2.45), and (2.46),
we get that t/lal2 is in L(B x [0, T]) for all T in [0, 2T). So 1 has the properties
required in Lemma 2.5 provided that 1 is small enough and that one replaces 2T
with T. Since T is arbitrary in (0, +cx), Lemma 2.5 is proved. This ends the proof of
Proposition 2.2.

Let us end this step with some comments. It follows from our proof of Proposition
2.2 that one can use the weaker result [Co2, Thm. 2.1] instead of [Co3, Thm. 1.3]. Let
us recall that this result is related to prior works by M. Gromov [G, Chap. 2, 3.8(E)]
and E. Sontag [Sol]; moreover, it follows from a recent work [So3] of E. Sontag that
this result can be deduced from a theorem on observability of H. Sussmann [Su2] when
f is analytic

Proof of Step 2. Let u and 1 be as in Proposition 2.2. Let F be a C-closed
submanifold of n\{0} of dimension 1 such that F C B. The goal of this step it to
prove the following proposition.

PROPOSITION 2.7. Assume n > 4. Then there exists u2 in C*, vanishing on

n x {T}, satisfying (2.4), (2.5), (2.6), and, with u2 instead oft1, (2.15).
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In this proposition, as well as in the remaining part of this paper, when we refer to
embedding we mean embedding of class Ca. Our proof of Proposition 2.7 is inspired
from the classical proof of the Whitney embedding theorem (see, e.g., [GG, Chap.
II, 5]). Let ft be an open neighborhood of UllB,l x(0,T) in C(B$I (0, T);N’).
For v in ft let v Bx --’ Nn be defined by v(a) y(0), where y is defined by

f(y, v(a, t)), y(T) 0. If ft is small enough,

(2.47) Ov is a diffeomorphism from B’: onto B’: Vv E ft.

Let us recall that this means the existence of a neighborhood fl of UllB: x(0,T) in

C(Bel x (0, T); ]RTM) such that (2.47) holds if ft c fl. From now on we assume that
(2.47) holds. Let uv Nn x [0, T] - NTM be defined by u(a,t) v(j(a), t) if (a, t)
is in B$I x (0, T), uv(a, t) ul(a, t) if (a, t) is in BI x (0, T). Again, if gt is small
enough, u is in C*, vanishes on In x {T}, and satisfies

(2.48) (x(a, .; u), u(a, .)) is supple on [0, T] Va E Be:.
From now on we assume that all these properties hold. Let us recall that a residual
subset of f is the countable intersection of open dense subsets of ft. Moreover, since
ft is an open subset of the Bare space C(B’: x (0, T);Rm), it is a Baire space;
therefore, any residual subset of ft is dense in ft. So Proposition 2.7 is a consequence
of the following lemma, the proof of which is given in Appendix B.

LEMMA 2.8. If n > 3, fi {v f;a F --. x(a,t;uv) is an immersion
Vt e (0, T)} and fro {v e ft;x(a,t;Uv) 7 0 Va e F, Vt e (0, T)} are residual subsets

of a. If n _> 4, al := {V ft;a F --, x(a,t;u) is one-to-one Vt (0, T)} is a

residual subset of .
Remark 2.9. (a) Proposition 2.7 remains true if F is a closed submanifold of

R\{0} included in B’I of dimension d provided that n _> 2(d + 1). The proof is
similar (use also [GG, Chap. iI, Thm. 5.4]). (b) One can also prove Proposition 2.7
by using the method proposed by M. Gromov in [G, Chap. 2, 3.2 (E’)]; but note that
our proof does not use the Nash (Newton-Moser) process [G, Chap. 2, 3.2]. (c) Our
proof still works if one replaces [0, T] by [0, T) in (2.3).

Proof of Step 3. We assume that F is as in Step 2 and that the conclusion of
Proposition 2.7 holds (we do not assume n _> 4). The goal of this step is to prove the
following proposition.

PROPOSITION 2.10. There exist a time-varying feedback law u3 in C*(N x [0, T];
IR") and a neighborhood Af off in ]Rn\{0} such that (2.9) and (2.10) hold, and

(2.49) Ou3 0 on (]Rn\{0}) x {T} V e 1n+l.

Let us assume, for the moment, the following lemma.
LEMMA 2.11. There exist u in C((Rn\{0}) x [O,T];Rm)C(I x [0, T]; Nm)

and an open neighborhood N’* of F in In\{0} such that (2.7) and (2.8) hold and

u=O on ({0}x [0, TI) tA(IR x{T}),

u/lal2 e L(B x [0,-]) VT e [0, T).

Let us prove Proposition 2.10. From (1.2) and (2.51) we get the existence of 5 in

(0, oc) such that

(2.52) VTe[0, T) 3e>0suchthat Ix(a,t;u)l >_ 5lal Va e B Vt e [O,T]o
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Let Af c Af{ c Af* be two bounded open neighborhoods of r in I’\{0} such that,
in ,
(2.53) ; cZ:u{o}, c,V,u{o}.

For C {1, 2} let O {(x(a, t; u), t); a e Aft*, t [0, T)}. Note that by (2.8) and
(2.53) O1 and (.92 are open in I x [0, T], (.92 is included in (.91 U ({0} x [0, T]), and
(.91 is included in (.91 U ({0} [0, T]). Once more using (2.8) we see that there exists
a (unique) 3 in C((.91; n) such that

(2.54) 3(x(a, t; u), t) u(a, t) V(a, t) e A/’{ x [0, T).

From (2.7), (2.8), (2.50), and (2.53) one gets that

(e.ss) Sup{le(x, t)l; (x, t) O, Ixl _< } - 0 s 0.

Moreover, it follows from (2.52) that

(2.56) V- e [0, T) > 0 such that 13(x, t)l _< Ixl V(x, t) e o m (B x [0, ]).

Finally, using standard arguments relying on partitions of unity, we get the existence
of u3 in C*(]tn x [0, T]; Im) such that

u3 0 on a neighborhood of (I[.n\{0}) {T} in (n\{0}) [0, T],

(2.58) u3=3 on (92,

(2.59) VT [0, T) > 0 such that [(x, t)l _< Ixl V(x, t) B [0, ].

Then (2.57)implies (2.49); (2.58)implies (2.9)with Af Af2*; (1.2) and (2.59)imply
(2.10).

Now, only Lemma 2.11 needs to be proven. Note that in order to prove Theorem
2.7 only the case where F is diffeomorphic to ]R is useful (see Step 4). So, for simplicity,
we study only this case, but note that our proof can be easily adapted to treat the
general case. So there is a proper embedding -y:lR -, ]n\{0} such that (recall that P
is bounded) 7(]t() F and "y(s) 0 as s 0. Let 7r c Ca(]n [0, T);In) be such
that

(2.60) y ]n _. T’(y, t) is an embedding into n\{0} Vt e [0, T),

(2.61) Sup{lu((z,s),t)i;z ]n-l,t e [0, T)} 0 as I1 +,

(2.62) Sup{l(y, t)l; y e ]R} - 0 as t T,

(2.63) r((0, s), t) x(/(s), t; u2) V(s, t) e It( x [0, T),
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where u2 satisfies the properties required in Proposition 2.7. The existence of r can
be proved by slightly modifying the proof of the tubular neighborhood theorem given
in [GG, Chap. II, 7]. The control system f(x, u) gives, by pullback using r,
a time-varying control system on ]1{n $ /(y, t, u), where the state is y E n, the
control u E It{m, and/9 C (In X [0, T) x ]l{m, ]n). Let F: ]n X [0, T) x Im -- ]l{n be
defined by F(y, t, u) (y, t, u2(’(s), t)+ u) with y (z, s) e In-1 x 11{

_
It{n. Then

F e C(In [0, T) It{m; It{n) and, by (2.63), F((0, s), t, 0) 0 V(s, t) in 11{ [0, T). Let
d(s, t) OF/Oy((O, s), t, 0), B(s, t) OF/Ou((O, s), t, 0). Since u2 satisfies (2.3)--with
ul instead of u2--we have
(.4)

Span - t=

Then Lemma 2.11 follows from the following lemma, which is proved in Appendix C.
LEMMA 2.12. Let F in Cc(In [0, T) Im; Im), vanishing on ({0} I[{) x I

{0}, be such that (2.64) holds. Then, for any in C(I [0, T); (0, +c)) there exist
an open neighborhood Af of {0} ]1{ c I [{ -- n and u in C (]n [0, T);Im)
such that

In(z, s, t)l _< (s, t) V(z, s, t) e 1’- x I x [0, T),

(2.66) a Af -- y(a, t; u) is an embedding of Af into ]n Vt [0, T),

where y(a, t; u) is defined by Oy/Ot F(y, t, u(a, t)), y(a, 0; u) a.
Remark 2.13. (a) Proposition 2.10 again holds regardless of the dimension of F.

(b) It follows from its proof that Proposition 2.10 remains true if, instead of (2.5),
one assumes that, for a sequence (.ti; N) such that ti [0, T) Vi and t --+ T as- +oo, we have (x(a, .; u2), u.(a, .)) is supple on {t;i e N} for all a in F.

Proof of Step 4. In this step we end the proof of Theorem 1.4. Let us assume for
the moment that we have the following proposition, where (1.8), (1.9), and n > 4 are
not assumed to be true (but where (1.2) is still assumed to be true).

PROPOSITION 2.14. Assume

(2.67) such that
Ou (0, O) :/: O.

Let 1 be in (0, J-O0). Then there exists a proper embedding 7: In\{0} such
that F := -() is included in B’I, and for any uo in C*({n [0, T];I[{m) and any
neighborhood Af of F in In\{0} there exists u4 in C*(In [0, T];]I{m) and in

(0, +oo) such that (2.11) and (2.12) hold and

(2.68) 0a’tt4 0 0?% (]l{n\{0}) X {0} VO ]n+l,

(2.69) oqct4 0Cu0 0?% (In\{0}) X {T} Vc ln+l.

Now let us assume again that (1.8), (1.9), and n _> 4 hold. Let gl be as in
Proposition 2.2. Note that (1.9) implies (2.67), hence we may apply Proposition 2.14.
Let F ?(I) be as in this proposition. Then let u3 and Af be as in Proposition 2.10.
Let u0 in C* be such that

(e.70) O uo(x, T) O u (x, O) V(x, o) e (]n\{0}) x ln+l.
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Finally, let U4 and e4 be as in Proposition 2.14 and u" In ] --+ Im be 2T-periodic
with respect to time, equal to u4 on I x [0, T], and such that

(2.71) u(x, t) u3(x, t T) Y(x, t) E I (T, 2T).

Then (see, in particular, (2.49), (2.68), (2.69), (2.70), and (2.71)) u is continuous on
IRn IR, of class C on (]Rn\{0}) X I, and vanishes on {0} x 1t. Moreover, using
(2.9), (2.10), (2.11), and (2.71), we have (2.13). Finally, note that, by (2.10), (2.12),
and (2.71), we have (2.14). Since T is an arbitrary positive real number, Theorem 1.4
follows from the following lemma.

LEMMA 2.15. Let X in CO (In x ; ]Rn) vanishing on {0} x IR and T-periodic
in time, be such that, for some positive real number

((ic X(x, t) and x(T) O) (x(t) 0 Vt > T)) VT I,

(ic X(x, t) and Ix(O)l < o) = (x(T) 0).

Then 0 is a uniformly locally asymptotically stable point for 5c X(x, t) and, for
SO,he positive real number 1,

(2.74) (( X(x,t) and IX(T)l < al) ==> (x(T + 2T) 0)) VT e I.

Proof. One first notices that, for any positive real number e, there exists
in (0, min(e, e0)) such that for any 0 < s _< T < T and any maximal solution of
ic X(x, t), ]x(s)l < 5() implies that Ix(w)] < e. Indeed, if this is not the case, there
exist a positive real number e2, two sequences of real numbers (sn; n G N), (Tn; n N)
with 0 < s < w _< T, and a sequence (x; n G N) of solutions of 2 X(x, t) such
that Ix(s)l <_ l/n, Ix(t)l < e2 for all tin [Sn,Tn], and Ix(T)l e2. Letting n go
to oc we get, by the Ascoli theorem, the existence of two real numbers s and T with
0 _< s < T _< T, and a solution of ? X(x, t) such that x(s) 0 and tx(T)l- e2, which
contradicts (2.73). Then one easily sees that (2.74) holds with 1 ((0) and that,
for any positive real number e and any real number s, 2 X(x, t) and ]x(s)l < 5(5(e))
implies that IX(T)] < e) for all T > s.

We now prove Proposition 2.14. It follows from (2.67)that there exist c in
and an in N such that, with f(x, v) f(x, vc) for (x, v) E IR x ]R, Oif/Ovi(O, O) O.
Hence, replacing, if necessary, 2 f(x,u) by 2 f(x, v), we may assume without
loss of generality that rn 1. Let p be the integer defined by Oif/Oui(O,O) 0
for all in [0,p- 1], OPf/Oup(O, 0) # 0. Clearly, without loss of generality, we may
assume cpf/Oup(O, O) en. Let us define fl and f2 by f(x, u) (fl (x, u), f2(x,
,s-i n. Hence, by the Malgrange preparation theorem (see, e.g., [GG,

Chap. IV, 2]), there exist an open neighborhood V of (0,0) in I I, p maps
ao,al,... ,ap-1 in C(V;I), and a map 0 in C(V; I) such that

(2.75) f2(x, u) O(x, u) uP + E ai(x, u)u V(x, u) V,
i=0

(2.76) 0(0, 0) 1,
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(2.77) ai(0, u)=0 ViE[0,p-1] VuE with (0, u) eV.

Let u5 n
__

be defined by Ub(X) Then, from (2.75), (2.76), and
(2.77), we get the existence of e5 in (0, el/2) such that

(e.78) f2(x,u(x)) Ixlp/(p/)/2 Vx e B.

Let F B --, ]1n-1 be defined by F(x) f(x, u(x))/f2(x,u(x)) for all x in B’,
F(0) 0. Then F is continuous, and straightforward computations show that, for
some C5 > 0,

(2.79) I(y, z) F(y2, z)l C51y y21/Izlp/(p/)

for all (y, z) in n-
_
In and all (y2, z) in In-1 ] ]n, with (y, z)

and (y2, z) B. Note that

(2.80) dz/Izl/+ < +.

From (2.79) and (2.80)it follows (see, e.g., IF, Chap. 1, 1, Thms. 1 and 3]) that the
Cauchy problem dy/dz F(y, z), y(zo) y0, (y, z) in n-1 I

_
n, (y,z) e B,

has locally one and only one solution if (yo, zo) is in Be. Let 6 be a positive real
number such that dy/dz F(y, z), y(O) O, z e {-6, 6}, (y, z) e B has one and
only one solution. Let be this solution. We choose e6 small enough so that there
exists a proper embedding - of into n\{0} such that F := "(I) is included in B’
and {((z), z); z e (0, e6]} is included in F. Since Proposition 2.14 is a local result we
may assume, without loss of generality, that for some constant M in (0, +)

(2.81) If(x, )1 <_ M V(x, u)e n ,.
Note that by (2.78) we have, for z in {-e6,6}, f2((l(z),z), Ub((z),z)) >_ Izl/,+/2;
therefore, the Cauchy problem dz/dt f2(((z), z), Ub((z), z)), z(0) 0 has one and
only one solution on {-e6/M, 6/M} such that tz(t) > 0 for all t in {-e6/M, 6/M}\
{0}. Hence there exists one and only one in C(I ;) such that O/Ot
/(, u5()), (x, 0)= x, and, for all (x, T) in ,
(e.82) ((X, T) O) := (n(X, t) (t- T) > 0 if 0 < It- TI _< 6/M),

where Cn denotes the last component of .
Now, let Af be an open neighborhood of F in I\{0}. Let (di;i e N U {oc}) be a

sequence of maps in C((0,6]; (0, +c)) such that

(2.83) di(z) < di+(z), di(z) < d(z) V(i,z) e N (0,6],

(2.84)

(2.85) d(z) > 2Cbdi(z)/zp/(p+l) V(i,z)e (N U {oc}) (0, e6].
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The existence of such a sequence can be easily established by letting d(z) di(z)
exPf0z 2Ch/Tp/(p+l)d" ((z) > 0 for all li, z) in (N U {o}) (0,6] is equivalent
to (2.85)). Let To T- (6/2M), T T- (T-T0)/2 for all in N\{0}, and
r (6/2)+(T-To)/M for all i in N. Then we have, with the convention 1/0 +cx3,
the following lemma.

LEMMA 2.16. Let be a nonnegative integer. Then there exists a positive real
number in (0, l/i) such that for any in (0, +oo) there exists ft in C(In

ITs, Ti+ ]; Im) such that

I(:, t)l <_ Ixl /+1 V(x, t) e ]n X [Ti, Ti+I],

Oat 0 on n X {Ti Ti+ } Vo E 1n-t-l,

(2.88) (2 f(x, fi(x,t)),x(T) (AfUB&)r3Br,) (x(Ti+l) (Af+UB)r3Br+I).

Proof. Using (2.79), (2.81), and (2.85), one has

(2.89) (x AT. r3 B,: and t [0, T+-T]) = ((x,t) Af r3 Br+l).

Note also that (0, T+ -T) E Af and, therefore, for some 5 small enough but
positive,

(2.90) (B5,, Ti+l Ti) C Jfi.

Moreover, (0, [0, Ti+l Ti]) C J/, and, therefore, > 0 being given, there exists in

(0, e/2)--depending on/--such that

(2.91) {((X, 8); X e B/, 8 e [0, Ti+l Ti]} C U Be/2.

Let u* e C(In; Im) be equal to 0 on B/2 and such that u*(x) Uh(X) for all x in

In\Bv, lu*(x)l < IxI/(P+) for all x in ; then, using (2.81), (2.90), and (2.91), we
have

(2.92) (2= f(x,u*(x)),x(T)

Finally, let ]n [T,T+] --* Im be defined by (x,t) O(t)u*(x), where 0 e
C([T,T+]; [0, 1]) is equal to 1 on [#,T + T+- #] for some # in (0, +cx3) and
vanishes on a neighborhood of {T,T+}. Then u C(In [T,T+];m) stisfies
(2.87) and (2.88). Moreover, if # is small enough, we have (2.88) from (2.92). El

Let us now end the proof of Proposition 2.14. In Lemma 2.16 we take e 5+;
we get a map that we denote . Let fi4 be the map from [0, T) into m that is

equal to on n [Ti, Ti+I] for all nonnegative integers and vanishes on ’ [0, To].
This map is of class C and satisfies

(2.93) l4(x,t)l _< Ixl /(+1> V(x,t)e In X [0, T],

(2.94) G9c4 0 on ]1n X {0} Va Nn+l,
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Let 4 > 0 be such that

y(x, 0), x(0) e (x(To) e B o).

Then, using (2.88) and (2.95), we have

(2.96) (is f(x, 4(x t))x(O) e Be4) == (x(T) e Jfo g {0}).

Finally, let e C((N [0, T])\{(0, T)};[0,1]) be such that (x,t) 1 if t _<
T- #(x), 0(x,t) 0 if t >_ T- (#(x)/2), where # E C(lR\{0}; (0, T)), and let
u4(x, t) O(x, t)4(x, t) + (1 O(x, t))uo(x, t). Then u4 is in C*(Nn >< [0, T]; NTM) and
satisfies (2.68) and (2.69). Moreover, if #(x) --. 0 as x --+ 0, (2.12) holds and, if # is
in a small enough neighborhood of 0 in C(N’\{0}; JR) for the Whitney C-topology
(see, e.g., [GG, Chap. II, 3] for a definition), (2.11) follows from (2.96). This ends
the proof of Proposition 2.14 and also the proof of Theorem 1.4.

3. Particular control systems. In this section we show that, for some special
types of control systems, the assumption n > 4 can be removed and the proof can be
simplified. Let us first remark that the assumption n > 4 is used only in Step 2 of 2.
Let us also note that, in Steps 2 and 3 of 2, F is assumed to be without boundary, but
straightforward modifications of the proofs given in these steps show that Propositions
2.7 and 2.10 remain valid if F has a boundary, except that for Proposition 2.10 Af is
now a neighborhood of F\0F, where OF is the boundary of F.

3.1. Systems without drift. In this section we prove Proposition 1.6. Hence
mwe now have f(x,u) =1 uf(x). By (1.9) we may assume, without loss of

generality, fro(x) e for all x in ]n and f(x) e Rn- >< {0} for all (x,i) in
]Rn >< [1, m- 1]. Therefore, our system can be written ) (y, z, v), w, where
the state is x (y, z) ]Rn-1 I and the control u- (v, w) Nm- IR. Note that
0(Y, z,-v) -(y, z, v) for all (y, z, v) in N"-1 IR >< N"-1. So Proposition 1.6 is a

corollary of the following proposition.
PROPOSITION 3.1. Let g C(I- I ]Rm-1 >< JR;JR-) and let

C (I[{m- IRm- 1) be such that

(3.1) g(y, z, (V), --W) --g(y, z, v, w) V(y, z, v, w) e ]n--1 X ]I X ]tm-1

(3.2) g(O, z, O, w) 0 V(z, w) e x ,
(3.3) o,

Let E be the control system E t g(y,z,v,w), ? w, where the state is x
(y, z) IR- IR

_
IR and the control u (v, w) Nm- I

_
]Rm. Assume that

E satisfies the strong jet accessibility rank condition at (0, O, O, 0). Then E is locally
smoothly stabilizable in small time by means of periodic time-varying feedback law.

Proof. Indeed, let uo in C(N’ R; ]Rm) be such that, with the notations of Step
1 in 2,

(3.4) Ouo 0 on (]R x {0, T/4})U ({0} x ]R) Va e 1n+l,

(3.5) uo o h saturates X on In ({0} ]tn) (0, T/4)
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with X(x, a, s, u) ((g(y, z, v, w), w), 0, 1) e ]in X ]In X I. The existence of uo follows
again from [Co3, Whm. 1.3]. Let to I [0, T] Im be defined by (with to
(60, "tOO) E Im-1 X ], U0 (V0, W0) E ]lm-1 X

(3.6) to(s, t) to(sen, t) V(s, t) e ]t, x [0, T/4],

(3.7) ff)O(8, t) --WO(Sen, (T/2) t) V(s, t) e x IT/4, T/2],

(3.8) Go(s, t) ( o vo)(sen, (T/2) t) V(s, t) e l x [T/4, T/2],

(3.9) Go(s, t) 0

(3.10) o( ) -Z’(t)0(s, t)
s2 q- #(t) (S2 q- (t))2 V(s, t) e IR (T/2, T),

(3.11) @o(s,T) 0 /s

with

(1 1)(3.12) (t) exp
T- t t- (T/2)

Vt e (T/2, T).

For go > 0 let 5:o" [0, o] [0, T] In be defined by 02o/Ot(s, t) f(2o(s, t), to(s, t)),
2o(s, 0) se,. This map is defined on all [0, go] [0, T] if go is small enough. Note that
by (3.1), (3.7), and (3.8) 2o(s, T/2-t) 2o(s, t) for all (s, t) in [0, go] [T/4, T/21. In
particular, we have 2o(s, T/2) se, for all s in [0, go] and, therefore, by (3.10), (3.11),
and (3.12), 2o(s,t) sae,/(s2+(t)) for all (s,t) in [0, go] (T/2, T) and 2o(s,T) 0
for all s in [0, go], which, in particular, implies that, with 2o (9o, 2o) lt"- I,
02o/Os > 0 on [0, go] x [T/2, T). Let us remark that, if uo is in a small enough
neighborhood of 0 in C(ln x I;m), we have 02o/Os > 0 on [0, go] [0, T/2].
Recalling that E satisfies the strong jet accessibility rank condition at (0, 0) we get from
(3.4), (3.5), and (3.6)that (2o(s, .), to(s, .))is supple on (0, T/n) for all s in (0, o] if o
is still small enough. Then, using Appendix Awith T1 0, T2 T/32, T3 T/16,
T4 T/8, and A (0, o)--and [Co3, Thm. 1.3] in a similar way as in Step 1 of 2, we
get the existence of u in CO( [0, T]; I") of class Co on (\{0}) x [0, T], vanishing
on {0} [0, T] and on 1 {T}, equal to to on (I IT T])\((0, o) (T/8, T)), and
such that

(3.13) ul/s2 e L(([-1, 11\{0}) [0, -]) VT E [0, T),

(3.14) xl (8, O) Sen,

(3.15) >0 on (0,o]X[0, T),



STABILIZATION OF CONTROLLABLE SYSTEMS 821

(3.16) (xl(s,.),Ul(S,.)) is supple on (0, T) Vs e (0,1),

for some 1 in (0,0), and where Xl (yl,Zl) (0,0] X [T/8, T] N is defined
by OXl/Ot(s,t) f(Xl(S,t),u(s,t)), x(s,T) 0. Note that by (3.15) Sen E F
{sen; s (0,1]} -- Xl(s,t) Nn\{0} is an embedding for all t in [0, T). Clearly,
there exists u2 C*(Nn [0, T]; N") satisfying (2.15) with u2 instead of u, vanishing
on R {T}, and such that u2(sen, t) Ul(S, t) for all (s, t) in (0, 1] [0, T]. Then,
(2.4) holds with a r instead of [a _< 1 and (2.5) holds with (0, T) instead of
[0, T] and with a F instead of 0 < lal _< 1. Note also that, by (3.15), (2.6) holds.
All these properties are sufficient to perform Step 3 in 2 if, with the notations of
Proposition 2.10, Af is now a neighborhood of {sen; s E (0,1)} in Nn\{0}. Moreover,
using (3.2), one easily sees that the proof of Step 4 in 2 holds for this F. In fact, with

(3.2), this proof can be simplified slightly. Indeed, let C((0, +x); (0, +x)) and
let 5 C("; {0} [0, +))A C(Nn\{0};N") be such that 5(x) (O, lxll/P) if
[yl 2 >_ y(z), 5(0, z) 0 if z >_ 0. Then one deduces from (3.2) that if 2 f(x, 5(x)),
x(0) 0, then x(t) 0 for all positive t. Moreover, one easily checks that, if is
in a small enough neighborhood of 0 in C((0, +cx); N) for the Whitney C-topology,
there exists g in (0, +x),T0 in (0, T) and Af’ C Rn\{0}, whose closure is included
Af U {0}, such that

(3.17) (5 f(x, (x)), Ix(To)l

_
g) x(T) e Af’.

Then it suffices for one to take t4 in C*(Rn [0, T];NTM) satisfying (2.69), vanishing
on [0, To], and such that

It4(X, t)[

_
It0(X, t)l - [(X)I V(X, t) E Rn x [0, T],

(3.19) ua(x, t) (x) /(x,t) e (n X [To, T])\V,

where V is a small neighborhood of (Nn\{0}) {To, T} in (In\{0}) ]1o

3.2. Dynamical time-varying stabilization. In this section we prove Propo-
sition 1.6. Let us first note that this proposition is equivalent to the following propo-
sition.

PROPOSITION 1.6". Assume that (1.8) and (1.9) hold for E. Then the control
system

(3.20) 2=f(x,u), -v,

where the state is (x, y) Nn I and the control (u, v) N" N, is locally smoothly
stabilizable in small time by means of periodic time-varying feedback law.

Let us remark that this last proposition can be, roughly speaking, rephrased in the
following manner: If (1.8) and (1.9) hold then E can be locally smoothly stabilizable
in small time by means of dynamical time-varying feedback law, which increases the
dimension of the state space by only 1. Let us also remark that in (3.20) y .
If one replaces =.v E by $ v e Rn, a shorter proof is given in [Co2]with
less regularity on the [eedback law but without assuming (1.9). Let us now prove
Proposition 1.6". Let u be as in Proposition 3.2. By [Co3, Thm. 1.3] there exists u0
in C(R x [0, 2T];RTM) C((Nn\{0}) x [0, 2T];Rm) such that

(3.21) to(a, t) tl (a, t T) V(a, t) e Nn IT, 2T],
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(3.22) uo/lal 2 e Lc(BI x [0,T]) V7 E [0,2T),

(3.23) uo o h saturates Xo on]ln X (]ln\{0}) X (0, T),

where in (3.23) we have used the notations of Step 1 in 2. Let, for 2 in (0, +cx),
u2: [0, 2] [0, 2T] I" be defined by

(3.24) t) e [o, x [o, T],

(3.25) uu(s, t) ul (xo(s, T), t T) V(s, t) e [0, 2] x [T, 2T],

where x0 [0, e2] x [0, T] --. In is defined by Oxo/Ot(s,t) f(xo(s,t),uo(s,t)),
xo(s, 0) 0. For e2 small enough u2 is well defined. Let x2 [0, e2] x [0, 2T] R
be defined by Ox2/Ot(s, t) f(x2(s, t), u2(s, t)), xg.(s, 0) 0. Note that, by (1.9) and
(3.23), we have, if e2 is small enough,

(3.26) (x2(s, .), u2(s, .))is supple on (0, T) Vs e (0, e2].

Let us also remark that, from (2.15), (3.22), (3.24), and (3.25), we have (still for 2
small enough)

(3.27) u2/s2 e L((0,2] [0, T]) V7 e [0, 2T).

Proceeding again as in Step I in 2 one can prove that, if we perturb u2 slightly and in a
suitable way, u3 can be constructed in C([0, 2] [0, 2T]; Im)gC((O, 2] [0, 2T]; ’)
such that

(3.28) t3/82 e L((0,2] [0,27]) V7 e [0,2T),

2T) 0 W e [0,

(3.30) (X3(8,’),U3(8,’)) is supple on (0, 2T) Vs (0,2),

where x3: [0, 2] [0, 2T] is defined by Ox3/Ot(s, t) =/(x3(s, t), t3(8, t)), x3(8, O) O.
Let v3: [0, s2] [0, 2T] -+ I be defined by v3 0 on [0, 2] {0, 2T} and

(3.31) v3(s,t) - s2 + (t) (t)(s2 + (t))2 V(s, t) e [0, 2] (0, 2T)

with 3(t)= exp(2(t- T)/t(2T- t)) for all t in (0, 2T). Let y3: [0,2] [0, 2T]--* IZ
be defined by Oy3/Ot(s,t) v3(s,t), y3(s, 0) s. By (3.31) we have y3(s,t)
s3/(s2 + 3(t)) for all (s, t) in [0, 2] (0, 2T), y3(s, 2T) 0 for all s in [0, 2]. Finally,
one just notes that (It3] + Iv31)/s2 L((0, s2] [0, 7]) for all 7 [0, 2T) and that,
for system (3.20),

(3.32) ((x3(8,.),y3(8,.)), (?.t3(8,.),v3(8,.))) is supple on (0,2T) Vs e (0,2),
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(3.33) 8 e (0, 2) "-+ (X3(8, t), y3(8, t)) e n X (I\{0}) is an embedding Vt e [0, T).

The conclusion then follows as in the above section (note that, with obvious changes
of notations, (3.2) is satisfied).

Appendix A. Let A be an open subset of Ip (or a manifold). Let T1, T2, T3, and
Ta be four real numbers such that T1 < T2 <: T3 < T4. Let x E C(A IT1, T4]; In)
and u E Coo (A IT1, T4]; m) be such that

(A.1)
Ox
Ot f(x(A, t), u(A, t)) t) e x [T,,T4],

(A.2) (x(A, .), u(A, .)) is supple on (T2, T3) V e A.

The goal of this section is to prove the following lemma.
LEMMA A.1. There exists 5 in C(A; (0, +oo)) and a map H in Coo(w x IT1, Ta];
with w {(A, b) e A x n; ]b < 5(s)} such that

(A.3) Support (H(A, b, .) u(A, .)) C (T2, T3) V(A, b) 6 w,

(A.4)
( f(y,H(,b,t)), y(T) x(A,T)) (y(), T4)= x(,T4)+ b) v(,’,, e

Proof. Let P" h x COO([T,T4];ITM) m be defined by P(A, v) y(T4) with

1 f(y,v(t)), y(T) x(A,T). The map P is defined and of class Coo on an open
neighborhood of {(A, u(A,-));A A}. Moreover, it follows from (A.2) that for any
in [1, n] and any A in A there exists w in Coo([T, Ta];Im), the support of which is
included in (T., T3), and, if (el, e2,..., en) is the usual basis of n, OP/Ov(A, u).w
ei. For E A, let O() be an open neighborhood of in A whose closure is compact
and such that

(A.5)
OP
-b- v <_ (1/2n)/2

The open sets ((.9(); A) cover A; let (Tj C(A; [0, 1]);j N) be a partition of
unity associated to this covering:

(A.6) ETy(A)-I V,A,
j=O

(A.7) Vj E N 3Aj A such that Support (Tj) C (...O(,.j),

p

(A.8) VK compact C A p such that E Tj(A)= 1
i=0

VAEK.

Now, let P A x In x In - Im be defined by--with c (cl, c2,... ,Cn) ]n__

iS(A, C) P(A, u(A, ")+ i=ln y=0+oo city (A)w). Then 15 is defined and of class Co

on an open neighborhood of A x {0} in A x . Moreover, it follows easily from (A.5)
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and (A.6) that the vectors OP/Oci(), 0), e [1, n], span all of IRn. Then Lemma A.1
follows from the usual implicit function theorem, cl

Appendix B. In this appendix we prove Lemma 3.8. We first prove that fti
is a residual subset of ft if n is at least 3. Let en be the last vector of the usual
basis of I and let an be the last component of a E ]Rn. Since F can be covered by
many countably small compact curves with boundary and since (0, T) is the countable
union of the set IT/k, (k- 1)T/k], k e N\{0, 1}, it suffices to show that for any integer

(B.1) f:= v e f;_a (sen,t;uv) 7 O V(s,t) e --, -,(k-1)

is a residual subset of F--perform a suitable diffeomorphism of IR. Since ft is open,
it suffices to check that ftk is dense, which will be proved if one can show that for any
(v*, s*, t*) in ft x (0, el) x (0, T) there exists an open neighborhood f) of v* and e in
(0, Min (s*,el s*,t*,T- t*)) such that the open set

{v a;; Ox/Oa (sen, t;

is dense in ft. Let ft* be an open neighborhood of v* included in f and, for v in
f*, let y E Coo (B$ x (0, T);If) be defined by Oy/Ot f(y, v(a,t)), y(a,T) Oo
The linearized control system around (y(a, .), v(a,-)) is A(a, t)z + B(a, t)w, where
A(a, t) Of/Ox(y(a, t), v(a, t)), B(a, t) Of/Ou(y(a, t), v(a, t)). By (2.48)

(B.3) (y(a, .), v(a, .)) is supple on (0, T) ga e B$.

Let Q be a closed ball of Nn x IR centered at (s*e, t*) such that Q c BI x (0, T). By
the proof of [INS, Thm. 6.4]--or [G, Chap. 2, 3.8 (B)] and, for more details, [Col,
pp. 3o4-3o5]; see also [FLMR, Prop. 1.7] for a related result--we know from (B.3)
that

(B.4)
OZ
Ot A(a, t)z B(a, t)w r

is algebraically solvable; i.e., there exist an integer q, (q + 1) maps (#i)0<i<q in
Coo (Q;(]R;]R)), and (q + 1) maps (Ui)o<i<q in Coo (Q;(Rn;Im)) such that,
for all r in Coo (Q; Nn), z and w defined by

(B.5)
q

Oir
(a t)

q
Oir

(a, t), w(a, t) E ,i(a, t)--z(a, t) E #i(a, t)---
i=0 i=0

are solutions of (B.4). Note that q, #i, and vi depend on v but, if ft* is a small enough
neighborhood of v*, using the construction of the algebraic inverse given in [Col], we

may impose that q is independent of v in Ft* and that the maps v f/* -- #i
CO (Q; (I[n;]ln)), V * --* Vi Coo (Q; (n;m)) are continuous for all in

[0, q]. Recall that Q is a compact ball; hence the topology on Coo (Q; (Rn;N)) is
the topology in which a net {Z} converges to if and only if {0Z} converges to

0 uniformly in Q Va Nn+. Let Q0 be a closed ball included in the interior of Q
and let r] in Coo (I1’ x N; [0, 1]) be equal to 1 on a neighborhood of Q0 and such that
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its support is included in the interior of Q. For a positive integer k and a positive real
number M let

(B.6) h / ()0,)1,... ,)k) e (Rn)k+l ;)0 e B1, I)i < M
i=1

For A in A we define ax E. C (Q; ln) by

(B.7)
k

c(a,t) (an s*)r(a,t) E (t- t*) Ai
i=0

and zx E C (Q;Nn), wx (Q;Nm) by

(B.8) zx(a,t) x(a,t)+ -,(a,t)Orx (a,t) wx(a,t) -u(a,t)--O-(a,t)-i=0 i=0

with rx(a, t) -Oax/Ot + A(a, t)cx(a, t). We extend the maps z and wx by 0 on

(BI x (0, T)) \Q and still denote these extensions by zx and w. Then zx and wx are
of class C on B$1 x (0, T) and satisfy, on B x (0, T), Ozx/Ot(a, t) A(a, t)zx (a, t) +
B(a,t)wx(a,t). For 5 in (0, +oc) let ve, v + 5wx C (B x (0, T);It’). Let
be fixed and also let M be fixed. Then, for 5o small enough but positive and ft; a small
enough neighborhood of v*, ve,x is in ft* for all (5, v, ) in [0,501 x ft; x A. For 5 in [0, 5o1
and v in ft; let G C (B x (0, T) x A; R) be defined by G(a, t, A) x (a, t; uv.).
Straightforward computations show that, on Q0 x A,

(B.9) G(a,t,A) x (a,t, uv) + zx(a,t) + R(a,t,A),

where, for some constant C independent of (5, v) in [0, 50] x gt;,

(B.10) [[RIIc-(QoXA) _< C62.

Let Gx(a,t) G(a,t,b) and let j1 (B$ x (0,T);Nn) be the set of i-jet of mappings
from BI x (0, T) to Rn (see, e.g., [GG, Chap. II, Def. 2.1]) and : B$ x (0, T) x A
j1 (BI x (0, T); Rn) be the map that associates the 1-jet of Ga at (a, t) with (a, t, A).
Let e be a positive real number and let W be the submanifold of j1 (BI x (0, T); Rn)
defined by

(B.II) {( OX(a’t)) ;(a’t) e (O’ee) x (O’T)’W- a, t, x(a, t), -a
Ox

(a t) O, }lan s* + lt- t* < e,-a
where (0, ele)= {’elen; T (0, 1)}. From (B.7) we get

(B 12) Ozx
t*(8*en Ao + E#i (s* t*) - (-[9(t) + A(s*e,,t*)p(t))

i=0 t=t*
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with p(t) k )ii=o (t t* Ai. We now choose the mapping v* for v and denote by A*,
B*, z,, * the corresponding maps. For A0 in B1 let d" (0, T) Nn be the solution
of l-- A* (8*en, t) d, d(t*) ,o. Expanding d near t* we get

k

,)i+ + 0 (It- ).
i--1

We choose k > q and M such that
A (A0, A1/A0) Ak (A0)) we get that

< M- 1 for all l0 in B. For

OZ t*(B.14) Oa (s*en,) A0.

Using (B.9), (B.10), and (B.14), we get that, if 5 and e are small enough but positive,

* is transversal to W; moreover, straightforward computations show that, similarly,
if ft; is a small enough neighborhood of v*, if 5 and e are small enough but positive,
then

(B.15) is transversal to W Vv E [.

We take such ft, e, and 5. We also require ft to be open. From (B.15) and a classical
result on transversality (see, e.g., [GG, Chap. II, Cor. 4.7]) we get that, if v E ft;,
then, for a dense set of A in A,

(B.16) (., A) is transversal to W.

But the dimension of B$1 x (0, T) is n + 1, the dimension of W is n2 + n + 2, and
the dimension of j1 (B x (0, T);IRn) is n2 + 3n + 1. Hence, if n > 3, (B.16) implies
that the image of (., ) does not meet W. Since v6,x --* v as 0, we get that
defined by (B.2) is dense in f), and so fti is a residual subset of ft.

We now prove that fo is a residual subset of ft if n is at least 3. One proceeds
as for fto with the following modifications"

in (B.1) and (B.2) one replaces Ox/Oan by x;

in (B.7) one suppresses (an s*);
j1 (BI x (0, T);]Rn) is replaced by jo (BI x (0, T);Nn) and associates the

0-jet of Gx at (a, t) with (a, t, );
W is now submanifold of j0 (BI x (0, T); R) defined by

W {(a,t,x(a,t));(a,t) (0,en) x (0, T); lan s* + It t*] <: ;x(a,t) 0}

in (B.14) one replaces Oz*/Oan by z*;

the dimension of W is 2 and the dimension of j0 (BI x (0, T); IRn) is 2n + 1.
We finally prove that f is a residual subset of f if n is at least 4. One again

proceeds as for fti but with the following modifications. One first notices that it
suffices to prove that for any (s,s) in (0, elen) with s - s, any v* in f, and any t*

in (0, T) there exists e in (0, +ec), an open neighborhood Ft) of v* such that if ft; is
the set of v in a; satisfying for all 81 in [s e, s + e], all s2 in Is;. e, s;. + el, and
all t in It* e, t* + e x (sen, t; u,) =/= x (se, t; u) then

(B. 17) ft; is dense in f;.
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Note that ft is open. Let be a positive real number such that the intersection of
[s 2, s + 2] with Is;. 2, s + 2] is empty, [s 2, s + 2] and [s 2, s + 2]
are included in (0, 1), and It* 2, t* + 2] is included in (0, T). Let

(B.18) Q {(a,t) B (O,T); la-Senl2 + It-t*l 2 <_ 42},

(B.19) { :}Q0 (a, t) E B (0, T); la 8en -1
t. It t*

__
Now we replace (B.7) by Y’i=0 (t t*) Ai and define G in C(B$I
B (0, T)A;Rn) by G (al, a:, t, A) x(al,t;uv.)-x(a2,t;uv.), and is now
the map from Bx B (0, T) A to j0 (B B (0, T);Nn) that associates
(a, a2, t, A) the 0-jet of G(.,.,., A) at (a, a2, t). Computations similar to those of
the proof of Lemma B.8 show that if M is large enough, gt is a small enough open
neighborhood of v*, and 5 and are small enough but positive, then (B.15) holds
again with
(B.0)
W (( ) n, ( + )) x (( ),( + )) x (t* , t* + ) x {0}.

Since the sum of the dimensions of W and (BI x B (0, T)) is less than the di-
mension of j0 (Bi x B x (0, T);IRn) if (and only if) n >_ 4 we again get (B.17) by
again using [GG, Chap. II, Cor. 4.7].

Appendix C. The goal of this appendix is to prove Lemma 2.12. To simplify the
notations we first perform a change of variables. Let : IR x (0, 1] Rn x [0, T) be
defined by (, ’) (y(, ’), T(1-’)), where, if we denote by yu the last component of
y IR, Oy/cg- -TA (Yn, T(1 ’)) y, y(, 1) . The domain of definition of b is an
open subset D ofR x (0, 1] that contains Rn x {1}. Note that D contains {0} xRx (0, 1]
and ((0, ), ’) ((0, ’), T(1 t) for all (, in IR x (0, 1]. Note also that is a

diffeomorphism of class C between D and (D). By pulling back the time-varying
control system dy/dt F(y, t, u) with we get a time-varying control system that we
denote by d/d= -(, , u). One has (0, ’, , 0) 0 for all (, ’) in ]R x (0, 1]. Let,
for in ]R and ’in (0, 1], (, ’) 0’/0((0, ’), t 0) and/(’, ’) O/Ou((O, ), , 0).
One easily checks that A 0 and, using (2.64), we have

(, .). e t > 0} v(, t e t (0, ](c.1) Span

Note also that, since D contains a neighborhood of (It{n {1})t_J ({0} x IR (0, 1])
in IR x (0, 1], there exists g in C (IR x (0, 1] x Rm;Nn) such that g F on a

neighborhood of (Nn x {1})U ({0} x N x (0, 1]). Hence Lemma 2.12 is proved if one
can show the following proposition.

PROPOSITION C.1. Let g :In (0, 1] x Im It{n, (X, t, u) g(x, t, u) be such
that

(c.2) g e c( x (0, 1 x -; t),

g((0, s), t, 0) 0 V(s, t) e I x (0, 1],



828 JEAN-MICHEL CORON

(C.4)
Og
0-((0, s), t, 0) 0 V(s, t) e x (0, 1],

OiB }Span --ff-(s,t)w;i _> 0, w R" D R-1 x {0} V(s, t) e R x (0, 1]

with B(s,t) Dg/Ou((O,s),t, 0). Then, for any in CO (JR x (0, 1]; (0, +oe)), there
exist u in C (Q x (0,1];]Rm) with Q {a (b,s) E Nn-1 x N

_
In; Ibl _< 1} and

x e C (Q x (0,1]; n) such that

(c.6) lu(a, t)l < e(s, t) V(a, t) e Q x (0,1],

(c.7) Ix(a, t) (0, s){ <_ e(s, t) V(a, t) e O x (0,1],

(C.8) O-ff-X(a,t) g(x(a,t) t,u(a,t)) V(a,t) e Q x (0,1]Ot

(C.9) u((o, s), t) 0 V(s, t) Q x (o, 1],

(C.lO) x((O, t) (o, t) e q x (o,

(C.11) a e Q -- x(a, t) e I is an embedding of Q into Nn Vt (0,1].

Let us prove Proposition C.1. For a C-submanifold M of IP, which has a
boundary and is of dimension p, we define a topology on C(M; Iq) in the same way
as we defined our topology on C(O; lRq) in Step 1 in 2, where (.9 is an open subset
of IRp e and A that appear in this definition are now in C(M; (0, +c)) instead of
C(O; (0, +oc)). Let us emphasize that this topology on C(M; Rq) is quite different

from the topology induced on C (M; IRq) by the topology on C (M; Iq). Our first

lemma used to prove Proposition C.1 is the following.
LEMMA C.2. Assume (C.2) and (C.3). Then there exist an open neighborhood

ft of 0 in C (Q x (0, 1];Nm) and a continuous map X a C (Q x (0, 1];RTM)
u X(u) x such that (C.8) holds for all u in f and, for all u in f and all a (b, s)
in Q,

(C.12) (u(a,t)=O Vte (O, 1]) (X(u)(a, t) (O, s) Vte (0,1]).

Note that if g is in C (I x [0, 1] x I’; I") then Lemma C.2 follows directly
from the classical theorems on existence and smoothness--with respect to time, pa-
rameters (a), and initial data--of the solution to the Cauchy problem (see, e.g.,
[Ha, Chap. V]) applied to 2 g(x, t, u(a, t)), x(a, O) (0, s). When g is only in
C (Nn x (0, 1] x Nm; Nm) one just needs to modify slightly the proof of these theo-
rems. Let us limit ourselves to showing how to modify the usual proof of the existence
of a solution to the Cauchy problem in order to get a solution to (C.8) and (C.10).
For r in CO (I x (0, 1]; (0, 1]) let E be the space of maps x in CO (Q x (0,1]; ]Rn) such
that Ix(a, t) (0, s)l _< r(s, t) for all (a, t) in Q x (0,1]. We define a metric d on E by
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d (xl, x2) Sup {r(s, t)Ixl (a, t) x2(a, t)l (a, t) e Q (0,1]}. Note that (E, d) is a
complete metric space. For u in C (Q (0,1];TM) and x in E let T(x): Q (0,1] -Rn be defined by T(x)(a,t) (O,s)+f g(x(a, T), T, u(a, T))d’. Then straightforward
computations show the existence of r and 5 in C0 ( z (0, 1]; (0, 1]) such that, if u is in
0 := {u e C (Q z (0,1]; Rm);]u(a, t)] A(s, t) V(a, t) e Q z (0, 1]}, then T(x) is
defined on Q (0,1] for all x in E and, moreover, for all x and x2 in E, T (Xl) E,
and d(T (x),T (x2)) d(x,x2)/2. Hence, for any u is in 0, T has a unique fix
point; this fix point is a solution to (C.8) and (C.10).

We now assume that the assumptions of Proposition C.1 hold. Let be in
C (R z (0, 1]; (0, +)). We are going to construct u in satisfying (C.6) and
(C.9) such that (C.7) and (C.11) hold with x Z(u). (Note that (C.8) holds for
x X(u) and that (C.10) for x X(u) follows from (C.9) and (C.12).) Let
v e C ((0, 1]; [0, 1]) be such that v(t) exp-(1/(t (1/(i + 2)))) for all integers
and for all t in (1/(i + 2),2/(2i + 3)]. Let A be the set of sequences A (A;i e N)
of maps in C (; (0, 1]). For A in A we defined two maps w e C ( (0, 1]; [0, 1])
and u e C (Q (0,1];m) by w(s,t) A(s)v(t) if t e (1/(i + 2),1/(i + 1)],
u (a, t) w (s, t)B(s, t)* (b, 0) if t e (1/(i + 2), 1/(i + 1)], where B(s, t)* e (;)
is the transpose of B(s, t). Note that (C.9), with u u, is satisfied. We will say that
a property P holds if A(G A) is small enough if there exists a sequence (A; G N) of
neighborhoods of 0 in C (;) such that, if A G A satisfies A G A for all in N, then
P holds. For example, for A small enough u G , where is as in Lemm C.2, so for
A small enough x := X(u) is defined. Note also that for any sequence (A; G N)
of neighborhoods of 0 in C (;) there exists A G A such that A G A for M1 G N.
Therefore, Proposition C.1 is proved if one can show that, for A small enough, (C.6),
(C.7), and (C.11) with u u and x x are satisfied. For simplicity let us write
u, w, and x for u, w, and x. Clearly (C.6) is satisfied if A is small enough. More-
over, X is continuous and, by (C.12), X(O)(a, t) (0, s) V(a, t) e Q z (0,1]; so, if A is
small enough, (C.7) holds. It only remains to prove that, if A is small enough, (C.11)
holds.

Let " Q [0,1] be defined by (a, t) (0, s) + f B(s, T)u(a, T)dT. For A
smM1 enough is well defined and belongs to C (Q z [0,1];). Our next lemma
is as follows.

LEMMA C.3. There exists C C ( (0, 1]; (0,+)) such that, if is small
enough, then, for all (a, t) in Q z (0,1],

(C.13) OXoa OOa (a, t) _< C (s, T) W(S, T)2 + (S, T)

The proof of this lemma follows easily from (C.12), (C.13), (C.18), and usual
estimates on solutions of differential equations. We omit it.

Let M e C( (0, 1];(n-;n-))and N e C( (0, 1];(-1;))
be such that 5(a, t) (M(s, t)b, s + g(s, t)b). Note that 5(a, t) f B(s, T)B*(s, T)
(b, 0)d7 + (0, s); so M and N exist, and, moreover, M(s,t) M*(s, t) for all (s, t) in
z (0, 1] and b. (M(s, t)b) 0 for all (b, s, t) in- z z (0, 1], where, denotes the

scalar product in -. Let be positive real number. Clearly, for A small enough,
ON

(, t) < V(, t) e (0, 1]
OM

(s,t) + ]g(s,t)[ + _,IM( ,t)I +

and by (C.13) we have, still for small enough,
Ox

(a, t)(C.15) (a,t) V(a,t) Q x (0,1].
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Let us write x(a, t) (y(a, t),z(a, t)) e n--1 . Note that

(C.16)
O-2

a’ t b" s’ ( + ---s + -sa )= M(s t)b’ s’
OM

(s, t)b, s’ s’
ON

(s, t)b + N(s, t)b’

Taking # small enough and using (C.14), (C.15), and (C.16) we get that, if A is small
enough, IOz/Os(a, t) 11 <_ 1/2 and, therefore, for any b in Rn-1 with Ibl <_ 1 and any
t in [0, 1], the map s e IR z((b, s), t) E N is a diffeomorphism of IR onto N. Let cr

in Cc (Q x (0,1]; N) be such that z((b, a(a, t)), t) s for all (a, t) in Q x (0,1]. Note
that, if A is small enough, we have for all (a, t) in Q x (0, 1],

(C.17)
Oz
-((b, cr(a, t)), t)

Ox 0-2
a ((b, a(a, t)), t) a ((b, or(a, t)), t) + IN(a(a, t), t)l }.

Clearly, it suffices to prove that, for A small enough,

(C.18) b Bn- y*(b, s, t) IRn-1 is an embedding V(s, t) N x (0, 11,

where Bn-1 {b e ]1n-1;Ibl <_ 1}, y*(b, s, t) y((b, a((b, s), t)), t). Using Lemma
C.3, (C.16), and (C.17) one gets the existence of C2 CO (R x (0, 1]; (0, +oe)) such
that, if A is small enough and with a a((b, s), t) or(a, t),

(C.19) (b, t) t) <_ 5T

for all (a, t) in Q x (0,1]. Let us assume, for the moment, the following lemma.
LEMMA C.4. For any K E Co (N x (0, 1]; (0, +cx)) then, if is small enough,

we have for all (b’, s, t) in In- x I x (0, 1],

(c.20) b’ (M(s, t)b’) >_ Ib’l K(s, ) w(s, ) + -s (s, ) d.

From Lemma C.4 we get that, if , is small enough,

(C.21) b’ b (b, s, t)b’ > 0 V(b’, b, s, t) (-\{0}) x Bn-1 N ] (0,1].

Note that (C.21) implies (C.18). Indeed, (C.21) implies that cOy*lOb(b, s, t) is invertible
for all (b,s,t) in Bn- Nx (0, 1] and that, for all (b,b2, s,t) in Bn- xBn-1 xI (0, 1]
with b # b2, the real valued function T e [0, 1] y* (Tb2 + (1 T)bl, s, t). (b2 bl)
is increasing, which implies that for all (s,t) in x (0, 1], b B- --, y*(b,s,t) is

one-to-one.
Now we need only to prove Lemma C.4. Let us assume, for the moment, the

following lemma.
LEMMA C.5. For any integer i, there exist 5 in CO (N; (0, +oc)) such that, for

all (b, s, t) in ]In-I X I X [1/(i + 2), 1/(i + 1)],

(C.22) ]U*(s, r)(b, 0)[ 2 v(r)dr >_ 5(s)lbl 2 V2(r)dr.
/(i+2) 1/(i+2)
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Let K(s) Max {K(s,t);t e [1/(i + 2), 1/(i + 1)]}; then, if for all integer i,

A2(s) + 4 (dAvids)2 (s) <_ 5(s)/K(s) for all s in , (C.20) follows from (C.22).
Now we need only to prove Lemma C.5. Clearly, it suffices to prove that for any

(,,i) E (Itn-l\{0}) 1 N there exists a neighborhood V of (,,1/(i + 2)) in

(lln-l\{0}) [1/(i + 2), 1/(i + 1)] such that

(C.23) IB*(s, -)(b, 0)12 v(’)dT >_ v2dT
/(i+2) 1/(i+2)

for all (b, s, t) in V. It follows from (C.5) that there exists an integer p such that

(C.24)
0J 2o)ll<_,,<,+:

(gp 2o vj e [O,p- 1], b-77 d: 0.

From (C.24) and the Malgrange preparation theorem (see, e.g., [GG, Chap. IV, 2])
it follows that there exist p maps (0j;0 _< j _< p- 1) in Ca (n-1 ;), a compact
neighborhood W of (b,-, 1/(i + 2) in In-1 I I, and a positive real number #1
such that, with ti 1/(i + 2), IB*(s, t)(b, 0)l 2 >_ #ll(t- ti)p + E- Oj(b, s)(t t)Jl
for all (b,s,t) in W and, therefore, since W is compact, there exists a positive
real number #2 such that, for all (b,s,t) in W, IB*(s,t)(b,O)l 2 >_ ##2((t- ti)p +

p--1’=00(b, s)(t- ti)) 2. So Lemma C.5 is a consequence of the following lemma.
LEMMA C.6. Let R be a positive real number and let p be an integer. Then there

exists a positive real number to such that

p--1

(C.25) L mp+ E CywJ exp(--1/T)dT >_ exp(--2/TldT
j=0

for all t in [0, to] and sequence of p real numbers (Cj; j e [0,p- 1]) with Icl <_ R
all j in [0, p- 1].

Proof. Let C be the set of sequences C of real numbers (Ci;i [0,p- 1]) such
p--1that ICil _< M for alli in [0,p-1]. For C inClet Pc(t) =tP+j=oCjtJ. Let us

first notice that, for all C C,

PC(T)2dT Vt (0,(C.26) Pc()2exp(-1/)dT >_ (exp(-3/(2t)))
t/3

Note that f2tt/3 PC(T)2dT is an algebraic function of t and (C;i e [0,p- 1]) which

is positive if t > 0. Hence, by the Lojasiewicz inequality (see, e.g., [BCR, Chap. 2,

6.7]), there exist an integer g and a real number 6’ such that f2tt/3 Pc(7)2d7 >_ 5tg

for all (C, t) in C x [0, 1], which, with (C.26), gives Lemma C.6. [:]
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SAMPLED-DATA AND DISCRETE-TIME H2 OPTIMAL CONTROL*

H. L. TRENTELMANt AND A. A. STOORVOGEL:

Abstract. This paper deals with the sampled-data H2 optimal control problem. Given a
linear time-invariant continuous-time system, the problem of minimizing the H2 performance over
all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2
optimal control problem. This discrete-time H2 problem is always singular. Motivated by this, in
this paper we give a treatment of the discrete-time H2 optimal control problem in its full generality.
The results we obtain are then applied to the singular discrete-time H2 problem arising from the
sampled-data H2 problem. In particular, we give conditions for the existence of optimal sampled
data controllers. We also show that the H2 performance of a continuous-time controller can always
be recovered asymptotically by choosing the sampling period sufficiently small. Finally, we show that
the optimal sampled-data H2 performance converges to the continuous-time optimal H2 performance
as the sampling period converges to zero.

Key words, sampled-data, lifting technique, discrete-time, H2 optimal control, algebraic Riccati
equation, small sampling periods
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1. Introduction. Recently, much attention has been paid to H2 and H opti-
mal control of linear systems using sampled-data control (see [6], [7], [12], [2], [4] and
[5], [11], [10], [1], [3], [17], [21]). For a given a continuous-time plant, a sampled-data
controller consists of the cascade connection of an A/D converter, a discrete-time con-

troller, and a D/A converter. The A/D device converts the continuous-time measured
plant output into a discrete-time signal, which is used as an input for the discrete-
time controller. The discrete-time controller generates a discrete-time output signal,
which, in turn, is converted into a continuous-time signal that is used as a control
input for the continuous-time plant.

Apart from a control input and a measurement output, the plant under consid-
eration has an exogenous input and an output to be controlled. The quality of a
controller is given by the performance of the corresponding closed-loop system. This
performance measures the influence of the exogenous input on the output to be con-
trolled. In the present paper, we will take the H2 performance of the closed-loop
system as performance measure.

In contrast to the H performance of a sampled-data control system, which in
analogy with the pure continuous-time context can simply be defined as the norm
of the input/output operator between the exogenous inputs and the outputs to be
controlled, it is not clear from the outset how one should define the H2 performance
of a sampled-data control system. One definition was proposed in [6]: the H2 perfor-
mance of the closed-loop system is the number obtained by applying at each input
channel a Dirac distribution and by taking the sum of integral squares of the resulting
outputs. Of course, this definition exactly mimics the one that is common in the pure
continuous-time context.
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In our opinion, a more natural definition was given independently in [12] and [2].
In these references, the crucial observation is that the closed-loop system resulting
froth a sampled data controller, albeit time-varying, is in fact a periodic system, with
period equal to the sampling period. It is then argued that, instead of applying
impulsive inputs at time t 0, one should in fact apply these inputs at all time
instances between 0 and the sampling period and take the mean of the integral squares
of the resulting outputs. This leads to an H2 performance measure that captures the
essential features of a sampled-data closed-loop system more satisfactorily. For a

given continuous-time plant, the sampled-data H2 optimal control problem is then to
minimize the H2 performance of the closed-loop system over all internally stabilizing
sampled-data controllers with a fixed sampling period. It is the latter problem that
will be studied in this paper.

It was shown in [12] and [2] (see also [4]) that the sampled-data H2 optimal
control problem can be reduced to a pure discrete-time H2 optimal control problem
in the following way. First one defines an auxiliary time-invariant discrete-time sys-
tem (involving the parameters of the original continuous-time plant and the given
sampling period). Next, one expresses the sampled-data H2 performance in terms
of the ’normal’ H2 performance of the closed-loop system obtained by interconnect-
ing the auxiliary discrete-time system and the discrete-time controller defining the
sampled-data controller. Thus, the sampled-data H2 optimal control problem under
consideration is completely resolved once the auxiliary discrete-time H2 problem is.
This procedure makes use of the so-called lifting technique (see [20], [1], [3])

Now it turns out that the auxiliary discrete-time H problem obtained in this way
is always a singular problem: the direct feedthrough matrix from the exogenous input
to the measurement output is always equal to 0. Apart from this, in the auxiliary
discrete-time system the direct feedthrough matrix from the control input to the
output to be controlled is in general not injective. (Note that, in general, an H.
optimal control problem is called regular if the direct feedthrough matrix from the
control input to the output to be controlled is injective, and the direct feedthrough
matrix frown the exogenous input to the measurement output is surjective. If the
problem is not regular it is called singular.) In [12], this difficulty is partly removed
by introducing an additional noise on the sampled measured output signal and by
assuming the corresponding feedthrough matrix to be surjective.

In the present paper we want to consider the completely general formulation of the
sampled-data H2 problem. As a starting point we will take the auxiliary discrete-time
H2 problem derived in [12] and [2]. As noted, this problem is inherently singular. To
our best knowledge, no resolution of the discrete-time singular H2 optimal is known
in the literature. Therefore, a substantial part of this paper is devoted to a study
of the completely general discrete-time H2 problem (no assumptions on the direct
feedthrough matrices, no assumptions on the absence of zeros on the unit circle). We
will describe a complete resolution to this problem, including a characterization of
the optimal performance, and necessary and sufficient conditions for the existence of
optimal controllers. The expression for the optimal performance is different from the
one that might be expected in analogy with the continuous-time case (see [15]). Due
to the fact that the role of the imaginary axis is taken over by the unit circle, for the
discrete-time H2 performance to be finite it is no longer required that the closed-loop
transfer matrix is strictly proper. Intuitively, this enlarges the class of admissible
controllers and yields a smaller optimal performance.

We will apply our results on the discrete-time H2 optimal control problem to
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the sampled-data H2 problem by simply applying them to the auxiliary discrete-time
system derived in [12] and [2]. Our expression for the optimal sampled-data H2
performance will be an immediate consequence of these results. We will, however,
also be interested in conditions guaranteeing the existence of optimal sampled-data
controllers. Our results on the general discrete-time H2 problem give such conditions
in terms of the auxiliary discrete-time system, but we will reformulate these conditions
in terms of the original continuous-time plant. Preliminary results in that direction
were also found in [12].

Obviously, the sampled-data H2 optimal performance is a function of the sampling
period. An important question is: what happens if the sampling period tends to
zero. In particular, we will answer the following two questions. First, if we control
the original continuous-time plant by a "normal" continuous-time compensator, is
it then possible to recover this performance asymptotically by using a sampled-data
controller with sufficiently small sampling period? This question was also studied for
the H performance and for the H2 performance k la Chen and Francis in [6]. A
second, related, question that we will answer is: does the optimal sampled-data H2
performance converge to the optimal continuous-time H2 performance as the sampling
period decreases to zero?

The outline of this paper is as follows. In 2 we will define the sampled-data H2
optimal control problem and recall the main results of [12] and [2]. We will also intro-
duce some notation and recall the notions of left-invertibility and right-invertibility of
linear systems, zeros, and their most important state space interpretations. In 3 we
deal with the discrete-time H2 optimal control problem. In this section we will not
yet treat the completely general case but make some assumptions on the absence of
zeros on the unit circle. In 4, the results of 3 will be extended to derive a resolution
of the general discrete-time H2 optimal control problem. Then, in 5, we return to
the sampled-data context and apply the results of 3 and 4 to the sampled-data
H2 optimal control problem. In particular, we will derive conditions in terms of the
original continuous-time plant that guarantee the existence of optimal controllers for
the sampled-data H2 problem. Finally, in 6 we study the aforementioned questions
regarding the behavior of the (optimal) performance as the sampling period tends to
zero.

2. Problem formulation. Consider a continuous-time, linear, time-invariant,
finite-dimensional plant E. Let E have inputs d and u and outputs z and y, where d
is an exogenous input, u is a control input, z is an outputto be controlled, and y is a
measured output. We want to control E by means of sampled-data feedback control.
We take a fixed A > 0, called the sampling period. From the measured output y we
obtain a discrete-time signal {Yk} defined by Yk := (SAy), where SA denotes
the sampling operator defined by (SAy)k := y(kA). This discrete-time signal is taken
as input for a discrete-time, linear, time-invariant, finite-dimensional compensator
Fdis. The latter compensator generates a discrete-time signal {uk}, which, in

turn, yields a (piecewise constant) continuous-time input signal u for the plant by
defining u(t):-- (HA)(t), where HA is the hold operator defined by (Ht)(t):= uk

(t [kA, (k + 1)A)). This type of feedback control is depicted in Fig. 1.
If we control the system E by means of a sampled-data controller with sampling

period A, then the resulting closed-loop system will no longer be time-invariant. In
[12] and [2] the following definition of H2 performance in the context of sampled-data
control is proposed. First, it is observed that the closed-loop system resulting from a
sampled-data controller with sampling period A is always a time-varying, A-periodic
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FIG. 1.

system. Then, for A-periodic systems the notion of H2 performance is defined as
follows. Suppose we have a finite-dimensional, time-varying, A-periodic system Eper
described by

(2.1) z(t) G(t, s)d(s)ds.

It is argued in [12] and [2] that a natural way to define the H2 performance of (2.1) is

1 zx
G
T

(2.2) I]Y]perl[22 := tr (t, s)G(t, s)dt ds.

Next, if F is a sampled-data controller with sampling period A, the associated per-
formance is defined as Jr,zx (F):= lie FII, the H. performance of the (A-periodic)
closed-loop system E F. The sampled-data H2 problem is then to minimize, for a
fixed sampling period A, the performance criterion J2,A (F) over all internally stabi-
lizing sampled-data controllers F with sampling period A. It was shown in [12] and
[2] that this problem can be reduced to a discrete-time ’normal’ H2 optimal control
problem. To be specific, let the plant E be given by the equations

(2.3)
it(t) Ax(t) + Bu(t) + Ed(t)
y(t) Clx(t)
z(t) C2x(t) + Du(t)

with x(t) e IRn, u(t) e IRm, d(t) E IRr, y(t) e IRp, and z(t) IRq. It will be a standing
assumption in this paper that (A, B) is stabilizable and that (C1, A) is detectable,
both with respect to C- := {s C e s < 0}. Introduce a finite-dimensional linear
time-invariant discrete-time system

(2.4)
xk+l Axxk + B/u + EAdk
Yk Cxk
Zk "-C2,AXk -- D2,Aukwhere we define

A

A := e/xA B/ := etAdtB,
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where EA is any matrix satisfying

A

(2.5) EAE etAEETetATdt,

and where C2,A and D2,A are matrices satisfying

A

)T etA(2.6) (C.,A D2,A)T(C2,A D2,A)= etA---T(C2 D2 (C2 02)-dt.

Here we have denoted

Let denote the set of sampling periods for which either (AA, BA) is not stabilizable
or (C1, AA) is not detectable, both with respect to the open unit disc {z E C Izl < 1}.
It is well known [13], [8] that if (A,B) is stabilizable and (C1,A) is detectable, then
every bounded subset of IR+ contains only finitely many elements of A. We will
restrict ourselves to sampling periods that are not in A. The plant E is controlled
using sampled-data controllers F := HAFdisSA, with Fdis given by the equations

Wk+ Kwk + Lyk
uk Mwa + Nya

Let us denote byJ (Idis) the discrete-time H2 performance of the closed-loop system
E Fi, i.e., the value -k tr (GkG), where {Gk} denotes the pulse response of
the closed-loop system. The main result of [12] and [2] is the following:

THEOREM 2.1. Assume that A A. Then there exists a sampled-data controller
F with sampling period A such that the closed-loop system E F is internally stable.
The sampled-data controller F HAIdisSA internally stabilizes E if. and only if the
discrete-time controller ldis internally stabilizes EA. Furthermore, for every such
controller we have

1
tr ",,|CetAEE etic’, dt ds + -Jr (Fis).

We shall use this theorem as a starting point and study in this paper the discrete-
time H2 optimal control problem for the discrete-time system EA given by (2.4). This

H2 problem is inherently singular, due to the fact that the direct feedthrough matrix
from the disturbance input to the measured output is always equal to zero.

We conclude this section by introducing some notation and recalling some basic
concepts. In this paper, any given continuous-time system Ax+ Bu, y Cx+Du
or discrete-time system x+l Ax + Buk, y Cx + Du will be denoted simply
by (A, B, C, D). It will be clear from the context which interpretation we have in
mind. For any such system, the system matrix is defined as the first-order polynomial
matrix

If the underlying system is discrete-time, we will rather use the indeterminate z instead
of s. For a real rational matrix R, its normal rank, normrank R, is defined as the
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rank of R as a matrix with entries in the field of real rational functions. It is well
known that normrank R max rank R(a). A zero of the system (A, B, C, D) is any
complex number A with the property that rank P(A) < normrank P. The system
(A,B, C,D) is called left-invertible (right-invertible) if its transfer matrix G(s)
C(sI- A)-IB + D is a left-invertible (right-invertible) rational matrix. Assuming
that A E IRnn, B E IRm’, and C G IRp we have that (A, B, C, D) is left-invertible
(right-invertible) if and only if its system matrix has normal rank n + rn (n + p).

If M ]Rnn and/: is a subspace of IRn, then (M / will denote the smallest
M-invariant subspace containing/:. The largest M-invariant subspace contained in/:

will be denoted by (ElM/. In particular, given (A,B, C, D), the reachable subspace
is equal to (Alim B/ and the unobservable subspace is equal to (ker C[AI.

Given the system (A, B, C,D), we define the weakly unobservable subspace 2 to
be the smallest subspace of IRn with the property that there exists F G ]Rmn such
that (A + BF). C and (C + DF) 0 (see [14]). In addition, the controllability
subspace T of (A, B, C, D) is defined as follows:

7 := (A + BF Z N B ker D},

for any F such that (A + BF)’i) C_ V and (C + DF)) 0 (any such F yields the
same 7). It was shown in [14] that the system (A,B, C,D) is left-invertible if and
only if ker B C? ker D 0 and 12 rq B ker D 0. Note that 12 B ker D 0 if and only
if 7 0.

Finally, the set of zeros of (A, B, C, D) can be shown to be equal to a(A +
BF "1)/), for any F such that (A + BF)’I2 c_ l; and (C + DF)) 0. Here,
A + BF[;/Tt is the quotient map of A + BFI; modulo 7 (see, e.g., [19]).

3. The discrete-time H2 problem: No zeros on the unit circle. In this sec-
tion we shall consider the discrete-time H2 problem. Consider the finite-dimensional,
linear, time-invariant, discrete-time system Ydis given by the equations

XkA-1 Axk + Buk + Edk,
(3.1) Yk Clxk + Dldk

z Cx + Du

There will be no assumptions on the direct feedthrough matrices D1 and D2. In the
present section, however, we will have assumptions on the absence of system zeros
on the unit circle in the complex plane: it will be assumed that (A,B, C2,D.) and
(A, E, C1, D1) do not have zeros on the unit circle Izl 1. In the next section we will
drop these assumptions and treat the completely general case. Of course, it will be a

standing assumption that (A, B) is stabilizable and that (C1, A) is detectable, both
with respect to the open unit disc.

We will consider discrete-time controllers Fdis given by (2.8). For any internally
stabilizing controller Fdis, let Jrdis(Fdis) be its H2 performance. Denote by J* the
optimal performance, i.e., the infimum over all internally stabilizing controllers Fdis.

For a given matrix M, we will denote by M+ its Moore-Penrose inverse. The
solution of the discrete-time H2 optimal control problem centers around the following
two algebraic Riccati equations:

(3.2) P ATPA + CC2 (CD2 + ATpB)(DD2 + BTpB)+(DC2 + BTpA),

(3.3) Q AQAT + EET (AQC + EDf)(DIDf + C1QC)+(DIET + C1QAT).
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For any real symmetric matrix P, we shall denote

(3.4) DR := (DD2 + BPB) 1/2

(3.5) Cp :-= D D(2C2+BPA)

Note that, since for any matrix M >_ 0 we have (M1/2)+ (M+)1/2, we have D+pCp
(DD2 + BTPB)+(DC2 + BTPA). If, in addition, P is a real symmetric solution of
(3.2), then C,Cp AwPA-P+CC2. Note also that Dp is symmetric by definition.
Finally, since im (DC2 + BwPA) C im DR, we have DpCp DC2 + BwPA. (Note
that it is a property of the Moore-Penrose inverse that MM+ is the orthogonal
projection onto im M.)

The following is a corrected and slightly extended version of a theorem from [14].
A proof can be given along the lines of the proof of [14, Thm. 18].

THEOREM 3.1. Consider the system (A,B, C2, D2) together with the algebraic
Riccati equation (3.2). The following two statements are equivalent

(i) (A,B) is stabilizable and (A,B, C2, D2) has no zeros on the unit circle Izl
1,

(ii) Equation (3.2) has a real symmetric solution P with the following property:
there exists a matrix F such that

(3.6) la(A- BDCp + B(I- D+pDp)F)] < 1.

Furthermore, if P satisfies this condition, it is the unique real symmetric solution

of (3.2) for which this condition holds. In addition, P is positive semidefinite and is
in fact the largest real symmetric solution of (3.2).

Next we consider the dual algebraic Riccati equation (3.3). For any real symmetric
matrix Q, denote

(3.7) DQ (D1D + C1QC)1/2,

(3.8) EQ := (AQC + ED)D.
By dualizing the previous theorem, the corresponding result on the Riccati equation
(3.3) can be found:

THEOREM 3.2. Consider the system (A, E, CI DI together with the algebraic
Riccati equation (3.3). The following two statements are equivalent:

(i) (C, A) is detectable and (A, E, C, D) has no zeros on the unit circle Iz
1o

(ii) Equation (3.3) has a real symmetric solution Q with the following property:
there exists a matrix K1 such that

(3.9) I(A- EQDC + KI(I- DQD)C) < 1.

Furthermore, if Q satisfies this condition, it is the unique real symmetric solution

of (3.3) for which this condition holds. In addition, Q is positive semidefinite and is

in fact the largest real symmetric solution of (3.3).
In the remainder of this section we will always denote by P and Q the largest

real symmetric solution of (3.2) and (3.3), respectively. Now we will state the main
result of this section:

THEOREM 3.3. Consider the system (3.1). Assume that (A, B) is stabilizable and
(C,A) is detectable. Assume that (A,B, C2, D2) and (A,E, C1,D) have no zeros on
the unit circle. Then we have the following:
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(i)

(3.10) J* tr (ETPE) + tr (CpQC) tr ((DpN*DQ)(DpN*DQ)T),

where N* is defined by

(3.11) N* "= -(D+p)2(DpCpQC + BPED)(D)2.

(ii) There exists an optimal controller, i.e., an internally stabilizing controller

Fi such that JEdis (Fis) J*. One such optimal controller is given by the following
"construction"
(a) Choose a state feedback matrix F such that la(A+ BF)I < 1 and Cp +DpF O.
(b) Choose an output injection matrixG such that la(A+GC1)I < 1 and EQ+GDQ

O.
(c) Define Fi (K*,L*,M*,N*) by choosing N* given by (3.11), and by choosing

K* := A + BF + GC1 BN*CI, L* := BN* G, and M* := F- N’C1.
In the remainder of this section we shall prove this theorem. In addition to the

system -]dis, consider the system dis,P given by the equations

Xk+l-- Axk + Buk + Edk,
(3.12) Yk Cxk + Dda,

zk Cpxk + Dpuk

with P the largest real symmetric solution of the algebraic Riccati equation (3.2).
The following basic lemma can be proven by a standard completion-of-the-squares
argument:

LEMMA 3.4. For every compensator ldis (K,L, M,N) we have [’dis internally
stabilizes dis if and only if Fdis internally stabilizes -]dis,P. For any such compensator
we have

(3.13) Jdis(Fdis) tr (EPE) + 2tr (DNBPE)+ Js. (rdis).

In addition to ]dis,P we consider the system Edis,P,Q defined by

(3.14)
Xk+l Axe + Bua + EQdk,
yk Cxk + DQdk,
zk Cpxk + Dpuk

with Q the largest real symmetric solution of the dual algebraic Riccati equation (3.3).
It is clear that the H2 performance of a given compensator Fdis applied to Edis is equal
to the H2 performance of the dual compensator Fis := (KT, M, L, N) applied to
the dual system EiS. By applying Lemma 3.4 to the dual system E and the dualdis,P

compensator Fi we thus arrive at the following theorem:
THEOREM 3.5. For every compensator Fdi (K,L,M,N) we have: Fdis in-

ternally stabilizes Edis if and only if Fdis internally stabilizes :Edis,P,Q. For any such
compensator we have

JEi (Fdis) tr (ETPE) + tr (CpQC) + 2tr (DNVBPE)

+ 2tr (CpQCNDp) + JE,s.,Q (rdis).

Now note that in the above formula the first two terms do not depend on the
compensator Idis The remaining three terms do depend on the compensator. Also
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note that in the closed-loop system Edis,P,Q Fdi the direct feedthrough matrix from
the disturbance input to the output to be controlled is equal to DpNDQ. As a
consequence, Jr.a,,p,Q (Fdis) _> tr ((DpNDQ)(DpNDQ)T), with equality if and only
if the transfer matrix GP,Q,rais (z) of the closed-loop system dis,P,Q Fdis is equal to
the constant matrix DpNDQ. It thus follows immediately from Theorem 3.5 that

LEMMA 3.6. For every internally stabilizing compensator [’dis (K, L, M, N) we
have

Ja,(rdis) _> tr (ETPE) + tr (CpQC,)+ 2tr (DNTBPE)

+ 2tr (CpQCNTDp)+ tr ((DpNDQ)(DpNDQ)T),

with equality if and only if GP,Q,ris (z) DpNDQ.
This lemma shows that, in order to minimize JY]dis ([’dis) over all internally stabi-

lizing compensators, we should do the following:
(i) First minimize the quadratic matrix function

(3.15) (N) := 2tr (DNBPE)+ 2tr (CpQCNDp)

+ tr ((DpNDQ)(DpNDQ)),

yielding an optimal N*.
(ii) Next find a compensator Fis, described by the quadruple (K*, L*, M*, N*),

that is internally stabilizing and yields Gp,Q,r: (z) DpN*DQ, i.e., the closed-loop
system -dis,P,Q Fi has the constant transfer matrix DpN*DQ.
Indeed, if N* minimizes (N) and if Gp,Q,ri (z) DpN*DQ, then we have

JY]dis ([’{is) tr (ETPE) + tr (CpQC) + O(N*),

while for any internally stabilizing compensator [’dis (K, L, M, N) we have

JY]dis (rdis)> tr (EPE) + tr (CpQC) + O(N) > tr (EPE) + tr (CpQC) + O(N*).

This clearly implies that

J* tr (EPE) + tr (CpQC) + (N*)

and that

Jra (ris) J*.

We will first study the minimization of (I)(N).
LEMMA 3.7. Let ((N) be defined by (3.15). Define

R* := D(DpCpQC + BPED)D.
Then

(I)* min{(N) N IRmxp} -tr (R*R*r).

N minimizes p, i.e., (I)(N) (I)*, if and only if N is a solution to the linear equation
DpNDQ -R*. One particular solution of this linear equation is given by N*
-D+pR*D. We have (I)* -tr ((DpN*DQ)(DpN*DQ)).
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Proof. Using the facts that

ker DQ C ker (DpCpQC + BTPED),
im DR D im (DpCpQC + BTPED),

it can be shown by straightforward calculation that

q)(N) -tr (R*R*T) + tr ((DpNDQ + R*)(DpNDQ + R*)).

The equation DpNDQ -R* has a solution since ker DQ kerD kerD
ker R* and im Dp im D im DR+ Dim R*. Clearly, one particular solution is
then given by N* -D+pR*D. Finally, the expression for (I)* can be checked in a

straightforward manner.
Next we study the question whether, starting with N* above, it is possible to find

K*, L*, M* such that the resulting compensator ri (K*, L*, M*,N*) yields a

closed-loop system 2dis,P,Q I’i with constant transfer matrix DpN*DQ. We will
first prove the following lemma:

LEMMA 3.8. Assume that (A,B) is stabilizable and that (A,B, C2, D2) has no
zeros on the unit circle. Let P be the largest real symmetric solution of the algebraic
Riccati equation (3.2). There exists a matrix F such that

(i) Ia(A + BF)I < 1,
(ii) Cp nt- DpF O.

Proof. Let F1 be such that (3.6) holds, and define F -DCp+(I-D+pDp)F1.
Then (i) is satisfied. To prove (ii), note that im Cp C im DR+ im DR. Consequently,
-DpD+pCp ---Cp, which proves (ii).

We will also need the dual of this lemma, which reads as follows:
LEMMA 3.9. Assume that (C1,A) is detectable and that (A,E, C1,D1) has no

zeros on the unit circle. Let Q be the largest real symmetric solution of the dual
algebraic Riccati equation (3.3). There exists a matrix G such that

(i) la(A + GCI)I < 1,
(ii) EQ + GDQ =0.
Now we show that by suitable choice of compensator [’dis, the transfer matrix of

dis,P,Q Idis can be made equal to any constant matrix product M1/2, as long as

im Dp C im M1 and ker DQ C ker M2.
LEMMA 3.10. Consider the system (3.1). Assume that (A,B) is stabilizable

and (C1, A) is detectable. Assume that (A, B, C2, n2) and (A, E, CI, D) have no
zeros on the unit circle. Let P and Q be the largest real symmetric solution of the
algebraic Riccati equation (3.2) and (3.3), respectively. Then for any pair of matrices

M, M2 such that the product M1M2 is defined and such that im Dp c im M1 and
.ker DQ C ker M2 there exists an internally stabilizing compensator Fdis such that the

transfer matrix of Edis,g,Q x Fdis is equal to the constant MM2.
Specifically, for given M and M2 let F2 be a solution of MI DpF2 and G2

be a solution of M2 -G2DQ and take F such that the conditions in Lemma 3.8
are satisfied and G such that the conditions of Lemma 3.9 are satisfied. Then the
compensator Fdis := (K,L,M,N) with K := A + BF + GC + BF2G.C, L :=

-BF2G2 G, M := F + F.G2CI, and N := -F2G2 satisfies the requirements.

Proof. The equations of the compensator are given by (2.8). Using the specifica-
tions of K, L, M, and N given above, we find that the error ek := wk xk satisfies

ek+ (A + GC1)ek. Thus, if wo 0 and xo 0, we have xk Wk for all k. In par-
ticular, this implies that uk Fxk + F2M2wk. The output of the closed-loop system
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is then equal to zk Cpxk + Dpuk M1M2wk. This implies that the closed-loop
transfer matrix is equal to the constant matrix M1M2. Finally, the spectrum of the
closed-loop system matrix Ae is easily shown to be equal to a(A + BF) t2 a(A + GCI).
This implies that the closed-loop system is internally stable. 1

Clearly, if in this lemma we take M Dp and M2 N*DQ, we arrive at an
internally stabilizing compensator Fdi such that the closed-loop transfer matrix is
equal to the constant matrix DpN*DQ. In the formulas for the compensator as given
in the lemma, we should then take F2 I and G2 -N*. The result of Theorem
3.3 follows immediately by combining the above lemmas.

Remark 3.11. For later use we note that Lemma 3.8 also provides a resolution
of the discrete-time linear quadratic problem for the case that (A, B, C2, D2) has no
zeros on the unit circle (see also [14]). Given x+ Ax + Bu, the problem is to
minimize the cost-functional J(xo, u) := -k II(C2xk+D2ukll 2 over all inputs u {uk}
such that xk - 0. It was pointed out in [14] that for each such input u we have the
completion-of-the-squares formula J(xo, u) x"Pxo + Jp(xo, u), with Jp(xo, u) :=

-k IICpxk+Dpukll 2" Thus, if we take F satisfying (i) and (ii) of Lemma 3.8, then the
input uk Fxk leads to the optimal cost J*(xo) xPxo. Note that we could also
formulate the linear quadratic problem as a minimization over all internally stabilizing
feedback laws: minimize the cost-functional J(xo, F) := -k II(Cp + DpF)xklI 2 over
all F E ]amxn such that la(A + BF)I < 1. By the above argument, any F satisfying
(i) and (ii) of Lemma 3.8 is then optimal and the optimal cost is again given by
xPxo.

Remark 3.12. An interesting question is under what conditions the Moore-
Penrose inverse (DD2 + BTPB)+ reduces to the inverse (DD2 + BTPB)-1, equiv-
alently, under what conditions DD2 + BPB is positive definite. Using the ideas
from [14] it can be shown that if P is a positive semidefinite solution of the algebraic
Riccati equation (3.2), then DD2 + BPB > 0 if and only if (A,B, C2, D2) is a
left-invertible system. Of course, dually, if Q is a positive semidefinite solution of the
algebraic Riccati equation (3.3), then DID + CIQC > 0 if and only if the system
(A, E, C1, D1) is right-invertible. In view of this, it is perhaps more natural to call
the discrete-time H2 problem regular if (A, B, C2, D2) is a left-invertible system and
(A, E, C, D) is a right-invertible system.

4. The discrete-time H2 problem: The general case. In this section we
will extend the results of the previous section and treat the discrete-time H2 problem
in its full generality. This means that we will drop the assumption on the absence of
zeros on the unit circle that was made in the previous section. First we will prove
that also without the assumption that (A, B, C2, D2) has no zeros on the unit circle,
the Riccati equation (3.2) has a largest real symmetric solution. We will prove that
this solution can be obtained as the limit of solutions of algebraic Riccati equations
associated with suitable perturbations of the system (A, B, C2, D2).

THEOREM 4.1. If (A,B) is stabilizable, then the Riccati equation (3.2) has a
largest real symmetric solution, say P. P is positive semidefinite. We have P
lime0 Pe, where for > 0 Pe is the largest real symmetric solution of the algebraic
Riccati equation

(4.1)
APeA Pe + CC2 + 2I

-(ArPB + CD2)(DD2 + BTPB)+(BrPA + DC2) O.
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Remark 4.2. Note that (4.1) is the Riccati equation associated with the perturbed
system (A, B, I ). (Here, I denotes the n n identity matrix, and 0 denotes

the n rn zero matrix). For > 0, the perturbed system has no zeros. Consequently,
the existence of P follows from Theorem 3.1.

The idea of the proof of Theorem 4.1 is to show first that the Pe indeed converge
to some matrix P and next to show that P satisfies (3.2). The difficulty is that in the
general case we are considering, the term DD2 + BTPB need not be invertible, so
that we cannot conclude that (DD2+BTPeB)+ converges to (DD2 +BTPB)+. We
will show, however, that we can get around this difficulty by considering the so-called
linear matrix inequality. Our proof is split up in three lemmas. In the following, let
J(xo, u) be the cost-functional of the linear quadratic problem, and let J*(xo) be the
optimal cost (see Remark 3.11).

LEMMA 4.3. Let P be the largest real symmetric solution of (4.1). There exists
a real positive semidefinite matrix P such that Pe P ( 0). For all xo E IR’ we
have J*(xo) xPxo.

Proof. Let J(x0, u) := --k [[Cgxk + Dpuk[[ 2 + 2[[xk[[2, and let J(xo) be the
infimum of J(xo, u) over all u such that xk --+ O. According to Remark 3.11 we have
J(xo) xPxo. From this interpretation it follows that P is monotonically non-

increasing as $ 0. Being bounded from below by 0, this yields the existence of a limit
P. Obviously, for all > 0 we have J*(xo) <_ J;(xo) xPxo, so J*(xo) <_ xPxo.
Conversely, for all > 0 and for all u we have J(xo, u) >_ xPxo. Taking the limit
on both sides this yields J(xo, u) >_ xPxo for all u Taking the infimum over u then
yields the converse inequality.

LEMMA 4.4. P is the largest real symmetric solution of the linear matrix inequal-
ity

ATPA- P + CC2M(P) "=
DC2 + BTpA

CfD2 -t- ATPB ’ > O.
DD2 + BTPB ]

Proof. Denote the left-hand side of (4.1) by Rs(P).
matrix inequality associated with the perturbed system"

Also consider the linear

( ArpA P. + CC2 + 2IM(P DC2 + BrpA
CD2 + ATpB )DD2 + BTpB

Z O.

We have Me(Pe) >_ 0 if and only if R(Ps) >_ O. This follows from the fact that the
latter is equal to the Schur complement of DD2 + BTPB in Me(P). The Schur
complement is defined here with matrix inverse replaced by Moore-Penrose inverse.
This can be done because of the fact that

ker( TDD2 2 + BTPB) c ker(C2TD2 + ATPB)
Since R(Pe) 0, we indeed have Me(P) >_ O. Taking the limit e $ 0 then yields
M(P) >_ 0. To show that P is the largest real symmetric solution, let P1 be any real
symmetric solution of the linear matrix inequality. Using a standard completion-of-
the-squares argument then yields J(xo, u) >_ xPxo for any x0 and any u such that
xk --* O. Taking the infimum over all such u yields xPxo J*(xo) >_ xPxo. 0

Now we will show that P in fact satisfies the algebraic Riccati equation (3.2).
Denote

R(P) ATpA- P + CC2 -(CfD2 + ArPB)(DD2 + BTpB)+(DC2 + BTp).
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Again, by the fact that ker(DD2 + BTPB) C ker(CD2 + ATPB), R(P) is equal to
the Schur complement of DD2 + BPB in M(P). In particular this implies that

rank M(P) rank (DD2 + BPB) + rank R(P).

In order to prove that R(P) 0 we should therefore prove that P has the property
expressed in the following lemma:

LEMMA 4.5. rank M(P) rank (DD2 + BPB).
Proof. Let 0 and/) be matrices such that

).
Again using a standard completion-of-the-squares argument, for any initial state x0
and for any input sequence u such that xk -- 0 we have

(4.2) J(xo, u) xPxo + E IIxk + [9u112 >- xxo + 115Pxo +/)uoll 2

k

From Lemma 4.3 we have that J*xo) xPxo. In particular this implies that the
infimum of II0xo +/)uoll 2 over all u0 E IR is equal to 0. Consequently, for all xo
there exists uo E IPtm such that 0xo +/)uo 0. This implies im C im/) so

rankM(P)=rank /) )-rank/)-rank(DD2+BTPB). [1

Clearly, the proof of Theorem 4.1 follows by combining these three lemmas. The
fact that P is the largest real symmetric solution of the algebraic Riccati equation
follows by noting that any real symmetric solution is also a solution of the linear
matrix inequality and by applying Lemma 4.4.

Remark 4.6. For later use, note that by combining the above results with Re-
mark 3.11 we obtain that also for the general case the optimal cost J*(xo) of the
discrete-time linear quadratic problem associated with the system (A,B, C2, D2) is

given by J*(xo) x’Pxo, with P the largest real symmetric solution of the Riccati
equation (3.2). We will also need the dual result of Theorem 4.1, which is stated
below:

THEOREM 4.7. If (C1,A) is detectable, then the Riccati equation (3.3) has a

largest real symmetric solution, say Q. Q is positive sernidefinite. We have Q
lim0 Q, where for e > 0 Q is the largest real symmetric solution of the algebraic
Riccati equation

AQAT Q + EET + e2I
(4.3) -(AQC[ + ED:)(DID + CQeC:)+(CIQA + D1.E) O.

Now we are in a position to state the main results of this section. It turns out that
also for the discrete-time H2 problem in its full generality, so without any assumptions
on the zeros, the optimal performance J* is given by (3.10), with P and Q the largest
real symmetric solutions of the respective Riccati equations. However, in general
no optimal controller will exist. We will, however, derive necessary and sufficient
conditions for the existence of an optimal controller. Our first main result deals with
the optimal performance.

THEOREM 4.8. Consider the system (3.1). Assume that (A, B) is stabilizable and
(C1,A) is detectable. Then the optimal performance J* is given by (3.10), where P
and Q are the largest real symmetric solutions of (3.2) and (3.3), respectively.
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Proof. In addition to the system (3.1), consider its perturbation

Xk+l- Axk + Buk + (E I)vk,
(4.4) Yk Cxk + (D1 0)vk,

/

Let Jr,is (Idis) denote the H2 performance, and let J denote the optimal H perfor-
mance. Since, for > 0, neither (d, B, (cei), ())nor (A, (E I), Cl, (D1 0)) have

zeros; we can apply Theorem 3.3 to obtain

J tr ((EE + 2i)p) + tr (APA P + CC2 + 2I)Q)
-tr ((DpNDQ)(DpNDQ)),

where P and Q are the largest real symmetric solutions of (4.1) and (4.3), respec-
tively, and where Dp, N, and DQ are defined by (3.4), (3.11), and (3.7), with P
and Q replaced by P and Q. From Lemma 3.7, recall that

-tr ((DpNDQ,)(DpNDQ)T) (I)(N) min (I)(N),
N

with

(I)(N) "-2tr ( (Dol)’rNBP(E ’)) + 2tr (CpQCNrDp)

+ tr ((DpNDQ)(DpNDQ)r)
2tr (DNTBrPE)+ 2tr (QC(N(DC2 + BrPA))
+ tr ((DpNDQ)(DpNDQ)r).

Since P - P and Q - Q, we see that for every N we have Be(N) - (N) ( t 0),
where (N) is defined by (3.15). Since of course for all e > 0 we have J* _< J we
see that for all e > 0, for all N we have

J* < tr ((EEr + e2I)p) + tr ((ArPA P + CC2 + e2I)Q) + (I)(N).

Now, letting $ 0 on the left in this inequality, we find that for all N

J* _< tr (EErP) + tr ((ArpA P + CC2)Q) + ((N).

Finally, taking the minimum over all N, this yields

J* .<_ tr (EE’rp) + tr (CCpQ) tr ((DpN*DQ)(DpN*DQ)r).

.To prove the converse inequality note that by using the fact that P and Q satisfy
(3.2) and (3.3) we can apply a repeated completion-of-the-squares argument as in 3
to obtain that for any internally stabilizing compensator Fdis we have

(4.5) Jrais (rdis) >_ tr (ErpE) + tr (CpQC,) + ,(N*).

Taking the infimum over all such Fdis yields the desired inequality.
Next we will study the question: Under what conditions does there exist an

optimal controller? Again, let P and Q be the largest real symmetric solutions of
the respective Riccati equations. Define a system dis,P,Q by (3.14). Again, for any
internally stabilizing compensator Fdis (K, L, M, N) we have the inequality (4.5).
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As noted in 3, we have equality if N N* and Fdis has the property that the closed
loop system Edis,p,Q Fdis has the constant transfer matrix DpN*DQ. Of course, the
latter statement only gives a sufficient condition for a compensator to be optimal. In
the following theorem we will give necessary and sufficient conditions for optimality.
Let R* be as defined in Lemma 3.7.

THEOREM 4.9. A controller ldis is optimal if and only if dis,P,Q Fdis is
internally stable and has constant transfer matrix R*.

Proof. If Idis (t(, L, M, N) is optimal, then we have

JEdis (Fdis) tr (ErpE) + tr (CQCp) + *.

By Lemma 3.6 we also have

JEdis(Fdis) >_ tr (ETPE) + tr (CQCp) + ((N).

This clearly yields (N) *, i.e., N minimizes the function . Again by Lemma
3.6 this implies that dis,P,Q Fdis has the constant transfer matrix DpNDQ. How-
ever, since N minimizes (I), by Lemma 3.7 we have DpNDQ -R*. The converse
statement is also an immediate consequence of Lemma 3.6.

Our aim is to reformulate these conditions in terms of the original system Edit.
For any given matrix N E IRmp, consider the system EN that is obtained bydis,P,Q

Napplying to Edis,P,Q the static output feedback u Ny + v. This system Edis,P, is
described by

(4.6)
Xk+l (A + BNC1)xt + Bvk + (BND2 + EQ)dk
y Cx + Dd
zk (Cp + DpNC)xk + Dpvk

Also, for a given compensator Fdis (K,L,M,N), let Fi (K,L,M, 0) be the
compensator with direct feedthrough matrix N replaced by 0. It is clear that the
closed-loop system dis,P,q Fdis has constant transfer matrix DpNDQ if and only if
NY]’dis,P,Q Fis has transfer matrix equal to 0. Consequently, an internally stabilizing

compensator Fdis (K,L,M,N) is optimal if and only if DpNDQ -R* and
NY]dis,P,Q Fis has transfer matrix 0. In other words, in order to find necessary

and sufficient conditions for the existence of an optimal controller, we should study
the problem of disturbance decoupling with internal stability. This problem has been
studied extensively in [16]. One of the main results of[16] gives necessary and sufficient
conditions for the existence of an internally stabilizing strictly proper compensator

Fi for the system -]dis given by (3.1). We will briefly recall this result here. Given
Edis, let ]2g denote the largest subspace of ]Rn for which there exists F ]amxn such
that (A + BF)g C 2g, la(A + BF 2g)I < 1, and (C2 + D2F)2g 0. Dually, let
Sg be the smallest subspace of lRn for which there exists a matrix G ]Rnp such
that (A + GC1)Sg c qg, ]cr(A + Gel ]Rn/Sg)] < 1, and im (E + GD) C $g. It
was shown in [16, Thm. 2.4] that there exists an internally stabilizing compensator

Fi (K,L, M, 0) such that Edis Fis has transfer matrix 0 if and only if the
following conditions hold: (i) (A, B) is stabilizable and (C, A) is detectable, (ii) the
following four subspace inclusions hold: im E c 2g, Sg c ker C2, Sg c 2g, and

AS C 2.
NHere, we want to apply this result to the system dis,P,Q, with N any solution of

DpNDQ -R*. In the following, we will omit some of the details. Using the fact
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that im (Cp -" DpNC1) C im Dp, it can be shown that the subspace 9 associated
Nwith ]dis,P,Q is given by

(4.7) Vg Xg(A- BD+pCp) + (A- BD+pCp B ker DR},

where for a given matrix M, Xg(M) is the sum of the generalized eigenspaces of
M associated with its eigenvalues in Iz < 1, and where (M /:} is the smallest
M-invariant subspace contained in . It can also be shown, using the fact that
ker DQ C ker(BNDQ + EQ), that

(4.8) S9 Xb(A- EQDC1) N (C-lim DQ A- EQDCI),
where Xb(M) is the sum of the generalized eigenspaces of M associated with its
eigenvalues in Izl >_ 1 and where (1M} is the largest M-invariant subspace con-
taining . Using the fact that, from (4.7), B ker Dp C )g, it can be shown that
im (BNDQ + EQ) C V9 if and only if

(4.9) im (EQ BD+pR*) C

Using the fact that, by (4.8), 39 c C-im DQ, it can be shown that Sg c ker (Cp +
DpNC) if and only if

(4.10) ,Sg C ker (Cp R*DC).
Finally, it can be shown that (A + BNC)$g 9 if and only if

(4.11) (A- BD+pR*DC)Sg
Collecting the above facts, we then obtain the following necessary and sufficient con-
ditions for the existence of an optimal controller for the discrete-time H2 optimal
control problem associated with the system ]dis"

TttEOREM 4.10. Consider the system (3.1). Assume that (A,B) is stabilizable
and (C1,A) is detectable. Let P and Q be the largest real symmetric solution of
(3.2) and (3.3), respectively. Let g and Sg be given by (4.7) and (4.8). Then we
have: there exists an optimal controller, i.e., an internally stabilizing controller Fiis
(K*, n*, M*, Y*) such that Jd,s (Fis) g*, if and only if the four subspace inclusions
Sg C ]2g, (4.9), (4.10), and (4.11) are satisfied.

5. The sampled-data H2 problem. Now we return to the sampled-data H2
problem. Consider the continuous-time system E given by (2.3), and let A A be a
given sampling period. Let the discrete-time system EA be given by (2.4). According
to Theorem 2.1, the optimal sampled-data H2 performance J*,A is equal to

1 foZX foZX- ( ) 1tA T tAT(5.1) J,A

where Ja is the optimal discrete-time H2 performance associated with EA. Accord-
ing to Theorem 4.8, the optimal performance Ja can be found in terms of two alge-
braic Riccati equations associated with E. According to Theorem 4.10, an optimal
compensator Idis,A exists if and only if four subspace inclusions involving subspaces
associated with the system Ex are satisfied. According to Theorem 3.3, if the systems
(AA, BA, C,A,D2,A) and (AA,EA, C, 0) have no zeros on the unit circle, then an
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optimal compensator Fdis,A exists and can be calculated using the "construction" in
the statement of Theorem 3.3. The sampled-data controller F := HAFdis,ASzx is then
optimal for the sampled-data H2 problem under consideration.

In this section we study the following question: what are conditions in terms of
the original system E that guarantee that there exists an optimal compensator for
the sampled-data H2 problem? Instead of being completely general, we will study
the following question: what are necessary and sufficient conditions in terms of the
original system E such that (AA, BA, C2,A, D2,zx) and (Azx, EA, C1,0) have no zeros
on the unit circle? In the following, let T be the controllability subspace of the system
(A, B, C2, D2) (see 2). The main results of this section are the following:

THEOREM 5.1. Consider the system E. Let A > O.
(i) Let , be a zero of (AA, BA, C2,zx, D2,A), : 1. Then there exists a unob-

servable eigenvalue # of (C2, A) such that iX eA.
(ii) If (A,B, C2, D) is left-invertible, then also the converse of (i) holds: if # s

an unobservable eigenvalue of (C2, A), then ezx is a zero of (AA, Bzx,
(iii) 1 is a zero of (AA, Bzx, C.,zx, D.,zx) if and only if at least one of the following

two conditions hold:
(a) 0 is a zero of (A, B, C2, D2),
(b)

(5.2) 7 (kerC2 A}.

(iv) /f (A, B, C2, 02) is left-invertible, then 1 is a zero of (A/x, BA, C2,A, D2,A
if and only if 0 is a zero of (A, B, C2, D2).

COROLLARY 5.2. Consider the system E. Let A > O.
(i) If (C2, A) has no unobservable eigenvalues on the imaginary axis, 0 is not a

zero of (A, B, C2, D2), and T C (kerC2 A), then (AA, BA, C2,A, D2,A) has no zeros
on the unit circle.

(ii) If (A, B, C2, 02) is left-invertible, then (A/x, Bzx, C2,A, D2,A) has no zeros on
the unit circle if and only if (C2, A) has no unobservable eigenvalues on the imaginary
axis and 0 is not a zero of (A,B, C2, D2).

THEOREM 5.3. Consider the system E. Let A > O.
(i) Let ) be a zero of (AA,EA, C,0). Then there exists an uncontrollable ei-

genvalue # of (A, E) such that
(ii) /f (A,E, C1,0) is right-invertible, then also the converse of (i) holds; i.e., if

it is an uncontrollable eigenvalue of (A, E), then e"A is a zero of (AA, EA, C, 0).
COROLLARY 5.4. Consider the system E. Let A > O. If (A,E) has no un-

controllable eigenvalues on the imaginary axis, then (AA,EA, C1,0) has no zeros on
the unit circle. If, in addition, (A,E, C, O) is right-invertible, then also the converse
holds: (A/x,EA, C1,0) has no zeros on the unit circle if and only if (A,E) has no
uncontrollable eigenvalues on the imaginary axis.

Note that the conditions on E obtained in these theorems are independent of the
sampling period. In the remainder of this section we shall prove these results.

In order to study the zeros of (A, B, C2, D2) and (AA,Bzx, C2./, D2,A), consider
the system matrices of these systems. Let

( zI-Azx -BA ) p(s)._( sI-A
Pzx (z) :=

C2,zx D2,/x

Recall that .A is a zero of (Azx, BA, C2,zx, D2,A) ifand only if the rank of the complex
matrix Pzx(,) is less than the normal rank of PA (see 2). In order to find out in
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which points A this happens, we will study for A E C the subspace

l) := ker PA (/k) C 6n4"m

Clearly, for all A we have dim l; n + m- rank PA(A). Consequently, for M1 but
finitely many A we have dimP d, where

d := n + m- normrank PA.

Hence, A is a zero of (A, BA, C2,A, D2,A) if and only if dim > d. In the following
lemma we will calculate for each A the subspace , its dimension dim Y, and the
number d. Denote the unobservable subspace (ker C2 A} by . Define a subspace
W as follows:

(5.3) := B- ker D2.

LEMMA 5.5. For every C, 1 we have

(5.4) Y=(ffzW)ker( AI-A B ),

(5.5) dimF dim + dimW dim((AI AA) + BAW).

For all but finitely many we have dimP d dim W, equivalently, normrank P
n + m- dim W. In addition we have

(g.6) Vl ker C D

ro4 we wi first prove (g.4). We know (o) if and only if

(5.7) Axo + Buo xo,
(5.8) C,xo + D,uo O.

Consider the differential equation 2(t) Ax(t) + Buo, x(0) x0; and define z(t):=
Cx(t) + Duo. Clearly, x(A) Axo + Buo, so (5.7) is equivalent to x(A) x0.
In turn, this is equivalent to

(5.9) (- 1)x0 edt(Axo + Buo)dt.

Using the definition (2.6) of C2,a and D2,A, we see that (5.8) is equivalent to

(C D)et(x =0 forallt [O,A],

which, in turn, is equivMent to z(t) 0 for all t [0, A]. Obviously,

z(t) Ceatzo + C eaBds + D o.

Since z(t) 0 for all t e [0, ] is satisfied if and only if z(0) 0 and (t) 0 for all
t [0, ], we find that (.8) is equivalent to

Czo+Do=0 and Ceat(Azo+Bo)=O, t[0,].
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In other words (5.8) is satisfied if and only if

(5.10) C2xo + D2uo 0 and Axo + Buo

Now assume that A : 1. Then (5.9) and (5.10) imply that x0 EAf c kerC2, so

u0 kerD2. Also it follows that Axo Af, so Buo Af and, in fact, u0 W.
We conclude that, for ,k 1, C (Af W) V ker AI A/x B/x ). To prove the
converse inclusion, note that u0 E W implies that D2uo 0 and Buo A/’. If, in
addition, x0 Af, then we have C2xo + D2uo 0 and Axo + Buo Af. By the above
this is equivalent to (5.8). This completes the proof of (5.4).

To prove (5.5), note that, in general, if is a subspace of some finite-dimensional
linear space X’ and if T is a linear map acting on X’, then we have dim( N ker T)
dim- dim T.. Applying this to the situation at hand, we find that for any A : 1
we have

dim2 dim(A/" x 142) -dim(M- Azx Bzx)(Af W),

which immediately yields (5.5).
Next, we will prove the statement on the dimension of 2. First note that since

Af is A-invariant, it is also eAt-invariant, for any t. In particular, this implies that
is A/x-invariant and invariant under foa eAtdt. Now assume that ,k a(A/x). Then
we have (AI- A/x)Af Af. Also, since BW C Af, we have BaT CAf. This implies
that (M A/x)Af + B/xW Af. If, in addition, we assume that A : 1, then (5.5)
yields dim ]d dim

Finally, to prove (5.6), recall that (5.7) is equivalent to (5.9). Note that for all

A > O, foa eAtdt is a nonsingular matrix (this can be shown using the Jordan form
of A). Thus, for the case that ,k 1 (5.9) is equivalent to Axo + Buo 0. Together
with the fact that (5.8) is equivalent to (5.10), this proves (5.6).

By applying this lemma, we are now able to prove the statements (i) and (ii) of
Theorem 5.1:

Proof of Theorem 5.1 (i) and (ii). (i) Assume that 1 is a zero of
C2,/x, D2,/x). Then we must have dim > dim W. Using (5.5) this implies

(5.11) dimAf > dim((AI Aa)A/" + BAT).

As noted in the proof of Lemma 5.5, Jr" is AA-invariant and BxW CAf. Consequently,

Together with the inequality (5.11), this implies that (/kI-Aa)Af is a strict subspace
of A/’. This implies that the map (AI- Azx) restricted to Af is singular. Thus,
ker(AI-Azx) CAf J= 0. Clearly, this intersection is A-invariant, so the restriction of A
to this intersection has an eigenvalue, say #, with corresponding eigenvector p. This
eigenvector satisfies A/xp p. Also, since Ap #p, we have A/p ep, so ,k e.
Finally, p A/" c ker C2, so # is an unobservable eigenvalue of (C2, A).

(ii) We claim that if (A,B, C2,D2) is left-invertible, then dim142 0. Indeed,

left-invertibility is equivalent to the conditions (DB2)is injective and FVB ker D2 0,

where denotes the weakly unobservable subspace associated with (A, B, C2, D2) (see
2). Assume that uo E W. Then we have D2uo 0 and Buo A/’. Since AFc ]d, this
yields Buo 0. Combining this with D2uo 0 then leads to uo 0. This proves our
claim. Now let # be a unobservable eigenvalue of (C2, A). There exists xo : 0 such
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that Axo #xo and C2xo O. This yields A/xxo Axo, with A e/, From the
definition of C2,A it is also easily seen that C2,/xxo O. Consequently, (Xo E )2, so

dim > 0 dim W. This implies that A is a zero of (AA, BA, C2,A, D2,A).
In order to prove statements (iii) and (iv) of Theorem 5.1, we need the following

lemma.
LEMMA 5.6. Let A > O. Then we have

(5.12) normrank PA k normrank P,

with equality if and only if c .
Proo For each A a(A) define a subspace x by

{(x0), x0
u0

Clearly, C ker P(A) and dim dim. Consequently, for each a(A) we
have dim dimkerP(A). This implies normrank P n+m-dim. The
inequality (5.12) then follows from Lemma 5.5.

Of course, normrank PA normrank P if and only if dim ker P(A) dim for
M1 but finitely mny , which in turn, is equivalent to ker P(A) for all but
finitely many A, A a(A). We will prove that the latter statement is equivalent to

Le := dm, and le be dine complex number,
such that kerP(Ai) . There exists F mxn such that (A + BF) C

(C+D2F) O, and a(A+BF ) {A1, A}. Let xx, xa be
corresponding eigenvectors of A+BF[. Then {Xl,... ,xa} is a basis of. We will

that xi . Indeed, define ui -Fxi. Then ( ker P(Ai)= . Sinceprove
]ui

ui , we have Bui , so xi -(AiI- A)-IBui by A-invariance of . We
conclude that xi , so C .

Conversely, assume that C . It suffices to show that ker P(A) C for all
but finitely many A. Let A be arbitrary, A a(A), and A not a zero of (A, B, C2, D2).
Let (o)0 ker P(A). We will prove that xo , so xo . Assume that xo 0.

Let F mx be such that Fxo to. Then we have (A+BF)xo Axo and
(C + D2F)xo 0. This implies Xo , the weakly unobservable subspace associated
with the system (A, B, C2, D). (Indeed, the one-dimensional subspace spanned by
the vector xo has the property that (A + BF) C E and (C + D2F) 0 and so
must be contained in , the largest subspace for which such F exists.) By extending
the linear map F to the whole subspace , we obtain that (A + BF)P C and
(C2+D2F)F 0, so A a(A+BF ). We have assumed that A is not azero.
This implies h a(A + BF /R) (the latter spectrum is equal to the set of zeros of
(A, B, C2, D2); see [19]). But then we must have xo . This implies that xo
Now (AI- A)xo Buo 0, so Buo . This implies that uo . For A a(A)
this then yields xo . This completes the proof of the lemma.

Proof of Theorem 5.1 (iii) and (iv). (iii) We will prove that 1 is not a zero of
the system (AA, B, C2,, D2,) if and only if 0 is not a zero of (A, B, C2, D2) nd
normrank P normrank PA. Clearly, 1 is not a zero of (A, BA, C,A, D2,A) if and
only if dim n+m-normrank PA. By (5.6) we have dim1
n + m normrank P, with strict inequality if and only if 0 is a zero of (A, B, C2, D2).
Combining these facts proves our claim. The proof of (iii) is then completed by
applying Lemma 5.6.
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(iv) If (A, B, C2, D2) is left-invertible, then 7 0. In that case condition (5.2) is
never satisfied.

In order to study the zeros of (A/x, E/x, C, 0), consider the system matrix of this
system. Let

Qa (z) ( zI
C

As before, A is a zero of (A/x, E/x, C1,0) if and only if the rank of the complex matrix
Q/+/-(A) is less than the normal rank of Q/x (see 2). In order to find out in which
points this happens, we will study for A E the subspace

W (im Q/x(,))+/- c C+v.
For all we have dim ]/Ya n + p- rank QA (A). Consequently, for all but finitely
many/ we have dim ]/Y dl, where

d := n + p- normrank Q/x.

Hence, A is a zero of (A/x, E/x, C1,0) if and only if dimV > d. The following lemma
calculates for each A the subspace /Y, its dimension dim ]/Y, and the number d.
Let A//"= {Alim E}, the reachable subspace of (A, E).

LEMMA 5.7. Let A > O. Then we have

1/V,-- (M+/- x (C)-IM+/-)Vker( ,kI-Ax C ),

(5.13) dim 1/Vx dimM+/- + dim(C)-lM+/-

dim((M A)M" + C(C)-IM’).

For all but finitely many we have dim 42 dl dim(C)-M+/-, equivalently,

normrank Q/x n + p dim(C)-1M+/-.

Proof. By definition, (x0)y0 E ]/Y if and only if

(5.14) (AI AX)xo + Cyo O and xE/x O.

Since, by definition, im Ezx M, we see that it suffices to show that (5.14) implies
y0 G (cr)-IM+/-o From the fact that AJ +/- is AT-invariant it follows that A/ +/- is Ax-
invariant, so Cyo J4 +/-. The statement (5.13) on the dimension of 1/Y follows in
the same way as the corresponding statement in the previous lemma.

Now let /k be any complex number such that A a(A). Since J4 +/- is Ax-
invariant, we then have (I- A)M+/- M+/-. Also we have C(C)-IM+/- c M+/-

(no equality!). Thus, for such we have dim 1/Y dim(C)-IM+/-.
We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let A be a zero of (A/x, E/x, C1,0). Then we have dim ]/Y >
dim(C)-M+/-. Consequently, by (5.13), dimM+/- > dim((M- A)M+/-+
C(C)-IM+/-). In particular, this implies that (I- A)AJ+/- is a strict subspace of
jI +/-, so ker(AI- Ax g A/I +/- :/: 0. This subspace is AT-invariant, so there exist/, and
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x0 E A/f +/-, x0 - 0, such that ATxo #xo, AXo Axo, and x0 E A/t +/-. Obviously,
this implies/k et’A, and # is an uncontrollable eigenvalue of (A, E).

Assume that (A, E, C1,0) is right-invertible. Let

Q(s) ( sI- -E

be the system matrix. We have normrank Q n+p. We claim that also normrank Q
n +p. Indeed, assume that y0 - 0 is an element of (Cr)-lM+/-. For A a(AT), define
X0 (,I- AT)-1 TC1 y0. Then x0 G AA +/- and we have (x y)Q(k) (0 0). Thus,
for all but finitely many A we have rank Q(/k) < n +p, which is a contradiction. Hence
we must have (Cr)-1M+/- 0.

It follows that A is a zero if and only ifW : 0. Assume that # is an uncontrollable
eigenvalue of (A, E). Then there exists x0 - 0, x0 M+/-, such that xA #xo.

T TDefine A e"A. Then we have xoEA 0 and x(/kI- AA) 0. It follows that

(o) Wx, so ) is a zero of (AA, EA, Cl, O).

6. Performance recovery and convergence of optimal performance. In
this section we study the connection between the ’ordinary’ continuous-time H2 pro-
blem and the sampled-data H2 problem. In particular, we are interested in the fol-
lowing questions:

Suppose that we control the system E by means of an internally stabilizing
continuous-time compensator Fcon, yielding continuous-time H2 performance
JE(Fcon). Is it possible to recover this performance asymptotically by us-
ing a sampled-data controller with sufficiently small sampling period? More
precisely, is it true that for all e > 0 there exists A > 0 and an intern-
ally stabilizing sampled-data controller F with sampling-period A such that
IJr,(rcon)- Jr,,(r)l < ?
Does the optional sampled-data H2 performance converge to the optimal
continuous-time H2 performance as the sampling period A decreases to zero?
More precisely, suppose that J,con is the optimal continuous-time H2 per-
formance associated with the system E and, as before, denote the optimal
sampled-data H2 performance by J,A. Is it true that limA,0 J,A J,co*"The first question above was studied before in [6, Thm. 4] using a different definition

of H2 performance and for the H performance criterion [6, Thm. 5]. In this section
we will show that both questions have an affirmative answer.

Let E be given by (2.2). If the system E is controlled by a continuous-time
compensator Fcon given by the equations

(v(t) Rw(t) + Ly(t)
+

with w(t) IRt, then the associated closed-loop system E x Fcon is given by

5c(t) Ax(t) + Ey(t)
z(t) Cx(t)

with

LC [( E :=
0 Ce C2 -t- D2C1
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If Fcon is internally stabilizing, i.e., a(Ae) C C-, then the H2 performance of the
closed-loop system E Fcon is equal to

Jz(Fcon) tr (EePE[),

where P is the unique solution of the Lyapunov equation

(6.2) AP+PeA+
On the other hand, if the system E is controlled by the sampled-data controller
F HAFdisSA, with Fdis given by (2.8), then the discrete-time closed-loop system
EA Fdis is given by the equations

Xe,k+l Ae,AXe,k Ee,iyk
Zk Ce,A Xe,k

with

A/x + B/xNC1A,I LC1 )K E,A :=

Ce,A :: C2,A + D2,ANC1 Dg.,AM ).

If r is internally stabilizing, equivalently la(A,A)I < 1, then the H2 performance of
the closed-loop system E x F is given by

1/0(6.3) JZ,A (r) ( ) 1
tr c2etAEEwetAWcf dt ds + tr

where P,A is the unique solution of the Lyapunov equation

(6.4) W TA,AP,AA,A P,A + C,AC,A O.

The following theorem shows that our first question above indeed has an affirmative
answer:

THEOREM 6.1. Let Fcon be an internally stabilizing continuous-time compensator.
For any A > 0 define a discrete-time controller Fdis by Fdis :-- SAI-’conHA, and let

FA := HAFdisSA be the corresponding sampled-data controller with sampling period
A. Then we have that there exists A1 > 0 such that for all A

_
Z with 0 < A < A1,

FA is internally stabilizing. Furthermore,

Jz,A(r/\)--+ J(Fcon) (A ,!. 0).

Proof. It is easily verified that I’dis := SAFconHA is described by the equations

Wk+l KAwk + LAYk
uk Mwk + Nyk,

with KA eRA and LA .= oAj eRtdt" Thus we have

AeA= ( AA + BANC1 BAM )LAC1 KA
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Note that A,A -- I, the (n + t) (n + t) identity matrix, and that (A,A- I) A
(A i 0). Now we will first show that for A sufficiently small we have la(Ae,A)l < 1.

TSince A is stable, there exists Q > 0 such that AQ + QA < 0. Now note that

11 (A,/xQA,A Q) -1 (A:,A I)QA,A + Q-(A,/x I).

Since the right-hand term converges to AQ + QA < 0, for A sufficiently small we
have ATe,AQAe,A Q < 0. This implies that for A sufficiently small A,A is stable.

Next we show the convergence of the H2 performance. For A sufficiently small
we have la(Ae,A)l < 1, so the H2 performance is given by (6.3), with Pe,A given by
the Lyapunov equation (6.4). We shall prove that P,A --* P, the unique solution of
(6.2). For any A sufficiently small define a linear map mix :]Rnn ]Rn’ by

1 1
m, X "= -A,,XA, --X.Also define a linear map m:IRnn --. IRn’ by

m(X) AX + XA.
Note that m and mA are all bijections. We can rewrite mA as

1 1
ma(X) -(A,a I)XA,a + X-(A,a I).

Recall that Ae,A -- I and -(Ae,A I) Ae. Thus we see that ma - m (A 0).
Consequently, also m rn-1 (/k 0). Obviously, P,A real( T

KC,AC,A). In
addition, it follows from (2.6) that -C[,AC,A --* CC. This implies that P,A
m-l(C[Ce), which, in turn, is equal to Pc. By (2.5) we see that -E,E,A -, EE.
Combining these facts we find that

1
tr (E,AE[,AP,A) tr (EEP).

Finally, it is immediate that

tr CletAEETetATC dtds O, A O,

which completes the proof of the theorem.
Now we turn to the second question posed above. In order to be able to answer

this question, it is useful to consider this question first for the linear quadratic problem.
For this, consider the system (t) Ax(t)+ Bu(t), z(t) C2x(t)+ D2u(t).

Assume that (A, B) is stabilizable. For a given static state feedback control law u
Fx and initial state x0, the output function is denoted by zg,o. The linear quadratic
problem is to minimize for each x0 the cost-functional J(xo, F)"= f IIZF,xo(t)ll2dt
over all F IRmn such that a(A + BE) c C-. It is well known (see [9], [18]) that
for each x0 the optimal cost

J*(xo) inf{J(xo, F) F s.t. a(A + BF) C C-} xPxo,
where P is the largest real symmetric solution of the linear matrix inequality

( ATP + PAT + CC2 PB + CD2
_

O.(6.5)
\ BTP + DC2 DD2 /
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We want to compare this "normal" linear quadratic problem with its sampled-data
version.

In the following, take a fixed sampling period A > O. The sampled-data version
of the linear quadratic problem is to do the minimization over all stabilizing sampled-
data static state feedback laws. More precisely, for a given F E IRmn define the
sampled-data state feedback control law u zxx by u(t) := Fx(kA) (t e [kA, (k +
1)A), k 0, 1, 2,..., or with a slight abuse of notation: -zx H/xFSzx. For a given
’zx and initial state x0, denote the output by z:,,xo. Define the sampled-data cost
functional in the obvious way, and denote it by J(xo,zx). The control law 9zx is
called internally stabilizing if for each initial state the controlled state trajectory x(t)
converges to 0 as t -- oc. The sampled-data linear quadratic problem is to minimize
for each xo J(xo, zx) over all internally stabilizing control laws 9czx. Let

J(xo) := inf{J(x0, 9) 9/x is internally stabilizing}

be the optimal cost. If no internally stabilizing 9A exists, we define J, (Xo) :=
for all x0. We will briefly explain here how the sampled-data linear quadratic can be
resolved. First, note that for any 9/x HAFSA we have

J(xo,.T’/x) E f(+)A IIz:,o(t)ll 2dt.
k=0 J kA

Secondly, note that for all t [kA, (k+l)A) we have 2(t) Ax(t)+Bu(t), z,,o(t
C2x(t) + Du(t), with u(t) Fx(kA). Hence, on the interval [kA, (k + 1)A), x and
u satisfy

with u(kA)= Fx(kA). Consequently,

.)(x)0 u

for t G [kA, (k+ 1)A), with A defined by (2.7). Using this, it follows immediately from
(2.6) that for t [kA, (k+l)A) we have IIz:a,xo(t)ll 2 IIC2,zxx(kA)+D2.zxFx(kA)ll2o
Obviously, x(kA)) evoluates according to x((k + 1)A) Azxx(kA)+ BzxFx(kA).
Hence we see that if -zx HzxFSzx, then J(xo,.Tzx) k=0 II(C2,zx + D2,zxF)xkll
with X+l (A/x + BzxF)x. It is also easily seen that zx is internally stabilizing if
and only if la(Azx +BzxF)l < 1. Hence, Jx(Xo) < for all x0 if and only if (Azx, Bzx)
is stabilizable.

Consequently, we can make the following conclusion: the sampled-data linear
quadratic problem under consideration is equivalent to the "normal" discrete-time
linear quadratic problem of minimizing, for the system xk+l Azxxk + Bzxuk, the
cost functional Jdis(Xo, F) := -k=0 I1(C2,Axk -t- D2,zxukll 2 over all F Imxn such
that la(Azx + BzxF)I < 1. The latter problem was discussed in 3, remark (3.11)
and 4, remark (4.6). By applying these results to the situation under consideration
we can find a characterization of the optimal cost J2x(xo) of the sampled-data linear
quadratic problem"

LEMMA 6.2. Let A > 0 be such that (A/x, B/x) is stabilizable. Then for each xo
we have

TJ:,(z0) xoPaxo,
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where PA is the largest real symmetric solution of the algebraic Riccati equation

(6.6) AAP/A/X P/X + C2,/X C2,/X

--(C2,/xD2,A + AAPABA)(D,AD2,/X + BAP/XBA)+ (D,AC2,A + BXPAA/X) O.

Now we will show that as A $ 0 the largest real symmetric solution PA of (6.6)
converges to P, the largest real symmetric solution of (6.5). We will prove this by
proving that for each x0 we have J(xo) J*(xo). Note that if (A,B) is stabilizable,
then for A > 0 sufficienly small we have that (AA, BA) is stabilizable.

LEMMA 6.3. Assume that (A,B) is stabilizable. Then there exists A1 > 0
such that for all 0 < A < A1, for all Xo we have J(xo) < oc. For all xo we

have lim/x0 J(xo) J*(xo). Also, for all 0 < A < At, P/X exists and we have
lim/xl0 PA P.

Proof. First of all note that for each sampling period A we have J,(xo) >_ J*(xo)
for all x0. This can be shown using that, in fact, for each x0,

{/0J*(xo) inf IIC2x(t) + D2u(t)ll2dt u is such that lim x(t) 0

Hence, by taking u to be generated by the internally stabilizing sampled-data control
law A-/x, it follows that J(xo,A) >_ J*(xo)o

Now, let 5 > 0. Let F be such that a(A + BE) C C- and J(xo, F) < J*(xo) + .
Clearly, J(xo, F) xLxo, where L is the unique solution of the Lyapunov equation

(A + BF)TL + L(A + BF) + (C2 + D2F)T(C2 + D2F) O.

Now consider the sampled-data control law 9/x HAFSA. By previous arguments,
J(xo, A) xLAXo, where LA is the unique solution of the Lyapunov equation

(AA + BAF)TLA(A/X + B/XF) LA + (C2,A + D2,AF)T(C2,/X + D2,AF) O.

Note that A/X + BAF I, -(AA + BAF- I) --, A, and - (C2,A + D2,AF)(C2,A +
D2,AF) - (C2 + D2F)(C2 + D2F) as A $ 0. Using a completely similar argument
as in the proof of Theorem 6.1 we derive from this that LA L, which implies
J(xo,/x) ---* J(xo, F). Of course, we also have J*(xo) <_ J,(xo) <_
Combining this with J(xo, F) < J*(xo) + , we find that for 5 sufficiently small we

have J*(xo) <_ J(xo) <_ J*(xo)+5. Since 5 was arbitrary, this proves the claim. The
second statement in the formulation of the theorem is then immediate.

Let J,con be the optimal continuous-time H2 performance, i.e., the infimum of
JE(Fcon) over all internally stabilizing continuous-time compensators (6.1). It was

shown in [15] that if (A, B) is stabilizable and (C1, A) is detectable, then

(6.7) J.con tr (EErP) + tr ((ArP + PA + CC2)Q),

where P is the largest real symmetric solution of the linear matrix inequality (6.5)
and Q is the largest real symmetric solution of the dual linear matrix inequality

(6.8) ( AQ+QA+EETQC1 CQI>0"0
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Let J,A be the optimal sampled-data H2 performance. If A E A, then we define

J,A := +x. Our next theorem gives an affirmative answer to the second question
posed in the introduction to this section.

THEOREM 6.4. Let (A,B) be stabilizable and (C1,A) be detectable. Then there
exists A1 such that for all 0 < A < A1, J,A < c. We have limA,0 J,A J,con"

In the remainder of this section we will prove this theorem. First, recall the
expression (5.1) for J,A. Denote the first term in (5.1) by I(A). Then, under the
conditions that (A,B) is stabilizable and (C1,A) is detectable, we know that for

1 1
(6.9) J,A I(A) + tr (EAE,PA) + tr ((APAAx PA + C,AC2,A)QA)

A
--tr ((DpaNDQ,)(DpNxDQ)T),

where PA is the largest real symmetric solution of (6.6), QA is the largest real sym-
metric solution of the dual Riccati equation

(6.10)

and

AAQAA QA + E/E, + AAQ/xC(C1QAC)+C1QAAA O,

N -DRy, (D+p, )2DRy, CRy,QC(D)2DQ,
Here, Cpa, DRy, and DQ, are defined by (3.5), (3.4), and (3.7), respectively, with
P PA and Q Q. We will prove that J,A J,con by analyzing the asymptotic
behavior of the four terms appearing in (6.9) separately:

It is immediate that the first term, I(A), converges to 0 as A $ 0.
om (2.5) it follows that EAE EE. Since also P P, we conclude
that the second term, tr (EAEPA), converges to tr (EEP).
To prove convergence of the third term, first note that QA Q. This follows
immediately by dualizing Lemma 6.3. Next, as before, rewrite

1
tr (APAAA PA + CT2,AC2,A)QA)

11
(AA I) + C2C2,.

1
(A I)PA +P(6.11)

Since (AA I) A, AA I, and C,C2, CC2, we conclude that
the third term in (6.9) converges to tr (AP + PA + CC2.)
In order to complete the proof of Theorem 6.4, we should hence prove that
the fourth term in (6.9) converges to 0 as A $ 0. This is done in the following
lemma:

LEMMA 6.5. tr ((DpNDQa)(DpNDQ)) 0 as A O.
Proof. Rewrite the fourth term in (6.9) as [IDpNDQ[[2, where for any

matrix M, [[M][ denotes the obenius norm tr (MM). Note that if M is a given
matrix, then M+M and MM+ are orthogonal projectors, so consequently ]MM+

[MM+]] rank (M). In particular, this implies that if M is n z n matrix, then
[[MM+ll ]lMM+[I n. Now make the following estimates:

1- IIDpNyDQ 2



SAMPLED-DATA AND DISCRETE-TIME H2 OPTIMAL CONTROL 861

1<_ -II(DpD+p, )(D+p,Dp,)CpQCD(D,DQ)II
m4p2

<_ ...IICP QAC:D , II
rn4p2 TD+<- A IICP II IIQ, , I

As noted before, C:,Cpx AAPAAA PA + CT2,A so - llCp ,ll tr (ArP +
PA + CC2). On the other hand, by noting that Qzx satisfies the Riccati equation
(6.10), where Azx eAzx is invertible, we see that

CWr)+

tr (QAC(CQ,C)+CQ)
tr (QA AIQAA2T + AIEAEA2).

Since QA Q, A I and EAE,, --, O, the latter converges to zero as A 0.
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Abstract. In this paper a Riemannian geometric framework is given for the minimum sensitivity
design problem and its solution using a natural optimization criterion. The theory is then applied
to the case of linear systems to generate a class of minimum sensitivity realizations related to the
so-called balanced realizations. In particular, conditions are given which are applicable in the cases
of fixed point and floating point implementations.
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1. Introduction. In this paper we consider the problem of selecting parameter-
izations for a given mathematical model which minimize the sensitivity of the model’s
behavior to perturbations in the parameter values. We call this problem the minimum
sensitivity design problem. It often arises in applied mathematics and engineering,
and has received a great deal of attention in a variety of applications. For example,
given a digital linear filter (model structure) with some fixed input-output relation-
ship (model’s behavior), a common question is how to find an internal representation
(parameterization) which minimizes the sensitivity of the input-output relationship to
quantization (perturbations) of the filter coefficients (parameter values). This prob-
lem differs from the parameter identification problem in that one assumes at least one
parameterization is already available. The specific context introduced for solving this
problem is Riemannian geometry. The primary motivations for a geometric approach
are the generality of the synthesis techniques and the success of such an approach in
the area of parametric system identification [13]-[15].

Once developed, the primary focus is on applying the technique to the synthesis of
minimum sensitivity state space models for dynamical systems. Only linear systems
are considered in this paper. The performance index derived in the geometric context
is related to (but distinct from) those found via frequency domain techniques in [21],
[24], [25], [26], [30]. The main difference is that the performance index introduced here
gives a bound on the sensitivity of the impulse response in terms of a mixed g/g2
norm rather than on the sensitivity of the frequency response using a mixed L1/L2
norm with respect to the realization coefficients. Both approaches compliment each
other and in certain ways are closely related. A strength of the geometric method,
however, is that it generalizes easily to other classes of systems where frequency do-
main interpretations are not as tractable [9], [11], [12], [27]. Practical applications
of this research include the synthesis of state space realizations with superior coef-
ficient quantization properties and the synthesis of analog networks with minimum
component sensitivity.
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The paper is composed of two main sections. The goal of the first section is
to motivate and describe a geometric framework for solving the minimum sensitivity
design problem that leads to a general optimality equation. It is then demonstrated in
the second section how this theory can be used in the synthesis of minimum sensitivity
state space realizations of discrete-time linear time-invariant systems.

2. The minimum sensitivity design problem. The goal of this section is to
describe the minimum sensitivity design problem in a differential geometric setting.
The main intuitive idea behind the method is as follows. Given the set of all admissible
realizations for a given mathematical model, we first partition this set into equivalence
classes, where two realizations are said to be equivalent if they map to the same model
behavior. Since the applications which follow will deal specifically with input-output
systems, the model behavior to which we refer is the (output) response to some fixed
input. For linear systems, the behavior we are usually interested in is the impulse
response. Generally, each equivalence class will contain more than one realization.
Therefore, the idea is to define a sensitivity measure which reflects how perturbations
of realization coefficients of a given realization perturb the model behavior. Within
a fixed equivalence class, we then designate those realizations which have minimal
sensitivity as the ones solving the minimum sensitivity design problem.

2.1. Abstract realization spaces. We consider a realization 0 to be an ordered
set of real numbers denoted by 0 (01,02,...,0n). It will be assumed that the
system under consideration is completely specified by such a vector 0. Since these
parameters are real attributes of the system, it is natural to assume that what can
be known exactly is their membership to certain intervals. Therefore, the ambient
space in which a realization exists is the cartesian product space n, and the usual
topology (generated by cartesian products of open intervals) is the natural topology it
should be endowed with. It is not natural to assume any other structure at this point
In particular, since neither the sum of two realizations nor the scalar multiple of a
realization may have any physical significance, a global vector space structure is not
naturally associated with ite Thus, the collection of all realizations will be considered
as an aifine space, denoted by 4n, with a local vector space structure isomorphic to
the usual vector space n on . Therefore, there is no assumed relation between
the vectors belonging to the vector spaces attached at different points. We will be
interested in an open subset of4 referred to as either the set of admissible realizations
or the realization space, and denoted by O. Typically, but not exclusively, open sets
arise as complements of inverse images by continuous maps.

Now we introduce perturbations in the parameters. If these perturbations must
be quantified in any way one needs a metric structure, at least locally at each point
(i.e., in the local vector space attached at the nominal parametrization) in order to
discuss perturbations of fixed norm, and also to allow for the notion of orthogonality.
The latter also allows one to talk about the directions of perturbations If O is
paracompact, then a Riemannian structure g can be put on O (or, more exactly, its
tangent bundle). This means that for each 0 E O, it follows that g(O) is a symmetric,
positive definite, nondegenerate bilinear form defined on TO TO with a local
representation

(1) 9ij(0)=9(0) OOi, OOj

where 0/00 1, 2,..., n are the canonical basis vectors for the tangent space ToO
and each 9ij is a smooth function of 0. Then 9 O TO corresponds to the
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Riemannian metric on O, where T2O denotes the bundle of covariant two-tensors
defined on O. We stress again that we are not using global vector space structures,
but only local ones to describe the perturbations with respect to a given nominal
point. The following definition summarizes what we mean by a realization space.

DEFINITION 2.1. A realization space in An is a smooth Riemannian manifold
(O, g), where 0 is an open subset of the aJfine space An and g is a nondegenerate
Riemannian metric on TO TO.

In what follows, "g" will be understood if we speak about the realization space
O.

Now let TO denote the dual space of the tangent space at each 0 E O, and let

ToO T;O .),

(3) T;O ToO: .) v

denote the natural isomorphism that the metric tensor g induces between the two
spaces. Denoting the canonical basis for T$O by {d01, dO2,..., dO’}, the metric tensor
can be represented in the form

(4) g gijdO (R) dOj,

where (R) denotes the usual tensor product and the Einstein summation convention
is assumed. Furthermore, if f is a smooth reM-valued function defined on O, then
dr(O) TO, and hence can be written as the linear combination

Of(5) df(0)-

The gradient of f is defined as the vector field given by

(6) OfVf" 0 ToO" 0 (df(O)) gY (O)-ff
0

where [gJ] is the matrix inverse of the metric tensor [gij].
Within a given realization space (O, g), we wish to form equivalence classes which

reflect some commonality between realizations based on their associated model be-
havior. To this end, we adapt a notion from quantum mechanics described in the
following definition (see, for example, [1]).

DEFINITION 2.2. Let f be a smooth real-valued function defined on a realization
space (O,g) such that the gradient Vf is nonzero everywhere on O. Then, f will be
called an observable over O, and the scalar f(O), where O, will be referred to as

the value of the observable at O.
The significance of an observable is that two realizations are considered equivalent

relative to f if they yield the same observable value, i.e., for , (-) if and only
if f(0) f(). In a system theory context, an observable could be the evaluation of
the transfer function for an input-output system evaluated at a particular frequency or

the impulse response at a specific instant of time. Observables are also referred to as

system functions [8]. In a topological sense, observables are smooth, regular canonical
projections which map O to some subset of the real numbers. The assumption on the
lack of critical points is technical but essential in view of the lemmas discussed below.
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We designate an equivalence class on O relative to f and corresponding to the value
f(o)

(7) Mk(f) f-l(k),

and the set of all such classes, i.e., the quotient space, as O/. The quotient space of
minimal state space realizations of linear time-invariant systems has received a great
deal of attention in the system identification problem (see [13]-[15], [19]). Our interest,
however, is not in the quotient space, but rather the geometric and topological aspects
of individual equivalence classes. The following lemmas give the geometric structure
of an equivalence class and the quotient space.

LEMMA 2.3 (see [6], [20]). Let f be an observable on realization space (0, g) and
k E f(O). Then, the equivalence class Mk(f) f-l(k) is a Riemannian submanifold
of 0 with codimension equal to one.

LEMMA 2.4 (see [6], [20]). Let f be an observable on realization space (O,g).
Then, O/ is a smooth foliation on 0 with codimension equal to one.

An observable thus induces a decomposition of the realization space into con-
nected submanifolds of dimension n- 1, usually called the leaves of the foliation,
which stack up locally like subsets of n-1 , where the second coordinate (i.e., k
in the above discussion) is held fixed. Perturbations in the parameters induce per-
turbations in the value of the observable. Among all perturbations of fixed norm

(induced by the Riemannian metric), the worst-case perturbation is the perturbation
that induces the maximal change in the observable. The minimum sensitivity design
problem is to determine which point in O (i.e., realizations) on a fixed leaf, when per-
turbed, will have the smallest worst-case perturbation of the corresponding observable
value.

2.2. Extremal sensitivity points. Since each leaf of the foliation induced by
an observable function f is itself a Riemannian manifold, it makes sense to talk about
the tangent space to a fixed leaf. Furthermore, from the point of view that each leaf
is really a level surface of the observable function f, the tangent space of a leaf Mk(f)
at a fixed point 0 can be described by the following subset of the tangent space ToO

ToMk(f) {v ToO" df(O)(v) 0}

(s) {v ToO’g(0)(Vf, v) 0}.

In view of the representation in (8), it follows that Vf IMa(/), the restriction of Vf
to Mk(f), is a normal vector field defined on the leaf corresponding to value k. Since
for any perturbation A0 TooTl we have

(9) f(O) f(Oo) + g(Oo)(Vf(Oo), AO),

it follows that the worst perturbation of f is obtained for A0 proportional to the
gradient Tf. Clearly the induced worst-case deviation for a unit pertubation vector
will be Vf II. Hence, the realizations in Mk(f) which have extremal sensitivity are
those which minimize or maximize the norm of the vectors in this vector field, where
the norm function is defined as

(10) II. I1 ToO v v/g(O)(v, v).

Consequently, we have the following more convenient definition.
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DEFINITION 2.5. A realization 0* E Mk(f) is an extremM sensitivity point of
Mk (f) if 0* extremizes the performance index

1
(11) L(O)- Vf(O)II

over the manifold Mk(f).
As an immediate consequence of this definition we get the following theorem,

specifying a necessary condition for determining an extremal sensitivity point.
THEOREM 2.6 (see [28]). If a realization 0* Mk(f) is an extremal sensitivity

point, then

(2)
1

VH(0*) -Vg(O*)(Vf(O*) Vf(O*)) /Vf(O*) O,

where H is the scalar-valued Hamiltonian function

(13)
1

H(O) -g(O)(Vf(O), Vf(O)) -/f(O).

Proof. The stated condition is the Euler-Lagrange equation for the constrained
optimization problem. [:l

In order to use Theorem 2.6 in a specific problem, one needs a local representa-
tion of optimality equation (12), which interestingly has considerable structure not
immediately apparent. Consider the following definition and related lemmas.

DEFINITION 2.7 (see [7]). Let f be an observable on realization space (O,g).
Then, the Hessian operator of f at 0 is the linear operator defined by

(14) V2f(O) ToO -+ ToO u V.Vf(O) V2f(O)(u),

where V denotes the unique, symmetric (Riemannian) affine connection compatible
with the metric g, i.e., for 0 O,

(5)
0

V ToO ToO ToO (, ) V. (,r + ()) O0

with u u’(O/OOi), v v’(O/O0), and the Christoffel symbols of the Riemannian
connection specified by

k l { O 0 O } gmk(16) Fij - -gjm zt- -ffgmi (Om gij

LEMMA 2.8 (see [7]). The Hessian operator has the following properties:
(i) V2f(0) is self-adjoint;

(ii) the bilinear form V2f(O)(u, v)
/

V2g(O)( f(O)(u),v) is symmetric;
(iii) in local coordinates,

(7)
02V2f(O)(v) gjk f

OOiOOj

LEMMA 2.9. The optimality equation in Theorem 2.6 is equivalent to

(18) (V2f(O*) XI)(Vf(O*)) O,
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where I is the identity operator on To. Tl. That is, the gradient of f at O* must be in
the eigenspace of the Hessian operator of f at 0".

Proof. Assuming all vector fields below are evaluated at 0 0", and using the
property

(9) +

for u, v, w E ToO, it follows that"

-AVf

Using the local representation of V2f(0) given in Lemma 2.8, it follows immedi-
ately that equation (18) has the local form

(20) gjk
OOiO0j Fij- O0m cOk

O.

k above or a direct computation ofThen by substitution of either equation (16) for
Vg(f, Vf) in local coordinates, it also follows that an equivalent expression is

[ O0OOj + -g, OOJ O0 00, O0
O.

This equation (in terms of only the observable, the metric tensor, and its inverse)
yields a matrix representation which is far more amenable for computations and thus
motivates the following definition.

DEFINITION 2.10. Let f be an observable on realization space (O,g). Then, the
nonsymmetric Hessian operator of f at 0 0 is the linear operator defined in local
coordinates by

(22) 02f 1 Ogts

Of]ui 0ef(O) ToO ToO u gY
[0000 + -g OOJ O0 O0

where u ui(O/O0i).
LEMMA 2.11. Let f be an observable on realization space (O,g). Then for any

00,

(23) f(O)(Vf(O)) Vf(O)(Vf(O)).
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Proof. The lemma is proved by direct substitution, f1

Equation (21) expressed in terms of the Vetter derivative and standard matrix
calculus operators [2], [3], [4], [5] has the form

(24) (G_102f 1 (Of) (0 ) )- r- -a-1 In (R) - (R) G-1 a /Zn C-
Of
o

where G denotes a matrix with entries gij, In is an n x n identity matrix, and (R)

represents the Kronecker product. We denote by Of/O0 and 02f/O02, respectively,
the column vector of first-order partial derivatives of f with respect to the components
of 0, and the matrix formed by the second-order partial derivatives. These are indeed
the gradient and Hessian if the metric tensor is the identity, but in the general context
they have no direct meaning. For this special case of the uniform metric G In,
we get a simplified version of the optimality condition which has a matrix notation
representation

(25) / 02f / 0f- N:0.
Another matrix form may also be obtained which is entirely equivalent to equation
(21), but avoids the use of Kronecker products.

DEFINITION 2.12. Let f be an observable on realizatio’n space (0, g). Define the
pseudogradient as

oG-1/2

and the pseudo-Hessian matrix as

(27) d2.f zx G- 1/2 0f 1-5- +a OG- Of OG- Of]00 00’ 00 00

The extremal sensitivity criterion has a form analogous to equation (24), but
uses the pseudogradient and the pseudo-Hessian rather than the gradient and the
nonsymmetric Hessian. If the realization space (O,g) is such that the parameters
are functionally independent of each other, except for the constraint f(O) k, then
the perturbation of the parameters should be considered independently of each other.
Hence, in this case we set gij 0 whenever - j. Moreover, if the perturbation metric
for one parameter depends only on the nominal value of that parameter and not the
others, then we call the realization space (O, g) a realization space of independent
parameter design. It turns out that in this case the problem is symmetric, and the
pseudogradient and pseudo-Hessian are, respectively,

(28) df - diag

and

(29) d2f diag (V/) 02f
-ffmag (X/) + diag 0X/) diag(df)

O0
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where, now, g 1/g.
While studying the sensitivity of realizations in the next section, it will be de-

sirable not only to characterize extremal sensitivity realizations, but also to show
explicitly that certain sets have minimum sensitivity. One can easily test for this
property by examining the definiteness of the bilinear form associated with the Hes-
sian of the Hamiltonian function H defined in (13). This test is posed as a matrix
definiteness problem in the following lemma.

LEMMA 2.13. An extremal sensitivity point 0" E Mk(f) has the minimum sensi-

tivity property if the matrix

02H l(OH)(O)
is positive definite on the tangent space of Mk(f) at 0", where H (1/2)gst(Of/O0s)
(Of/DOt) Af

Proof. The definiteness of the Hessian of H always determines the nature of
each extremal. Equation (30) is simply a matrix representation of the bilinear form
72H(O*)(u, v) in local coordinates. [3

Writing (30) in fully expanded form is simple to do in principle, but tedious in any
notation. The special case of the uniform metric giy 5iF, however, is significantly
simpler and will be used in later development:

(31)

2.3. Multiple observables. We now consider extensions of the notion of an
observable. In the applications which follow, the need arises for a method which
will allow one to consider the sensitivity of several observables simultaneously. For
example, one may wish to define as observables the impulse response of a system
at r specific time instances where r > 1. The following extension of Definition 2.2
addresses this requirement.

DEFINITION 2.14. Let (O,g) be a realization space and F 0 -+ }pxm be a
smooth function whose differential dF(O) is surjective for all 0 O. Then, F will
be called a (matrix) observable over O, and the matrix F(O) will be referred to as its
value at O.

We have the following results, which are analogous to Lemmas 2.3 and 2.4.
LEMMA 2.15 (see [6], [20]). Let F 0 {Rpxm be a matrix observable on

realization space (0, g) and K F(O). Then, the equivalence class MK(F) F-l(/()
is a Riemannian submanifold of 0 with codimension equal to pro.

LEMMA 2.16 (see [6], [20]). An observable F 0 pxm induces a smooth

foliation of codimension pm on realization space (0, g).
Another useful generalization of the scalar-valued observable is given in the fol-

lowing definition.
DEFINITION 2.17. Let f Q 0 -+ be a function such that for each A in

some admissible set Q it follows that the marginal map fA 0 R is an observable

.function. Then, the set {fA A Q} is called a family of observables.
A simple example of such a family is the linear combination of two scalar-valued

observables fl and f2 given by

fA(0) Alfl(0)- A2f2(0),
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where A [A1 ,2] and AAT 1. A generalization of this example is given in the
following lemma.

LEMMA 2.18 (see [10], [28]). Let F" 0 - P’ be a matrix-valued observable
on realization space (O, g) and K e F(O). Define the set {fA A e Q}, where

() f(o) (f(o) k) Wr (()
i,j--1

(33) Q {AIAAT I, if p >_ m or ATA Ip if m >_ p}.

(Clearly Q O(m), the set of m m orthogonal matrices, when p m.) Then
(i) {fA A E Q} is a family of observables;
(ii) fA () 0 for all A Q if and only if F(O) K.

Proof. (i) Observe that

p,m
OfA Ofij(O) dOk 0ef()=b- - oo

o i,j=l o

for some 0 if and only if A 0 since dF(0) is surjective. But 0 Q, and thus
dfA (0) - 0 for all A Q and 0 O.

(ii) The necessity of the condition F(O) K is the only nontrivial part of the
proof. Define E(O) F(O)- K. For fixed 0 O, let E(O) have the singular value
decomposition

min(p,m)

}2
j=l

Since A can be arbitrarily selected from Q, and any element of Q has all of its singular
values equal to unity, it follows that

mim)
min(p,m)

TrAE(O)- Tr viuT crjujv
\ i=1 j=l

Cmim) min(p’m) )Tr ,vv
\ i--1 j--1

Tr

min(p,m)

=E
i=1

--0.

However, by the definition of the singular value decomposition, cri >_ 0 for all
1... min(p, m), thus E(O) O.

While.a matrix-valued observable and a family of scalar-valued observables can
each be used to describe a given equivalence class, an important advantage in working
with the latter is the relative ease with which the sensitivity theory developed in 2.2
can be adapted. This is illustrated by the following example.
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Example. The goal is to determine the state space realizations of a second-order
linear system with the property that the coefficients of the characteristic equation have
extremal sensitivity with respect to fixed point and floating point quantization of the
realization coefficients. Both fixed point and floating point problems are independent
parameter design problems. Fixed point parameter quantization is modelled by intro-
ducing absolute perturbations AO of fixed magnitude such that i 0 + AOi. Float-
ing point parameter quantization, on the other hand, is modelled by the introduction
of a relative perturbation A0/0 of fixed magnitude since, now, t 0[1 + A0/0].
In a geometric context we view these models as an endowment of O with two different

P ifi--jmetrics, an absolute metric gj(O) b’ij and a relative metric
and zero otherwise.

The transfer function of the system is assumed to have the form

2

a(s) + +
Thus, we are interested in the set of state space realizations (A, b, c) such that det(sI-
A) S2+2WnS+W2n In the fixed point case we take O N4 (0 [all a21 a12 a22] T)
and in the floating point case we assume O is equivalent to }4 minus the points
along the coordinate axes, where the relative metric is unbounded. (This is always
an implicit assumption when the floating point metric is used.) The two algebraic
constraints on the realization coefficients yield the vector observable

[ a + a22 + 2wn ]2F(0)
alia22 a21a12 co

which induces a foliation on O with codimension equal to two. Clearly, the leaf of the
foliation in which we are interested has an observable value equal to zero. The family
of observables is defined by

fA(0) Tr AF(0) AF(0),

where A [A1 A2] and AAy 1. Note from Lemma 2.18 it follows that fA(0) 0 for
all A with AAy 1 if and only if F(O) 0. To solve the optimization problems, apply
the criterion given by equation (24) using the absolute and relative metrics. Using
the absolute metric it follows easily from equation (25) that the optimality equations
are as follows:

(34)
(35)
(36)
(37)

/1 -[- A2all )(A1 -[- Aa2),
a21 --Xa12.
al2 _Xa21

A1 + A2a22 (A + A2all),

where A AA2. The above equations together with the constraints F(O) 0 and
AAT 1 define a system of seven (not necessarily independent) equations in seven
variables. It can be easily shown that the extremal sensitivity realizations must have
an A matrix of the form

--0" -[%dd

A mWd --a

--a::02d COS0
Wd sin 0

COd sin 0 ]--crOWd COS0 ->1’
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where a Wn, Wd Wn V/iI- 21, and 0 is an arbitrary real parameter. In fact,
using Lemma 2.13 it can be shown that these realizations are of minimum sensitivity
when :/- 1.

Using the relative metric, it follows directly that the optimality equations are as
follows:

(38) a11(,1 --/2a22) 2 -t-a2222(1
(39) 2a2a2
(40) 2a12a2 -,

) ,X(,X + ,X.a).(41) a1)2(/1 + ).a22) + a22(1 -- )2all

These equations, along with the constraints mentioned above, define a system of
six independent equations in seven unknowns. Hence the general set of extremal
sensitivity floating point A matrices when :/- 0 and -- 1 is a one-parameter family
of the form

cos(0o)-wn sin(0o)A- -cosh(0o)-COn
7 sinh(Oo)

t sin(Oo) ]cos(Oo)
t sinh(Oo) 1cosh(Oo)

0 < cos(Oo) < 1,

4 cosh(Oo) > 1,

where t is an arbitrary nonzero real parameter There is no solution for the undamped
and critically damped cases.

3. An application to the design of discrete-time linear time-invariant
systems. In this section, the synthesis of minimum sensitivity state space realizations
for linear time-invariant multivariable systems is considered [10], [28]. It is shown that
these realizations are related to the balanced realizations of Moore [22]. This problem
has been solved in a purely algebraic framework in [21], [24], [25], [26] and in a
stochastic framework in [17], [18]. Unlike these approaches, however, the geometric
method naturally extends to other classes of dynamical systems, e.g., singular linear
systems [9], [12], and bilinear systems [9], [11].

3.1. Realization spaces. Consider the linear time-invariant system

(42) Xk+l Axk + Buk, xk , Uk Nm,
(43) Yk Cx, y P.

The state space realization (A, B, C) is specified by n(n+m+p) real numbers. There-
fore, we make the natural identification of the space of all such triples, denoted by
Y’]m,n,p() with the cartesian product space }n(n+m+p) with the usual topology.
Furthermore, since the addition and scalar multiplication of such triples are of little
significance globally, the realization space is assumed to have the algebraic structure
of an affine space with vector space ",)n(n+m+p). For fixed m, n, and p, it is clear from
Definition 2.1 that Y]m,n,p(}) is a realization space.

Now consider the natural C group action of GLn(N) on Em,n,p(N) defined by

(44) O" GLn(N) x Em,n,p() Em.n,p(.) T (A,B, C) (TAT-,TB, CT-),

which corresponds to a change of basis in the state space z Tx. The orbit of a

point s E,,n,p(N) for the action is defined to be the subset

(45) Os() {(T, 8) e rn,n,p()lT e GLn()}.
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The isotropy subgroup of GLn(N) at s is defined as

(46) Gs() {T e GLn()I(T,s)- s}.

In general, the action of a Lie group G on a manifold M is said to be a foliated
action if for every s E M the tangent space to the orbit of passing through s has
fixed dimension. Equivalently, a foliated action is characterized by the property that
the dimension of the isotropy subgroup Gs() has fixed dimension independent of s.
It is well known that the orbits of a foliated action define the leaves of a foliation [6],
[20]. However, observe that for the particular realization space described above, the
group action is not a foliated action. For example, if we let sl (lIn, 0, 0), where
e , then clearly Gs, () GLn(), and thus dim(Gl) n2. On the other hand,

for s2 ()In, el,0), where eT (1,0,...,0), Gs2() {T e GLn() first row of
T el} such that dim(G2) n2 -n. Consequently, the orbits of do not foliate
the realization space Em,,p([). However, if we define E,n,p(), E,,p(), and

m,n,p() as the open subsets of ]m,n,p() containing realizations that are reachable,
observable, or both, respectively, then we have the following lemma.

LEMMA 3.1 (see [28]). The group action restricted to either E,n,p(), E,n,p(),
cr,co foliated action.or _m,n,p() is a

Proof. The lemma follows immediately from the fact that the isotropy subgroup
C7has constant dimension on Em,,p(R Em,,p(), and ,cr,o_,,n,p(R) (precisely zero)

We shall also be interested in another type of realization space for linear time-
invariant systems, specifically, sets whose elements comprise the components of the
reachability and observability matrices

(47) Oi(A,C)= CT ATCT (AT)icT IT
(48) j(A,B)= B AB AJB ],
where i, j >_ n. As will be shown shortly, such a realization space will be very natural
for our applications. Such realizations will be referred to as (O, T) realizations in
contrast to.the usual state space realizations. As with the realization space m,n,p(),
it is tempting to identify the space of all (O, 7) realizations, say m,,p[i, j](), with
an affine space modelled on the vector space n(p(i+l)+(j+l)m). This identification is
fallacious, however, since the matrices as defined above have definite structure, and
not every point in n(p(i+l)+(j+l)m) has an associated (O,) matrix pair. So consider
instead the following mapping:

(49) w Em,n,p() p(i+l)n X Rn(j+I)m (A,B, C)- (Oi(A, C),

where and j are assumed to be fixed a priori. Observe that w is a well-defined and
smooth mapping since the components of (9 (A, C) and j(A, B) are smooth functions
of the components of (A, B, C). Define the following subsets of RP(+I)’ [n(y+l)-:

m,n,p() 2(-]m,n,p()),
r,n,p(:) bd(r,n,p())

co

LEMMA 3.2. The subset Pm,n,p() is a realization space, where either p cr,
p CO or p-- cr, co.
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Proof. The conclusion follows by virtue of the fact that E,,p is known to be a
realization space and w restricted to Em,n,p is a diffeomorphism.

It should be noted that since Em,,p(N) and Pm,n,p(N) are diffeomorphic,

w(E,n,p()) is a submanifold imbedded in p(+l)xn x x(j+l), with the same
dimension as Em,,p(). This property is of limited utility for the applications con-
sidered here, however, since sensitivity is not a topological property.

As was the case for realization spaces E,n,p(N), we are also interested in foliations
of Ft,n,p( induced by a group action. Consider the following C action of GLn()
on ,n,p(N) defined by

T x (0 (OT Tn)m,n,p m,n,p

We have the following analogous lemma.
LEMMA 3.3. The group action restricted to Pm,n,p(), where p cr,p- co,

or p cr, co, is a foliated action.

Proof. The lemma follows immediately from the fact that the isotropy subgroup
has constant dimension on ,,p() for p cr, p co, or p cr, co (precisely
zero).

Now that the realization spaces associated with discrete-time linear systems have
been defined, we next consider in detail the corresponding minimum sensitivity design
problem via the geometric techniques of 2.

3.2. Minimum sensitivity realizations. Consider the problem of finding a

minimum sensitivity state space realization for a discrete-time linear system described
by a p x m strictly proper rational transfer matrix

(51) H(z) E Hz-’
i--1

where for each i, Hi E pm, If one knows the minimal system order n a priori, then
it is possible to uniquely identify the system from a truncated version of the systein

H+I H+2 H+3 H+j+I

Hankel matrix

(52) 7-t[pi, jm]

In the worst case, the transfer matrix is completely parameterized by 2npm param-
eters, so the truncation must retain at least this number of entries. An especially
convenient truncated form is Tlpi, jm], where i, j >_ n. Any rank n factorization

(53) Tl[pi, jm] Ony

corresponds directly to a minimal state space realization. Thus we can take a finite
subset of the Markov parameters as observables in our geometric sensitivity theory.

Define g. as the least common multiple of p and m, and integers s g/p and
t /m. Then, any square Hankel matrix of the form 7-/[ti, it], where >_ n, will
uniquely identify a linear system of order n. Furthermore, any corresponding rank n

((.9, 7) factorization

(54) [ei, ig] O{TQt
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defines a matrix observable on fcr,co [si it] So, in light of Lemma 2 18 define them,n,p
family of observables

(55) /A(o,) Tr A([ei, iS] 0),

where A O((i+ 1)e), the set of all orthogonal matrices of dimension (i+ 1)gx (i+
Then, it follows from the conclusion of the lemma that fh(Osi,it) 0 for all A
O((i + 1)e) if and only if the equality in equation (54) holds. Thus, fA induces a

0, [si it], where each leaf of the foliation corresponds to a collectionfoliation on __,,p
of (O, ) realizations with the same corresponding Hankel matrix. The leaf with an
associated observable value of zero consists of all (O, ) factorizations of the given

CCOHankel matrix. e can also dene a elated observable on _,,() as follows=

(56) ]A fA o w(A, B, C)
(v) A(n[, ] O(A, C)n(A, B),).

This observable foliates E,o_m,n,p() into equivalence classes characterized by the cor-
responding Hankel matrix.

From a systems perspective the sensitivity of state space realizations is the most
natural problem to pursue. Unfortunately, this problem is difficult to attack directly
since it is highly nonlinear. Thus, we first consider the essentially linear problem
of finding the least-sensitive fixed point (O, ) realizations (i.e., factorizations) of a
given Hankel matrix, and then return to the state space realization problem later.
The main theorem of this section is given below.

THEOREM 3.4 (extremal sensitivity theorem). Given an nth order linear system
with m inputs and p outputs characterized by a square Hankel matrix [gi, ig],

(i) extremal sensitivity points under the uniform metric on the leaf of the foli-
ation induced by the observable family

(58)

have the property that

() n.n oo,
where is the least common multiple of p and m, s g/p, t g/m, and >_ n;

(ii) an extremal sensitivity point under the uniform metric is also an extremal
under the floating point metric if

(60) vec(n/Tt)2

where vec denotes the column stacking operator, [xm]i x for any vector x and
integer m, and H

Proof. (i) Use optimality equation (25) from the previous section. With the
coefficient vector taken to be

(61) 0
vec(Osi)

one can express the observable fA in terms of a quadratic form in 0"

(62) f(O) Tr A([ti, e]-
(63) Tr ATt[ei,
(6a) Tr An[el, ie] (vec(n))r. ( (R) A). vec(O).
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Using this representation, the gradient vector and Hessian matrix are easily computed
as

af,
(5) vI(0) a0

and

[ -(In (R) A)vec(Osi)
-(In (R) A)Tvec(n) I

09"fA [ 0 -(In(R)A)](66) V2fa(0) 002 -(In (R) A)T 0

The optimality condition is then

-AInsi -(In (R) A) ](67) -(In (R) A)T --Jiitn

Equation (67) gives

(68)
(69)

-(In (R) A)vec(Oi)
-(In (R) A)Tvec(7iTt)

-A(In (R) A)vec(Oi) vec(7)
vec(Oi) -A(In (R) A)Tvec(7),

or equivalently,

(70) -AAO 7/Tt,
(71) Oi --AATnTit
Hence, the conclusion follows immediately using the facts that A is an orthogonal
matrix, and A, an eigenvalue of the symmetric orthogonal matrix V2fA(0), is equal
to 4-1.

(ii) Using the general optimality equation (24) with G(O) diag(0-2), and as-

suming property (59) gives

(72) vec(T2iTt)3 A(In (R) A)vec(Osi)3 vec(/Tt).

Substitution using equation (68) proves the theorem’s conclusion.
It should be noted that the condition stated in (ii) is only a sufficient condition

for a floating point extremal. Not every system has a realization which lies on the
hypersphere defined by equation (60) and satisfies equation (59). The existence of
general solutions of the floating point extremal sensitivity problem and the associated
computational algorithms are current topics of investigation.

DEFINITION 3.5. A realization (A,B, C) or (Osi,7it) is said to be essentially
balanced if TQt7 0(9.

This definition is motivated by the fact that in the discrete-time case Pit
zx

and Qsi
zx T it andOi(.9 are, respectively, the reachability grammian at time t

the observability grammian at time t2 si. Letting

(73) P lim it

(74) Q lim osTioi,

denote the usual steady-state grammians, any essentially balanced state space realiza-
tion or (O, TO) realization with o is only an orthogonal state space transformation
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away from being a truly balanced realization (in the sense of Moore [22]). Such real-
izations have also arisen in the context of optimal low noise filter structures [29] and
gradient flow techniques for computing balanced realizations [16], [23]. Another im-
portant property of an essentially balanced (50, 7) realization is given in the following
theorem.

THEOREM 3.6 (see [10]). An essentially balanced ((9, ) realization has the min-
imum sensitivity property under the uniform metric.

Proof. The conclusion follows directly from an application of Lemma 2.13. For
any choice of A, V2fh () clearly has a spectrum {Ai} consisting of n eigenvalues equal
to one and n eigenvalues equal to minus one, and a corresponding set of orthonormal
eigenvectors {vi}. At an extremal we may also assume that v2n corresponds to the
normalized version of Vfh(0*). Now let x be an arbitrary nonzero vector from the
tangent space of Mofh t 0" (nd hence orthogonal to Vfh(0*)). Then from equation
(31) it follows that

V2H(O*)(x,x) xT(I- A2V2fA(O*))x
2n--1

2(1 2ni) > 0i

where x - iVi"
Determining minimum sensitivity state space realizations is significantly more dif-

ficult than finding minimum sensitivity (,) realizations. The complication arises
from the fact that the observables, in this case the Markov parameters, have a non-
linear dependence on the components of the A matrix. The optimality equations
resulting from the direct application of Theorem 2.6 are virtually intractable analyt-
ically. The fixed point analysis above, however, does lead to a bound-optimal result
which is related to the earlier work done using frequency domain techniques [21],
[24], [25], [26]. Observe that in light of Definition 2.5, the performance index for the
minimum sensitivity (,) realization problem can be written in the form

1
(;) L(V, n)= 5 II f

1 yea(O)

(r+ 00)(zz 5
1
(p +(zsl

where the subscripts are dropped to indicate the limiting case . or a sequence
of matrices {M}, define the fp norm

(79) M IIF, M I1

where F denote8 the obenius norm. Then it follow8 that

....pP,(80) ocT , L OCT
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(81) OHk 2

[OHI OH2 OH3 ]][2.........mTrQo
OB F,e OB OB OB F

Thus, Tr P and Tr Q are measures of the sensitivity of the impulse response to the
components of B and C per I/O channel. The performance index L(O, 7) is the
arithmetic average of the two measures. Furthermore, it can easily be shown that

(82) OHk 12 _< Tr P_ITr Q-I,

where k 1,2, For stable systems, the real number sequences {Tr Pk-1}k>l and
{Tr Qk_}k> are bounded and monotone increasing. Therefore, it follows directly
that

OH
sup

OHk <_ v/Tr P Tr Q.

However, for positive numbers Tr P and Tr Q,

l(Tr P + Tr Q)(84) v/Tr P Tr Q _<

in general with equality if and only if Tr P Tr Q. Thus, minimizing the perfor-
mance index L(O, 7) will also minimize an upper bound on the sensitivity of the
block Markov parameters (the observables) with respect to the components of A. In
particular, when we assume P Q we have an upper bound (in the single-input,
single-output case) on the sensitivity measure

(85)

equal to

(86)

2

F,g2 F,2

M* Tr P Tr Q + Tr P + Tr Q.

This expression is identical to the general upper bound on the sensitivity of the
frequency response

(87) MFAIIi)H(z)=OA
2

F,L

OH(z)
Ob

2

F,L2

OH(z)
OcT F,L2

defined in [21], [24], [25], [26], where

1

A (2jfr(88)

and F denotes the contour along the unit circle. A fundamental difference, however,
between the time domain and frequency approaches is that MT will not achieve the
upper bound M* in the optimal case while it is known that MF M* when Tr P
Tr Q [26]. This can be demonstrated by a simple first-order example as can the fact
that M* will not in general be an upper bound on MT when the go norm is replaced
by either the gl norm or the g2 norm. While using mixed norms as in equations
(85) and (87) may seem somewhat artificial, at present no analytical technique has
been found for direct optimization using a single norm in either the time or frequency
domain approaches (see [30]).
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4. Conclusions. Minimum sensitivity designs were defined as points in realiza-
tion space, which preserved model behavior and minimized a geometrically motivated
sensitivity measure. Such a characterization yielded a general optimality equation
with a simple eigen-condition interpretation. The method was then applied to the
problem of synthesizing minimum sensitivity state space realizations of discrete-time
linear time-invariant systems under fixed point and floating point metrics. Optimal
fixed point realizations were related to so-called balanced realizations.

Acknowledgment. The authors wish to sincerely thank the reviewers for their
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this paper.
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Abstract. This paper deals with the Bolza problem (P) for differential inclusions subject to
general endpoint constraints. We pursue a twofold goal. First, we develop a finite difference method
for studying (P) and construct a discrete approximation to (P) that ensures a strong convergence of
optimal solutions. Second, we use this direct method to obtain necessary optimality conditions in a
refined Euler-Lagrange form without standard convexity assumptions. In general, we prove neces-
sary conditions for the so-called intermediate relaxed local minimum that takes an intermediate place
between the classical concepts of strong and weak minima. In the case of a Mayer cost functional
or boundary solutions to differential inclusions, this Euler-Lagrange form holds without any relax-
ation. The results obtained are expressed in terms of nonconvex-valued generalized differentiation
constructions for nonsmooth mappings and sets.

Key words, discrete approximations, differential inclusions, nonsmooth analysis, generalized
differentiation, Euler-Lagrange conditions
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1. Introduction. This paper is mainly concerned with the following problem of
dynamic optimization: minimize the Bolza functional

(1.1)
b

J[x] := (x(a),x(b)) + f(x(t),ic(t),t)dt

over absolutely continuous trajectories x’[a, b] --. Rn for the differential inclusion

it(t) e F(x(t), t) a.e. t e [a, b]

subject to general endpoint constraints

(1.3) (x(a), x(b)) E 2 C R2n.

Here T := [a, b] is a fixed time interval and F is a set-valued mapping (multifunction).
We label this problem (P) and call it the Bolza problem for differential inclusions.

The formulated problem covers a broad range of other problems in dynamic opti-
mization, in particular, both standard and nonstandard models in optimal control for
open-loop and closed-loop control systems (see, e.g., Clarke [8]). On the other hand,
problem (P) can be imbedded in the so-called Generalized Problem of Bolza [39], [8]
where the function f is allowed to take values in R R t {+cx}. In this paper we
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prefer to consider the problem in form (1.1)-(1.3) and prove results depending on the
specific character of differential inclusions.

The mainstream in studying optimization problems for differential inclusions con-
sists of obtaining necessary conditions for optimality (global or strong local minima).
There are different approaches and various results in this area using one or another
tool in nonsmooth analysis; we refer the reader to [5]-[10], [16], [22]-[25], [27]-[29],
[35], [37], [38], [46], [51] and the bibliography therein. Most of the results are obtained
for the Mayer problem, which corresponds to (1.1)-(1.3) in the case where f 0.

In [24], Loewen and Rockafellar consider the Bolza problem (P) (with additional
state constraints). Assuming that the function f(x,., t) and the sets F(x, t) of admis-
sible velocities are convex, they obtain necessary optimality conditions under usual
boundedness and Lipschitzness hypotheses but without imposing any constraint qual-
ification such as calmness (cf. Clarke [5]-[10]). They prove that if 2(t) solves problem
(1.1)-(1.3), then there exist a number A >_ 0 and an absolutely continuous function
p’[a, b] --. Rn, not both zero, such that

(1.4)([9(t),p(t)) e AOcf(2(t),:2(t),t) + Nc((2(t),;2(t));gphF(.,t)) a.e. t e [a,b],

(-ib(t),(t)) 6 OcH(2(t),p(t),t) a.e. t e [a,b],

(p(t), (t)} HA(2(t),p(t), t) a.e. t e [a, b],

(1.7) (p(a),-p(b)) e AOc(2(a),2(b)) + Nc((2(a),2(b));

where gph F(.,t) ((x,v) E R2nlv E F(x,t)},

H(x,p,t) := max{(p, v> Af(x,v,t)]v e F(x,t)},

and notation Nc and Oc, respectively, stand for Clarke’s normal cone to a closed set
at a given point and the generalized gradient of a locally Lipschitz function [8].

Condition (1.4), which is called the Euler-Lagrange inclusion, was first obtained
by Clarke [5] for the Mayer problem under the calmness assumption, which ensures
normality (A 1) in (1.4), (1.7). The Hamiltonian inclusion (1.5) was proved by
Clarke first under the calmness hypothesis and then without it; see [8], [9]. Observe
that (1.6) is the Weierstrass-Pontryagin maximum condition, which is implied by each
of the conditions (1.4) and (1.5) under the convexity assumptions imposed. Note also
that, in general, conditions (1.4) and (1.5) are independent; see examples in [22], [25].

Another version of necessary optimality conditions was obtained by Mordukhovich
for the Mayer problem (1.1)-(1.3) with f 0 under the convexity of F(x, t) and usual
boundedness and Lipschitzness assumptions but without any calmness hypotheses or

something similar; see [27]-[29]. The conditions obtained are stated in the form:

(1.9) (iS(t), (t)) e co{(u, v)l(u,p(t)) e N((2(t), v);gphF(.,t)),

v e M(2(t),p(t),t)} a.e. t e [a,b],

(1.10) (p(a),-p(b)) e AO(2(a),2(b)) + N((x(a),x(b));t)
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where "co" means the convex hull of a set,

(1.11) M(x,p,t) := {v e F(x,t)]{p,x) H(x,p,t)},

and H(x,p,t) coincides with the Hamiltonian (1.8) for f 0. Here N and 0 are
not Clarke’s normal cone and generalized gradient but their nonconvex counterparts
whose convex closures coincide with the corresponding constructions of Clarke; see 4
for more details. These nonconvex constructions were first used in Mordukhovich [26]
for obtaining transversality conditions like (1.10) in nonsmooth problems of optimal
control.

Observe that condition (1.9) implies both the maximum condition (1.6) and an

analogue of the Euler-Lagrange inclusion (1.4) in the form

(1.12) ig(t) e co{ul(u,p(t)) e N((2(t), v);gphF(.,t)),

v e M(2(t),p(t),t)} a.e. t e [a,b].

In comparison with (1.4) for f 0, condition (1.12) requires less convexification:
only to the components involving derivatives of the adjoint function instead of to
all components at once. This makes (1.12) essentially stronger than (1.4) in certain
situations. In particular, if the maximum set (1.11) is a singleton along (2(t),p(t))
for a.e. t E [a, b] (it happens, for instance, if the sets F(x, t) are strictly convex along
2(t)), then (1.12) is reduced to

(1.13) [9(t) co{ul(u,p(t)) N((2(t),(t));gphF(.,t))} a.e. t [a,b],

which is strictly better than (1.4).
So (1.9) turns out to be an advanced version of the Euler-Lagrange inclusion

and the maximum condition for the Mayer problem involving convex (i.e., convex-

valued) differential inclusions (1.2). What relationships exist between (1.9) and the
Hamiltonian inclusion (1.5) under the usual convexity, boundedness, and Lipschitzness
assumptions?

It follows from Rockafellar’s dualization result [43] that (1.5) implies (1.9). On
the other hand, it has been recently proved by Ioffe (personal communication; see also
[19, 3.5]) that (1.9) implies (1.5) under the mentioned assumptions. Therefore, ver-
sion (1.9) of the Euler-Lagrange condition is equivalent to the Hamiltonian condition
in Clarke’s form (with the same adjoint function) for convex differential inclusionse
This prolongs the line of equivalency between the Hamiltonian and Euler-Lagrange
conditions, which is well known for smooth and fully convex problems (see, e.g., [39],
[43]). Now one can conclude that any improvement of the necessary optimality condi-
tions in form (1.9) provides a strengthening of the Hamiltonian conditions in Clarke’s
form for convex differential inclusions.

In the recent paper [25], Loewen and Rockafellar establish that the Mayer problem
for convex differential inclusions can actually be reduced to the situation where the sets
F(x, t) are strictly convex along the optimal trajectory. In the latter case, conditions
(1.12) and (1.13) are equivalent while (1.9)is equivalent to the simultaneous fulfilment
of (1.6) and (1.13). In the general convex case, (1.13) always implies the maximum
condition in (1.8) with f 0; see Proposition 4.7 stated below. Therefore, (1.13) also
implies (1.12) as well as (1.9) where the improvement may be proper; see [25].

Using the mentioned strict convexification procedure and a Hamiltonian calculus,
Loewen and Rockafellar prove in [25] that an optimal solution to the Mayer problem
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for convex differential inclusions always satisfies conditions (1.10) and (1.13) as well as

(1.5) and (1.6)where f 0 with the same adjoint function p(t). Moreover, they also
consider the case of unbounded differential inclusions, truncating it to the bounded
case under suitable Lipschitzian assumptions and the convexity of F(x,t). Their
consideration of the unbounded case leads to improvements of necessary conditions
for the Bolza problem with convex velocities.

It follows from the discussion above that the refined Euler-Lagrange and transver-
sality conditions (1.3) and (1.10) provide the best results for convex differential in-
clusions. On the other hand, convexity assumptions appear to be restrictive in certain
important situations, so it makes sense to release them as much as possible. Note that
if the admissible velocity sets F(x, t) are convex and the multifunction F(., t) is Lips-
chitz continuous, then the differential inclusion (1.2) admits a control representation
F(x, t) g(x, U, t) with a Lipschitzian function g and a control set U independent on

x; see, for example, [3]. This is no longer the case when F(x, t) are not convex. So
when considering nonconvex differential inclusions, one should definitely study them
for their own sakes.

The primary goal of this paper is to develop the theory of necessary optimality
conditions in the refined Euler-Lagrange form for Mayer and Bolza problems involving
nonconvex bounded differential inclusions. The results obtained below achieve the
following advancements in the state of art.

1. We study a new (to the best of our knowledge) concept of local minimum for
the considered variational problems involving differential inclusions. Previous results
for such problems were concerned with strong (or global) minima. In contrast to the
strong minimum, we compare a reference feasible trajectory 2(.) with other feasible
ones close to it not only in the C-norm for arcs but also in the LP-norm (1 _< p < oc) for
derivatives. This means that we consider a neighborhood of 2(.) in the Sobolev space
WI’p equipped with a natural topology. Such a local minimum takes an intermediate
place between the classical weak and strong minima; we call it the intermediate local
minimum. Note that the results obtained in this paper provide new information even
for convex differential inclusions. In particular, they imply the maximum condition
for an intermediate local minimum, which may not be strong.

2. We obtain refined necessary conditions for the Bolza problem (P) stated above
with the Euler-Lagrange inclusion

(1.14) ib(t) E co{ul(u,p(t) Of(2(t),:2(t),t) + N((2(t),)(t));gphF(.,t))}

and the transversality inclusion (1.10) where an absolutely continuous function p(.)
and a number >_ 0 are not equal to zero simultaneously.

In general, we prove the refined Euler-Lagrange inclusion (1.14) for any trajec-
.tory 2(t) that is feasible for the original problem (P) and provides an intermediate
local minimum for the so-called relazed problem obtained from (P) by some convex-
ification procedure. Note that in this case, condition (1.14) is expressed in terms of
the original data F, f and may be quite different from its counterpart in terms of the
convexifications. We discuss effective sufficient conditions when an optimal solution
to (P) solves the relaxed problem as well, so the conditions obtained characterize
solutions to the original problem of Bolza without any convexity.

3. In the case of a Mayer functional in (1.1)-(1.3), we prove that the refined
Euler-Lagrange inclusion (1.14), coinciding with (1.13) in this case, is fulfilled for
every strong minimum 2(t) without any relazation. This implies that if 2(t) solves the
original Mayer problem but may not solve the relaxed one, conditions (1.10) and (1.13)
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still hold. Moreover, these conditions are proved to be necessary for the weak minimum
to the Mayer problem under an additional Riemann integrability assumption that
makes the technique used more transparent and in principle can be omitted.

We also establish the refined Euler-Lagrange inclusion (1.13) for any boundary
trajectory of (1.2) without either convexity or relaxation. The latter result essentially
strengthens the recent one of Kaskosz and Lojasiewicz [22] who proved the Euler-
Lagrange inclusion in Clarke’s form (1.4) with f 0 for boundary trajectories.

So we obtain that the refined Euler-Lagrange conditions, providing strongest
results for convex differential inclusions, also hold true for nonconvex problems. This
is proved under the relaxability assumption (so far) for the general Bolza problem
and without the latter assumption for the Mayer problem as well as for boundary
trajectories. Note, however, that the maximum condition no longer follows from
(1.13) or (1.14)in the nonconvex case.

The Hamiltonian inclusion (1.5) always implies the maximum condition (1.6), but
for now (1.5) has been justified (as a necessary condition for the strong minimum or
boundary trajectories) only in the convex case. This implies that the Hamiltonian
condition also holds under the relaxability assumption because (1.5), in contrast to
the Euler-Lagrange inclusions, is obviously invariant with respect to convexification.
It follows from [25, Example 5.2] that the refined Euler-Lagrange inclusion may be
essentially better than the Hamiltonian inclusion in the convex case. A series of
examples in [22, 2] shows that the Hamiltonian inclusion does not imply even Clarke’s
form (1.4) of the Euler-Lagrange inclusion in nonconvex and/or convexified problems.
Therefore, the results obtained in this paper sharpen known conditions under the
relaxability assumption and especially in the fully nonconvex setting.

Now let us explain the principal method that we use to obtain the mentioned
results. This is a direct method based on finite difference (discrete) approximations.
Such an approach to variational problems goes back to Euler, who used it in 1744 to
prove the classical Euler-Lagrange equation in the calculus of variations. (Actually
Leibnitz was the first to employ a similar direct method to find the brachistochrone in
the very beginning of the calculus of variations; see, for example, [1]). The basic idea
is as follows: (1) to replace (approximate) the original continuous-time variational
problem by a "correct" sequence of finite-dimensional optimization problems that
can be solved (studied) effectively, and then (2) passing to the limit with respect to
approximation parameters to obtain desirable characteristics of the original variational
problem.

Finite difference methods turn out to be a powerful tool for numerical solutions of
infinite-dimensional variational problems. We refer the reader to the book of Polak [36]
and the survey paper of Dontchev and Lempio [13], which are devoted to numerical
aspects of consistent discrete approximations in optimal control. Some results in
this paper are also concerned with numerical questions. In 3 we develop a discrete
approximation algorithm for nonconvex differential inclusions with strong convergence
properties and error estimates. But our main interest here is to use finite difference
approximations as a direct vehicle for obtaining necessary optimality conditions in
infinite-dimensional problem (P) via a variational analysis of nonsmooth problems in
finite dimensions. Two issues are important in this approach:

(1) to construct a correct discrete approximation of problem (P) that ensures
a desirable convergence of optimal solutions for discrete problems to a given local
minimum for (P);

(2) to choose "right" generalized derivative (normal) constructions for nonsmooth
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mappings and sets that are suitable to the method. Such constructions need to be
appropriate for obtaining optimality conditions in discrete problems and also possess
robustness and calculus properties for passing to the limit in the approximation pro-
cedure. Let us observe that problem (P) and its discrete counterparts are definitely
objects of nonsmooth analysis and optimization because of a special nature of dynamic
constraints like (1.2) even under smooth data in (1.1) and (1.3).

Note that not all differentiation constructions in nonsmooth analysis fit these
requirements. For example, Pshenichnyi in [38] employed some tangentially generated
constructions related to the contingent cone. Such constructions possess the required
properties only in special situations. This allowed him to prove necessary conditions
for global (actually strong) minima in autonomous differential inclusions under some
restrictive assumptions close to the graph convexity of F(., t). He used a discrete
approximation ensuring the uniform (C-) convergence of optimal trajectories.

In Mordukhovich [27]-[29], we used generalized normals and derivatives of another
nature and somewhat different algorithms to approximate Lipschitzian differential in-
clusions. These generalized constructions appear in (1.9), (1.10) and possess required
robustness and calculus properties that are reviewed in 4. Note that if one employs
the convexification of the normal cone in (1.9), i.e., uses Clarke’s normal cone to
the graph of a Lipschitzian mapping, then such a construction does not ensure the
convergence of adjoint functions in discrete approximations (see Remark 4.6).

Although the approximation algorithm in [28] is used to prove the C-convergence
of optimal trajectories in discrete approximations, its slight modification provides the
strong L2-convergence of the velocities. It was first observed by Smirnov [48], who ob-
tained the refined condition (1.13) for optimal solutions to a Mayer problem involving
convex autonomous differential inclusions under some additional assumptions.

In this paper, we develop the method of discrete approximations to obtain the
results mentioned above in the general setting under consideration. The remainder of
the paper is organized as follows.

Section 2 is devoted to the concept of intermediate local minimum for the original
and relaxed problems of Bolza. We consider sufficient conditions that ensure the
relaxability of (P) when a given minimum for the original problem solves the relaxed
problem as well.

Section 3 deals with discrete approximations of problem (P). We provide a con-
struction of discrete approximations and natural assumptions that ensure the strong
convergence of optimal solutions with respect to the value function, trajectories, and
velocities.

In 4 we describe the tools of the generalized differentiation for nonsmooth and
set-valued mappings used in the paper to obtain necessary optimality conditions for
discrete and differential inclusions. The reader can find there a brief review of the basic
differentiation properties that are import:nt in the method of discrete approximations.

Section 5 is concerned with necessary optimality conditions for nonsmooth finite-
dimensional problems. We obtain discrete analogues of the refined Euler-Lagrange
and tranversality conditions (1.14), (1.10) without the convexity operation in (1.14)
and any Lipschitzian assumptions on F, f. These results turn out to be direct conse-
quences of the Lagrange multiplier rule in nondifferentiable programming with many
geometric constraints.

Section 6 is devoted to the limiting procedure in discrete approximations that
allows us to prove conditions (1.10) and (1.14) for an intermediate relaxed local min-
imum in (P). Under relaxation stability, the results obtained characterize optimal
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solutions to the original problem without imposing convexity.
In 7, we study a general Mayer problem for nonconvex differential inclusions

without relaxation. We prove the refined Euler-Lagrange and transversality condi-
tions for strong (as well as for weak) local minima on the base of results in 6 and
an approximation procedure involving Ekeland’s variational principle. The same ap-
proach works to prove (1.13) for any boundary trajectory.

The notation in this paper is standard. The adjoint (transposed) matrix of A is
denoted by A*; the set B is always the unit closed ball of the space in question. Some
special symbols are introduced and explained in 4.

2. Intermediate local minimum and relaxation. Recall that we consider
problem (P) stated above in the class of absolutely continuous functions x’[a, b
R (arcs) satisfying constraints (1.2)-(1.3). Any solution to (1.2) is called an (original)
trajectory for the differential inclusion, and any trajectory satisfying constraints (1.3)
is called a feasible solution to problem (P). Let us introduce a notion of local minimum
for (P) studied in the paper.

DEFINITION 2.1. The arc 5c(.) is called an intermediate local minimum (i.l.rn.) of
rank p [1, oc) for (P) if 2(.) is a feasible solution to (P) and there exist numbers
> 0 and c > 0 such that J[2] <_ J[x] for any other feasible solution x(.) to (P)

satisfying

(2.1) Ix(t) (t)l < v t [a, b],

b

(2.2) a 12(t)- :(t)lPdt < .
If (2.2) is fulfilled, then instead of (2.1) one can obviously use Ix(a)- 2(a)l < .
Relationships (2.1), (2.2) mean that we consider a neighborhood of 2(.) in the Sobolev
space W*’ of absolute continuous functions z [a, b] -- R equipped with a natural
norm. If there is only requirement (2.1) in Definition 2.1 (i.e., a 0), then one gets
a strong local minimum (with respect to the C-norm). This actually corresponds
to the L1-weak topology for derivatives instead of the strong (LP-norm) topology in

(2.2). Obviously any optimal solution to problem (g) (global minimum) provides a

strong local minimum (and, therefore, an i.l.m.) for (P). As we know, most necessary
optimality conditions for differential inclusions are obtained for strong local minima,
but it is not clear a priori whether they hold for i.l.m.

If instead of (2.2) one sets the more restrictive requirement

I(t)- N(t)l < e a.e. t e [a, b],

then we have a weak local minimum in the framework of Definition 2.1. This corre-

sponds to considering a neighborhood of 2(.) in the space W1’ with the L-norm
for derivatives (or the Cl-norm for continuously differentiable functions in classical
variational problems). Therefore, the notion of i.l.m, that we introduced takes (for
any rank p E [1, c)) an intermediate place between the familiar concepts of strong
(a 0) and weak (p a) minima. Note that some aspects of this setting are related
to the (local) Lavrentiev phenomenon in the calculus of variations.

The following example shows that the class of intermediate local minimizers differs
from that of weak local minimizers in classical variational problems.
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Example 2.2. Consider the simplest problem of the calculus of variations:

minimize J[x] 23(t)dt subject to x(0) 0, x(1) 1.

It is easy to conclude that the function 2(t) t provides a weak local minimum for
this problem; see [21, 2.2.2]. Now taking the functions xk(t) 2(t) + yk(t) with
yk(O) yk(1) 0 and

-yr if 0 <_ t <_ 1/n,
1) -1 if 1/n < t < 1,

one can check that

and

J[xk] V/ + O(1) -- --oc

]2k(t) ;2(t)lPdt --* 0 as k oc

for each p E [1, c). Therefore, the extremal 2(t) does not provide an intermediate
local minimum of any rank p E [1, x) for the example considered.

On the other hand, intermediate local minimizers may not be strong local min-
imizers even for convex and Lipschitzian differential inclusions. Such examples are
constructed by Vinter and Woodford [49] in both bounded (autonomous) and un-
bounded cases. They also distinguish intermediate local minimizers of different rank
for some unbounded (but integrably bounded) differential inclusions.

Now we consider an extension of the original problem (P) in the line well known
in the calculus of variations and optimal control (cf., e.g., [4], [6], [15], [20], [50], [52]).
Let

(2.3) fF(X, V, t) :-- f(x, V, t) + 5(V, F(x, t))

where 5(v, A) 0 if v e A and 5(v, A) o if v A (the indicator function). Denote
by IF(x, v, t) the convexification (the biconjugate function) for fF in the v variable,
i.e., the largest convex function majorized by fF(x,., t) for each x and t. Along with
the original problem (P), we consider its relaxation (R) as follows:

b

(2.4) minimize [x] (x(a),x(b))+ ]F(x(t),ic(t),t)dt

over absolutely continuous functions on [a, b] under endpoint constraints (1.3). Note
that if J[x] < oe, then x(.) satisfies the convexified differential inclusion

2(t) e coF(x(t), t) a.e. t e [a, b].

Any trajectory for (2.5) is called a relaxed trajectory for (1.2). It is well known that
under natural assumptions involving Lipschitzness of F in x, the following approxi-
ruction property holds: Every relaxed trajectory x(.) can be uniformly approximated
in [a, b] by original trajectories xk(.) starting with the same initial state (but may not
satisfy endpoint constraints) such that

(2.6) lim b f(xk(t), ic(t), t)dt <_ b ]F(x(t),2(t),t)dt as k--, c
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DEFINITION 2.3. The arc 2(.) is called an intermediate relaxed local minimum
(i.r.l.m.) of rank p E [1, c) for the original problem (P) if 2(.) is a feasible solution

of (P) and provides an intermediate local minimum of rank p for the relaxed problem
(R) with J[2]

It is essential in Definition 2.3 that 2(.) is an original trajectory for (1.2). Obvi-
ously, there is no difference between i.r.l.m, and i.l.m, if problem (P) is convex in the
following sense: for each t E [a, b] and x around 2(t), the function f is convex in v on
the convex set F(x, t). One can see that the refined Euler-Lagrange inclusion that is
obtained for i.r.l.m, may be different from its counterpart for arbitrary i.l.m, in the
relaxed problem. This happens because the normal cone to the graph of F and to the
graph of coF is not the same. On the other hand, we cannot guarantee, in principle,
that necessary conditions for i.r.l.m, will work for arbitrary i.l.m. (or strong minima)
for the original problem. Nevertheless, the latter holds in rather general settings with-
out any convexity assumptions. Actually this is related to the property of "hidden
convexity" inherent in continuous-time systems like (1.2). In this paper, we use only
one result in this direction going back to the classical Bogoljubov theorem [4].

PROPOSITION 2.4. Let 2(.) Wl’[a, b] be a strong minimum for problem (1.1),
(1.3) where the integrand f(x, v, t) is continuous in (x, v) around (2(t), ;2(t)) uniformly
in [a, b] and measurable in t. Then 2(.) is a strong minimum for the relaxed problem
(1.3), (2.4) with iF ] and J[2]

Proof. According to the version of Bogoljubovs theorem in [21, 9.2.4], for any
x(.) e Wl’[a, b] one can find a sequence of xk(.) e W’[a, b] such that xk(a)
x(a), xk(b) x(b), xk(.) converge to x(.) uniformly in [a,b], and (2.6) is fulfilled
in the case where IF ]. If 2(’) is not a strong minimum for the relaxed problem
(2.4), (1.3) or/and [2] < J[2], then there exists a function x(.) e W’[a,b] with
[x] < J[2] such that x(.) belongs to a C-neighborhood of 2(.) and satisfies constraints
(1.3). This contradicts the strong minimality of 2(.) in the original problem, thanks
to the Bogoljubov approximation for x(.).

There are several generalizations and analogues of Bogoljubov’s theorem that have
many important applications to optimal control systems and differential inclusions;
see, for example, [6], [15], [20], [28], [50] and references therein. They lead to the
property of relaxation stability (or proper relaxation) when an optimal solution to
the original problem solves the relaxed problem as well with the same optimal value.
For problems (P) involving differential inclusions with endpoint constraints at either
t a or t b, such a relaxation stability follows directly from the approximation
property for relaxed trajectories stated above.

For problems with general endpoint constraints, the relaxation stability is ensured
by the calmness property in Clarke [6], [8]. The latter property is fulfilled for "almost
all" endpoint constraints (at least of inequality type) and shows that the relaxation
stability may fail only for ill-posed problems where small perturbations of boundary
conditions produce proportionally unbounded variations of the minimum. According
to Clarke [8], the calmness hypothesis implies that corresponding necessary optimal-
ity conditions can be taken to be normal. A general result that "normality implies
relaxation stability" for optional control systems has been obtained by Warga [51].

For special classes of problems (P) with arbitrary endpoint constraints, the relax-
ation stability holds without any calmness or normality assumptions. In particular,
let differential inclusion (1.2) be represented in the linear form

c(t) e F (t)x(t)+ F2(t) a.e. t e [a, b]



DISCRETE APPROXIMATIONS 891

where the multifunctions F1 and F2 are integrable in [a, b], F1 is convex-valued while

F2 is not. If, Inoreover, the function f in (1.1) is convex in v, then any of such prob-
lems (P) possesses the property of relaxation stability. This can be proved by using
Aumann’s theorem about set-valued integrals; cf. arguments in [28, Thm. 19.7]. The
same situation holds for problems (P) involving nonlinear one-dimensional differential
inclusions; see Remark 19.2 in [28].

3. Discrete approximations. In this section we construct a sequence of dis-
crete approximations for the original problem of Bolza such that optimal solutions to
discrete approximations converge in W,p to a given i.r.l.m, for problem (P).

First let us consider a fixed original trajectory 2(.) for (1.2) and prove that it
can be approximated by trajectories for corresponding discrete inclusions. To do this,
we assume that the multifunction F(x, t) is bounded and locally Lipschitzian in x
around 2(.) and is Hausdorff continuous in t a.e. on [a, b]. More precisely, we impose
the following hypotheses:

(H1) There are an open set U C Rn and positive numbers 1F, mE such that
2(t) E U for any t E [a, b], the sets F(x, t) are closed for all (x, t) U x [a, b], and one
has

(3.1)

and

F(x, t) C mFB V(x, t) e U x [a, b]

F(x, t) C F(x2, t) + 1FIx x2lB Vx, x2 e U, t e [a, b].

(H2) The multifunction F(x, .) is Hausdorff continuous for a.e. t E [a, b] uniformly
inxU.

Following Dontchev and Farkhi [12], let us consider the so-called averaged modulus

of continuity for the multifunction F(x, t) in t [a, b] when x g. This modulus
T(F; h) that depends on the parameter h > 0 is defined as follows:

b

(3.3) T(F; h) := a(F; t, h)dt

where a(F; t, h) sup{w(F; x, t, h)lx e U}, where

w(F; x, t, h) sup{haus(F(x, t’), F(x, t"))lt’, t" It h/2, t + h/2] C [a, b]},

and where hats(., .) is the Hausdorff distance between compact sets.
It is proved in [12] that if F(x, .) is Hausdorff continuous for a.e. t [a,b]

uniformly in x G U, then T(F; h) --, 0 as h -- 0.
Note that in the case of single-valued functions f(t) not depending on x, the

construction T(f; h) in (3.3) was developed in Sendov and Popov [47] under the name
of "averaged modulus of smoothness." It was proved in [47] that T(f; h) - 0 as h --. 0
if and only if f is Riemann integrable on [a, b]. The latter is equivalent to f being
continuous for a.e. t [a, b]. In this paper, we use the name "averaged modulus of
continuity" for both single-valued and multivalued cases.

Now let us construct a finite difference (discrete) approximation for the given
differential inclusion using the replacement of the derivative in (1.2) by the Euler

finite difference

it(t) [x(t + h) x(t)]/h.
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For any natural number k 1,2,..., we consider a uniform grid Tk := {tj[j
0, 1,...,k} with to a, tk b and stepsize

hk:=(b-a)/k=tj+l-tj (j O, ,k -1).

The associate discrete inclusion is as follows:

(3.4) F(x xj+ E xj + hk j O, k 1.

THEOREM 3.1. Let 2(.) be a trajectory for (1.2) under hypotheses (H1) and (H2).
Then there is a sequence {z]lj 0,...,k}, k 1,2,..., of solutions to discrete

inclusions (3.4) such that Zo 2.(a) and the functions

(3.5) vk(t) := (Zjk+l z])/hk, t [tj,tj+l), j O,...,k- 1,

converge to :2(.) as k ec in the norm topology of Ll[a,b].
Proof. Let {wk(.)}, k 1,2,..., be an arbitrary sequence of functions in [a,b]

such that w(t) are constant in [tj, tj+l) for every j 0, k- 1 and w(t) converge
to (t) as k oc in the norm of L[a, b]. Such a sequence always exists because of
the density of step-functions in L[a, b]. Employing (3.1), one gets

(3.6) Iwk(t)l<_mE+l Vte[a,b] as k---,

In the arguments and estimates below, we use the number

(3.7)
b

k := 1:2(t) -w(t)ldt --, 0 as k --,

klj 0 k} as follows:Let us define the discrete functions {yi

(3.8) Y)+I Yj + hkw j 0,..., k 1, Yo 2(a)

where wi
k := wk(ty), j 0,... ,k 1. Note that the functions

yk(t) := 2(a)+ wk(s)ds, a < t < b,

are piecewise linear extensions of (3.8) on the interval [a, b] and

lyk(t)- 2(t)l <_ k Vt e [a, b].

Therefore, yk(t) U for all t [a, b] if k is big enough.
Denote by dist(w, F) the Euclidean distance between the point w and the closed

set F. It is well known that the Lipschitz condition (3.2) is equivalent to

dist(w, F(xl, t)) < dist(w, F(x2, t)) + 1Fix1 x2l Vw e Rn, Xl, X2 e U, t e [a, b].

For any w, x Rn and tl, t2 [a, b], one obviously has

dist(w,F(X, tl)) <_ dist(w,F(x, t2)) + haus(F(X, tl),F(x, t2)).
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Now using (3.3), we get

k-1

[tj+lCa := E hadist(w, F(y, tj)) dist(w, F(y, tj)ldt
j=o j=O J tj

k-1

ftlj+l dist(w], F(y, t))dt + T(F; ha).

It follows from (3.2), (3.6), and (3.9) that

dist(w],F(y,t)) <_ dist(wa(t),F(yk(t),t)) + 1F(mF + 1)(t- tj) Vt E [tj,tj+l)

and

dist(wa(t), F(ya(t), t)) <_ dist(wa(t), F(2(t), t)) + 1Flya(t)
_< Iw(t) (t)l + IFg a.e. t [a, b].

Therefore, we have the estimate

(3.10) ca <_ % := (1 + 1F){a + lg(b a)(mF + 1)ha/2 + T(F;

Note that functions (3.8) are not trajectories for (3.4) because one does not get
a a to define trajectories for (3.4) which are close to yWj F(y], tj). Now we use wj

and have the convergence property stated in this theorem.
Let us construct the desirable trajectories {z]j 0,..., k} using the following

proximal algorithm:

(3.11) a (z) tj) with Iv) wjl dist ty))Zo- 2(a), vj F a (w] F(z

zj+l zj + hav j-O, k -1.

Note that in (3.11) we take projections of velocities as in [28], [48] instead of projections
of states as in [381, [12]. This will allow us to prove a strong convergence of discrete
approximations with respect to velocities.

First we prove that algorithm (3.11) keeps {z]lj -0 k} inside the neighbor-
hood U from (H1) if k is big enough. Indeed, we consider any number k such that
2(t) + raB C U for all t e [a, b] where

ra := % exp[1F(b a)] + {a,

where {a and % are defined in (3.7) and (3.10), respectively. One can see that ra + 0
as k o because T(F; ha) - 0 under assumption (H2).

kBy induction, let us show that if z, U for all m 0,..., j, then this also holds
for m j + 1. Using (3.2), (3.10), and (3.11), one gets

() (z,t)) <_ Iz 1 + ( ,t))z+ +1 <_ Iz 1+ dist dit( (]
k k W

k+ l[zj y[) <_... <_ ha E (1+ lFhk)Y-’dist(m,F(Ym,tm))
m--O

J
<_ exp[1F(b a)] E hkdist(wm’F(yk’tm)) <- % exp[/F(b- a)].

m--0
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Due to (3.9), the latter implies

(3.12) IZjk+l 2(tj+l)l <-- "Yk exp[/(b a)] + k :=

kwhich proves that zj E U for all j E {0,... ,k}. Taking this into account, one can
extract from the previous arguments the following estimate:

(3.13)
k k-1

E ]z] y]] <_ (b- a)exp[1F(b- a)] E dist(w,F(y],tj)).
j=o j=0

Now let us estimate the quantity Ok f: Ivk(t)- wk(t)ldt where the functions
v(t) are defined in (3.5). Employing (3.10), (3.11), and (3.13), we get

k-1 k-1 k-1
k F(z )) _< dist(w,F(y,t) E hklv] wy I= E hdist(wy, ty E h ))

j=o j=0 j=o

k-1
k_ k (l+IF(b a)exp[1F(b a)]).<

j=0

Thus we obtain the final estimate

b

(3.14) (k IvY(t) (t)ldt <_ := k + "yk(1 + 1F(b a) exp[1F(b a)]).

This ensures the Ll-convergence vk(.) --+ (.) due to (3.7) and 7(F; h)
under (H2).

Remark 3.2. The result obtained provides a strong approximation with respect to
velocities of any absolutely continuous trajectory for the differential inclusion (1.2)
by discrete trajectories for its Euler difference counterparts (3.4). Note that the error
estimate for velocities (3.14) immediately implies the following estimate

Izk(t) 2(t) <_ k Vt [a,b]

for the corresponding motions zk(t)"= 2(a)+ f: vk(s)ds, which are piecewise linear
extensions of discrete trajectories (3.11). One can see that the numerical e]ficiency of
the estimates obtained depends on the evaluation of T(F; h) and the approximation
accuracy in (3.7).

It has been proved in [12] that T(F; h) O(h) if F(x, .) is of bounded variation
on [a, b] uniformly in x U. Using the technique for averaged moduli of continuity
(smoothness) developed in [47], one can obtain effective estimates for % in (3.7).
Indeed, if (.) is Riemann integrable on [a, b], then we always get {k 5 2(’; h),
taking v(t) (tj) for t [tj, tj + hk) as j 0,..., k- 1.

Now we consider the given original trajectory 2(.), which is an i.r.l.m, of some
rank p [1, oo) for problem (P). One can easily see that under boundedness assump-
tion (3.1), the notion of i.r.l.m, for (P) does not depend on rank p. This means that
if 2(.) is an i.r.l.m, of some rank p E [1, oc), then it will be an i.r.l.m, of any other
rank from [1, oc). In what follows we always take p 2 and set a 1 in (2.2) for
simplicity.
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Let us construct a sequence of optimization problems (Pk) for discrete inclusions
(3.4) such that optimal solutions to (Pk) strongly (in Wl’2[a,b]) converge to 5:(.) as
k --. oc. Take a number e in (2.1), (2.2) for the given i.r.l.m; and assume (H1),
(H2) along 2(.). One can always suppose that 2(t)+ /2 E U for all t E [a, b].

lJ=0 k}andUsing Theorem 3.1, we approximate 2(.) by discrete trajectories {zj
compute the numbers k in (3.12). Now we define a sequence of discrete approximation
problems (Pk), k 1, 2,..., as follows:

(3.15) minimize Jk[x] := (Xko,X) + ]x 2(a)] 2

over discrete trajectories x (x0, xk,... ,x) for the difference inclusion (3.4) sub-
ject to the constraints

(3.16) (Xo e a +

(3.17) k _< y o,..., k,

and

(xj+ x)/ha :2(t)ledt <_ el2.
j=0 Jtj

Let xk(.) be the piecewise linear extension of the discrete trajectory {xlj
0,..., k} on [a, b], and let 2k (.) denote the piecewise constant extension of the "veloc-

kity" (xj+ -x)/hk. One has

ck(t) k --x)/hk (tj) for any t ).(xj+ ck [tj, tj+l

We are going to consider the (strong) Wl’2-convergence of xk(’) to some absolutely
continuous function x(.) in [a, hi. This means that xk(a) x --. x(a) and ka(.) - 2(.)
in L2[a, b] as k --. oc. The latter obviously implies that xk(.) converge to x(.) uniformly
in [a, hi.

In addition to (H1) and (H2), now we impose the following hypotheses on f,
and

(H3) f(x, v, .) is continuous for a.e. t
U x (rnFB).

(H4) There exists u > 0 such that the function f(.,., t) is continuous on the set

(3.19) A(t):= {(x, v) e U x (rnF + u)BI v e F(x, t’) for some t’ e (t- u, t]}

uniformly in t [a, b].
(H5) is continuous on U x U and ft is closed around (2(a), 2(b)).
THEOREM 3.3. Let 2(.) be an i.r.l.m, for problem (P), and let hypotheses (H1)-

(H5) be fulfilled. Then any sequence {2k(.)}, k 1, 2,..., of optimal solutions to (Pk)
converges to 2(.) in the space wl’2[a, b] as k
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Proof. First let us prove that for each k big enough, the discrete trajectory

{z]lj 0 k} constructed in Theorem 3.1 is a feasible solution of (Pk). We need
to check that this trajectory satisfies constraints (3.16)-(3.18). For the case of (3.16),
it follows directly from (3.12). Taking k such that rk <_ e/2, we also get (3.17) from
(3.12). By virtue of (3.1) and (3.14), constraint (3.18) for xk zk is reduced to

fa

b

IVk(t) (t)12dt <_ 2mFak <_ 2mFk <_ /2.

The latter is fulfilled for big numbers k due to the expression for 3 in (3.14). There-
fore, xk is a feasible solution to (Pk) for all k big enough. According to the classical
Weierstrass theorem, we can conclude that there is an optimal solution 2k to (P) for
such k under the assumptions made.

Let us prove that for any sequence of optimal solutions 2 to (Pk) one has

(3.20) lim Jk[2k]
_

g[2] as k .
To accomplish this, it suffices to show that

(3.21) Jk[zk]--* J[2] as k cx

for the sequence of discrete trajectories zk approximating 2(.) by virtue of Theorem
3.1.

Let us consider expression (3.15) for J[zk]. Due to continuity of one has

(z0k, zk) (2(a), 2(b)) as k .
rther, the second term in this expression vanishes; the fourth term tends to zero as
k because of (3.5) and (3.14). To justify (3.21), it remains to prove that

k-1 rb

h f(z],(zj+ zf)/h, tj) / f(2(t), (t), t) dt kk
j=0 a

under assumptions (H1)-(H4). Note that (H3) implies r(f; h) 0 as k for
modulus (3.3). In what follows we use the sign "" for expressions that are equivalent
as k . Due to (3.5), (3.12), and (3.14) one gets

a f(z, (t),t)dt f(z,v(t),t)dt + r(f;h)
= j=0

f(2(t),vk(t),t)dt f(2(t),v(t),t)dt f(2(t),:2(t),t)dt.
j--O d t

The last statement holds by virtue of the classical Lebesgue limiting theorem because
{v(.)} contains a subsequence converging for a.e. t E [a,b]. Therefore, we obtain
(3.21), which implies (3.20).

In the arguments above we have not actually used the property of 2(.) to be an
i.r.l.m, for (P). Now let us prove that in the latter case, inequality (3.20) implies

(3.22) lim[c’=12(a)-2(a)l2+ (t)-(t) dt]=O,
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i.e., 2k(.) converge to 2(.) in the norm of wl’2[a, b]. Suppose that it is not true, and
consider a limiting point c > 0 of the sequence {ck} in (3.22). Let, for simplicity,
c lim ck for all k

Because of (3.17) and (3.18) we claim the existence of an absolutely continuous

function (t) in [a,b] such that 2k(.) --. (.) uniformly in [a,b] and k(.) --, (.)
weakly in L2[a, b] as k -- cx (wc take all k without loss of generality). According to

the classical Mazur theorem, there is a sequence of convex combinations of k (.) that
converges to (.) in the norm topology of L2[a, b]. Hence it contains a subsequence
converging to (.) for a.e. t e [a, b].

Using these facts and taking into account that

k-1 b

j+l xj)/hk, tj)
j=0

f(2k (t), :2k (t), t)dt as k 0c

and also the definition of fF for (2.3), we get

b k-1

(a.2a) ]F((t),(t),t)dt <limhkf(2,(2+l-Xj)/h,tj) as k--- cx,
j=0

where 2(.) satisfies the convexified differential inclusion (2.5).
Observe that the integral functional

Z[v] Iv(t) (t)12dt

is lower semicontinuous in the weak topology of L2[a, b] due to the convexity of the
integrand in v. Since

j=0

the latter implies that

(3.24 I(t) :(t)]2dt < lim j0’= xy-k)/h-:2(t)12dt as k-- oc.

Now passing to the limit in (3.16)-(3.18) as k ---, c and using (3.24) as well as

(Hh), we get that &(.) satisfies constraints (1.3) and

12(t) 2(t)l

_
e/2 for t e [a, b], Ic(t) ;2(t)12dt <_ el2.

The latter means that (.) belongs to the given neighborhood of 2(.) in W1’2[a, b].
Moreover, (3.23) implies

(3.25) ((a), 2(b)) + fF(c(t),)(t),t)dt / c

Due to (3.20), (3.25), and c > 0 we get [2] < g[2]. But this is impossible because
2(.) is an i.r.l.m, for (P). Therefore, one has c 0, which establishes (3.22) and ends
the proof of the theorem.
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Remark 3.4. In the convergence result of Theorem 3.3,. one can avoid the conti-
nuity hypothesis (H3) on f in t by changing the approximation

k--1 k-1
k kh E f(x, (x+ xj)/hk, tj) for E f(x, (x+ xj)/hk, t) dt.

j=0 j=0 t

Indeed, we can handle the latter approximations in the same way s the last term in

(3.15) under the measurability assumption on f in t.
The convergence theorem that we proved allows us to make bridge between

variational problems for differential inclusions and dynamic optimization problems in
finite dimensions. The latter can be reduced to finite-dimensional problems of mathe-
maticM programming with many geometric constraints. The mathematical program-
ming problems obtained in this way turn out to be objects of nonsmooth optimization
even in the case of smooth initial data in the original problem (P).

For variational analysis of these problems and then for passing to the limit in

optimality conditions as k -. c, we need to use generalized differential constructions
with special properties. They are considered in the next section.

4. Tools of variational analysis. This section is concerned with tools of gen-
eralized differentiation that are appropriate for the main objectives of the research.
The results reviewed are mostly connected with the approach in Mordukhovich [26]-
[28] and recent developments in [30]-[34] dealing with nonconvex-valued generalized
differential constructions. The reader can also consult Clarke [8], [10], Ioffe [7]-[19],
Loewen [23], Rockafellar [40], [44], and Rockafellar and Wets [45] for related and
additional material.

Let gt be a nonempty set in Rn, and let

(4.1) II(x, gt) := {w E clot such that Ix
be the Euclidean projector of x on clot. In the following definition, "cone" stands for
the conic hull of a set and "Limsup" denotes the well-known Kuratowski-Painlev
upper limit for multifunctions.

DEFINITION 4.1. Given 2 cl, the closed cone

(4.2) N(2; ) Limsup__.[cone(x H(x, ))]

is called the normal cone to the set at the point
If t is convex, then (4.2) is reduced to the normal cone of convex analysis. In

general, the convex closure of (4.2) coincides with the Clarke normal cone:

(4.3) Nc(2; t) cleoN(2;

Note that, in contrast to (4.3), the normal cone (4.2) is always robust with respect to
perturbations of 2, i.e., the multifunction N(.; ) has closed graph.

DEFINITION 4.2. Let f" Rn -- R be an extended-real-valued function, and let
If()l < . The set

(4.4) Of(2) := {x* e Rnl(x*, -1) e N((2, f(2)); epif)}

is called the subdifferentiM of f at 2. If If (2)l
Observe that for continuous functions, the subdifferential (4.4) turns out to be the

upper limit (robust regularization) of the subdifferential mapping used in the theory
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of viscosity solutions [11]. It is well known that if f is locally Lipschitzian around
with modulus i, then

(4.5)

Moreover, in this case Ocf(2) co0f(2) for the generalized gradient of Clarke. Note
also that

(4.6) 06(2, 9t)= N(2; 9t) if 2 e

for the indicator function 5(., 9t). We also use another representation of the normal
cone (4.2) in terms of the subdifferential (4.4) subdifferential of the distance function
(see [28, Prop. 2.7]):

(4.7) N(2; fl) cone[0dist(2, gt)] if 2 e clFt.

Among the most important advantages of constructions (4.2) and (4.4), one has
a rich calculus under general assumptions. We refer to [10], [17]-[19], [23], [28]-[33],
[40], [45] for various results in this direction. For applications in this paper, we need
the two following basic rules:

(4.8) O(f + f2)(2) a Ofx(2) + 0f2(2)

if one of the functions fi is Lipschitz continuous around 2, and

(4.9) N(2;1 n9) C N(2;1) + N(2; Ft2) if N(2;1)n (-N(2;gt2)) {0}

for any closed sets 9tl and Vt2. Note also the useful chain rule equality

(4.10) o o(vv(9),

where (q)o g)(x) := g)(g(x)) with q): Rm -- R strictly differentiable at 3 := g(2) and
9 :Rn Rm Lipschitz continuous around 2.

DEFINITION 4.3. Let F :Rn Rr be a multifunction of nonempty graph gphF,
and let (2, fl) cl(gphF). The multifunction D’F(2, f) from Rm into Rn defined by

(4.11) D’F(2, )(y*) := {x* e anl(x*, -y*) N((2, ); gphF)}

is called the coderivative of F at (2, 9). The symbol D’F(2) is used when F is single-
valued at 2 and t F(2).

Note that because it is nonconvex valued, the coderivative (4.11) is not dual to any
tangentially generated derivatives of multifunctions (see, e.g., [3, Chap. 5]). Now we
review some properties of the coderivative (4.11) that are significant for applications
in this paper. First we consider the multifunction F of a special form whose graph is

(4.12) gphF := {(x,y) e Rn x Rm[x e ft, g(x)-y e A}

where 9:Rn RTM. The following result is proved in [28, Thm. 3.3].
PROPOSITION 4.4. (i) Let the set (4.12) be closed around the point (2, 9) gphF.

Then

[D*F(2, 9)(y*) 0] ==* y* e N(9(2) 9; A).
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(ii) If g is Lipschitz continuous around 2, then

OxS(2, y*) for y* E N(g(2) ; A),(4.13) D’F(2, )(y*) 0 otherwise

:= + 5(x, a).
Setting ft Rn and A {0}, we get from (4.13) the scalarization formula

obtained in [17, Prop. 8]. Moreover, one has the following relation with Clarke’s
generalized Jacobian:

(4.14) coD*g(2,)(y*) coO(y*,g)(2,) (Jcg(2,))*y* Vy* e RTM.

It turns out that the coderivative (4.11) enjoys a rich calculus under natural (e.g.,
Lipschitzian) assumptions in general multivalued settings; see [33] for various results
in this direction. Furthermore, the coderivative construction allows us to get complete
dual characterizations of Lipschitzian properties of multifunctions that are of crucial
importance for applications below (see Corollary 5.3 and the proofs of Theorems 6.1
and 7.1). Now we present results for the classical locally Lipschitz property that were
proved in [31, Thm. 5.11]. We refer the reader to [2], [31], [32], [34], [41], [45] for
studies and applications of more general Lipschitzian properties and related topics.

PROPOSITION 4.5. Let F be of closed graph and bounded around 2. with F(2) O.
Then each of the following conditions is necessary and sufficient for F to be locally
Lipschitzian around this point:

(i) there exist a neighborhood U of 2, and a constant >_ 0 such that

(4.15) sup{Ix* x* e D*F(x,y)(y*)} <_ lly* Vx e U, y e F(x), y* Rm;

(ii) D’F(2,, 9)(0) {0} V9 e F(2,).
Remark 4.6. The estimate (4.15) is crucial to ensure the convergence of adjoint

functions in the approximation procedures of 6 and 7. If one replaces the normal
cone (4.2) in the coderivative construction (4.11) by the Clarke normal cone (4.3),
then such a counterpart DF of the coderivative (actually appearing in Clarke’s
version of the Euler-Lagrange inclusion) does not provide estimate (4.15) and the
"null-condition" (ii) for Lipschitzian multifunctions in many important situations.
This is related to the fact that Clarke’s normal cone to any Lipschitzian manifold
(which is a set locally representable as the graph of a Lipschitz continuous vector

function) is a linear subspace; see Rockafellar [42]. It turns out that Lipschitzian
manifolds include not only Lipschitz continuous functions but also graphs of maximal
monotone operators, in particular, subdifferential mappings for convex and saddle
functions. For such objects, estimate (4.15) in terms of D&F and the corresponding
"null-condition" are fulfilled in fact only for "strictly smooth" multifunctions. We
refer to [42] and [34] for more information about these and related properties.

In conclusion of this section, we present a useful result for convex-valued multi-
functions [28, Thm. 3.1], hence showing that the considered Euler-Lagrange con-

ditions for differential and discrete inclusions automatically imply the maximum

(minimum) conditions in problems with convex velocities.
PROPOSITION 4.7. Let F be convex-valued around 2, and lower semicontinuous

at 2,. Then for any f/ F(2) one has

[D*F(2, f)(y*) : 0] [(y*,9) min{(y*,y)l y e F(2)}].
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5. Necessary conditions for discrete approximations. In this section we
obtain necessary optimality conditions in discrete approximation problems (Pk) for
each k 1, 2, These conditions will be derived from a generalized Lagrange
multiplier rule for finite dimensional problems in mathematical programming with
many geometric constraints.

Let Oj :Rd--forj =0,...,sandgj :Rd--,Rn forj =0,...,m. Consider
the following problem (MP):

(5.1) minimize 0(z) for z E Rd subject to

Cj(z) _< 0 for j 1, s,

(5.3) gj(z) 0 for j 0,...,m,

(5.4) zEAj for j=O,...,1.

PROPOSITION 5.1. Let 2 be an optimal solution to problem (MP). Assume that
the functions dpy are Lipschitz continuous, the functions gy are smooth, and the sets
Aj are closed around 2. Then there exist real numbers {#jlJ 0,..., s} as well as
vectors {. Rnlj- 0,..., rn} and {z Rdlj 0,... ,/}, not all zero, such that

z N(2;Aj) for j 0,...,/,

(5.6) tj

__
0 for j 0,...,8,

(.7) for j 1,...,s,

(.s) -z () + _’.(())*.
j=0

The proof of this result, which is based on the metric approximation method,
can be found in Mordukhovich [27, Thm. 1] and [28, Cor. 7.5.1]. Note that this
method facilitates obtaining necessary conditions for (MP) in more general forms in
the presence of nonsmooth equality and inequality constraints without Lipschitzian
assumptions; see [28, 7] and 7 below.

Now we employ Proposition 5.1 and calculus rules for the generalized differential
constructions in 4 to prove necessary optimality conditions for finite difference prob-
lems (Pk) in the following Euler-Lagrange form. Considering problem (Pa) in (3.4),
(3.15)-(3.18) for any fixed k 1, 2,..., we denote

Fy(.) := F(.,tj) and fy(.,.):= f(.,.,t) as j 0 ,k- 1.

THEOREM 5.2. Let 2 (5:ko,...,2) be an optimal solution to problem (P).
Assume that the sets and gphFj are closed and the functions Z and fj are Lipschitz
co.ti..o. ao.. t oi.t (o.) a. ( - -(X+l x)/h) tiv, o a
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j --O, k- 1. Then there exist a number Aa >_ 0 and a vector pa (po,... ,p) E
R(a+l)n, not both zero, such that

(po + 2a(2(a)- 20k), --p) E a0(20,2) +

(5.10)
k k k k k((Pj+I pj)/hk, Pj+I A Oj /ha) e Ofj(2, (xy+
+ N((2, 2ky+l 2)/hk);gphFj) for j 0,...,k- 1

where

(5.11)
tj+l

k -kOj := --2 ((t) (Xj_t_l 2)/hk)dt.

Proof. Let us introduce a new variable z (x0,... ,xk, Y0,..., Yk-1) R(2k+l)n

and consider the following problem of mathematical programming:

(5.12)

k-1

minimize o(z)"= (xo, xa) + Ixo 2(a)l 2 + hk E fj(xj,y)
j=0

+ [yj )(t)I2dt subject to
j=o

(5.13) Cj(Z) :--IXj_I- 2(tj-1)l- /2

_
0 for j 1,...,k + 1,

(5.14) Ck+2(z) [yj (t)12dt /2 <_ O,
j--O Jtj

(5.15) gj(z) Xj+l xj hayj 0 for j 0,..., k 1,

(5.16) z e Ay {(x0,... ,ya-) R(2k+l)n[yj Fj(xj)} for j 0,... ,k- 1,

z e {(x0 e e

It is easy to see that problem (5.12)-(5.17) as defined is equivalent to the discrete
approximation problem (Pk)in (3.4), (3.15)-(3.18). On the other hand, (5.12)-(5.17)
is a problem (MP) in (5.1)-(5.4) with d (2k + 1)n, s k + 2, m k- 1, l= k,
and the specified functions j, gj and sets Aj. Now we employ Proposition 5.1
for the optimal solution 2 2a (2o,.. -k (2 2o)/h, (2 2 1)/h) ofXk
(5.12)-(5.17) where 2 (2o,... ,2) is a given optimal solution of (Pk).

According to this result, one gets real numbers (#o,..., #+2) as well as vectors
Cj a (j- 0, k 1) and zj --(Xj, "’’,Xkj, Yj,’" Ya-* j) R(2k+l)n (J
0,..., k), not all zero, such that conditions (5.5)-(5.8) are fulfilled for the initial data
in (5.12)-(5.17). Note that these #j, Cj, and z depend on k but we omit the index
"k" for simplicity, considering k big enough.
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First let us observe that thanks to Theorem 3.3, j(2k) < 0 as j 1,... ,k + 2
for all big k. This implies #j 0 for j 1,..., k + 2 by virtue of the corresponding
complementary slackness conditions in (5.7). Now denoting/kk := #0 >_ 0, we ensure
that ,k, (0,..., -1), and (z,... ,z) are not equal to zero simultaneously for k
big enough.

Purther, it follows from the structure of the sets Aj in (5.16) and (5.17) that
conditions (5.5) are equivalent to

(5.18) (xjj,yjj)* E N((2), (xj+- -2)/hk);gphFj) and

Xij Yij 0 if - j Vj 0,..., k 1;

(5.19) (X;k,Xkk) X); k) and xi y 0 otherwise.

Taking this into account and using calculus rule (4.8), we get from (5.7), (5.8),
(5.12), and (5.15) the following relationships:

(5.20) -Xoo Xo uo + 2

--xjj* )khk)j + Cj-1 --j for j 1,..., k- 1,

* kuk --)k-1,--Xkk

(5.23) --yj ikkhwj +0 hj for j 0 k 1

where 0) is defined in (5.11),

(5.24) (u0, ua) e 0(2o, 2),
and

(Xj+ Xj)/hk) for j 0,..., k 1.

Now denoting

p0 := x)k + )kUo + 2k(20 2(a)) and pj j-1 for j 1,..., k,

one can conclude that relationships (5.18)-(5.25) imply conditions (5.9) and (5.10)
where/k and (p0,...,p) are not equal to zero simultaneously. This ends the proof
of the theorem.

COROLLARY 5.3. In addition to the assumptions of Theorem 5.2, let us suppose
that for each j 0,..., k- 1, the multifunction Fj is bounded and Lipschitz continuous
around xj.- The conditions (5.9) and (5.10) are fulfilled with (Ak,p) O, i.e., one
can set

(5.26) )a + IPI- 1 Vk 1,2,....

Proof. If ,kk -0, then (5.10) is represented as

-k k(5.27) (P+I-p)/ha D*Fj((2,(x+ -xj)/ha)(-pj+l) for j=0, k-

in terms of the coderivative (4.11). By virtue of (5.27), Pk 0 implies that p
for all j 0,..., k- 1, according to Proposition 4.5. This proves the corollary.
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6. Necessary conditions for the Bolza problem. Now we come back to the
original Bolza problem (P) and prove necessary optimality conditions for an i.r.l.m.
in the refined Euler-Lagrange form. To accomplish it, it remains to pass to .the limit
in the necessary conditions for discrete approximation problems (Pk) as k --- oc (5),
taking into account the W1,2-convergence of discrete optimal solutions (3) and some
properties of the generalized differential constructions in 4.

Here we keep assumptions (H1)-(H3), but instead of the continuity hypotheses
in (H4) and (H5) we assume the corresponding Lipschitz continuity. Namely:

(H4’) There exist numbers u > 0 and ly >_ 0 such that f(.,.,t) is locally Lips-
chitzian with modulus ly around any point of the set A(t) in (3.19).

(Hh’) is Lipschitz continuous on U x U and ft is closed around (2(a), 2(b)).
In what follows, we denote by Of Of(.,.,t) the subdifferential (4.4) of the

function f(x, v,t) with respect to (x, v) under fixed t. Similarly, N((., .); gphF(., t))
means the normal cone (4.2) to the set gphF(., t) at a given point (., .) when t is fixed.
Note that the normal cone to the graph of F is related to the generalized derivative
(coderivative) of F according to (4.11).

One of the fundamental properties of the generalized differential constructions un-
der consideration is their robustness (upper semicontinuity) with respect to variables
of differentiation; see 4. This is of principal importance for the method of discrete
approximations. In the limiting procedure below, we also need such a robustness of
Of(.,., t) and N((., .); gphF(.,t)) with respect to the parameter t. More precisely, we

impose the following technical assumptions:
(H6) For a.e. t E [a, b] one has

limsup Of(x,’ v’,t’) Of(2(t),:2(t),t).
(re’ ,’ )--. (e(t), (t))

t’--,t, t’ <t

(H7) For a.e. t E [a, b] one has

limsup N((x’, v’); gphr(., t’)) N((2(t), :(t)); gphF(., t)).
(x ,v)--.((t),(t))

U--,t, t<

Properties (H6) and (H7) are obviously fulfilled if f and F do not depend on t and
also if f fl (x, v) + f2(t), F F (x) + F2(t) with F2 satisfying (H2). Actually, (H6)
and (H7) mean that the continuity in t holds under the generalized differentiation of f
and F with respect to the other variables. In particular, this takes place when f and
F are represented as compositions of mappings separated in t and (x, v). Note also
that for functions f smooth in (x, v), (H6) means the classical continuity of Of/Ox
and Of/Ov at (ff:(t), (t), t).

Now we prove the refined Euler-Lagrange conditions for the original Bolza prob-
lem (P).

THEOREM 6.1. Let 2(.) be an i.r.l.rn, for problem (P) under assumptions (H1)-
(H3), (H4’), (H5’), (H6), and (H7). Then there exist a number iX > 0 and an absolutely
continuous function p" [a, b] --, Rn, not both zero, such that

(6.1) [9(t) e co{u[(u,p(t)) e AOf(2(t),)(t),t) + N((2(t),)(t));gphF(.,t))}

for a.e. t [a, b] and

(6.2) (p(a),-p(b)) AO(2(a),2(b)) + N((2(a),2(b));
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Proof. Let us construct a sequence of discrete approximations (Pk) of problem
(P), which approximates 2(.) in the sense of Theorem 3.3. Now employing Theorem
5.2 for optimal solutions xk (x0,... ,x) to (P) as k c, we find sequences of
numbers >_ 0 and vectors pk (Po,... ,Pkk) satisfying conditions (5.9), (5.10), and
(5.26). One can always suppose that Ak __, >_ 0 as k c.

In what follows we use the notation 2k(t) and pk(t) for piecewise linear exten-
sions of the corresponding discrete functions, on [a, b] with their piecewise constant
derivatives )k (t) and iba(t). Let us consider a sequence of the functions

Ok(t) := O/h for t e [tj, tj+l), j 0,..., k 1,

generated by (5.11). Theorem 3.3 implies that

b k-1

ft+lIOk(t)ldt E I0 <- 2 1:2(t) -k(Xj+ xj)/hkldt
j=0

(a.a)
_-o

Without loss of generality we can suppose that

k(6.4) z (t))(t) and Ok(t)O a.e. t[a,b as .
Let us estimate the adjoint functions p(.) for big k. According to (g.10) and

kDefinition 4.a of the coderivative DF, there exist vectors (), w Ofi(), (z+-z-)/h) such that

v(6.) (P+I pj)/hk j e j(zj, (zj+ )/h) + k

for all j 0,...,- 1. Now using (6.g), (a.2), and Proposition 4.g, one has

(6.6) I(P+ pj)/hk jl < 1Fl wj + Pj+I for j 0, 1.

It follows from (H4’) and estimate (4.g) that

k(6.) I1 II and I1 z for j 0 ,- 1.

Using (.26}, (6.a), (6.6), and (6.7), we get

k(6.8) IP[ (1 + hIF)lP)+ll + hklf(1 + l) + llOl

<_exp[1F(b--a)]+li(b--a)(l+lF)+lFk Vj=0,...,k-1 as k--,

This means that the adjoint functions pk (t) are uniformly bounded in [a, b]. Employing
(6.6) and (6.7) to estimate the derivatives ibm(t), one has

(P+I Pj)/hkl

_
If + 1F(lf + Ok(t) + p+) for tj t < tj+.

By virtue of (6.4) and (6.8) this implies that the sequence {pc(.)} is weakly compact
in L[a,b]. Therefore, we can find an absolutely continuous function p(.) such that
pk (.) p(.) uniformly in [a, b] and k (.) (.) weakly in L[a, b] for k (as usual
we take all k 1, 2 ).
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Let us rewrite (5.10) as follows:

(6.9)
[9e(t) {u[(u,p(ty+)- O(t)) AOf(2(tj),(t),tj)

+ N((k(tj),:2(t));gphF(.,tj))} for t [tj,tj+l), j O,...,k-1.

According to the classical results, there is a sequence of convex combinations .of ibk (t)
that converges to ib(t) for a.e. t E [a, b]. Now passing to the limit in (6.9) as k --, c
and using (6.4) as well as hypotheses (H6) and (H7), we obtain the Euler-Lagrange
inclusion (6.1).

Taking the limit in (5.26), one has the normalization condition

+ Ip(b)l- 1,

which implies that and p(.) are not equal to zero simultaneously. It follows from
(6.8) that if p(to) 0 at some point to E [a, b], then p(t) =_ 0 in [a, b].

It remains to establish the transversality inclusion (6.2). First note that

AkO(2O, 2k) -- AO(2(a), 2(b)) as k --, c

due to robustness of the subdifferential (4.4). Then observe that the set tk in (3.16)
is represented as

(6.10) t {(xo,x) Rail dist((xo, xa), gt) _< /k}.

Now passing to the limit in (5.9) as k c and using (4.7), we obtain (6.2). This
completes the proof of the theorem. [3

Remark 6.2. The Euler-Lagrange inclusion (6.1) can be expressed in terms of the
coderivative DF of the multifunction F(., t) under fixed t. Indeed, one has

(6.11) ib(t) e co { U
(O,w)Of((t),(t),t)

[0 + DF(2(t), (t), t)(Aw p(t))] }
for a.e. t e [a,b], which is equavalent to (6.1) by virtue of (4.11). Inclusion (6.11)
implies the following:

[9(t) co[AOxf(2(t), :2(t), t) + DF(2(t), :2(t), t)(AOvf(2(t), /2(t), t) p(t))]

in the case when Of(2(t), :2(t), t) C Oxf(2(t), :2(t), t) Ovf(2(t), :2(t), t) for a.e. t
[a, b]. In particular, it happens when either f(x, v, t) fl(x, t)+f2(v, t)or f possesses
some regularity (e.g., f is smooth or convex in (x, v)).

Remark 6.3. Theorem 6.1 provides necessary optimality conditions for the Bolza
problem (P) in the basic case where endpoint constraints are given in the. abstract
(geometric) form (1.3). Using calculus rules available for the nonconvex subdiffer-
ential constructions in 4, we can obtain refined transversality conditions for special
representations of the set in (1.3). In particular, for the case of inequality and
equality type constraints

(6.12) i(x(a), x(b)) <_ 0 if 1, q,

(6.13) i(x(a),x(b)) 0 if q + 1,...,q + r
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defined by locally Lipschitz functions Ti, one has

(6.14) (p(a),-p(b)) e O (/ii)\i=o (2(a),2(b)),

(6.15) Ai>_0 for i=0,1,...,q,

(6.16) Aiai((a), (b)) 0 for 1,..., q

where a0 := and (A0,..., Aq+,p(.)) - 0; cf. [27]-[29]. Due to the subdifferential
sum rule, the transversality inclusion (6.14) implies the following "separated" one:

q q+r

(p(a),-p(b)) E E )iOi(Sc(a)’2(b)) + E
i--0 i--q+1

where Oa(2) := 0a(2) U [-0(-a)(2)] is a symmetric subdifferential construction.
In the next section we prove unified transversality conditions in the presence of both
functional and geometric constraints for the case of Lipschitz as well as non-Lipschitz
functions 99.

Remark 6.4. Developing the discrete approximation approach, we can extend
necessary optimality conditions in Theorem 6.1 to the case of "Bolza constraints"

b

(x(a), x(b)) + f(x(t), it(t), t)dt <_ 0 for 1,..., q,

b

a(x(a),x(b)) + f(x(t),ic(t),t)dt 0 for q + 1 ,q + r,

which unify endpoint constraints (6.12) and (6.13) with isoperimetric type constraints
in variational problems. In this case, the set of necessary conditions consists of (6.14),
(6.15) and

Ti(Sc(a), 2(b)) f(2(t), (t),t)dt 0 for 1,..., q,

for a.e. t e [a, b] where f0 := f and (A0 Aq+, p(.)) 0.
Remark 6.5. The approach and results obtained can be extended to the Bolza

problem for nonconvex differential inclusions with free time where a varying time
interval is involved in constraints and optimization. We refer the reader to [35] for
more details and discussions.

The necessary optimality conditions in Theorem 6.1 are proved for any i.r.l.m.
in the Bolza problem (P). In particular, they hold for any feasible solution to (P),
which turns out to be a strong local minimum for the relaxed problem. As we pointed
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out in 2, an optimal solution of (P) automatically solves the relaxed problem as well
in some common settings. Let us present such a corollary of Theorem 6.1, which is
used in the next section to obtain the refined Euler-Lagrange conditions without any
relaxation.

COROLLARY 6.6. Let the arc 2(.) provide a strong local minimum for the Bolza
problem (1.1) and (1.3) obtained by ignoring the differential inclusion (1.2). Suppose
that for some number # > 0 and open set U C Rn one has:

(6.17) 2(t) E U Vt E [a,b] and I)(t)l <# a.e. t [a,b];

f(x,v,.) is bounded and continuous for a.e. t e [a,b] uniformly in (x,v) e U
(#B); f(.,., t) is Lipschitz continuous on U (#B) uniformly in t e [a, b]; and (H5’),
(n6) hold. Then there exists an absolutely continuous function p: [a, b] R such
that one has (6.2) with )-- 1 and

(6.18) [9(t) e co{ul(u,p(t)) e Of(2(t),:2(t),t)} a.e. t e [a,b].

Proof. The boundedness of)(t) in (6.17) means that 2(.) e Wl’[a, b]. According
to Proposition 2.4, 2(.) is a strong minimum for the relaxed problem (1.3), (2.4). Let
us consider the (trivial) differential inclusion

(6.19) 2 e F(x,t):= #B a.e. t e [a,b].

It is obvious that 2(.) is an i.r.l.m, for problem (P) in (1.1), (1.3), and (6.19) where
all the assumptions of Theorem 6.1 are fulfilled. Moreover, (2(t),)(t)) (int gph F)
for a.e. t [a, b]. In this case, (6.1) is equivalent to (6.18).

Remark 6.7. Using the modified discrete approximation of the Bolza functional
in Remark 3.4 and developing the procedure in the proof of Theorem 6.1, one can
extend the results obtained for the case of integrands f measurable in t.

7. The Euler-Lagrange inclusion without relaxation. In the concluding
section of the paper we consider the following Mayer problem (PM) for differential
inclusions"

minimize J[x] := o(x(a),x(b))

over absolutely continuous trajectories of (1.2) under geometric, inequality, and equal-
ity type endpoint constraints (1.3), (6.12), and (6.13). Obviously, problem (PM) is
a special case of the Bolza problem (P) with f 0. On the other hand, the Bolza
problem can be reduced to the Mayer form involving unbounded differential inclusions;
see, for example, [8], [24]. Here we consider problem (PM) under the boundedness
assumption which is used in our technique.

The main objective of this section is to prove the refined Euler-Lagrange condi-
tions for the nonconvex Mayer problem (PM) without any relaxability assumption. To
accomplish it, we employ the results in the previous section (namely, Corollary 6.6)
and an additional approximation procedure combining ideas in [7], [22], [28]. The
latter procedure allows us to approximate the Mayer problem under consideration
by a sequence of nonsmooth Bolza problems without differential inclusions and end-
point constraints. In this way, we prove the refined Euler-Lagrange conditions for any
strong local minimum in (PM) and also for any boundary trajectory of a nonconvex
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differential inclusion. Moreover, these conditions are justified for a weak local min-
imum in (PM) under an additional Riemann integrability assumption that simplifies
the technique employed.

Keeping here assumptions (H1), (H2), and (H6) on F around the given trajectory
for (1.2), we relax the Lipschitz continuity of in (gh) and Remark 6.3. Namely, we
assume the following.

(H5) The functions i are lower semicontinuous for 0,..., q and continuous
for q + 1,..., q + r; the set is closed around (2(a), 2(b)).

Consider the closed set

:=

i(Xo, Xl) <_ui for i=0,...,q and

i(xo, xl) Ui for i=q+l,...,q+r}

and the essential endpoint Lagrangian

(7.2)
q+r

L(xo,xl,Ao,..., Aq+):= E Aii(x’xl) qt_ (((X0, Xl), a).
i--0

THEOREM 7.1. Let 2(.) be a strong minimum for the Mayer problem (PM)
under assumptions (nl), (H2), (Hh), and (HT). Then there exist a vector y*
(Ao,..., Aq+r) E Rq+r+l and an absolutely continuous function p" [a, b] Rn, not
both zero, such that

(7.3) [9(t) e coDF(2(t), (t), t)(-p(t)) a.e. t e [a, b],

(7.4) (p(a), -p(b), -y*) e N((2(a),2(b), ); 3)

where := (o(2(a),2(b)), 0... ,0) e Rq++l. Condition (7.4) always implies (6.15)
and (6.16). Moreover, (7.4) is equivalent to the simultaneous fulfilment of (6.15),
(6.16), and

(7.5) (p(a), -p(b)) e OLa(., Ao,..., Aq+)(2(a),2(b))

if all are Lipschitz continuous around (2(a),2(b)).
Proof. Let :-- o(2(a),2(b)). According to the metric approximation method

in Mordukhovich [26-28], we consider the parametric functional

(7.6) Iv[x dist((x(a),x(b), c),$a) with c (y, 0,..., 0) E Rq++ e R,

on trajectories for the differential inclusion (1.2). Let U C R be a bounded neigh-
borhood of the strong minimum 2(.) where assumptions (HI), (H2), nd (Hh) are
fulfilled. For every > 0, one has

if /is close to . On the other hand

L[x] > 0 for any ’ < "
whenever the trajectory x(.) for (1.2) belongs to the neighborhood U of the strong
minimum 2(.).
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Following Clarke [7], let us consider the set X of all trajectories x(.) for (1.2)
satisfying x(t) E clU in [a, b] and define a metric in X as follows:

b

(7.7) d(x, y) := Ix(a) y(a)l + lie(t) $(t)ldt.

One can easily see that X is a complete metric space with metric (7.7) and functional
(7.6) is continuous in X for any 7. According to the constructions above, for every
> 0 we find % < such that % as -- 0, I[2] < , and

Ye[x] >0 for Ye’-Y
where x(.) is any trajectory for (1.2) with x(t) e U in [a, b]. Now one can apply the
Ekeland variational principle [14] and claim the existence of x(.) X such that

(7.9) d(x,2) <_ xfl and

IE[x] + x/d(x,x) >_ I[x] Vx(.) X.

Note that (7.9) implies x(t) U for small enough, so I[xE] > 0 by virtue of (7.8).
Now for any positive numbers M, and the Lipschitz constant 1F in (3.2), we

define the functional

(7.10) JM[x] I[x] + v/d(x,x) + M(1 + 12) 1/ fa
D

dist((x(t), 2(t) ), gphF(., t) )dt

on the set of all arcs x(.) (not necessarily trajectories for (1.2)) satisfying x(t) U
in [a, b]. We omit the proof of the following lemma, which can be furnished by the
arguments in Kaskosz and Lojasiewicz [22, Lemmas 1 and 2].

LEMMA 7.2. There exists a number M >_ 1 such that for every (0, l/M) the
arc x(.) provides an unconditional strong local minimum for the functional (7.10).

Let us continue the proof of Theorem 7.1. Setting c (%, 0,..., 0), we consider
any element (zo,Zl,e) II((x(a),x(b),cE),$a) from the Euclidean projector (4.1)
of (x(a),x(b),c) on the set Sa. Using this projection and Leinma 7.2, one can
conclude that x(.) provides a strong local minimun for the unconstrained Bolza
problem

b

(7.11) minimize aE(x(a),x(b)) + f(x(t),ic(t),t)dt

with the endpoint function

i. /(7.12) W(xo, xl) [[xo zo + Ix1 Zl --I(E ee[ 2] -[- V/IX0 x(a)[

and the integrand

(7.13) f(x, v, t) M(1 + 12g)/2dist((x, v), gphF(., t)) + x/lv 2(t)[.

Now we employ Corollary 6.6 in the unconstrained Bolza problem (7.11)-(7.13)
taking into account the modified discrete approximation in Remark 3.4 for the last
(measurable) term in (7.13); el. the proof of Theorem 6.1. One can easily check
that the assumptions in Theorem 7.1 ensure the fulfilment of the assumptions in
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Corollary 6.6 around the solution xe(.) and the first term in (7.12) is smooth around
(xe(a),xe(b)) by virtue of (7.8).

For each e > 0, using the result in Corollary 6.6 and also calculus formulas (4.7)
and (4.8) for functions (7.12) and (7.13), we find an arc p(.) such that

(7.14) ge(t) e co{ul(u,p(t)) e N((xe(t),ce(t));gphF(.,t)) + /(0, B)}

for a.e. t E [a, b] and

(7.15) pc(a) (x(a) zo)/c + x/, -p(b) (xe(b) zle)/ce

where ce := [)xe(a) z0e] 2 + Ixe(b) Zlel 2 --lee et] 1/ > 0.
Denoting y := (ee- ce)/ce, one has

(7.16) [pe(a)l 2 + Ipe(b)[ 2 + [yl 2 1

and

(7.17)

Now let us consider the limiting procedure in (7.14)-(7.17) as e --. 0. By virtue of
(7.7), relationship (7.9) means that xe(’) --, (’) in wl’c[a, b] as e 0. This implies
that xe(t) --, 2(t) uniformly in [a, b] and 2e(t) )(t) for a.e. t [a, b].

Further, using (7.14), (7.16), (4.11), and Proposition 4.5, one can conclude (el.
the proof of Theorem 6.1) that there exist an arc p(.) and a vector y* Rq+r+l, not
both zero, such that y converges to y*, pc(t) converges to p(t) uniformly in [a, b],
and a convex combination of/Se(t) converges to ib(t) for a.e. t [a, b] as e --, 0 along
some subsequence.

Now passing to the limit in (7.14), (7.16), (7.17) and using Definitions 4.1 and 4.3
as well as robustness of the normal cone (4.2), one gets the main conclusions (7.3) and
(7.4) of the theorem. Representing y* (),0,...,,q+r), we obtain (6.15) and (6.16)
directly from Proposition 4.4(i) where

gphF gn, g (o,...,q+), 2 (2(a),2(b)), (0 0),

A ((#o,...,#q+,)l#i <_ 0 for 0,...,q and #i 0 for q + 1 ,q + r}.

If all i are locally Lipschitzian around (2(a),2(b), then the equivalence of (7.4)
to the simultaneous fulfilment of (6.15), (6.16), and (7.5) follows from Proposition
4,4(ii) where the scalarization function s(2, y*) is reduced to the essential endpoint La-
grangian (7.2) in the case under consideration. This ends the proof of the
theorem, cl

COROLLARY 7.3. Let all i be Lipschitz continuous around (2(a),2(b)) in the
framework of Theorem 7.1. Then, in addition to (7.3), one has the transversality
inclusion

(p(a),-p(b)) O ( (Sc(a),2(b)) + N((Sc(a),2(b));a)

where ,ki satisfies (6.15), (6.16) and (/o,... ,Aq+,p(’)) 7 O.
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Proof. One can derive (7.18) directly from the sum rule (4.8) and representa-
tion (4.6). Note that (7.18) implies transversality conditions of the corresponding
"separated" form in Remark 6.3.

COROLLARY 7.4. Let 2(.) be a weak local minimizer for problem (PM)- If, in
addition to the assumptions of Theorem "/.t, :2(.) is Riemann intregrable on [a,b],
then all the conclusions of the theorem hold true.

Proof. By definition of the weak local minimum for (PM), there exists e > 0 such
that 2(.) provides the strong (actually global) minimum for the auxiliary problem
(P) of the same structure involving the differential inclusion

e t) := t) t)

where G(x, t) := {v R" such that Iv :)(t)l _< e}. Due to a.e. continuity of :)(.)
on [a, b], the differential inclusion (7.19) satisfies all the assumptions in Theorem 7.1.

Now we can employ the necessary conditions of Theorem 7.1 in problem (P).
Taking into account the structure of G in (7.19) and using the intersection rule (4.9)
for representing DF, we arrive at the required Euler-Lagrange inclusion (7.3) for
the weak local minimizer 2(.) to the original Mayer problem (PM). [-I

Remark 7.5. One can see that the Riemann integrability (a.e. continuity) assump-
tion on )(.) in Corollary 7.4 is required to satisfy the Hausdorff continuity assumption
(H2) on F(x, .) for a.e. t [a, b]. This is essential in the proof of general results in
Theorem 6.1 based on discrete approximations. However, for applications to the
Mayer problem in the proof of Theorem 7.1, we need to use only the result of Corol-
lary 6.6 that was obtained for the classical (but nonsmooth) Bolza problem without
differential inclusions. The latter result could be extended to the case of integrands
f measurable in t; see Remark 6.7. In this way, one can obtain the Euler-Lagrange
conditions in Theorem 7.1 for Mayer problems involving differential inclusions with
the measurable t-dependence corresponding to the measurability of the distance func-
tion integrands (7.13) in the approximation problems. Now using the procedure in
Corollary 7.4, we could justify the refined Euler-Lagrange inclusion (7.3) for any
(Lipschitz continuous) weak minimizer to the nonconvex Mayer problem (PM) under
consideration.

Remark 7.6. If F is convex-valued, then the Euler-Lagrange inclusion (7.3) auto-
matically implies the Weierstrass-Pontryagin maximum condition

(7.20) (p(t),:2(t)} max{(p(t),v)l v E F(2(t),t)} a.e. t [a,b]

due to Proposition 4.7. It is no longer true in the nonconvex setting for arbitrary
weak or intermediate local minimizers. But we believe that for the case of strong
minimum, the refined Euler-Lagrange conditions in Theorem 7.1 are fulfilled simul-
taneously with the maximum condition (7.20) for nonconvex differential inclusions.
This statement can be obtained directly from the proof of Theorem 7.1 if one estab-
lishes the classical Weierstrass necessary condition for the strong local minimum to the
simplest variational problem like (7.11)-(7.13) with no smoothness and/or convexity
assumptions.

Now let us consider an analogue of the results obtained for the case of boundary
trajectories. Given a nonempty closed set A c Rn, we denote by R(A) the reachable
set for (1.2) from A, i.e., the set of all points x(b) where x(.) is a trajectory for (1.2)
with x(a) A.

THEOREM 7.7. Let 5c(.) be a trajectory for (1.2) with 5c(a) A, and let as-
sumptions (H1), (H2), (H7) hold. If g: an --+ aTM i8 a locally Lipschitzian function
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around 2(b) and if g(2(b)) is a boundary point of the set R(A), then there exist an arc
p: [a, b] an and a ’unit vector e Rm such that p(.) satisfies the refined Euler-
Lagrange inclusion (7.3) with the following boundary transversality) conditions:

(7.21) p(a) e N(2(a); A), -p(b) e

Remark 7.8. The result formulated generalizes the recent one in Kaskosz and Lo-
jasiewicz [22] where (7.3) is replaced by Clarke’s form of the Euler-Lagrange inclusion
(see (1.4) in the case where f 0) and conditions (7.21) are replaced by

p(a) E Nc(2(a); A), p(b) [Jcg(2(b))]*2

in terms of Clarke’s normal cone and generalized Jacobian; cf. (4.3) and (4.14).
Proof of Theorem 7.7. Following the arguments in [22], for every > 0 we can

find a vector c R" and a trajectory x(.) of (1.2) with x(a) A such that
> 0,

c--, g(2(b)), x(.) (.)in Wl’[a,b] as 0,

and x(.) is an unconditional strong local minimizer for problem (7.11) with integrand
(7.13) and the endpoint functional

(7.22) e(x0, xl) := Ig(xl) c + v/lxo x(a) + Mdist(xo, A).

Now employing Corollary 6.6 in problem (7.11), (7.13), (7.22) and using calculus rules
(4.7), (4.8), and (4.10) to compute the subdifferential of (7.22), one gets an arc p(.)
and a unit vector Rm such that (7.14) holds and

(7.23) p(a) v/B + N(x(a); A), -p(b) 0(, g}(x(b)).

Following the proof of Theorem 7.1, we obtain conditions (7.3) and (7.21) by passing
to the limit in (7.14) and (7.23) as

Remark 7.9. Using the method of metric approximations (as in the proof of
Theorem 7.1), one can extend Theorem 7.7 to a more general setting when g(2(b)) is
a locally extremal point of the set R(A) relative to other given sets. We refer to [28,
6] and [33, 3] for more details about this concept.

Remark 7.10. Following the proof of Theorem 7.7, we can obtain, in addition to
(7.3) and (7.21), the maximum condition (7.20) for boundary trajectories of nonconvex
differential inclusions if one has the Weirestrass necessary condition for the strong
mimimum to the simplest variational problem (7.11) with nonsmoothness (7.13) and
(7.22).

Acknowledgments. The author is indebted to Asen Dontchev, Alexander Ioffe,
Richard Vinter, and two anonymous referees for their helpful remarks.
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SINGULAR OPTIMAL STOCHASTIC CONTROLS I:
EXISTENCE*

ULRICH G. HAUSSMANNt AND WULIN SUO$

Abstract. We apply the compactification method to study the control problem where the state
is governed by an Ito stochastic differential equation allowing both classical and singular control.
The problem is reformulated as a martingale problem on an appropriate canonical space after the
relaxed form of the classical control is introduced. Under some mild continuity hypotheses on the
data, it is shown by purely probabilistic arguments that an optimal control for the problem exists.
The value function is shown to be Borel measurable.

Key words, singular controls, relaxed controls, control rules, existence theory, pseudopath
topology, compactification method, value function
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1. Introduction. The class of singular stochastic control problems, which has
been studied extensively in recent years, deals with systems described by a stochastic
differential equation in which one restricts the cumulative displacement of the state
caused by control to be of an additive nature. More precisely, in this paper we study
the existence of optimal controls to the problem in which the state evolves according
to the d-dimensional stochastic differential equation

xt x + b(O, xo, uo)dO + a(O, xo, uo)dBo + g(O)dvo
8

on some filtered probability space (ft, 9r, 9rt, P), where b(.,., .), a(.,., .), g(.) are given
deterministic functions, (Bt, t >_ 0) is a d-dimensional Brownian motion (in fact B
need not be d-dimensional), x is the initial state at time s, and u [0, T] H U,
v: [0, T] H 1ik with v nondecreasing componentwise, stand for the controls.

The expected cost has the form

f(t, xt, ut)dt -t- [s,T) c(t) dvt }
where f(. .)" [0, T]du//,c(.)" [0,T]k+ are given. We assume that
the cost of applying the singular control is positive, i.e., ci(.) > 0, 1,..., k.

Some special cases of the one-dimensional problem of this type (without the clas-
sical control u) have been studied by many authors including Bens, Shepp, and
Witsenhausen [2]; Chow, Menaldi, and Robin [6]; E1 Karoui and Karatzas [8]; Har-
rison and Taksar [11]; Karatzas [19], [20]; Karatzas and Shreve [21]; Lehoczky and
Shreve [23]; Ma [24]; Menaldi and Robin [25], [26]; and Sun [32]. It is shown that
the value function satisfies a variational inequality which gives rise to a free-boundary
problem, and the optimal state process is a diffusion reflected at the free boundary.
This approach encounters substantial difficulties for the problems in high dimension
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due to the lack of information about the regularity of the associated free boundary.
In Soner and Shreve [30], a special two-dimensional problem (b 0, a I) was
considered. It was shown there that the associated free boundary is smooth enough
to construct a reflected diffusion in the continuation region. However, as the au-
thors pointed out, the method depends heavily on the special features of the problem
and cannot be extended to general problems. Another result about high-dimensional
problems can be found in Menaldi and Taksar [27], who considered the n-dimensional
case with b const, a const. It was shown that the value function satisfies the as-
sociated Hamilton-Jacobi-Bellman equation, and the existence of the optimal control
was proved without requiring any regularity about the free boundary.

In this paper, we apply the compactification method used in Haussmann [12],
Haussmann and Lepeltier [13], and E1 Karoui, Nguyen, and Jeanblanc-Picqu [7] to
show the existence of the optimal control. An advantage of this approach is that it
does not require any regularity of the value function and thus needs only very mild
hypothesis on the data. Unfortunately, it does not show any particular structure of
the optimal control.

This paper is organized as follows: In 2 the concept of relaxed control (for the
classical control u) is introduced and the problem is reformulated as a martingale
problem on a canonical space. In 2.3 a topology is given to the canonical space to
make it a metrizable separable space, which is necessary to apply Prohorov’s theorem.
A relative compactness criterion for the subsets of the canonical space is given. In
3 it is proved that the optimal control exists, and the value function is shown to be
Borel measurable. We also make some comments about possible generalizations of
the model and constraints on the state in 4

This paper is one of a series that applies the direct method to study the singular
control problems. In [14] we prove the abstract form of the dynamic programming
principle under the same conditions on the data assumed in this paper. When assum-

ing Lipschitz continuity of the data, it is shown that the value function is continuous
and is the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman
equation. This method can also be used to show (cf. [33]) that there is a region A
such that the optimal control yields no jump when the state is in A, and there exists
an optimal control to keep the state in the closure of A after a possible initial jump.
In [15] the adaptedness of the optimal control to the state is considered.

Note that in the literature singular control usually means that there is no classical
control u involved. But our model obviously includes this case by letting U be a

singleton (or by letting a, b, f be independent of u). It also includes the monotone
follower as well as the bounded variation problem (cf. 4).

Finally, we list some notation that will be used throughout this paper:
/Rd, denote the &dimensional Euclidean space and the real line, respec-
tively. + {x , x _> 0}, and 1id+ is defined similarly.. For x (x), y-

d yi(yi) d x.y= i=x
T > 0 is the fixed horizon, and E [0, T] x/Td.
C[0, T] denotes the collection of real-valued continuous functions defined on

[0, T], and cd[o, T] denotes the collection of id-valued continuous functions
defined on [0, T].
7:)d[0, T] denotes the collection of/d-valued functions defined on [0, T] that
are left continuous and have right limits (i.e., lcrl functions).
Ak[O, T] denotes the collection of functions a [0, T] -, /ik such that a

(ai) Z)[0, T] and a is nondecreasing with a(0) 0, 1,..., k.
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. Slk is the space of k matrices with the k-dimensionM Euclidean norm.
If Y is a metric space, B(Y) denotes the corresponding Borel a-field, and
f E B(Y) means that f is a B(Y)-measurable reM-valued function. We
denote by t/+ (Y), /I(Y) the space of nonnegative Radon measures and
the space of probabilities on Y, respectively.
If X is a random variable on a probability space (fl,9, P), the expectation
of X will be denoted by EP(x). A/[ (J4’1) is the family of continuous
square integrable martingales (local martingales, respectively) on some given
probability space (, $’, P) with a filtration

2. Formulation of the problem. We consider the following optimal control
problem in which we allow both classical control and singular control to act at the
same time. The dynamics are in the form

(2.1) xt x + b(O, xo, uo)dO + a(O, xo, uo)dBo +

for (s, x) E E, s _< t _< T, where

that

g(O)dvo a.s.

uo U, s <_ 0 <_ T, and U, called the control set, is a compact metric space;
(a,b) E V 8dd d, g. [0, T] sdk; a(t,x,u), b(t,x,u) are
bounded, measurable, and continuous with respect to (x, u); g(t) is continuous

[0,T];
(Bt, 0 <_ t <_ T) is a d-dimensional Brownian motion on some probability
space;
v A [0, T].

We introduce the concept of controls to the stochastic differential equation (2.1).
DEFINITION 2.1. A control is a term a (f, .T, .Tt P, Bt xt ut vt s, x) such

(1)
(2)
(3)
(4)

(s,x) E;
(f2, , P) is a probability space with the filtration {.Tt}t_>o;
ut is a U-valued process, progressively measurable with respect to {.Tt}t>o;
v is -valued processes, progressively measurable with respect to .Pt; the
sample paths of v are in .A[0, T], i.e., for each w , v.(w) .At:J0, T];
Bt is a standard d-dimensional Brownian motion on (f, iT, Jzt, P) and xt, the
state process, is JZt-adapted with sample paths in T)d[0, T], and such that (2.1)
is satisfied. We assume that xr x for 0 <_ r <_ s.

We call (s, x) the initial condition of the control a.
The collection of controls with initial condition (s,x) is denoted by As,x. It is

well known from the theory of stochastic differential equations that, under the above
conditions, the set As,x is nonempty for each fixed (s,x) (e.g., take u and v to be
.constants). The cost corresponding to the control a is defined in the form

(2.2) J(a) E I(t, zt, t)dt + c(t) dvt

where
f 2 x U is a measurable function and is lower semicontinuous in (z, ),
satisfying

-K f(t,x,u) C(l + llxllm), (t,x,u) e E x U

for some constants m 0, K 0, and C 0;
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c (c)" [0, T] H k is lower semicontinuous and c > 0, 1 <_ _< k.
Throughout this paper, we write

d

for any k-valued Borel measurable functions k (ki) and a (ai) e 4k[0, T]. For
v E ,4k[0, T], define

(2.3) Gt(v)= ] g(O)dv(O), s < t <_T,
,t)

and Gt(v) 0 if 0 <_ t <_ s. It can be verified easily that G.(v) e :Dd[0, T].
The value function of the problem is defined, for (s, x) E, as

(2.4) W(s, x) inf J(c).

A control c* As,x is called an optimal control if W(s, x) J(c*).
Remark 2.2. Note that there is no terminal cost in our model. Because of the

way we choose the topology on the canonical space, this method cannot treat the case
with terminal cost. We will return to this point at the end of the paper.

2.1. Relaxed controls. In order to apply the compactification method, we now
reformulate the problem. Since the Brownian motion in the definition of controls is
unknown in advance, we can reformulate the above control problem as an equivalent
martingale problem. This simplifies taking limits. In fact, let

1 02 0=- - E aiJ oxiOxj + E bi--’Oxi
i,j

where a(t, x, u) a(t, x, u)a(t, x, u)*. Then we can show that cr e As,x if and only if
a satisfies (1)-(4) in Definition 2.1, and

(5’) xt is an -t-adapted process with sample paths in 7pd[0, T] such that
P(xr =x, ur =u, vr =0, 0_<r_<s) 1, whereu U is arbitrary
but fixed,
V E C(d), 2M AA, i.e., Mt (0 < t <_ T) is a continuous square
integrable martingale on the filtered probability space (f, 9c, 9ct, P), where

Mt(w) (xt) (0, xo, uo)dO Vx(x0)" g(O)dvo

[(xo+)- (x0)-
s<_O<t

Therefore, we can delete the term Bt from the notation of a control. The proof of the
equivalence of the existence of weak solutions to a stochastic differential equation and
the existence of solutions to the corresponding martingale problem, given by Ikeda
and Watanabe in Proposition IV-2.1 of [16], also works here despite the extra term

Next we introduce the concept of relaxed controls, which gives a more suitable
topological structure when applying the compactification method. In a relaxed control
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problem, the U-valued process {ut} is replaced by an g//l(U)-valued process {#t},
where J/1 (U) is the space of probability measures on U endowed with the topology
of weak convergence. //1 (V) is also a compact metrizable space. If U -/ is a
bounded measurable function, then we extend to g//1 (U) by letting

b(#) =_ Jfg (u)#(du).
DEFINITION 2.3. a (,.,t,g, xt,Pt,vt,8, x) is called a relaxed control if it

satisfies conditions (1), (2), and (4) in Definition 2.1, and
(3’) #t iS 1(V)-valted, progressively measurable with respect to {’t}t_>0;
(5") xt is an 2Ft-adapted process with sample paths in 79d[0, T] such that

P(xr x, # 5, v O, 0 _< r _< s) 1, where 50 is the Dirac
measure at some arbitrary but fixed u E U;
V E C(d), JM Ad, i.e., Mt (0 <_ t < T) is a continuous square
integrable martingale on the filtered probability space (, jz, t, P), where

Mt(w) (xt)- (O, xo,#o)dO- Vx(x0)" g(O)dvo

}7.
s<_O<t

Note that we never work with a(t, x, u). Instead, we will be working on a(t, x, u)
through the martingale formulation in Definition 2.3. It is not true in general that
a(t, x, #)a(t, x, #)* a(t, x, #) (cf. E1 Karoui, Nguyen, and Jeanblanc-Picqu [7]).

The collection of relaxed controls starting from time s with the initial state x
is denoted by/s,x. Note that As. can be imbedded into/s, by letting #t(du)
5ut (du). Here, 5 denotes the Dirac measure at the point u. Hence, Vc As,x, there
exists an & As,x such that

and, therefore,

J(6) J(c),

inf J(5)_< inf J(c).
&E-s,x cEAs,

In order to get the reverse inequality, we define for each (t, x) E E a subset of
Sx x i x

(2.5) K(t,x) {(a(t,x,u),b(t,x,u),z) z f(t,x,u),u U}.
PROPOSITION 2.4. Assume that K(t,x) is convex V(t,x) E. Then V8 ,,

there exists an As, such that

J(.)
The proof in Haussmann and Lepeltier [13, Thm. 3.6.], can be carried over here

without any change. From this result we know that when K(t, x) is convex,

inf J(5)= inf J(a).
Es,

Hence we can resric our aenion o he case of relaxed controls. Moreover, if
he infimum over relaxed controls is aained, hen so is he infimum over ordinary
controls.

If he convexity condition fails, our existence reuls pertain only o relaxed con-
rols.
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2.2. Control rules. Now we choose a canonical space to simplify the arguments
in the compactification method. Define

U ------ {ft" [0, T] H W/1 (U)is Borel measurable}.

Consider the canonical space

x _= )[0, T] A [0, T].

All the above spaces are equipped with appropriate topologies, which we will discuss
later. Let 7,/, denote their Borel a-fields, and 7t,/t, t denote the a-fields up
to time t, e.g.,

A {() o < o < t}, o _< t < T.

Let

DEFINITION 2.5. A control rule is a probability R on the measurable space (X, X)
such that

is a relaxed control, where

for w- (x.,ft.,v.) E A, i.e.,
(1) (A,,R) is a probability space with the filtration {,t}, (s,x) e E, and

R(xr=x, ftr=50 v=0, 0_<r_<s)=l;

(2) V C(d), Mt (s <_ t <_ T) is in /[ on the filtered probability space

(A, A, At, R) (s <_ t < T), where

Mt(w) (xt) (0, xo, fto)dO Vx(x0) g(O)dvo

[(x0+)- (x0)- v(x0). xo].

Let J(s, R)=- J(&).
We denote by 7s,x the space of control rules such that the above relaxed control

starts from time s with initial state x. We will suppress s in J(s, R) when it is clear
that R 7s,. Now the control problem can be described completely in terms of
control rules.

PROPOSITION 2.6. Let (gt,.T’,.T’t, P, xt, ftt, vt, s,x) be a relaxed control; then
there exists a control rule R s, such that

J(R)=J(a).
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Proof. The proof of this result is standard. Define a map gt A" by

() _= (x. (), ,. (), v.()).

This map is measurable, and .T’’u’’ C (I)-1 (’t) C T"t. We can show that

’] " ( ,’t P x t v 8 x

is also a relaxed control such that

J(&) J(a).

Let R P o (I) -1, which is a probability on (A’, A’). It is easily seen that

:V, , Xt, R, xt, ttt, vt, s, x)

is a relaxed control satisfying the requirements in the Proposition.

2.3. The topology on the canonical space. In this section we define the
topologies on the spaces :Dd[0, T],/d, and jtk[0, T].

The space :Dd[0, T]. We first give a topology on :Dd[0, oc), the collection of lcrl
functions on + taking values in d. Then we can take :Dd[0, T] as a subset of
Td[0, ec) by extending each x E :Dd[0, T] to an x’ E :Dd[0, c) through

x(t), 0<_t<T,x’(t)= z(T), t>_T,

and consider the induced topology on Dd[0, T].
Define a measure A(.) on the Borel subsets of/R+ by A(dt) e-tdt. For a Borel-

measurable function f :/R+ gtd, the image of the measure A(.) under the mapping
t (t, f(t)) is a called the pseudopath of the function f. It is a probability law on

d[0 c] and is denoted by (f). It is clear that identifies two functions if and
only if they are equal almost everywhere in the Lebesgue sense and, in particular,
is one-to-one on :Dd[0, o). Thus it provides us with an imbedding of :Dd[0, c) into

dthe compact Polish space P of all the probabilities on [0, cx] (with the topology
of weak convergence). The topology that 75 induces on :Dd[0, cx) via the mapping is
called the pseudopath topology, and makes :Dd[0, (x) a separable metrizable space. The
associated Borel a-algebra on :Dd[0, o) is the same one that we get from the Skorohod
topology. In fact, Lemma I in [28] tells us that convergence in the pseudopath topology
is just convergence in measure. Let denote the Borel a-field on :Dd[0, T], and t be
the Borel a-field up to time t, i.e.,

f)t a{x(O) O <_ O <_ t}, O <_ t <_ T.

Now we state a relative compactness criterion for subsets of Dd[0, (:x:)). For x
:Dd[0, oc), define x* supt I[x(t)l[. For u (ui),v (v) igd, u < v means

u < v (1 <_ <_ d). Let NV(x) Ed NV(xi), where N(x) denotes the
number of upcrossings of x (.) on [0, c) between the levels u and v. Then a subset
A C :Dd[0, c) such that

(2.6) sup x* < , sup N(x) < c
xA xA
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for any u < v is relatively compact in )d[0, (:x:)) with the pseudopath topology. For
details, see Meyer and Zheng [28].

Remark 2.7. As pointed out by Meyer and Zheng [28], :Dd[0, x) with the pseu-
dopath topology is not a Polish space. But from the definition we know that it is
homeomorphic to a subspace of the Polish space P, and hence is a separable metric
space.

The space bl. l is the space of measurable transformations # [0, T] -, -/1 (V)
endowed with the stable topology, which is defined as follows: for A E B([0, T]),
B E B(U), define

p(A x B) A pt(B)dt.

Then p can be extended uniquely to an element in +([0, T] x U), the space of
nonnegtive Radon measures on [0, T] x U. The stable topology on is the weakest
topology that renders continuous the mappings

p (t, u)p(dt, du)

for all bounded measurable functions that are continuous in u.
Under this topology, we know that +([0 T] U)_is a compact separable metriz-

able spce. N is also endowed with its Borel a-field N, which is the smallest a-field
such that the mappings

t(d)f(t, )dt

are measurable, where f is a bounded measurable function continuous with respect
to the variable . The filtration t is the -field generated by {l[0,tl, }. om
the definition of the stable topology, we know that t is generated by the sets of the
form

with s t and B a Borel set in +(U).
or more details, see Haussmann and Lepeltier
The space N[0, T]. Let V be the collection of functions a’[0, T] such that

each a(.) is of bounded variation and left continuous. We assume a(0) 0. We first
consider a topology on .

Let [0, T] be the collection of signed Radon measures on [0, T]. Then there is
a one-to-one correspondence between and [0, T])" for a , let

So we need only consider a topology on [0, T], then we can get the induced topology
O .

Denote by C[0, T] the collection of real-valued continuous functions on [0, T]. It
is well known that N[0, T], and, therefore, V is the dual space of C[0, T] with the
supremum norm: for f C[0, T],

II/11 sup
0<t<T
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and the corresponding weak* topology on i/V/[0, T] is the topology induced by the
weak convergence of measures. It can be easily seen that the measures of the form
yN ai6x with N finite and hi, xi rational comprise a countable dense subset of
$Er[0, T]; therefore, $Y/[0, T], with the weak* topology, is separable.

Let ,40 {a E V a nondecreasing}. Then it is a closed subset of l) under
the weak convergence topology, and the corresponding closed subset in fY/[0, T] is
$1//+[0, T]. By Stroock and Varadhan [31] we know that /+[0, T] is a metrizable
space. Therefore, we can conclude that under the weak convergence topology ,40 is a
separable metric space.

We state the following theorem which will be used later.
THEOREM 2.8. For any constant C > O,

(2.7) e T]) < C}

is a compact subset of i/Y/+[0, T].
Proof. Note that the set (2.7) is a closed subset in l/[0, T] in both the (variation)

norm topology and the weak* topology. Also notice that if A E $1//+[0, T] C l/[0, T],
then the norm of A will be

Ilflll

T

fd) A([0, T]),

i.e., the set (2.7) is a norm-bounded subset of $Y/[0, T]. Therefore by the Banach-
Alaoglu theorem (see Larsen [22, Tam. 9.4.1]) we can conclude that (2.7) is a compact
subset of l/[0, T], and, therefore, a compact subset of r+[0, T]. v]

Finally, observe that Ak[O,T] (.A)k and consider the product topology on

.Ak[0, T] inherited from the weak topology of ,4. We can state the following result.
.Ak [0, T] is metrizable and separable. For Vn v ,4 [0, T],COROLLARY 2.9.

v if and only ifVn

fo jo
T

f(t) dvn (t) f (t) dv(t)

for any f e C([0, T],JRk). Moreover, the set

(2.8) VM- {v e Ak[0, T] IIv(T)ll < M}

is compact for any constant M > O.
We write down the following observation for later use. Its proof is obvious from

the relative compactness criterion for pseudopath topology on 7:)d[0, T]. Recall that
the map G: 4k[0, T] w- 7)d[0, T] is defined by (2.3).

LEMMA 2.10. For any constant M > 0

 (VM) VM}

is a relatively compact subset of 7:)d[0, T], where VM is defined by (2.8).
From now on we will always use the notation 12 A’, " X, and ’t ’t. It is

well known that l/l(f), endowed with the Prohorov weak convergence topology, is
then a separable metrizable space. Denote the collection of all the control rules with
initial condition (s, x) by 7s,x, which is a subset of $V/1 (). For any real number A,
define

n, =_ {P Tis.x, J(s, P) < }.



SINGULAR OPTIMAL STOCHASTIC CONTROLS I: EXISTENCE 925

PROPOSITION 2.11. There exists a constant C >_ 0 such that for

,(x) C(1 + Ilxllm), x d,

(x)we have ,,.8, 7 0 for each (s, x) E E. Recall that m is given in the definition of f
Proof. Under our assumptions, it is known from the theory of stochastic differen-

tial equations (cf. Stroock and Varadhan [31]) that there exists a P0 E T8, with

Po(vt O, #t o, O <_ t <_ T) l.

Then from the definition of control rule we know that under P0,

zt z + b(O, xo, u)dO + a(O, zo,

therefore, from the boundedness of b, a, and the Burkholder-Davis-Gundy inequality
we have

EP Ilxtllm c {}xllm + ENo b(O, xo, u)dO

0+EP sup a(O, xo, )dBo,
0<0<t

C 1 + Ilxllm + EPo tr(a(O, xo, ))dO

C (1 + Ilxllm),

where C is a constant independent of x. Now we have by definition

J(s, Po) EP f(O, xo,u)dO <_ C 1 + EPllxollmdO
_< C (1 + Ilxll),

where C is independent of s,x. The proposition is thus proved by letting A(x)
c(1 + Ilxllm),

3. Existence of optimal controls. In order to show the existence of optimal
controls, let us reformulate the problem as follows. Consider the stochastic differential
equation (2.1), and let

y=x-a(v);

then xt Yt -t- Gt(v) (0 <_ t <_ T), and (2.1) becomes

(3.1) Yt x + b(O, xo, uo)dO + a(O, xo, uo)dBo;
8

this is a continuous process. We use this idea, but in the martingale setting, to replace
the definition of a control rule.

PROPOSITION 3.1. P Ti,x if and only if there exists an t-adapted process y
such that
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(1) y. is continuous with probability one (w.p. 1) and P(x. y. + G.(v)) 1;
(2) P(xr x, # , vr O, O <_ r <_ s) l;
(3) M fow C(),h

(3.2) () (()) (0, x, o,,o)d0,

and

Proof. The proof is comparable to that in Suo [33].
Some routine calculations can lead to the following result.
LEMMA 3.2. Assume P E 7Zs,x. For any , C(d) we have

(3.3) 1 ’t 0(y0) 0(y0)dO(_A7/, 27/} aiy(O, xo,#0) Oy OyJ
i, =

under probability P. In particular, if we define, for 1 <_ <_ d,

(a.4) _I(t) (t) z b(O, zo,o)dO,

C|OC
i.e., /Itc with (y) y x then j2 and

(1, llJ)t aij(O, xo, #o)dO, 1 <_ i, j <_ d.

Recall that cd[o, T] is the space of d-valued continuous functions on [0, T]. We
give cd[O,T] the uniform topology, i.e., for x, y cd[o, T], the distance between x
and y is defined by

p(x, y) max [Ix(t) y(t)ll.
0<t<T

This makes cd[o, T] a Polish space (cf. Billingsley [3]).
For a sequence pn 7sn,x with (sn, x) e E, the probability law of the process

y, defined in Proposition 3.1, under P is defined by

pn(c) =-- Pn(W y (w) e C)

for C , where ( is the Bore1 a-field of cd[0, T].
PROPOSITION 3.3. If the sequence (Sn,X) is bounded in E, then {P} is rela-

tively compact. Moreover, for any > O, there exists a compact subset K C cd[o, T]
such that

(3.5) Pn(K) >_ 1 Vn.

Proof. To show that {f)n} is relatively compact, we need only verify the following:
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(a) limA-, infn Pn(lly(O)ll _< A)- 1, and
(b) for any , > 0,

(3.6) limlimsuppn[10
n /o<s<t<Tsup Ily(t)-y(8)ll 7]--o,

L -- <.-

Note that (a) is obvious from the fact pn(y(O) Xn) 1.
Thm. 12.3], (b) is implied by

(3.7) EPIly(te) y(tl)]l 4 _< CIt. tl’

By Billingsley [3,

for any n _> 1, 0 _< tl, t2 _< T, where C is a constant.
Recall from the definition of y that P’(y(t) x, 0 _< t _< s) 1, and for

t> Sn,

Xn + b(O, xo, #o)dO + J/In (t)

with 21/n E j,loc under P, and

(2n>t tr(a(0, xo, #o))dO, t >_ sn.

It can be easily verified that (3.7) follows from the boundedness of the coefficients
a(.,., .) and b(.,., .) and the Burkholder-Davis-Gundy inequality.

We have therefore shown that the probability laws of y under pn are relatively
compact. The existence of a compact subset K such that (3.5) holds is a consequence
of Prohorov’s theorem. Cl

PROPOSITION 3.4. If A is a bounded subset of d, then

(3.8) lim inf

(s,x)E[O,T]A

P{w" IIvTll M} 1,

where If" denotes the Euclidean norm in IRk.
Proof. If P E 7,x, then J(P) _< A. Since the function f is assumed to be bounded

from below, there exists a constant K > 0 such that f _> -K. From the assumption
that c(t) is strictly positive and lower selnicontinuous, there exists a constant co > 0
such that c(t) >_ Co (1 _< < k, 0 <_ t < T). Thus

A >_ J(P) EP f(O, xo, #o)dO +

>- EP{-KT +  olI TII}.

c(O) dvo }
Therefore, EPII. TII <_ + KT)/co and

P(IIvTII >_ M)<_ o
The proposition is now obvious.
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Define a function on by

(3.9) F(w) f(O, xo, /to)dO + c(O) dvo

for co (x., #., v.). Then we have
LEMMA 3.5. F(.) is lower semicontinuous on f, i.e.,

(3.10) lim inf Fs(wn) >_ rs(w)
n

if Wn -- w in

Proof. We show the case when s 0; for general s the proof is similar. We can also
assume that f(t,., .), c(.) are continuous. In fact, since they are lower semicontinuous,
we can find sequences of continuous functions {fm(t, ", ")}, {C(.)} such that

Cfm(t,.,.) T f(t,.,.), Cm(" T (’), l k,

and thus if the lemma is true for continuous functions, then Vm

limnf ro() limnf f(O,z(O),(O))dO + c(O) dye(O)

I(o,(ol,,(oao + (o). (o.

Let m , and use the monotone convergence theorem to conclude the result.
We assume that I(t,., .) and c(.) are continuous. rom v v in [0, T] we

hv

(0. (0 (0. e(0.

Now we show that as ,
(3.11) fjo f(O,x(O), u).(du)dO f(O,x(O), u).o(du)dO.

Lt dO .(d)dO, dO .o(du)dO; then the iht-hnd id
rewritten as

(3.12) O,T]zU f(O’gn(O)’ )dQn O,T]xU f(O,X(O), )dQ

+ / [.f(e,x(e), u) f(O,x(O), )]dQ.
,TlxU

From the definition of stable topology we know as n

Now we show that the limit of the second integral in (g.12) is ero. or any
positive integer m and constant > 0, let

9(t, z, ) f(t, z, ) I(t, z(t), ),

IIx-x(t)llS1/m
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Then each t-section of the set Am is a closed subset of U from the continuity of the
function f(t,., .). Also A1 A2 ..- A, A,+I ..., and

Applying the results in Jacod and Memin [17, Prop. 2.11] we can get

(3.13) limsupQn(A,) <_ Q(Am), limQ(Am) O.
n m

Let Bn {(t,u) "lg(t, Xn(t),lt)l

_
"/}. In order to show that the limit of the last

integral in (3.12) is zero, we need only show

(3.14) lim Qn(Bn) 0
n--- cx)

by Jacod and Mdmin [17, Cor. 2.18]. For a given e > 0, from (3.13) there exists an
M > 0 such that Q(AM) <_ e. Recall that convergence in pseudopath topology is
equivalent to the convergence in Lebesgue measure, therefore, xn(’) - x(.) in the
Lebesgue measure l, and there exists N such that when n >_ N,

1}I[Xn(t) x(t)[[ >

Let Cm {t [Ixn(t) x(t)l > l/m}; then it is obvious that

B \ (CnM x U) C AM,

and, therefore, we have

Qn(Bn)

_
Q(AM) + Q(CnM U).

But Q(CM u) l(CM) < , hence

limsupQn(Bn) <_ limsupQ(AM) +
<_ Q(AM) + < 2.

Since is arbitrary, we have shown (3.14), and the lemma is thus proved.
For P E Ts,x, we have by definition that

J(s, P) E’r,

i.e., the cost corresponding to the control rule P. We can now state the following
result.

THEOREM 3.6. The mapping (s, x, P) ---, J(s, P) is lower semicontinuous on

{(s,x,P) (s,x) e E, P e Ts.x} with the induced topology of [0, T] tY/+(t), i.e.,

if (Sn,X) E, P Tn,x, s --* s, Xn --* X, and P -- P T,x weakly, then

(3.15) J(s, P) <_ lim inf J(s, Pn).
n
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Proof. Assume (s,,xn, Pn) --* (s,x,P) with Pn e Ts,xn, P e Ts,x. It suffices to
consider two cases: sn ]" s or s $ s. When s T s,

EP’ (Fsn Fs) EPn f(O, xo, #o)dO + c(O). dvo_
EP f(O, xo, #o)dO >_ -K(s s),

because we have assumed that c > 0. It follows that

(3.16) liminf Ep (Fn -F) >_ 0.
n

When s $ s, (3.16) follows from

Sn

EP’ (Fs Fs) f(O, xn, u)dO,

where we have used the fact that Pn(vo 0, 0 <_ 0 _< s) 1.
In either case, from (3.16) and the lower semicontinuity of F(.), we have

lim inf J(sn, Pn) >_ lim inf EPnF + lim inf EP (Fs F)
n n

_> liminf EP’F >_ EPF- J(s, P),

i.e., J(., .) is lower semicontinuous. [:]

THEOREM 3.7. For any A > 0, if A is a compact set in :d, then hJ{Ts,x s E
[0, T], x A} is compact.

Proof. Since JMI(Ft) is metrizable, we need only to show that each sequence
{pn} c /Z has a subsequence {pk} such that Pk --. P e T, for some

8n

s [0, T], x A. Because A is compact and T < , we may assume sn s, Xn x
for some s [0, T], x A.

By Proposition 3.1, the process y, defined by. () x. () . (())

for w (x, #, v), has continuous sample paths under the probability P and is such
that -h:/t AA (//t is defined in Proposition 3.1) for each C(d). Now we
introduce the following auxiliary space"

Z ft x C[0, T],
2_--d.

Define a probability /n on (Z, 2) by the probability law of (x, #, v, y) with respect
to pn i.e. for Z Z

P(z) P (. (x.(), .(), .(), .()) e z).

In other words, for F E .T, C e ,
P(F C)= ; 5c(y(w))dpn(w).

We will show that the sequence P is tight.
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For a positive constant M, let VM {v e Jtk[0, T] IIvTII <_ M}. From
Corollary 2.9 we know that VM is a compact Borel subset of Ak [0, T]. Proposition 3.4
implies that for any given > 0, there exists an M such that

(3.17) P(:Dd[O,T] X ld x VM) 1-

.x [0, T], E A. Therefore, for the corresponding/5, we havefor every P E T4s,x, s z

(3.18) /5(/:)d[0, T] x/d x VM x ca[o, T]) >_ 1- .
By Proposition 3.3 we know that the probability laws of y with respect to pn,

denoted by/sn, are relatively compact, and there exists a compact subset K c cd[o, T]
with

pn(K) >_ 1-,

or equivalently,

(3.19) pn(w. y. (co) e K) >_ 1 V n.

From Proposition 3.1, (3.19) may be written as

(3.20) /Sn(fl x K) >_ 1- V n.

We now consider the coordinate process x. Let

D K + G(VM) {y q- G(V), y e K, v e VM}.

By Lemma 2.10 we know that G(VM) is a relatively compact subset of :Dd[0, T] under
the pseudopath topology. Since the uniform topology is stronger than the pseudopath
topology, K is also a compact subset in :Dd[0, T]’, hence so is D. From Proposition 3.1
we have

(3.21) P"(D x bt x VM X K)= P(:Dd[0, T] x b/x VM X K).

Let S D x b/x VM .x K. Since b/is a compact space, we know that S is a relatively
compact subset in Z. Moreover, from (3.18), (3.20), and (3.21) we have

Pn(S) >_ 1- 2

for every n. Thus {Pn} is a tight sequence of probability measures on Z. By the
Prohorov theorem there is a subsequence {/snk } and a probability/5 on (,) such
that/Snk ___,/5 weakly. Define

P Pla,

i.e., in the terminology of Jacod and M6min [17], P is the -marginal of/5, then it

is easy to see that P P weakly. The proof of the theorem will be completed if
P E 7,x. By Proposition 3.1 we need only to show that there exists a continuous

process Y. on (t, , S’t, P) such that
(1) P(Y. x.- G.(v)) 1;
(e) 0, 0 < <
(3) MtC5 e M V4) e C(d); and
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(4) J(s, P) <_ .
Note that (4) is obvious from Theorem 3.6. To show (1), note that the set

{(w, y) x.(w) y. +G.(v(w))} is a closed subset of Z cd[O,T], and, therefore

(3.22) (x. y. + G.(v)) >_ limsup/bn(x. y. + G.(v)) 1.

If we define Y.(w) x.(w)- G.(v(w)), then P((w,y)" Y.(w) y.) 1. Thus Y is a
continuous process on (,, t, P), and (1) follows from (3.22). Moreover, {y(0) x}
is closed in Z, so

P{y(0) x} limsup pn {y(0) x} 1
k

or P{w" Y(0) x} 1. It follows that x(0) x almost surely (P).
For (2), let

B {w (x. ,v.) ,,x(t) x,, 1 1}, v-O, O<ts
m m

It is easy to see that B is closed in and B D B2 D and

B ( (x,,, ). x x, 0, 0 < t
m

Since pn snk ’Xnk’ we know for each m, P(B) 1 for large k since x x.
But P P weakly, so

P(B) limsuppn(Bm)- 1,

and, therefore,

P{w xt x,v O, O t s}

inally, we prove (a). For any bounded continuous function H(.) on a, if we
define

(&) H(w) V&- (w,y.) e a x cd[O,T],
then is a continuous function on . For any fixed t s, the function

(....) z ()=(- (O,o,o,oo

is continuous on N. In Net, it can be show as in the proof of Lemma g.5 that
the integral part of the function M is continuous on N, and the continuity of the
function

on Z follows from the Net that Ca[O, T] is endowed with the uniform topology. Thus,
for 0 < t T, the function
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is a bounded and continuous function on Z, and since pn
__
/ weakly, we have

(3.23)

Again, by (3.22) and the definition of Y, we have P(. =/t7/.) 1, where /t is
defined by (3.2) with y replaced by Y. Thus (3.23) can be rewritten as

(3.24)

For every bounded continuous function H on Ft that is 9r-measurable, the left-hand
side of (3.24) is zero since 55/05 E 3//. on the filtered probability space (Ft, $’, $-t, P).
By a routine limit procedure, we have

EP[H(Jtp- /)] 0

for each bounded $’-measurable function H. Thus (lItc/),.t) is a martingale under
P. The continuity of this martingale follows from that of Y. The proof is therefore
complete.

We can now prove the main theorem of this paper.
THEOREM 3.8. The control problem has an optimal solution, i.e., there exists a

P* Ts,x such that

J(s,P*) inf J(s,P).
PET,

Proof. By Proposition 2.11 and Theorem 3.7 we know that ,-s,x is nonempty
and compact. Moreover, it is obvious that

inf J(s,P) inf J(s,P).
PE7", PE

Now J(s, .) is a lower-semicontinuous function on 7,x, so it attains its minimum on
()the compact set 72() C g//l(Ft), i.e., there exists a P* ,., C 7, such that

J(s,P*)= inf J(s,P)= inf J(s,P),
x(z) PTgs,

which completes the proof. Cl
Recall that the value function is defined by

W(s, x) inf J(s, P).

Let us define

n,x {P e n,,x W(s,x) J(s,P)}.

By Theorem 3.8, T,x -- 0 for any (s,x) E. It can be easily verified that it is a
compact subset of

Before we prove the measurability of the value function W, we give a result
which is used in Haussmann and Suo [14]. We adopt the notations of Stroock and
Varadhan [31, Chap. 12].
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LEMMA 3.9. The map T E -, comp(tV/1 (f)) is Borel measurable. Moreover,
there exists a measurable selector H of o, i.e., H(s,x) E n,x V(s,x) E E and
H" E H 15/I1(2) is Borel measurable.

Proof. By [31, Lem. 12.1.8], we need only to show the following: for (Sn, Xn) E,
Sn --* s, Xn x, pn To there exists a subsequence pnk and P ,x such

8n Xn
that pnk p.

Since Xn -- x, we may assume )(Xn) < ) for some constant/. Therefore {pn}
{78,x, (s,x) [0, T] A} with A {x, xl,x2,. .} a compact set. By Theorem 3.7,
there exists a subsequence Pn and P E 78,x such that P --. P. From Theorem 3.6,
it can be seen easily that P 7,x. The measurability of o is thus proved.

The existence of a measurable selector H is a consequence of [31, Thm. 12.1.10].

COROLLARY 3.10. W(., .) is a Borel-measurable function.
Proof. From Theorem 3.6 we know the map (s,x,P) -, g(s,P) is lower semi-

continuous and thus Borel measurable. The corollary follows from the fact that
W(s,x) J(s,H(s,x)) is the composition of two Borel-measurable mappings.

4. Some comments. (a) The model studied in this paper includes the case
of the monotone follower problem as formulated in Karatzas [18] and Karatzas and
Shreve [21] by letting k d and g(0) I, 0 < 0 <_ T, where I denotes the d d unit
matrix. Moreover, if we take k 2d and g(0) (I,-I), 0 < < T, then the model
reduces the bounded variation problem as discussed in Chow, Menaldi, and Robin [6],
among others.

We have assumed that ci(.) > 0. This condition is necessary for the existence
of optimal controls to the general problem formulated in this paper (see the proof of
Proposition 3.4). Thus it excludes the case of the so-called cheap control problems,
i.e., c(.) 0. This type of problem is discussed in Chiarolla and naussmann [4], [5]
and Menaldi and Robin [25]. However, our method works for problems with finite
fuel constraints, because for any y 7)k[0, T], the set

{v Ak[0, T] vi(t) < y(t), Vt, 1 < <_ k}

is closed in 4k [0, T]. This follows from the fact that vn v in ,4 [0, T], then vn
v(t) (1 < < k) at all the continuity points of v. For the problems with finite fuel
constraints, see Karatzas [20], Karatzas and E1 Karoui [8], and a more recent work
by Bridge and Shreve [1] among others.

(b) Now we explain why the method used in this paper is not suitable to the prob-
lem where terminal costs are allowed. If we define F(w) (XT(W)) for w (x, #, v)
with a continuous function defined in d, we cannot get the lower semicontinuity
for F. The reason is that x x in the pseudopath topology only ensures that
xn(.) --, x(’) in Lebesgue measure, and, therefore, xn(T) x(T) may not hold.

But we can modify the formulation of the problem to allow a terminal cost, i.e.,
let

=_ I(t, + c(tl + c (zr+
,TI

Note the additional term c(T). /VT in the second integral and the relation XT+
XT+g(T)/VT. We can replace 7)4[0, T] by 7)4[0, T] /Rd and .Ad[0, T] by ,4d[0, T] /Rd

in the canonical space to obtain the results if is lower semicontinuous.
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(c) For the same reason as explained in (b) we cannot allow pointwise constraints
of the type (x(to)) 0 almost surely for some lower-semicontinuous function on
d (which may take the values +ec) and fixed to E [0, T]. But it is seen easily that
the following kind of integral constraint may be added to the problem:

fo(t, xt, ut)dt + co(t), dvt <_ 0 a.s.,

where f0, co satisfy the same conditions as f and c, except that the positivity of co(-)
is relaxed to bounded below. Moreover, from the proof of Lemma 3.5 we can conclude
that the following kind of constraint may also be added to the model:

f (t, xt ut )dt + c (t) dvt 0
8

with fl(t,.,.), c1(.) continuous on E (for each 0 _< t _< T), [0, T], respectively. Of
course, we must now assume the existence of an admissible control. See Haussmann
and Lepeltier [13] for constraints of these types in the classical control problems.
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Abstract. The dynamic programming principle for a multidimensional singular stochastic con-
trol problem is established in this paper. When assuming Lipschitz continuity on the data, it is
shown that the value function is continuous and is the unique viscosity solution of the corresponding
Hamilton-Jacobi-Bellman equation.
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1. Introduction. In [8] we applied a direct method to study the existence of
optimal controls for the stochastic control problem in which the state is governed by
the stochastic differential equation

xt x + b(O, xe, ue)dO + a(O, xe, ue)dBe + g(O)dve

on some filtered probability space (,, t, P), where b(.,., .), a(.,., .), g(.) are given
deterministic functions, (Bt, t 0) is a d-dimensional Brownian motion (in fact, B.
need not be d-dimensional), x is the initial state at time s, and u [0, T] U,
v [0, T] k, with v nondecreasing componentwise, stand for the controls

The expected cost has the form

J(a) Ep f(t, xt, ut)dt + c(t) dvt
,T)

where f(.,-, .)" [0, T] x d x V , c(.)" [0, T] are given. We assume that
the cost of applying the singular control is positive, i.e., ci(.) > 0, 1,..., k. For
this type of problem, the reader may consult the paper by Haussmann and Suo [8]
and the list of references therein.

This paper is a continuation of Haussmann and Suo [8]. As is well known for the
classical stochastic control problem, the dynamic programming principle is satisfied
and, if the value function has appropriate regularity, it satisfies a second-order nonlin-
ear partial differential equation (the Hamilton-Jacobi-Bellman equation) (cf. Flem-
ing and Rishel [4] and Lions [10], among others). This is still the case for singular
stochastic control where the Hamilton-Jacobi-Bellman equation is a second-order
variational inequality (see Fleming and Soner [5] and the list of references in Hauss-
mann and Suo [8]). In this paper, in 3 we adopt a probabilistic approach used in
Haussmann [6], Haussmann and Lepeltier [7], and E1 garoui, Nguyen, and Jeanblanc-
Picqu [3] to establish the dynamic programming principle under very mild conditions
of the data. Then, in 4, assuming Lipschitz continuity of the coefficients, we prove
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that the value function is continuous. In 5 the Hamilton-Jacobi-Bellman equation
is derived heuristically, and the value function is shown to be the unique viscosity so-
lution of this equation. For the reader’s convenience, the main results of Haussmann
and Suo [8] are recalled in 2, along with the formulation of the problem.

We list some notation that will be used throughout this paper:
1id, denote the d-dimensional Euclidean space and the real line, respec-
tively. 1i+ {x E ,x _> 0} and/_ is defined similarly. For x (xi), y

xiyi
T > 0 is the fixed horizon, and E [0, T] x/Rd.
:Dd[0, T] denotes the collection of d-valued functions defined on [0, T] which
are left continuous and have right linits.
Ak[0, T] denotes the collection of functions a" [0 T] - tik such that a+
(ai) e Tk[0, T] and a is nondecreasing with hi(0) 0, 1 k.
Sz x k is the space of x k matrices with the x k-dimensional Euclidean norm.
If Y is a metric space, B(Y) denotes the corresponding Borel a-field, and f
B(Y) means that f is a B(Y)-measurable real-valued function. We denote by
B//I(Y) (g//+(Y), respectively) the space of probabilities (nonnegative Radon
measures, respectively) on Y with the weak convergence topology.
U, called the control set, is a compact metric space. It is well known that
B//I(U) is also a compact metrizable space. If U -. is a bounded
measurable function, we can extend to g//1 (U) by letting

(#) _= ] (u)#(du).

Define

b/- {#" [0, T] g//1 (U)is Borel measurable}.

If X is a random variable on a probability space (f, $- P), the expectations
of X will be denoted by EP (X). M is the family of continuous square inte-
grable martingales on some given probability space (ft, 9c, P) with a filtration

C stands for a constant, but not necessarily the same one from line to line.

2. Formulation of the problem. We consider the following optimal control
problem in which we allow both classical control and singular control to act at the
same time, i.e., the dynamics are in the form,

(2.1) xt x + b(O, xo,#o)dO + a(O, xo,#o)dBo + g(O)dvo a.s.

for (t,x)E, s_<t<_T, where
(a,b)’ExUSdxdxd,g" [0, T]Sdx,
(Bt, 0 <_ t <_ T) is a &dimensional Brownian motion on some probability
space, and

A [0, T].
We assume that a, b are bounded measurable functions, continuous with respect

to (x, u), and g is continuous on [0, T].
DEFINITION 2.1. A relaxed control is a term a (f, jz, p, t, Bt, xt, Pt, vt, 8, x)

such that
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(2) (,., P) is a probability space with the filtration {’t}t>0;
(3) #. E is progressively measurable with respect to .t;
(4) v is an -valued process progressively measurable with respect to .t; the

sample paths of v are in ,4k[0, T], i.e., for each w , v.(w) jik[0, T];
(5) Bt is a standard d-dimensional Brownian motion on (fl, J:, P, .t) and xt, the

state process, is JZt-adapted with sample paths in T)d[0, T] such that (2.1) is

satisfied. We assume that xr x for 0

_
r

_
s.

We call (s,x) the initial condition of the relaxed control a.
The collection of relaxed controls with initial condition (s, x) is denoted by

For a As,x, the associated cost is defined as follows:

-_- +  (tl.
,T)

where
f N x U /R is a measurable function and is lower semicontinuous in (z, ),
satisfying

-K <_ f(t,x,u) <_ C(1 + Ilxllm), (t,x,u) e E U

for some constants m :> 0, K >_ 0 and C >_ 0;
c (ci)" [0, T] -, k is lower semicontinuous and c > 0, 1 <_ <_ k.

The value function is defined by

(2.3) W(s,x)= inf J(a).

A relaxed control a* As,x is called an optimal relaxed control if W(s, x) J(a*).
Throughout this paper we write

d

i=l ,t)

for any/Rk-valued Borel-measurable function k (k) and a (a) E ,4[0, T].
Now we introduce the canonical space for our problem. Define

f 7pd[O, T] bt A[O, T],

where 7:)d[0,T], L/ and Ak[O,T] are endowed with the pseudopath topology, stable
topology, and weak convergence topology, respectively, fl is metrizable and separable
under the product topology; see Haussmann and Suo [8] for details. Let T),b/,4
denote their Borel a-fields, 7t,/t, Jt, the a-fields up to time t, and define

.r=gxZ2xA,
xZ2 xA .

Let a aa*, where denotes the transpose of a matrix, and define

1 02 0

i,j
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We recall the following definition from Haussmann and Suo [8]
DEFINITION 2.2. A control rule is a probability R on the measurable space

such that

where

(-- (,’,’t,R, xt,#t,vt,8, x) E s,x,

x() x, () ,, ()

for w (x., #., v.) , i.e.,
(1) (gt, Jz, R) is a probability space with the filtration t, (s,x) E, and

R(x x, p o v=0, 0 _< r <_ s) l,

where 50 denotes the Dirac measure at an arbitray but fixed point u U;
(2) V C(1Rd), Mt (s <_ t < T) is in J4 on the filtered probability space

(a, =, :, R) ( _< t < T),

(2.4) Mt(w) -= (xt)- (O, xo,#o)dO- Vz(x0)" g(O)dvo
8

[(x0+)- (x0)- v(x0)./xo].
s<_O<t

We write J(a) J(s, R).
Define

(2.5) F(w) f(O, xo, #o)dO + c(O) dvo

for w (x., #., v.). Then, by definition, J(c) ERFs. We denote by Ts,x the space
of control rules with initial condition (s,x). We will suppress s in J(s, R) when it
is clear that R 78,x. It is shown in Haussmann and Suo [8] that for any relaxed
control a E As.x, there exists a control rule R s.x such that J(R) J(a). Thus
the control problem can be described in terms of control rules.

We recall the main results from Haussmann and Suo [8].
THEOREM 2.3 (Haussmann and Suo [8]). (a) For each (s,x) e E there exists an

optimal control rule P* e Ts,, i.e., W(s, x) J(s, P*).
(b) The value function W(., .) is Borel measurable on E.
(c) There exists a Borel-measurable map H(., .)" E -, 1() such that for each

(s, x) E, H(s, x) T,, where

n,- {P e ns., Y(s,P)= W(s,x)}.

We call H a measurable selector of 7.
3. The dynamic programming principle. In this section we will apply the

method used in Haussmann [6], Haussmann and Lepeltier [7], and E1 Karoui, Nguyen,
and jeanblanc-Picqu [3] to establish the dynamic programming principle: Note that
this method does not require any regularity of the value function W.
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3.1. Some preparations. We denote by 9t-s the a-algebra of events that occur
after time s, i.e., s cr{wt, s < t <_ T}.

Define Os, gt H ft by

&t, O<_t<_s,
(3.1) Os,co(w)t (xt, #t, + vt vs), s < t <_ T.

Note that if & 08,(w), then & c on [0, s], (x. (&) #. (&)) (x.(w),#.(w)) on

(s,T], and v.(&)- vs(&)= v.(w)- vs(w)on Is, T].
LEMMA 3.1. If P is a probability on (f, :Fs) (0 <_ s <_ T) and a E , then there

exists a unique probability measure, denoted by 5 (R)s P on (f,) such that

where by wt &t, 0 <_ t <_ s, we mean xt 2t, vt t, 0 <_ t <_ s, and #t #t a.e.

on [0, s].
Proof. The uniqueness of such a probability measure is obvious, so we only need

to show its existence.
If I is a subinterval of [0, T] we write V(I) for the set of measurable functions

I - g//1 (U).

Let us recall an equivalent definition of the stable topology on b/= V([0, T]). For
b/define a mapping i" bl C([O,T],BJ+(U)) by

(,)(.) o dO.

The topology on b induced by is exactly the stable topology we introduced in

Haussmann and Suo [8]. For a discussion of this see Haussmann and Lepeltier [7,
3.10]. Similarly, we can consider the topology on V(I) induced by the mapping

iI(#)(’) lI(O)#odO e C([O,T],B4+(U)), # e V(I).

Write 4 for the/R+-valued nondecreasing functions on I with the inherited topology
from Ak [0, T]. Let

Xo v[o, ] ilo,lv([o, sl) ,Ao,l,
x 7)[s, TI iI,TlV([s, T]) A,TI,
2-XoX,

and define ’I)o" ft Xo, (I)" Ft X by
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where w (x, #, v) E . Define " Ft by

v(,.)

where T0 Xo t, -" X H t"

o() (,l()(t/ ),),

() (x,1(,)(t v ),)

with & (:,/5, ) e Xo, w- (x, #, v) e X.
We define a probability/5 on by/5 o -1 p o -1, and let

p=po-1.

Now we verify that P satisfies conditions (3.2) and (3.3). Note that TO o O0(&)t
&t, 0<t<s, sowehave

P(t) (tJt ;, 0 __< t __< S) (({.k]l,2) OS,T0(091)(7"(0.J2)); (’t, 0 __< t __< S)
P((,:) o(i) , 0 _< t _< )
5(1 o o o() , 0 <_ t _< t)

For A .Ts,

P(A) P((Wl,W.) (w,w) e A)
P((w,w)" O,o(,)(’(w)) A)

,o(,) (A))

[_ P o O-(w2 T(W2) e O-1 ol(dl,,o() (A)) o
JX0

./ p(. o () o- (d)
o

*’() (A)) 5()

P(w" r o O(w) e 0-1,,o(o())(A))
P(O;(A)),

since - o (w)t wt holds on Is, T]. The lemma is proved by letting 5 (R)s P =/5. S
Remark 3.2. Note that for P e 7"s,x, there exists a P-null set No such that if

&No A$- thenP(A) PoO-1s,(A) and

EP {st h(O) dvo } EP-’ {st h(O) dvt } t>s

for any bounded Ktk-valued Borel-measurable function h(.). These properties will be
used repeatedly in the rest of this section.

Assume that T is an $’t-stopping time, 0 _< T <_ T. A T-transition probability
(T-t.p.) is a family {Q" w E Ft} of probability measures on (f, 2-) such that

w Qo(A) is $’T measurable V A
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Note that 9or is the collection of sets A such that A {T _< t} E ’t V t _< T. For
a fixed T and w such that 7(w) <_ T, we denote by ’r() the a-field generated by the
sets of the form

(3.4) & ft" ct A, podO B, t C
()

where A B(d), B B(+(U)), C B(), T(w) t T, so () is the
collection of events that occur fter the time 7(w). Note that the topology on is
separable, so t is countably generated, and for a given probability P on (,), the
regular conditionM probability distribution (r.c.p.d.) of P for given exists and will
be denoted by P,.

Given a stopping time 7 (0 T T) and a T-t.p. Q, if & , then from
Lemma 3.1 we know that there exists a unique 5 Q () such that

5. (R) Q{. , 0 <_ t <_ =()} ,
(R) Q(A) Q --1(O,(A)) VA e ()

We write 5 Qw Q. When & (x(T(w)), 50, 0), we write

5 (R) Q =Q.
It can be seen easily that for s <_ T and a stopping time T s _< " <_ T,

(3.5) Q(r()) QS(r()) Q (r()),
where F is defined by (2.5).

If P tV/l(ft), - is a stopping time, and {Q} is a T-t.p., then we have the
following result, which is analogous to Theorem 6.1.2 in Stroock and Varadhan [11].

LEMMA 3.3. There exists a unique probability, denoted by P (R) Q, such that
(1) P (R) Q(A) P(A) if A
(2) the r.c.p.d, of P (R) Q with respect to
Proof. The proof of [11, Thm. 6.1.2] can be adopted here with minor modifications

(cf. Suo [121).
LEMMA 3.4. Assume P s,, is an t-stopping time: s <_

Then Mtdp .Tzt P o 0-1.,) is a martingale after Tc for c C(d).
Proof. Since P 7E,, we know that (Mt, .t, P) is a martingale, i.e.,

(3.6) /A MtCdP fA MdP VA , s < u < t < T,

or

(3.7) EP {1.4(.)[Mtb(.) M(.)]} O.

When t >_ T, we have

Mt(O,(w)) b(xt) (0, xo, #o)dO V,(xo) g(O)dv

[(xo+) (xo)] [(x.+) ()]

(0, o, #o)dO V:(2o) g(O)d

[(o+) (0)1.
s<_O<Tco
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Therefore we can get for T3 <_ U <_ t _< T, A E .7",

Ep {1A(Or,3(’))[Mt(Or,3(’))- Mu(Or,3(’))]}
EP {1A(Or,3(’))[Mt(’)- M(.)]}
O

because it is obvious that 0-1-,(A) $’. The lemma is thus proved.
Recall that for a stopping time T, Pr, denotes the regular conditional probability

distribution of P given r. Pr, is obviously a T-t.p., SO P------ 53 (R)r Pr, is defined,
where & (x(T(w)), 5, 0).

LEMMA 3.5. If (Mt,.T’t,P) is a martingale and T is an .Tt-stopping time then
there is a P-null set N .Tr such that for w N, (Mt,.Tt, P,) is a martingale for
t >_r.

Proof. The proof is comparable to that of Stroock and Varadhan [11,
Thm. 1.2.10.]

COROLLARY 3.6. IfP Tis,x and T is an .Tt-stopping time, then there is a P-null
set N r such that for w N, (M C, t Pr o 0-1 is a martingale for t

e
Proof. The proof is obvious from Lemmas 3.4 and 3.5.
The next two results are important for the rest of the paper. The first one states

that a control rule remains a control rule for the problem starting at a later time from
the point reached at that time. The second one says that if we take a control rule
and at some later time switch to another control rule, then this concatenated object
is still a control rule.

PROPOSITION 3.7 (closure under conditioning). If P Tis,x and T is a stopping

time, s <_ T <_ T, then there exists a P-null set N .Tr such that PE 7r, for
N.
Proof. Let {m} be a dense subset of C(:td). Then for each m, (MtCm-

MtAr,, .Tt, P) (t >_ s) is a martingale. For & Ft define

ft, isThen, by Lemma 3.15 there exists a P-null set Nm E -r such that -3

(M m, Jzt, Pr,3 00r-) is aa martingale for & N.. By Lemma a.4 we know that -3

martingale for t > r3, & N. Certainly, tAr .’,’Tzt, ’) is a martingale, where

&,= (, 0, 0). Therefore (2tAro dp, .’t, P.) is a martingale. It is obvious frmn the
definition that

P (w" x=Xr,, # v=0, 0_<r_<r)-- 1.

Let N U. Nm; then P(N) 0. Through a limit procedure we can show that

forw N
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PROPOSITION 3.8 (closure under concatenation). Let P E 7s,x and T be a
stopping time such that s <_ T <_ T. If Q is a transition probability such that
Q E 7(),x(()), then

P(R)Q,x.

Proof. It is obvious that we need only to show that for each C(), (Mt,t,
P Q) is a martingale after time s. om Remark 3.2 and the fact that Q
(w),(()), it cn be easily verified that (Mt,t,5 Qw) is a martingale after
time 7. By definition we know that Q 5 Q equals the regular conditional
probability distribution of P Q given . The proof of the proposition now follows
Theorem 1.2.10 in Stroock and Varadhan [11].

Set Q H(T(w),x((w))), where H is a measurable selector of o and, by
definition, it is a -t.p. We denote

P @r H = Pr Q.

COROLLARY 3.9. For P in s,x we have P

3.2. The dynamic programming principle. With the preparations of 3.1,
we can now establish the dynamic programming principle,

For a given probability P ,, define ,x(P) to be the set of probabilities in, which coincide with P up to time 7, i.e.,

,(P) {P Q" Q , such that Q is a T t.p.} C ,.
We introduce the following notation: for a measurable function G B(E), let

r(t, )(w) f(o, xo, o)dO + c(O) dr(O) + (t, xt),

where w (x, p, v) .
THEOREM 3.10 (dynamic programming principle). (a) ff T is an t-stopping

time, s T T, and P s,x, then

(3.8) Ep f (O, xe, po)dO + c(O) dve + W(T, x)

(b) For P e ns,x, (F(t, W),t, P) is a submartingale.
(c) ff s T T, then

(3.9) W(s, x) inf {pr(v, w), P

(d) (r(t, W),, P) is a martingale under P ff and only ff P s, is optimal.
Proo (a) Recall that H denotes a measurable selector of o; therefore, by (3.3)

and Remark 3.2 the left-hand side (LHS)of (3.8) is

+ +

Ep I(O,xo,,o)dO + c(O). dvo + . H(r)

P H(F),
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and by Proposition 3.8 we know that P (R) H E T,x(P). Hence, in (3.8) LHS >_ RHS.
On the other hand, for/ P (R) Q E T,x(P),

P(r) P(R) (r)

EP f(O, xo,,o)dO + c(O). dvo + Q.(F)

EP f(O, xo, ,o)dO + c(O). dvo + W(T(.), X(.))

LHS of (3.8),

so the proof of (a) is completed.
(b) For any s t < t + h, we have

’{r(t + h, W) r(t, w)}

E I(O, zo,o)dO + c(O). dvo + W(t + h,z+h)

I(o, o, o)o + (o). o + (t,)

I(o, o,oo + (o). o + w(t + h, z+h) (t,

by Lemma a.a() ow w apply (a.8) and the fact that t+h(p) C t, i.e
Proposition a.7, to get

+( (t,linf rt
inf {rt" t, } W(t, zt)

0.

Therefore (r(t, w), 2, P) is a submartingale.
(c) Let u(dOdz) be the distribution of (r,z,) under P. Then

e(,.) [ (0, l.(e0a)

[ j(0, (0, ll(a0a)

Note that

Eer(r, W) Zp f(O, xo,,o)dO + c(O) dvo + EPw(T, x)



SINGULAR OPTIMAL STOCHASTIC CONTROLS II 947

Ep f(O, xo, #o)dO + c(O). dvo + J(r, P (R)- H)

J(s, P (R)- H)
>
W(s, z).

On the other hand, EPw(7, x) EPJ(T,P) EPJ(T,P) J(r,P) and, there-
fore, by (b),

(3.10) W(s,x) Eer(r, W)
Ep f(O, xo,,o)dO + c(0). dye + EPW(T, x)

E (0, xo, o)dO + c(O). do + J(r, P)

J(,P),

and thus (c) is proved if we take the infimum over P , on the right-hand side
(HS).

(d) If F(t, W) is a P-martingale, then

w(,x) E’r(, W)= ’r(T, W)= ’r(T, 0)= ’r (, P),

because from our assumptions, W(T, .) 0. So P is optimal.
If we assume that P , is optimM, then by (3.10), Proposition 3.7, and

Corollary 3.6,

(.1) w(s, z) ECru(t, W) Eer W(s, x).

Therefore (F(t, W),t,P) is a submartingale with constant mean value, so it is
indeed a martingale.

4. Continuity of the value function. In the rest of the paper we add the
following assumptions:

c(.) is Lipschitz continuous, f(.,., .) is bounded, and g (gY) is a constant
d k-matrix;
f(., . .), b(.., .), a(.,., .) satisfy the following conditions:

(t, x,

(4.1) ]b(t,x,u) -b(s,y,u)
(t,x, ) -(, , )] c(t- + x-)

uniformly for 0
We will prove that under these conditions the value function W(., .) is uniformly

continuous on E. In fact, there exists a constant C 0 such that

w(t,x) W(s,) c (t- s + x-) o s,t T, x,

Note that the constancy of g is only required in the proof of Theorem 4.2.
THEOREM 4.1. The value function W(s,x) is uniformly Lipschitz continuous in

the state variable x, i.e., there exists a constant C > 0 such that

(4.e) w(,x’) w(,x) Cx’ o t T, x, x’ e .
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Proof. In the following, we use the same notation C to denote the constants,
which may change from time to time. For any 0 _< s <_ T, x, x E d,

W(s, x’) W(s, x) <_ sup (EQr Eer)

for each Q E 7,,, where F is the cost function defined by (2.5).
Take an arbitrary P E 7,. By the definition of control rules, there exists a

standard extension (), , -,/5) of (ft, ’, ’t, P), i.e., there exists another probability
space (’, ", -{, P’) such that x ’, x’, t x, and P P x P’.
We can extend the processes x., ., v. to by the following: for & (w, w) ,

x. v. v.

On (,, fit, ) there exists a standard &dimensional Brownian motion B. such that
for s t T,

(4.a) zt z + b(O, zo,o)dO + (O, zo,o)dBo + 9vt a.s.

Consider the same equation (4.a) with the initial state z, i.e.,

(4.4) Yt x’ + b(O, yo, o)dO + a(O, yo, o)dBo + gvt

on the stochastic basis (,,t,P). The strong solution for (4.4) exists from the
assumptions on b(.,., .) and a(.,., .), and so a (,, fit, P, yt, Pt, vt, s,x’) ,,.
Therefore, there exists a control rule Q ,x, such that

(4.5) J(a) J(s, Q)= EQr.

By definition,

EPFs EP f(O, xo, po)dO + c(O) dvo

Ep f(O, xo, po)dO + c(O). dvo

and, by (4.5),

EQFs Ep f(O, yo, #o)dO + c(O). dvo
8

therefore, from the Lipschitz continuity of f we have

EQF EeF < E[" If(O, yo, #o) f(O, xo, #o)ldO

<- CEP IlYo xoll dO

<_ c EPllyo xoll dO
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Now, from equations (4.3), (4.4), and the Lipschitz continuity conditions on b, a,
we have for 0 >_ s,

)EPllyo-xoll 2 <_ CIIx’-xll2 +CEp IIb(h, yh,#h)-b(h, xh,#h)lldh

2

+CEp sup (a(h, yh,#h)-a(h, zh,#h))dBh
0’0

CI]x’ x[l 2 + CEp lib(h, Yh, Ph) b(h, Xh, ,h)ll2dh

+CEp Ia(h, Yh, ,h) a(h, xh, ,h)Zdh

c lira’- 11 + 11 lldh

We have used the Burkholder-Gundy inequality to get the second inequality. By
Gronwall’s inequality,

Etlyo xoll 2 Cllx’ xll2eC(-) CIIx’ xll 2.

Hence we have

and, therefore, W(s, x, )-W(s,x) <_ Cllx’
The proof of the theorem is thus complete since x, x E/Rd are arbitrary.
Next we consider the continuity of the value function in the time variable t.
THEOREM 4.2. The value function W(t,x) is uniformly continuous in the time

variable t. In fact, there exists a constant C > 0 such that

(4.6) Iw(,x) w(’,x)I <_ c I- ’11/2

for all 0 <_ s, s <_ T, x d.
Proof. As in the proof of Theorem 4.1, we use the same notation C to denote the

constants. First we assume s < s, so that

(4.7) W(s’, x) W(s, x) <__ sup (EQFs,-

for each Q 78,,x. From the strict positivity of c(.), we may actually take the
supremum in (4.7) over a subset T,x(A) for some A > 0, where

(4.8)

Now, for P 7,x(A), as in the proof Theorem 4.1, there exists a standard extension

(t, , fit,/5) of (ft, 9c, 5rt, P) such that x(.) is a solution of

(4.9) xt x + b(O, xo,#o)dO + a(O, xo,#o)dBo -t- gvt
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on the stochastic basis (t, , fi-t, P), where B. is a d-dimensional Brownian motion.
Define t -t-s’+s, t #t-s’+, Ot vt-,+, and /t Bt-,+s for t >_ s’.
Consider the following stochastic differential equation:

(4.10) Yt x + b(O, yo, [to)dO + a(O, yo, [to)d[3o + got, t >_ s’

on the stochastic basis (,fi’,t,P). We know that under assumption (4.1) there
exists a unique strong solution y., and by definition, a (,, "t, P, yt, [tt, Or, s’, x) e
/,x. Therefore, there exists a control rule Q E 7,,x such that

(4.11) J(a) J(s’, Q)= EQFs,.

Recall that F is defined by (2.5). Thus, by definition,

EPF Ep f(O, xo, #)dO + c(O) dvo

and by (4.11),

Er., E f(O, Yo, [to)dO

f(O + s’ s, Yo+s’-, #o)dO + c(O + s’ s). dvo

Therefore, noticing that f is bounded below by a constant -K (K
R,(A), we get

From the Lipschitz continuity of the function f, we have

If(O, xo,lo) f(O + s’ s, yo+s’-s,#o)l <_ C(Is’ s + Ilxo
Therefore

(4.12) EQFs EPFs <_ C (Is’- sl + Ep

By (4.10) we have for 0 >_ s,

(4.13)
O+s-s

Yo+’-s x + b(h, Yh, fith)dh
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O+s’ -s
+ f (7(h, Yh, h)du + go+8’-s

J8
o

x + ./o b(h + s’- s, Yh+8’-s, #h)dh

+ a(h + ,3t- 8, Yh+s’-s, ph)dBh + gvo.

So from (4.9), (4.13), and the Burkholder-Davis-Gundy inequality, we have for 0 s,

Ellxo -o+,_
2E Ib(h, xh,h) b(h + s’- s, yh+,_,h)ldh

2

+2E
p
sup f (a(h, Xh, Ph)-a(h+ s’- s, yh+s,-,p))dBh
0’<0 Js

2 IIb(h, zh,.h) b(h + s’-

+2E
p Ila(h, Xh,,h) a(h + s’ s, yh+,_,,h)]12dh

CEp (Is’- sl 2 + IXh yh+,_ll2)dh

C Is’- sl 2 + EPllXh-- yh+,_ll2dh

Gronwall’s inequality implies

Plxo o+,-]] c’ sc(-) s C’
Hence, from (4.12) we hve

EQFs, EPF C]s’- s]

and, therefore, W(s’,x)- W(s,x) C s’-s for s’> s.
Now we assume s’ < s. By the dynamic programming principle (cf. Theo-

rem 3.10),

W(s’,x) inf Ep f(O, xo,,o)dO + c(O) dvo + W(s,x)

Take p0 s’,x such that pO(p 5{uo}, v0 0, 0 0 T) 1 for some arbitrary
but fixed u U. Then

by the boundedness of f, and by Theorem 4.1 there exists a constant C such that

w(, x) w(, x) + Cx
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Hence

(4.14) W(s’,x) W(s,x) <_ C(Is’ s

From the definition of control rules, we know that under p0,

(4.a) z

where M is a continuous square integrable martingale with

Therefore, by (4.15) and the Burkholder-Davis-Gundy inequality, we have

(4.16) EP IIxs xll 2 <_ c (18’- 812 + 18’- 81).
Combining (4.14) and (4.16) we have

The theorem is thus proved.
Remark 4.3. We have assumed that the function f is bounded. It is easy to see

from the proof of Theorem 4.2 that without this condition the constant C will depend
Oil X.

Combining Theorems 4.1 and 4.2 we can state the main result of this section.
THEOREM 4.4. The value function W is uniformly continuous on E. Moreover,

there exists a constant C > 0 such that

IW(t,x) W(8,y)l <_ C (It- sl1/2 / IIx- yll), o <_ s,t <_ T, x,y e 1d.

5. The dynamic programming equation. Before we derive the dynamic pro-
gramming equation heuristically, we prove a result which shows that there exists
set such that the optimal state process is continuous when it is in this set.

THEORE 5.1. (a) Assume (t,x) E; then

(5.1) W(t,x) <_ W(t,x + gh) + c(t) h

for each h . Moreover, if equality holds for some h (h) , then the same
equality holds when we replace h by h with h (h) ;t+, h <_ h (1 < _< k).

(b) Define, for 0 < t <_ T,

At =- {x W(t,x) < W(t,x + gh) + c(t) h, Y h e 1R, h 0}.

Then the optimal state process xt is continuous when it is in At. To be precise, we
have

(5.2) P(Axt # O, xt E At) O, s < t < T

for every P ,, (s, x) E.
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Proof. (a) If (5.1) fails for some h then+

(5.3) W(t, x) > W(t, x + gh) + c(t) h.

Take P E 7,x+gh. We define O" - by

O(w) { (x gh, #, 0),
(Xs,,v+h),

O<_s<_t,
t<s<T

for w (x., #., v.), and let /5 p o O-1(.). As in the proof of Lemma 3.4, we can
show that/5 E Tt,x. From the definition of/5 we have

Therefore, J(t, P) < W(t,x) from (5.3), a contradiction.
Next, if (5.1) holds as an equality for h, then for , i _< hi, 1 _< _< k,

W(t, x) c(t) h W(t, x + gh)
>__ W(t, x + g) c(t) (h it)
>_ W(t, x) (t) (t) (h )
W(t,x) c(t). h.

Therefore

W(t, x) W(t,x + gh) + c(t) h.

(b) For P T8,, we know that P-a.s.,

xt x + b(O, xo, #o)dO + gvt

+ a continuous local martingale.

Thus kxt gAvt, and xt+ xt + Axt xt + gAvt. Since W(., .) is continuous on
E, for t _< s _< T,

(5.4) W(t, xt+) lim W(t’,xt,).
t’t

Assume P o then by the dynamic programming principle (cf. Theorem 3.10)8X
we know that (Fs(t, W), ’t, P) is a martingale. Hence, for t’ > t,

W(s,x) EP f(O, xo,#o)dO + c(O) dvo + W(t’,xt,)
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Let t’ $ t; note that from our assumption we know that c(.) is continuous on [0, T].
Therefore

f f(O, xo,#o)dO f

Hence if (5.2) fails, then (5.4) and (5.5)imply

w(, x) " f(o, xo, ,)dO + () dv + (t)

> Ep f(O, xo,po)dO + c(O). dvo + W(t, xt)

’r(t, w),

which contradicts the fact that P ,. The inequality follows from the facts that

W(t, x,) W(t, , + x,) + (t)

and the strict inequality holds if xt At and Axt
Remark 5.2. om Theorem 5.1 (a), we can see that if the value function W

C1’2 (E), then

(g*Vw(t,z)) + c(t) 0,

where means transpose and (.) denotes the ith coordinate of the point in k. For
xCAt there existsh=(h’)ek such that for=()e 5<h’ l<i<k,

w(t, x) w(t, x + h) + (t)

Therefore we have

(*vw(t,x)) + (t) o

for those such that h > 0.

5.1. Heuristic derivation of the dynamic programming equation. Recall
Itos formula. For E CI’2(E), (s,x) E E, t > s,

(5.6) (t, xt) (s,x)+ -- + (O, xo,#o)dO

+ V:(O, zo). a(O, zo,#o)dBo + Vc/)(O, zo). 9dvo

+ y [(O, xo+)- (O, xo)- v(O, xo).

Let

0 0 1 02 0

i,j
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then for P E 78.x, (5.6) may be written as

EP(t, xt) (s, x) + Ep (O, xo,#o)dO + Vx(0, x0). gdvo
8

+ [(O, xo+)- (O, xo)- v(O, xo).
sO<t

By the dynamic programming principle (cf. Theorem 3.10),

w(,x) i f(O, xo,,o)dO + (0). do + W(t x)

so if we assume W C’2(E), then

(a.z) o inf E (W + I)(O, o,.o/eO

+

If we take the infimum over all those P , such that P(vt O, 0 t T) 1,
then from (g.7) we get

inf EP (W + f)(O, xo, po)dO > O.
P,

Let t s; we have

inf EP(w + f)(s, xs,p) >_ O.
PET’s,=

Moreover, from Remark 5.2 we can conclude that on E,

(5.8) (g*VxW)*+c*_>0, i=1,2 k.

Therefore we can expect that W formally satisfies the following variational inequality,
or Hamilton-Jacobi-Bellman equation,

min{uuinf(,W+f)(t,x,u),(g*VW(t,x))i+ci(t) i= l2.., .,k} -O(5.)

on E. For simplicity of notation, we write (5.9) as

min{ inf (/W + f) 9*VW + c} 0.
uEU

5.2. Viscosity solution. As is well known in classical control problems, the
value function is a solution to the corresponding Hamilton-Jacobi-Bellman equation
when it has sufficient regularity (cf. Fleming and aishel [4], Krylov [9]). If it is only
known that the value function is continuous, then, as observed by Lions [10], the value
function is a solution to the Hamilton-Jacobi-Bellman equation in the viscosity sense
which we will define as follows.

DEFINITION 5.3. A function is a viscosity solution of (5.9) /f E C(E) and,
for every E C’2(E),
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(1) for each local maximum point (to, xo) of- in the interior orE, we have

min{inf(t+f)eu g*Vx+c} _>0

at (to, xo), i.e., is a subsolution;
(2) for each local minimum point (to, xo) of- 4) in the interior of E, we have

(5.11)
(

min inf (/b + f) g*Vx + c <0
luEU )

at (to, xo), i.e., is a supersolution.
For an introduction to the viscosity solution and its applications to stochastic

optimal control problems, see Fleming and Soner [5]. For an extensive bibliography
on viscosity solutions, see Crandall, Ishii, and Lions [2].

THEOREM 5.4. The value function W(., .) is a viscosity solution of (5.9).
Proof. By Theorem 4.4 we know W E C(E). We first show that W is a subsolu-

tion. For E C1’2(E), if (to, xo) int(E) is a local maximum point of W 05, then
there is a neighborhood O(to, xo) of (to, xo) in E such that

or

w(t,x)- (t,x) < W(to, xo)- (t0,xo), (t,x) O(to, xo),

(5.2) w(t,x) W(to, xo) < (t,x) -(to, xo), (t,x) O(to, xo),

where (3i(t0,xo) denotes the closure of &(to,xo). If (5.10) fails, then one of the
following will be true:

(5.13) inf ( + f)(to, x0, u) < 0,
uU

(5.14) (g*V(to, xo)) + ci(to) < 0 for some 1 _< <_ k.

If (5.13) is true, then from assumption (4.1) and $ C1’2(E), we can find u U
and a neighborhood 02(to,xo) of (to, xo) such that

( + f)(t, x, o) < 0

for (t,x) 02(to, xo). Take P E 7to,zo such that

(5.15) P(#r 5{nO}, vr 0, 0 _< r _< T) 1.

The existence of such a P Tto,o is obvious. Define

T inf{t > to, (t, xt) O(to, xo)},
where O(to, xo) O(to, xo)C 02(to, xo). Since the state process x. is continuous
a.s. (P), we can see immediately that

P(T > to) 1,

and for to <_ 0 < T,

(t + f)(0, xo, #o) < 0 a.s.(P).
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Therefore

EP ( + f)(0, xo, #o)dO < O.

By the definition of control rules,

(T, x) (t0, X0) + Z(0, xo, #o)dO +M a.s.(P),

where Me E Ad, i.e., a continuous square integrable martingale with respect to P.
Note that Theorem 4.2.1 of Stroock and Varadhan [11] allows us to replace by Z in

(2.4), at least when v 0. Hence

E(,x) (to, xo) E" (O, xo,o)dO.

Noting that (T, X-) e O(to,Xo), we have

EW(r,x,)- W(to, xo) < E(,x)- 4)(to, xo)

EP /(0, xo, #o)dO

< -EP f(O, xo,#o)dO,

which, by (5.15) can be rewritten as

W(to, xo) > EP f(O, xo, #o)dO + W(T,

EP f(O, xo,#o)dO + c(O). dvo + W(T,x)

This contradicts the dynamic programming principle (el. (3.9)).
Next, if (5.14) holds at (to, x0) for some i, then we can take h > 0 small enough

such that

(to, xo + gh) (to, xo) < -c(to)h,
where gi denotes the ith column of the d x k matrix g. Therefore, by (5.12) we have

W(to, x + gihi) W(to, xo) < -d(to)h

and, therefore,

W(to, Xo) > W(to, xo + gh) + c(to) h,

where h (0,..., hi,..., 0). This is a contradiction of Theorem 5.1, and thus we have
shown that W is a subsolution of (5.9)

Now we show that W is also a supersolution of (5.9). If 5 e C1,2(E) such that

W- has a local minimum point at (to, x0) int(E), then there exists a neighborhood
01(to,xo) of (to,xo) satisfying

(5.16) w(t,x) W(to, xo) >_ (t,x)- (t0,z0), (t,) O(to, xo).
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If (5.11) fails, then

inf (/ + f) > 0, (g*V) + c > 0
uEU

at (to,Xo) for 1,... ,k. From assumption (4.1) and the fact that E C1’2(E), we
can find a neighborhood O2(t0, xo) of (to, xo) such that for some > 0,

inf (/ + f) > , (g*V) + c >
uEU

on 02(to, xo) for 1, k. Let O(to, xo) 01(to,xo)AO2(to, xo); then for (t,x)
O(to, Xo), we have for small h g, h 0,

(t, x + gh) (t, x) > -c(t) h.

Therefore, by (5.16),

W(t, x + gh) W(t, x) > -c(t) h

or x At. Hence for P 7’o,o

(5.17) P(xto+ Xto) 1

by Theorem 5.1. Define

r inf{t >_ to, (t, xt) O(to, xo)};
then from (5.17) we see that P(T > to) 1 for P 7to,xo, and it can be seen that

(t, xt) O(to, xo), xt At, to < t < .
Therefore we have

Ep (+f)(O, xo,#o)dO+ (g*Vx(O, xo)+co).dvo >EP(T--to).

Applying Ito’s formula and noting that the state process x. is continuous a.s. (P)
when to < t < r, we have

EP(T, XT) dP(to,Xo) q- EP (O, xo,#o)dO + Vx(O, xo) gdvo

which may be rewritten as

EP[(T, Xr) (to, xo)] >_ EP -f(O, xo, #o)dO

c(O). dvo + eEP(r to).

By (5.16) and the fact that P(r > to) > 0, we have

EP[w(T, x) W(to, xo)] > EP -f(O, xo, #o)dO c(O) dvo
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or

f(O, xe, #e)dO + ft c(O) dvo + W(, x) },
which contradicts the dynamic programming principle.

The proof of this theorem is therefore complete.
Let us define the function space

C(E) {W(., .)" W e C(E; 1i) with W bounded and

IW(t, x) W(t,Y)I <- CIIx -yll for some C >_ 0}.

By Theorem 4.4 we know that the value function W E C(E). The proof of the
next theorem is a modification of the methods used in Fleming and Soner [5]. For
details see Suo [12].

THEOREM 5.5. There exists a unique viscosity solution in C(E) to the dynamic
programming equation (5.9) with the boundary condition W(T,x) O, x 1Rd, which
can be identified as the value function.
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CASE OF THE CALCULUS OF VARIATIONS *

ARRIGO CELLINA AND SANDRO ZAGATTI:

Abstract. We prove that the problem

Minimize jf g((VT(x)))dx, T e TB T W’(t, IFtn)

admits at least one solution for any lower-semicontinuous extended valued function g, for any quasi-
affine real-valued function (I), and for any piecewise-affine boundary datum TB such that eP(VTB) is
constant.

Key words, minimum problem, Jacobian determinant, quasi-affine function
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1. Introduction. In this paper we consider the problem of existence of solutions
for the problem

[ Minimize/ g((VT(x))dx, T E TB -t- W’ , ]Rn

where (I) is a real-valued quasi-affine function defined on the space J4n of n xn matrices,
T a transformation from to ]Rn, TB -4 ]Rn is a piecewise-affine boundary datum
and 12 is an open and bounded subset of IRn.

When (I)(A) det(A) (the determinant is the simplest example of nonaffine quasi-
affine function), the problem, which arises in the study of equilibrium of gases and
constitutes a typical nonconvex problem in the vectorial case of the calculus of varia-
tions, has been considered in [D2] and [MS].

In [D2] it is proved that the relaxed problem

Minimize J g**(det(Vu(x))dx, u=uo on 0f

admits at least one smooth solution provided that g IR+ -- lR satisfies some growth
conditions, the boundary datum u0 is a homeomorphism with positive Jacobian de-
terminant, and fl is diffeomorphic to the unit sphere.

In [MS] the authors give a proof, based on Moser’s Theorem on volume-preserving
diffeomorphisms (see [M], [DM]), of existence of a solution for the problem

Minimize/n g(det(Vu(x) )dx, U E U0 -- Wl,c(,]an)
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for g IR+ IR continuous, satisfying the growth condition at 0+ and at +oc, and
for a C2 homeomorphism u0 with positive Jacobian determinant in Ft.

In this paper we consider an extended-valued lower-semicontinuous function g,
defined on IR, with superlinear growth at infinity and show that P admits at least one
solution for any quasi-affine function and for any piecewise-affine boundary datum
TB such that O(VTB) is constant (possibly zero).

We wish to point out that the proof is easier whenever the datum TB is such
that VTB is never a critical point for (in the case of the Jacobian determinant this
means that the rank of VTB is larger than or equal to n- 1); in the general case
the result is obtained by proving the existence of a piecewise-affine transformation
T. e TB-+-W’C(,I[n) such that O(VTr) O(VTB) and dO(VTr) # 0 almost
everywhere in ft, and then by solving the equivalent problem

Minimize g(’(VT(x))dx, T Tr + W’(f,IRn).

2. Preliminaries and notation. In this paper we use the following notation.
Vectors (of IRn) are columns. Given b e IW, b is the transpose of b and (b) +/- is
the orthogonal complement of span(b), a. b is the inner product of a and b vectors
of IRn, and is the associated norm. The canonical base in IRn is denoted by
{ei,i 1,...,n}. A subset of IR’ is called n-dimensional if its linear span is the
whole space; for a convex polytope P, V(P) is the set of its vertices.

An n x n matrix A is written as

A=(a, ,,a,)
an a a

where the ai are its columns and a are its rows We denote byM the space of n x n
matrices endowed with the inner product

n ft n

((A,B)}n aib ai bi aJ bY.
i,j=l i=1 j=l

Given two vectors v, w E IRn we denote by v (R) w the matrix of rank one obtained
by taking the usual rowtimes-column product of matrices of v and wt, i.e., writing
v= (vl,...,v) and w (Wl, Wn),

v(R)w=

VlWl VlWn )
VnWl VnWn

(WlV,...WnV)
VnW

For T, a regular transformation from an open subset of IRn to I[.n VT is the
Jacobian matrix; for v, a scalar valued function, Vv is its gradient, seen as a row

vector. By this way, given a vector b, b(R) Vv is an n x n matrix, while Vv. b is a scalar
(inner product). The complement of a subset E of ]Rn is Ec; the Lebesgue measure
is denoted by #(.).

lo n lcWe use the Sobolev spaces W0’ (ft, IR and W0’ (ft, IR), endowed with the
usual norms, and adopt the convention that an element ofW0 IR) or W0 ’ (gt,
is said to be continuous if it admits a continuous representative.
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An open bounded subset E of lRn is called regular if the divergence theorem
can be applied to E and to OF. We call a regular partition of E a finite collection
{Ei, 1,..., m} such that each Ei is open and regular, E A Ej if j, and
E- (um__l E)U N, where N is a null set.

An element T of Wl,(f,IRn) is called piecewise aJflne if it is continuous and
there exists a regular partition of Ft such that T is affine on each element of the
partition.

For a smooth function (I) defined on Jn we denote by dry(A) the/th differential
of (I) at A and, abusing the notation, by

(d((A))(l,jl) (,j) ik,jk 1, n

the tensor representing the/th differential of (I) at A with respect to the canonical base
in Adn. In particular

(d(I)(A))(il,jl) il,jl 1,...,n

is the n n matrix representing the first differential, in the sense that, for any B E A/In,

(d(A)) (B) ((d((A), BIIn.
We recall, from [D1, p. 99], the following definition.
DEFINITION 2.1. A Borel-measurable and locally integrable function .ME --* IR

is said to be quasi-affine if

o(A)
1 /DO(A+Vu(x))dx#(D)

for every bounded domain D C ]Rn, for every A .n, and for everyu W’(D,]Rn).
We recall also that there exists a representation theorem for quasi-affine functions

(see [B] or [D1, p. 117]) expressed in terms of the map

L :/4n --* A/[.(1) x A.(2) x x JYI(n-1) x

n! given bywhere u(s) (n)s

L(A) (A, adj2(A),..., adjn_ (A), detA),

where adj,(A) stands for the (s) x (s) matrix of s x s minors of A. Roughly speaking,
L(A) is a "vector" whose "components" are square matrices of order (s).

Ball’s theorem says that any quasi-affine function of A can be represented as
a "scalar product" of L(A) with a constant "vector." More precisely we have the
following theorem.

THEOREM 2.1. Let :. -- IR. Then the following conditions are equivalent.
(i) o is quasi-affine.
(ii) There exists-- (,l,...,n) t Jv,(1) X J,(2) X X -/(n-1) X

such that
n

(A) ap(O)+ E(( adj(A)))().
s--1
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(iii) For any a, b E In

O(A + a (R) b) O(A) + IIdO(A), a (R) bll n.
Remarks. 1. When O(A) detA, identifying as usual the differential with the

representing matrix, it is dO(A) adjn_l(A (see [D1, p. 191]). Hence a matrix A
has rank k if and only ifdtO(A) 0 for 1 ,n-k-1 and dtO(A) # 0 for
l=n-k,...,n.

2. Point (ii) implies that is a polynomial of degree less or equal than n;
hence, in particular, if is nonconstant, for every A E J4n there exists {1,..., n}
such that dtO(A) O.

3. Since the matrix representing the differential of the function determinant
is the matrix of its maximal minors, point (ii) implies that each entry of the tensor
representing a differential of some order of at A is still a quasi-affine real-valued
function of A.

LEMMA 2.1. Let E be an open bounded subset of IRn and V {vi, i 1,..., m}
a set of vectors of IRn such that 0 int(co(V)). Then there exist a regular partition

orE: {Ei,i 1,...,m} and a continuous function w W’(E, IR) such that
(i) Vw Eim=l ViXE a.e. on f and
(ii) }’im__l #(E)v O.
Proof. Let V* be the polar set of co{v{,i 1,...,m}. By Lemma 1 in [C]

there exist a collection of m polytopes V*,..., V, contained in V* and a Lipschitz
continuous function u, defined on ]an such that V* [.]m__ V{*, int(V{*)[’] int(V*)
for i # j, U[(v.)c 0, Vu =1 vixy:, and

m

(2.1) E #(V*)v 0.
i--1

Consider the following Vitali covering of E,

{x+rV*, xeE, 0<r<dist(x,

and select a denumerable subcovering {SJ}je,

such that

SJ {xj +rjV*, xj e E, rj > O}

int(SJ) [’] int(Sk) for j # k,

(b) E=(U.=lSJ)[JN, Nnullset, and
oo n(c) It(E) It(V*) -j.: r.

For any j E IN we define the subsets of S

for any x ]an, we set

and, for k IN,

SJ{ {xj +rjV{*}, i: 1, m;

Uj(X) :--rju
x

rj
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Since uj has the same regularity of u and uj I(s)c -= 0, U belongs to W’(E, IR)
and moreover, for any E IN,

U (x)
o

(

for xE (U:, SJ) U (Uj=+, sJ)
forxSJ, j k,...,k + l.

By (b),
lim # ({x E" Uk+l(x) Uc(x) = 0}) 0,

hence the sequence {Ua}k is fundamental in WI,I(E, IR).
Now set

E U int(S)
j=l

and
w= lim Uk in WI,I(E, IR).

We remark that, since each Ei is the union of a countable family of interiors
of polytopes, it is regular in the sense specified above. Obviously w belongs to

W’ (E, IR), and, given j G IN,

Uk(x) Uj(x) uj(x) for any x G SJ and for any k >_ j;

hence, by pointwise convergence, w(x) uj(x) for a.e. x in SY. Thus w is continuous
and belongs to W’(, IR), and

for a.e. x E S/j.

This implies (i). Statement (ii) is a trivial consequence of (2.1), (c), and the fact that

j=l

3. Main result. We shall need the following lemmas.
LEMMA 3.1. Let D .Mn be a nonzero matrix. Let /, /2 IR with /1 < 0 < /2.

Then there exist a vector b IRn and an n-dimensional polytope P c IRn with vertices

{v, vi,2 1,.. n}, containing zero in its relative interior, such that

J)) =?j, i=1.. ,n, j-12.((D,b(R)vi n

Proof. Write
d

take a row dJ different from zero, and choose b e. Let S be a symplex in (dJ) -l-

with vertices {si, i 1,..., n} containing zero in its relative interior and define

2 2
vi si + ldj]2 dj, 1,...,n.
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Notice that for any vector v, ej (R) v is the matrix whose rows are all zero except the
jth one, which coincides with the row vector vt. Hence

J))n--_dj((D, e (R) v v

Jand, by the choice of vi, we have the result.
LEMMA 3.2. Let be a nonconstant real-valued quasi-a]fine function defined on

A/In, and let A be a critical point for o. Let k
0 and dt((A) 0 for any 1,..., n-k-1. Then there exist a vector b IRn and an
n-dimensional polytope P C IRn with vertices {vi, 1 ,2n} V(P), containing
zero in its interior, such that

dn-k-l(A + b (R) vi) O, =1, 2n,

dt(A+b(R)vi)=O, i=l,...,2n, l=l,...,n-k-2.

Proof. Consider the tensor representing the (n- k- 1)th differential of (I) at A:

(dn-k-l((A) (l,jl (ir-,c-l,j,-k-

By assumption this tensor is zero and there exists a multiindex

such that

is a nonzero matrix. By Lemma 3.1 there exist a vector b and a polytope P such that

((d (dn-k-l((A))j_k_l b (R) vi))n 0

is realfor every v g(P) Now we recall that the map A (d’-k-O(A))&__
valued and quasi-aine; hence, by point (iii) of Theorem 2.1,

(dn-c-li(A + b (R) vi))y__t (dn-k-l(A))yn__l

+((d (dn-k-l(A))n__ b (R) Vi)ln 0

for every vi V(P).
Moreover, for any {1,..., n- k 2}, if we denote a generic entry of the/th

differential of (I) in A by
d(dtO(A))j,

where Jt (il,jl),..., (iz,jt), we have, as before,

(d ((A + b (R) vi))g (d (o(A))j + ((d (dt(A))g b (R) vi))n 0

for any vi V(P). Hence all of the differentials of (I) at A are zero up to order
(n- k- 2), while the (n- k- 1)st differential is different from zero. rl

The following lemma defines the auxiliary transformation T TB+W’(ft, IRn).
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LEMMA 3.3. Let TB ]an -- ]Rn be a piecewise-affine transformation with
(I)(VTB) constant. Then there exists a piecewise-agfine transformation Tr E TB +
W’ , ]Rn) such that

(i) (I)(VTr) (I)(VTB) and
(ii) d(I)(VTr) # 0 a.e. in

Proof. By assumption
m

TB E Thxgth
h--1

where {Ft, 1 m} is a regular partition of and each T is affine. If d(I)(VT) #
0 for every i, we set Tr =-- TB.

Consider a generic TJ such that d(I)(VTJ) 0. We claim that there exists a
piecewise-affine Trj in T+W’(j,]Rn) such that (I) (VT) (I)(VTJ) and d(I)(VTj) #
0 a.e. in j.

To prove this claim we set, for notational convenience, j E and TJ T.
Let k (k _> n- 2) be such that dn-kO(VT) 0 and dl(I)(VT) 0 for

1,..., n- k- 1. By Lemma 3.2 there exist b E IRn and an n-dimensional polytope P
containing zero in its interior such that

dn-k-lO(VT + b (R) v) 0,

dt(VT + b (R) v) O, l=l,...,n-k-2.

for any v e V(P). Let u W’(E, IRn) be defined as in Lemma 2.1 with V V(P).
Consider the transformation

T (x) T(x) +

so that
VT1 (x) VT + b (R) Vu(x), a.e. in .

T1 is continuous and belongs to T + W’(E, IRn) and there exists a regular partition
of E: {E,i 1,...,2n} such that

2n

i--1

where each T is aifine and, more precisely,

VT(x)=VT+b(R)v, i=1,.o.,2n.

Hence, for any e {1,..., 2n}, dn-k-lp(VT) # 0, dlffp(VTil) 0 for l= 1,..., n-
k- 2, and (I)(VT) (I)(VT). If k n- 2 we set T(E) T1. Otherwise, repeat-
ing the previous procedure, for each {1,..., 2n} we can define a piecewise-affine
transformation T e T +W’(E, IRn) such that

dn-k-2O(VT) O,

dl(I)(VT)=0, l=l,...,n-k-3,

(I)(VT) (VT{) (I)(VT).
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Extend T on E by setting T Tj on E \ E/ and define

2n

i=1

Then

T==T+
2n

i=1

Since the second term at the right-hand side is in W’(E, IRn), T2 belongs to T1 +
W’ E, IRn) T+W’ E, IRn) and has the same properties of T1. This procedure
can be iterated n- k- 1 times to obtain the piecewise-affine transformation Tr(E)
Tn-k- belonging to T + W’(E, ]an).

Now, for any h 1,...,m, set Trh Th if d(VTh) 0 and Th T(fh),
defined as above, if d,(VTh) 0. Extend Th on by setting Th Th on \ fh
and define Tr as

m

h=l

We have
m

h=l

and since the second term on the right-hand side is in W’(Ft, IRn), Tr belongs to
TB + W’(,IRn). Moreover, by the above, (VTr) (VTB) and dq)(VT) = 0
a.e. in. [:]

THEOREM 3.1. Let AJn -+ IR be nonconstant and quasi-affine. Let TB
IR --+ IRn be a piecewise-affine transformation such that ((7TB) is constant. Let
c,/3 E IR (a </) A El0, 1[ be such that

(VTB) =/c + (1

Then there exist two open regular disjoint subsets of , t, and , a null set N,
and a piecewise-affine transformation Tc,Z TB + W’(gt, lRn), such that t
N [.J [.J Z and

(ii) f (VT,e(x))dx #()(VTB),
or, in other words,

(ii’) t*() A *() 1 A.() ()
Proof. By the previous lemma there exists a piecewise-affine transformation Tr

TB q- W’(t, :n) such that
m

Tr
i=1

where {ti,i 1,...,m} is a regular partition of gt, each T is affine, O(VT)
O(VTB), and dO(VT) g= 0 for every index i.

Fix an index j {1,..., m} and consider the transformation TY. Apply Lemma
3.1 with D VTJ, "yl a O(VTJ), ->. =/- O(VTY) to obtain a vector b and an
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n-dimensionM polytope P c ]Rn with vertices {v, v, i-- 1,..., 2n} containing zero
in its interior such that

((d,(VTJ), b (R) v(lln o (VTJ)

and
((d(VTJ), b (R) v))n (VTJ).

Define u e W’(ty, lR) as in Lemma 2.1 with Y V(P) and E gtj. Consider the
transformation

SJ (x) TJ (x) + u(x)b.

SJ is piecewise-affine and belongs to TJ + W’Cx(’j,Iptn); moreover, by Lemma 2.1
and by Theorem 2.1 (iii), there exist two open regular disjoint subsets of gtj, Ft, and

Ft and a null set N, such that tj N [.J Ft] [.J and

O(VSJ) P(VTJ + b (R) Vu)

Repeat this construction for any index j E {1,...,m} and extend SJ as TJ on

Finally define T,Z by
m

T, ES
j=l

T, is piecewise affine and can be written as

m

T.,, +
j=l

Since the second term on the right-hand side is in W’(, lRn), T,Z belongs to

Tr + W’(a, IR") TB + W’(a, IR’). Setting

m m

j=l j=l

we have, since is quasi-affine,

m

j=l

m

j=l

i.e., point (ii). D
We are ready to prove the main result.
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THEOREM 3.2. Let t2 be an open bounded subset of]an and let g ]a -- ]aU{+oc}
be a proper lower-semicontinuous function satisfying

lim
g(t)

Then for any piecewise-ajfine transformation TB IRn -- ]Rn such that (I)(VTB) is
constant and belongs to co(dom(g)), the problem

7). Minimize g(O(VT(x)))dx, T E TB + W’(,]Rn)

admits at least one solution.

Proof. Consider g**, the bipolar of g, as defined in [ET] and call dom(g) the set
in which g is strictly less than infinity.

(a) Consider first the case in which (I)(VTB) e O(co(dom(g))). We claim that TB
is a solution of P. In the case (I)(VTB) sup(co(dom(g))) we remark that for any
T TB + W’(ft, IRn), by Theorem 1 of [D2] and the following remark, we have,
since (I) is quasi-affine,

For any T such that

((I)(VT(x)) (VTB(x))) dx O.

for a.e. x ft it must be that (I)(VT(x)) <_ (I)(VTB(x)). Hence (I)(VT(x))
((VTB(x)) for a.e. x , so that TB is a solution and any other solution T1 of
7) must be such that (I)(VT1)=

The case (I)(VTB) inf(co(dom(g))) is analogous.
(b) Consider now the case (I)(VTB) e int(co(dom(g))) (where this set can be the

whole JR). There exists a line p separating the point ((VTB),g**((VTB))) from
the closed convex set epi(g**). Since (I)(VTB) is in the interior of dom(g**), p cannot
be vertical, i.e., there exist /, 5 E IR such that, for t dom(g**),

g(t)

and
+

Let T TB + W’(, IRn). We have

/g ((I)(VT(x)))dx>_ ]: g** ( (VT(x)))dx>_ ]: (/ (VT(x))+ 5)dx;

by the previous remark, since (I) is quasi-affine,

/ (/ (VT(x)) + 5) dx /( (VTB(x)) + 5) dx / g** ( (VTB(x))) dx.

When g ( (TTB)) g** ( (VTB)) the above argument shows that TB is a solution.
Otherwise, by a slight modification of IX.3.3 of [ET], taking into account the super-
linear growth condition on g, we can say that there exist a,/ IR, ]0, 1[ such
that
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and

In this case,

g** (VT.)) +

g** ( (VTB(x))) dx A#(a)g(a) + (1

Hence the transformation Ta, given by Theorem 3.1 is a solution of P.
Remark. Since the function is real valued, the problem of finding a solution

is underdetermined and, in general, one cannot expect uniqueness of the solution.
Actually, in the case of the Jacobian determinant, it is easy to see that the problem
admits infinitely many solutions. Indeed when TB is not a solution, the assertion
follows easily from the construction of the solution defined in Theorem 3.1, since it
depends on a scalar function v, which can be defined in infinite ways (depending on
the choice of the set of vectors which constitute the range of the gradient of v). When
TB is a solution of P we simply notice that, given a regular transformation J
different from the identity, such that det(VJ) 1 on ft and Jloa II0 (I denotes
the identity),

det (V (TB o J)) det(VTB)

and
TB o gloa

Hence T _= TB o J is a solution. Since there exist infinitely many transformations J
with such properties (see [DM]), the assertion is proved.
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Abstract. A feedback law expressed by means of a Trotter product formula approximation of the dynamic
programming equation, and which provides approximately optimal controls, is established for the control systems
governed by a certain class of variational inequalities of parabolic type. To this purpose, two general Lie-Trotter
formulas for the dynamic programming equation are proposed, and corresponding convergence results (generalizing
previous results of the author) are proved. The framework also includes the control systems described by the parabolic
obstacle problem as well as those governed by semilinear parabolic equations.

Key words, optimal control, variational inequalities, Hamilton-Jacobi equation, Trotter product formula, feed-
back law

AMS subject classifications. 49L10, 49L20, 49N35, 93B52, 93C20

1. Introduction. The aim ofthis paper is to show how a Trotter product formula treatment
of the dynamic programming equation leads to a certain discrete feedback law for the optimal
control problem, which seems very useful in effective synthesis of optimal control.

Our framework is given by the following class of nonlinear distributed optimal control
problems:

(P) minimize

T

Jo (h(u(t)) + g(y(t)))dt + l(y(T))

over all u E L2(0, T;b/), where y E C([0, T]; 7-/) satisfies the state equation

(1.2)

and the initial condition

y’(t) + Ay(t) + O(y()) 9 Bu(t)

(1.3) y(0) y0.

Here 7-/and L/are two real Hilbert spaces whose scalar products and norms are denoted
by the same symbols, (., .) and I" I, respectively.

We impose the following hypotheses on the data:
(i) h /d (-, +x] is convex, lower semicontinuous, not identically +oc, and

satisfies

(1.4) h(u) > c lu[ 2 c2 for allu &’,

where c > 0 and c2 R.
(ii) 9, 7-/--, R are Lipschitz continuous on bounded subsets and bounded from below

by affine functions.
(iii) A V ---, V’ is linear, continuous, and symmetric, V being a Hilbert space continu-

ously and densely imbedded in 7-/with V’ its dual space. Identifying 7-/with its own dual, we
have V c 7 c V’. Denote by (., .) the pairing between V and V’, and by 1. Iv the norm of
V. These being specified, we assume, in addition, that A satisfies

(1.5) (Ay, y) >_ w[yl for ally

Received by the editors January 11, 1993; accepted for publication (in revised form) Januar 5, 1994.
Facultatea de Matematic, Universitatea "A1 .I. Cuza," B-dul Copou 11, 6600 Iai, Romania.
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where w > 0, and the inclusion 12 C 7-t is compact. Finally, set D(A) {y 12 Ay 7-t}.
(iv) 7-t (-oc, +oc] is convex, lower semicontinuous, not identically +oc, and

such that A + 0O is maximal monotone in 7-t x 7-t. (Here 0O is the subdifferential of .)
(v) B b/ 7J is a linear continuous operator.
To assure the maximal monotonicity of A + 0O in 7-t x 7-t it suffices to have (see [2,

Thm. 1.10])

(1.6) (Ay, (0)(y)) >_ -c(1 + ](0)v(y)])(1 + lY[) for ally D(A) andr] > 0,

where c > 0and (0) isthe Yosidaapproximation of0, i.e., (0) T]
-1 (_]- (_]---T]G(/))- 1),

I being the identity operator of 7-{.

By a standard existence result, for any y0 E D(A) D(O), problem (1.2), (1.3) has a
unique weak (integral) solution. Moreover, under (1.6), if y0 E 12 if? D(), then (1.2), (1.3)
has a unique solution in W,2([0, T]; 7-t)R C([0, T]; 12) L2(0, T; D(A)) (see [2, Thm. 4.3]).

According to the dynamic programming method, we associate with the optimal control
problem (P) the corresponding optimal value function

(1.7)
V(t, y) inf (h(u(s)) + 9(y(s)))ds + l(y(T)) y’ + Ay + 0(y) Bu,

y(t) y, u e L2(t, T;b/) , (t, y) e [0, T] x D(A) C D(0).
)

The function V formally satisfies the following infinite-dimensional Hamilton-Jacobi equa-
tion, called, in this context, the dynamic programming equation associated with problem (P)"

(1.8)
DtV(t,y) h*(-B*DvV(t,y)) (Ay + O(y),DvV(t,y))

=-9(Y) in[0, T]

together with the final condition

(1.9) V(T,y) -l(y), y 7-(,.

Here h* denotes the convex conjugate of h and B* is the adjoint of/3. As a matter of fact, one
can show that V is the unique solution of (1.8), (1.9) in a certain viscosity sense (see [12]).

Let u* Lz(0, T;b/) be an arbitrary optimal control for problem (P) and y*
C([0, T]; 7-/) the corresponding optimal arc. Heuristic considerations based on the Hamilton-
Jacobi equation (1.8) lead to the following feedback law:

(1.10) u*(t) e Oh*(-/3*DvV(t,y*(t)) ), t e (O,T).

However, this formula (if we should prove it) is almost inapplicable to the effective synthesis
of optimal control for (P), mainly because it is very difficult to calculate V: the Hamilton-
Jacobi equation (1.8) is a very complicated mathematical object even in the finite-dimensional
case. At present there are no constructive theories or adequate approximation methods for
such equations, except in some special cases.

A new perspective on this topic is offered by an idea of V. Barbu introduced in [3], [4].
This consists of decoupling the terms containing DyV(t, y) in the dynamic programming
equation by decomposing the corresponding Cauchy problem into a sequence of several sim-
pler problems. Performing this operation successively on small time intervals, we obtain
an approximate solution to the considered Cauchy problem, which may be interpreted as a
Lie-Trotter product formula for the dynamic programming equation viewed as an evolution
equation on a suitable space of function on 7-g. As V. Arnutu has shown in [1], this method
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turns out to be very efficacious in numerical computation of V, at least in the finite-dimensional
case (n 2, 3).

In a previous paper 11 ], the author decomposed the Cauchy problem (1.8), (1.9) into two
problems and expressed their solution by a suitable approximation and a Hopf-Oleinik-Lax
representation formula (i.e., an explicit formula for the solution of problem (1.8), (1.9) in
which A + 0O 0 and 9 0 given by a variant of (1.7) where the infimum is taken over
u E L/; see [9], [10] for the original formulas). In the case when 0 in (1.2) is the indicator
function I/ of a closed convex subset K of 7-/, this approach yields more general convergence
results (see 11, Thms. and 2]) as well as simpler formulas for calculating V.

In the present paper, we shall use one of the Trotter product formulas proposed in 11
to obtain a discrete variant of the feedback law (1.10), which will offer a reasonable way for
synthesis of optimal control. The aforementioned formula expresses the convergence of the
scheme

(1.11)

to the solution of the dynamic programming equation (1.8) with the final condition (1.9). Here
c T/N, where N is a positive integer. Solving (1.11) by a Lax-type formula, we obtain an
approximate solution to problem (1.8), (1.9). For simplicity, let us indicate it only for t

(1.12)

First of all, we shall prove the following Trotter-type product formula (Theorem 3.1):

(1.13) lim Ve(t, y) V(t, y),
e--+O

(t, y) e [0, T] D(A) D(O).

This is a generalization of a result from 11 ]: the indicator function IK from 11 is replaced
by a general lower semicontinuous convex function . So we also cover the case of the control
systems governed by semilinear parabolic equations (see [5] for a related result) besides that
of the parabolic obstacle problem. An alternative Trotter formula is given by Theorem 3.2.

Scheme (1.12) and formula (1.13) suggest to us that problem (P) could be approximated
by the following family of discrete problems:

(pc) minimize

N

+ +
i:!

over all (ul, U2,..., UN) N, where (y, Y2,..., YN) _N satisfies the scheme

(I + c0)-(I + eA)-’(y_, +
Yo yO.

i= 1,2,...,N,
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We shall show (Theorem 5.1) that this is indeed the case: every optimal N-tuple
(u, u,..., u) for problem (P) may be viewed as an approximately optimal control for
problem (P).

The main result of this paper (Theorem 6.1) is established for a little more restricted class
of nonlinear control problems: in (P), L2(f2) and the state equation is

y’ + Ay +/3(y) Bu,

where /3 is a maximal monotone graph in R2. In this context, any optimal N-tuple
(u, u,..., Uv for problem (P) satisfies the following feedback law:

(1.14) u e Oh*(-B*OyV((i- 1)e, y_l) ), i- 1,2,...,N,

where

(1.15)
y (I 4- /)-1 (I --[- A)-I( e

Yi-1 + eBbS),
v.

Here 0vV is the Clarke generalized gradient of Ve with respect to y. Formula (1.14) may be
interpreted as an approximate feedback law for problem (P).

System (1.14), (1.15) offers us a set of necessary optimality conditions for (Pe), which
can be useful in constructing a suboptimal control for (P), but on the condition that Vs is
known. The numerical calculation of Ve is another problem, but a glance at (1.12) or (1.11)
clearly shows how much easier it is to get V than V. (For the finite-dimensional case we
refer to 1].)

2. Trotter schemes for the dynamic programming equation. By a simple change of
unknown function, we can transform problem (1.8), (1.9) into a Cauchy problem but with
initial condition, which is more convenient in our further considerations. Indeed, we define

W(t, y) V(T t, y) for (t, y) [0, T] x D(A) D(O).

It is easy to check that

W(t, y) inf (h(u(s)) + 9(y(s)))ds + l(y(T)) y’ + Ay + O0(y) Bu,
(2.1)

V(0) -y, u e L2(0, t;H)), (t, y) [0, T] x D(A) D(0).

The function W is the unique viscosity solution (in the sense of [12]) of the Hamilton-
Jacobi equation

(2.2) DtW(t,y) + h*(-B*DvW(t,y)) + (Ay + 0(y), DvW(t,y)) g(y)

with the initial condition

(2.3) W(O, y) l(y), y E .
Let e T/N, where N is a sufficiently large positive integer. On each subinterval

((i 1)e, ie], we decompose the Cauchy problem (2.2), (2.3) into two problems, the second
of these being the following:

DtW(t,y) + h*(-B*DvW(t,y))=0 in((/- 1)e, ie] x ,
We((i- 1)e +0, y) We((i- 1)e, (I + e0)-’ (I + eA)-’y)

+ eg((I + e0)-(I + eA)-y), y E 7-/, 1,2,...,N,
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where

Here y W((i- 1)e, (I+eO)- (I+eA)-y)+eg((I+eO)- (I+eA)-y) represents an
approximate solution of the first problem of the decomposition (which contains the unbounded
term--corresponding to the dynamics of (P)--and the right-hand side 9) with W((i- 1)e, .)
as initial datum. (Note that for 0 0 and 9 O, y W((i 1)e, e-Aey) is just the
exact solution of the first problem at t ie.) Now expressing the exact solution of the second
problem of the decomposition by a Lax-type representation formula (cf. [10, Eq. (2.12)]), we
obtain

W(t,y) inf{(t- (i- 1)e)h(u) + eg((I + eO)- (I + eA)-(y + (t- (i- 1)e)Bu))
+ We((i- 1)e, (I + eO)-’(I + eA)-l(y + (t (i 1)e)Bu)): u e

(t,y) e ((i-1)e, ie] x, i= 1,2,...,X,

Obviously, it is natural to interpret We as an approximate solution to (2.2), (2.3), but we must
prove that we may do this. For technical reasons, we shall slightly modify the above scheme
to obtain

(2.4)

This scheme gives the same values as the preceding scheme at t ic V (ic, y) V (ic, y).
As we shall see in 6, only these values will matter in expressing the discrete feedback law.

We obtain the following alternative scheme by interchanging the resolvents of A and 0
in (2.4):

(2.5)

W(o,

3. Convergence of Trotter product formulae. As we already mentioned in the intro-
duction, the following two results represent generalizations of those in [11]. As a matter
of fact, we shall show that the arguments from 11] also work in the present, more general
framework.

THEOREM 3.1. Under hypotheses (i)- (v), suppose that thefollowing additional assump-
tion holds:

(vi) (I + c0) -1 maps 12 into itselfand

(3.1) (A(I + cO0)-z, (I + cO)-’z) < (Az, z) for allz V.
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Thenfor every (l:, y) E [0, T] x D(A) D(O0), we have

(3.2) lim We(l: y)= W(l:, y).
---0

Proof Although the proof is very similar to that of Theorem in 11], for the sake of
completeness (and for the reader’s convenience) we outline it, emphasizing the specific points
of the present situation.

Recall that TIN. Fix (l:, /) E [0, T] D(A)U D(O0). Let us suppose that /
is not an integer. The successive application of (2.4) on the intervals (t e, ], (t 2e,

],..., ( [/], ([/] 1)], (0, [/]] leads (after some convenient rewriting)
to the following representation for W:

+ +

+ /(V(t)) uis a step function from [0, T]

where for any (step) function u [0, T] , is defined by

(3.4) fort((i-1)e, ie], i-l,2,...,N,

If t/e is an integer, then in (3.3) we must eliminate the two terms containing the values of h
and 9 which are not under the sum signs.

The statement of the theorem now becomes more transparent if we look at (3.3) and
recognize in (3.4) a Trotter scheme for (1.2) with the initial state . So, the following lemma
represents an important stage in the proof.

Let u be a step function from [0, T] to U which takes constant values on (0, e0], (e0, 2e0],
((N0 1)e0, N0e0] (T e0, T]. Denote by W the unique weak solution of the Cauchy

problem

W(0)

LEMMA 3.1. For eve t [0, T], we have

lim V (t) W () strongly in .
The main tool in the proof of Lemma 3.1 is the nonlinear version of the Chernoff formula

(see [11, Lem. 2]).
Using Lemma 3.1, we obtain without serious difficulties (see also [11, Rem. ])

lim sup W (t, V) W(t,

The other inequality, i.e.,

liminfW(l:, /)_ W(l:, /),
--0
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is somewhat more difficult. We shall treat it in detail.
For any step function u [0, T] /, denote

i=l

+ cg(y,(t)) + l(y(t)) ift/cis not an integer,

Z g(h(u(ig))+ g(y(ig))) + l(ye(t)) otherwise.
i=1

Clearly, we may select a subsequence of {e }, also denoted {g}, and a corresponding sequence
of step functions ue, each ue taking constant values on (0, g], (g, 2g],..., (T- g, T], such that

lim W(t,y;u) liminfW(t, y) 5 limsup W(t,y) 5 W(t,y).

Hence, by using hypotheses (i) (actually (1.4)) and (ii) together with the estimate

I()1 I((Z + 0)-’ (z + sA)-l)[s/e]+ly

it follows that {u} is bounded in L2(0, t;); consequently, on a subsequence, ue u
weakly in L2 (0, ;) as s 0.

LEMMA 3.2. Let {ge} be sequence ofstepfunctions as above and y 6 D(A) D(O).
Ifue u weakly in L2 (0, t; U), thenfor eveu s

y (s) yu0(s) strongly in

Proof. First we shall show that y[ (s) converges strongly in (possible on a subse-
quence) for every s [0, t]. To this end we introduce the auxiliary function z given by

z (s) (I + eA)-’(y((i- 1)e) + (s- (i-
{= ,z,...,.

Obviously, y[ (s) (I + e0)-z (s). For simplicity we set z z and y[ y. One
easily verifies that z satisfies the following difference scheme:

[(( + 0)-’({) ( + 0)-’(({_ )))

+Az(ie)+O4(z(ie))-B(ie),i-2,3,..., 2 s[0, t].

Here is the convex regularization of . (Recall that (0) 0.) Multiplying scalarly in
by ze (ie) z ((i 1)e), we obtain after some calculation

lye(i) ye((i 1)) 2 + (Aze(i), ze(i)) ((i 1)))

+ (()) ((( )))
(3.5)

< v((i- )) v((i- 2))12 + 2 (i)l2 + 1((i- ))

-,,..., .
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If s/e is not an integer, we have as above

(3.6)

Adding inequalities (3.5) (i 2, 3,..., Is/el) and (3.6), we have

y y1 (i) ((i 1))t
i=2

2 s Ye + -,j.(Az(s),z(s))

(3.7)
-(Az(e),z(e)) + (z(s)) (z(e))

5
[/e]

< y()- l2 / lBu()l2 / I,()12
2e

{=2

Using the definition of ye (e) and the fact that I+e0) and I+eA) are contractions,
we derive

(3.8) __1 lye (e) y 2 3e]/2/,e (e)12 -’t- 3IAy 2 qt. 3e 0(y)l 2,

since y D(A) D(O). Next we have

ze (e) y + eAze (e) eBue (e),

which, after a scalar multiplication by ze (e) y and a suitable estimate of the right-hand side,
yields

(3.9) (Aze (e), ze (e))
e 12- -(Ay, y) < -lBue(e)

Further,

(3.10)

Regarding e(ze(e)), by the definition of e (see [6, p. 1211), we have

12(()) <- 7 () v +

whence

(3.11) (z()) l/3u() 2 + IAy 2 __}_ (y).
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Now, adding (3.8), (3.9), and (3.11) to (3.7), and taking (3.10) into account as well, we
obtain

+ (Az(s),ze(s)) <_ const.,

where the constant is independent of e. Hence, on the one hand, using hypothesis (3.1) and
condition (1.5), we ascertain that the sequence {y(s)} is bounded in V for any s E [0, t]. On
the other hand, taking s t in the above sum, we get

_< const.

But we also have (it is easy to verify)

]ye(s)-ye(s’)]<_[s-s’l[Bu(ie)] fors, s’E((i-1)e, ie], i= 1,2,...,N.

Thus we have obtained that functions y are of bounded variation on [0, t] and Voty <_ const.
Since the inclusion V C 7-/is compact, by an infinite-dimensional version of the Helly theorem
(see, for instance, [6, Rein. 3.2, p. 60]) we conclude that there exists a bounded variation
function y0. [0, t] -+ 7-/such that on a subsequence, also denoted {y }, we have

(3.12) y (s) --+ y(s) strongly in 7-/for all s [0, t].

We shall now prove that y(s) yu,,(s) for s [0, t]. For any r/ > 0, choose a step
function u % which takes constant values on (0, e,], (e,, 2e,],..., (T e,, T] (where
e, T/N,) such that

1/2

(3.13) (fo ,ur(s) u(s)12 ds) <r/ and ,yu,, (s) yuo(s)l < r foralls[0, t].

It is easy to see that y and y satisfy the following schemes:

l, 2,..., It/el, A being the Yosida approximation of A.
Let s E [0, t] such that s :/- [s/e]e. Subtract the preceding two inclusions and multiply

the difference by y (ie) y (ie). Then, using the monotonicity of A, 005, and adding the
obtained inequalities with respect to from to Is/el, we get
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Hence

51()
<_ 3 Z (ue(i) u(i),B*(I + A)-’y(i) B*(I + A)-ly(i))

(3.14)

In the case when s [s/e]e, we add the same inequalities as above but only from to Isle]-
(the computations being similar).

To conclude, we write the above sum as an integral"

[/]

((i) -(i), e*(z + A)-l: (i) e*(Z + A)-l(i))
i=1

[/]

where

e e (ie), ~e e(ie), and g(-) u(ie)

E ((i-1)e, ie], i-- 1,2,..., IS 1.for-

In addition to this, since () (r)] 0 (because {} is bounded in L(0, t;H)),
() ()[ 0, by (3.12) and Lemma 3.1 we have

() 0() (on a subsequence), (r) () strongly in for all r [0, s].

Also,

ge(r) () for r [0, s except the possible discontinuity points of.

Letting e 0 in (3.14), we obtain

.1o() ,() < (,0()_ () 0()_
2

which together with (3.13) ( being arbitrary) gives yO yo, and the proof of Lemma 3.2 is
finished.

Now it is easy to derive the assertion of Theorem 3.1 for y D(A) D(OO). Indeed,
we may write

w(t,v.) h(())d + (())d + ((t)) + ((t)),

where has been defined above. Hence, using the weak lower semicontinuity in L2 (0, t; N)
of u f h(u(s))d8 and the Lebesgue dominated convergence theorem combined with
Lemma 3.2, we see that

lim WE (t, y; u) > W(t, y).
--+0
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To extend this conclusion to the case when y E D(A) f D(0), we need the following
continuity result.

LEMMA 3.3. Under the hypotheses of Theorem 3.1, for any t [0, T], the function
D(A) D(Od)) y - W(t, y) is Lipschitz continuous on bounded subsets, and thefunctions

y -+ We (, y) are Lipschitz continuous on bounded subsets, uniformly with respect to c.

Proof We shall sketch only the proof of the second part of the lemma (the proof of the
first is similar).

Consider y, z 7-{, arbitrary, such that ]y], ]z] < r. Let r/> 0, also arbitrary. We choose
a step function ue u,e such that

Here z is defined as in (3.4) but with z instead of y.
Taking (1.4) into account, we easily obtain

c(i)l2+ t-
i=1

2

_< const.,

where the constant depends only on r. Consequently, y (ie), y (t), z (it), and z (t) also
are bounded by a constant which depends only on r. We may now use assumption (ii) to
derive the Lipschitz continuity on bounded subsets of y H We (t, y), uniformly with respect
to . This completes the proof of Lemma 3.3.

A density argument based on Lemma 3.3 finishes the proof of Theorem 3.1.
Let us now establish the convergence of scheme (2.5).
THEOREM 3.2. In addition to assumptions (i)-(v) we suppose that at least one of the

following two hypotheses holds:
(vii) (I / 0)-1 Pfor all e > 0 (i.e., the resolvent of is independent of g);
(viii) (I + cA)-I D(O) C D(O) for all e > O.
rhenfor every (t, y) e [0, T] x D(A) g D(0), we have

(3.15) lim W (t, y) W(t, y).
--+0

The proof of Theorem 3.2 is very similar to that of the preceding theorem. The only
differences appear in the proof of the corresponding variant of Lemma 3.2.

In the present case, for a (step) function u [0, T] b/, y is defined by

y(t) (I + gA)-’(I + gO)-’(y((i- 1))+ (t- (i- 1)c)Bu(ig))
for t ((i-1)e, ie], i- 1,2,...,N,

v (o) v.

LEMMA 3.4. Let {ue } be a sequence ofstepfunctionsfrom [0, T] to

takes constant values on (0, ], (c, 2],..., (T , T], and let y D(A) N D(O).
Ifue -+ u weakly in L2 (0, t; b/), then for every

y(s) -+ y,,o(s) strongly in .
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Proof Set y ye. As in the proof of Lemma 3.2, we have

To eliminate the operator (I+e0)- above, we use the following inequalities (easy to prove):

ly((i + 1)e) ye(ie)12 31(I -4- eO)-’ye(i) (I + eO)-lye((i- 1)e)l 2

+ 3e21Bu((i + 1)e)l 2 + 3dlBu(ie)[2,

i=1,2,..., 7 -1.

We obtain

(3.16)

ye ye 23--1 ((i + 1)e)- (ie)l + -(aye(ie),ye(ie))
ye

2
(AYe((i 1)e), ((i 1)e)) + (f(ie)) (ye((i 1)e))

<__ IB(ie)lly(ie) y((i- 1)e)l + elBu((i + 1)e)l 2 + elBu(i)l2,

Similarly, in the case when s/e is not an integer, we have

(3.17)

and also

(3.18)

(Aye ([7]e) ye s
_(Aye(s),ye(s))__

s ([7] e) )

Adding inequalities (3.16)-(3.18) and (3.8) (the last multiplied by 1/3), we get
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Then, proceeding as in the proof of Lemma 3.2, by the same infinite-dimensional variant
of the Helly theorem we find a bounded variation function y0 [0, t] 7-t such that, on a

subsequence,

(3.19) y (s) y(s) strongly in for all s [0, t].

Next, for r] > 0, arbitrary, we select a step function u uv which takes constant values
on the subintervals ((i 1)ev, ien], 1,2,..., Nn, and satisfies (3.13). Define the function
z, by , () (. + 0)-’ (v((- )) + ( -(- )).,())

forsE ((i-1)e, ie], i-- 1,2,...,N,

and define z in the same way, but with u replacing u*. Obviously, y (s) (I+eA)-z (s)
and ye (s) (Z + eA)-’ z (s), s E (0, T]. We have

y(ie) y((i- 1)e) + eAez(ie) + eOd?(z(ie)) eBue(ie),

V(i) V((i- )) + A(i) + O(z()) (), 2,3,...,

Multiplying the difference of these inclusions by z (ie) z (ie), we obtain

e (ie), ze (i) zu (i))2
(ye (ie) y

(3.20)
2
(y ((i 1)e) y ((i 1)e), z ((i 1)e) z ((i 1)e))

e(Bu (ie)- Bu(ie), z z

Similarly, in the case when s/e is not an integer,

(3.21)

The summation of (3.20) and (3.21) gives

(3.22)

(If s/e is an integer, we add only inequalities (3.20) to obtain a similar conclusion.)
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But we may write (3.22) in the following form:

(3.23)

where

z (r) z, ((i + 1)c), (r)z, ((i + 1)c), and

forr ((i-1)e,i], i-1,2,.. []-1
a() (( + ))

By obvious estimates, I() (I + o)-’&() and
tend to zero as e + 0 for all 9- [0, s], so that we can use (3.19) and Lemma 3.1 to find the
limits of z,~ and z,~e. In this way, under hypothesis (vii) it immediately follows that

z,(9-) ---+ pyO (9-) (on a subsequence) and

z (9-) -+ Py (9-) strongly in 7-t for all 9-

Under the other additional hypothesis, we have for every 9- [0, s

(9-) _+ y0(9-) (on a subsequence) and z (9-) --+ y,(9-) strongly in.
This happens because yO(9-) D(0) (since y (9-) D(0) for any 9-), and consequently
(I + eO)-y(r) yO(9-) as c ---+ 0.

Now, to conclude that in the first case the integral in (3.23) converges tof2(u(9-)
u(9-), B*(Py(9-) Py,(9-)))dg- as e -+ 0, it suffices to observe that

(( + ), *((<, ()- ())- (’v()- P,w()))) + o

and

For the last limit, we also use the continuity of y0 on [0, s] except a countable subset (since y0
is a function of bounded variation). In the second case, it follows similarly that the integral in
(3.23) converges to J0 (u0(9-)_ u(9-), B,(yO(9-)_ y(9-)))dg- as e --+ 0.

Thus, letting --+ 0 in (3.23), we obtain in both situations that

2

and so, by (3.13), we have yO =_ y,o on [0, t], since r] is arbitrary Taking (3.19) into account,
this completes the proof.
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4. Examples. We shall now indicate some control systems to which the results of the
preceding section may be applied. The problem here is whether the additional hypotheses
(vi) (on the one hand) and (vii) or (viii) (on the other) are verified in the cases of interest
in applications. We shall see that among the significant situations which are covered by
our results we find systems governed by semilinear parabolic equations and by the parabolic
obstacle problem.

First, let us see a general situation in which hypothesis (vi) is verified (so that Theorem 3.1
applies). Let {2 be an open and bounded subset of R having a sufficiently smooth boundary,
and A0 be the elliptic differential operator defined by

Aoy
,,=

aij(x) + ao(x)y,

where aij E C (), a0 LC({2), aij aji for all i, j, do(x) >_ 0 a.e. x {2, and for a
certain a > 0,

n

i,j=l i=1

Finally, let/3 be a maximal monotone graph in R2.
Consider the control system described by the following mixed boundary value problem:

(4.2)

Oy- + Aoy + fl(y) 9 Bu

y-O

a.e. in Q (0, T) {2,
in (0, T) x 0fZ,
inf,,

where y0 e L2(f) and B :b/-+ L2(f) satisfies (v).
Let us observe that problem (4.2) may be written as an evolution equation of the form

(1.2) if we put 7-/= L2(f), Y H01 ({2), and take A and as follows (see [2, 4.2]).
The linear operator A: H0 ({2) --+ H-’(f) is defined by

(4.3) (Ay, z) Z aij Ox-- Ox-- dx + ao yz dx for all y, z
i,j=l

Clearly, D(A) Hd (f) H2(f).
Then taking j R + (-oc, +oc] such that/3 Oj, we define the convex and lower

semicontinuous function q5 Lz(Q) --+ (-oc,-+-oo] in the following way:

(4.4) (v) -/a
Hence (see [2, Prop. 1.9]),

O(y) {w L2(f): w(x) fl(y(X))a.e.x {2}.

If condition (1.6) also holds, then assumptions (iii) and (iv) are wholly satisfied. But in
the present case, (1.6) takes the following form:

(4.5) (Ay, flv(y)) >_ -c(1 + Ifl,(y)l)(1 + [Yl) for ally D(A) andr/> 0,
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where/3,(r) r/-’ (r (I + r//3)-’r) for r E R, and c > 0. Indeed, one easily verifies that
((OO),(y))(x) =/3,(y(x)) a.e. x E f. When 0 /3(0), one obtains without difficulty that

(Ay,/3,(y)) >_ 0 for all y H(f), r/> O,

so that (1.6) holds.
PROPOSITION 4.1. Suppose in addition that O /3(0). Then A and 0 defined by (4.3) and

(4.4), respectively, satisfy (vi) besides (iii) and (iv).
Proof It is easy to see that

((I + eOO)-’z)(x) (I + e/3)-’(z(x)) a.e.x f.

Thus we have to show that (I + c/3) -1 maps H (f) into itself and

(4.6)

We set (I + c/3)- 7. Obviously, 7 is a contraction on R and 7(0) 0. For any
positive integer m, we define

m
s -7 --s p(s)ds,

where p is a C-mollifier on R, i.e.,/9 E Coo (R), p(r) 0 for > 1, and f_ p(r)dr 1.
One readily checks that 7, C (R), 7’m (r)l -< for r R, "y, (0) 0, and 7, tend to 7
uniformly on R as m -+ oc.

Let z Hd (f), arbitrary. Clearly,

(4.7) 3’m(Z) --+ 7(z) strongly inL2(f)(in fact inLoo(f))asm --+

Since %(0) 0 and "y’,(r)l _< for r R, using the chain rule in Hd(f*) we see that
",/,(z) E H01 (f)and

(4.8)
Z aij-xiTm(Z ")/m(z)dx -+- ao(")/m(Z)) 2 dx
i,.j--1

<-- Z aij
Oxi Oxj

i,j=l

But this means (by the ellipticity condition (4.1)) that "7, (z) is bounded in H (f); therefore,
there exists y H0 (f) such that, on a subsequence of {m},

-y, (z) weakly in H0 (f).

Hence, taking (4.7)into account, we have 7(z) y Hd (ft). Consequently,

(4.9) -y, (z) -+ -y(z) weakly in
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Now, combining (4.8) with (4.9) and the weak lower semicontinuity of the norm of Hd
induced by (4.3) (which obviously is equivalent to the usual norm ofH (f)), we obtain (4.6),
which finishes the proof.

The most interesting situations in which (vi) is fulfilled are offered by the control systems
governed on the one hand by semilinear parabolic equations, i.e., in (4.2)/ is a continuous
monotonically increasing function on R such that (0) 0 (see [5] for a related but less
general result), and on the other hand by the parabolic obstacle problem with obstacle _= 0.
In the last case/ is given by

0 fort > 0,
fort =0,
fort <0,

and (4.2) can be written as (see [2, p. 138])

y>_O
Oy- / Aoy Bu

Oy
max{Bu O}N

y=O
x)

a.e. inQ,

a.e. in {(t, x) e Q: y(t, x) > 0},

a.e. in {(t, x) Q: y(t, x) 0},

in (0, T) Oft,
in,t,

where y(x) >_ 0 a.e. x
Remark 4.1, We may apply Theorem 3.1 only to those control systems (4.2) (we empha-

size that here y takes only the boundary values 0) where, in addition, 0 E/3(0). In the case
of the obstacle problem with boundary values 0, scheme (2.4) converges only for obstacle 0.
We can say nothing concerning the validity of (vi) for any other obstacle 0.

Remark 4.2. The problem of the validity of (vi) in the case of Neumann boundary con-
ditions remains open.

For Theorem 3.2, one easily observes that (vii) is verified for the general control system
described by the variational inequality (see also [11, Thm. 2]).

y’ + Ay + OIK(y) Bu,

where IK is the indicator function of a closed convex subset K of, and A, OII,:, B satisfy
hypotheses (iii)-(v). Indeed, we have

OIK(y) {p E 7-/:(p,y- z) _> 0for allz E K},

and

(I + 0I)-’ PI( for all > 0,

where P is the projection operator of 7-( into K, so that (vii) holds.
This framework wholly covers the case of the systems governed by the parabolic obstacle

problem, but this time for any obstacle E H2(f) and for boundary conditions of the form

Oy
(4.10) cy + O2-p 0 in (0, T) 0f,
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where c, OZ2 are two nonnegative real numbers which are nonsimultaneously null. In this
case,

/(- {y E L2(Q) y >_ b a.e. inf,}

and the operator A is properly defined (see [2, 4.2]).
Finally, alternative hypothesis (viii) is obviously implied by the following simpler condi-

tion"

(4.11) D(O) is dense in

If we denote, as usual, D() {y E 0(Y) < +oc}, then (4.11) is equivalent to the
condition

(4.11)’ .D(O)

since D() D(O0) (see for instance [6, Cor. 2.2, p. 1101). Here is a significant situation
in which (4.11) is easy to verify. In (4.2) (where instead of the Dirichlet condition we may
take the more general boundary condition (4.10)),/3 is a monotonically increasing function on
R. Then (4.11) is satisfied with LZ(f). Indeed, one readily shows that C0(f) c D(0),
where is given by (4.4), whence (4.11)’ follows immediately. If, in addition, c2 -- 0 in
(4.10), then it is easy to see that (4.5) is fulfilled (see [2, p. 137]), and Theorem 3.2 applies.
Otherwise, as we have already seen, it suffices to have/3(0) 0 (see also [2, p. 137] for a
less restrictive condition).

Remark 4.3. In the case of control systems governed by semilinear parabolic equations
or the parabolic obstacle problem, Theorem 3.2 gives more general results than Theorem 3.1
(and also than the related results from [4], [5]). Indeed, the Trotter scheme (2.5) converges for
more general boundary conditions (including Neumann conditions), and also for any obstacle
b 0 in the case of the obstacle problem. Nevertheless, as we shall see in the following
sections (see Remark 6.1), scheme (2.4) presents certain advantages in comparison with (2.5).

5. The approximating discrete control problem. According to (3.3), (3.4), consider
the following sequence of discrete control problems:

(P) minimize

N

i=1

over all N-tuples (u, U2, tiN) /AoN, where (y, Y2,..., YN) 7-[N satisfies the scheme

(5.2) Yi (I + 00)-’ (I + A)II (Yi--I +
Yo yO.

i-- 1,2,...,N,

Obviously yi depends on , but for the sake of simplicity we shall not indicate this
explicitly. It is easy to see that

(5.3) Yil <- I((I + e0)-’ (I + eA)-’)iy + Z 1,2,... ,X.
j=l

PROPOSITION 5.1. Suppose that (i)-(vi) hold. Then, for every > O, problem (Pe) has
at least one solution (u, u, UeN) HN.
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Proof Let {(Ul,m. U2,m,... UN,,m) } C /N be a minimizing sequence for (Pe). Using
condition (1.4) and taking assumption (ii) together with (5.3) into account, we deduce that
the sequences {ui,,}, 1,2,..., N, are bounded in b/; so, on a certain subsequence of

e weakly in{m}, ui,, converge to u
Now set

zi, (I + cA)-’ (yi_, + cBu.i,m), 1,2,..., N,

where Yi,m is given by (5.2) with u.i Ui,m. Obviously, Yi,m (I + c0O)- zi,,. We easily
get

z,,.[2 + e(Az, z,) < lY I.m[ 2 + ff21i 2 2, N,
2

whence, by (3.1) and (1.5), we obtain that {,}, 1,2,... ,N, are bounded in V. Since
the inclusion V c is compact, by extracting a subsequence, , converges to strongly
in as m .

We may rewrite (5.2) where u = U,m, ’i, as follows:

y, + e0O(y,) (I + eA)-’ (y_, + eBu,).

Since 0O is demiclosed in x , letting m + we obtain that y satisfies (5.2) with

i i"
Now let m + in (5.1) where u u.i,m; using the weak lower semicontinuity of h

as well as the continuity of g and l, we conclude that (u{, u,..., u%) solves (pe), and the
proof is complete.

A sequence of optimal N-tuples for discrete problems (Pe) yields a sequence of approxi-
mately optimal controls (a minimizing sequence) for problem (P). Indeed, let (u{, u,..., u%)
be an optimal N-tuple of (P). Define

(5.4) u(t) u(ie) u fort ((i- 1)e, ie], 1,2,...,N.

We shall show that if we take these functions as controls in the initial system (1.2), (1.3), the
corresponding values of the performance index (1.1) approach the infimum as c ---+ 0. We set

J() (h((t)) + 9(y(t)))dt + l((T)) for L(0, T;b/),

where y is the solution of (1.2), (1.3).
THEOREM 5.1. Let yO E V Y D(). Under hypotheses (i)-(iii), (1.6), (v), and (vi), we

have

lim J(ue) inf{J(u) u E L2(0, T;/A’)},
----0

where the controls ue correspond by (5.4) to solutions ofproblems (pe). Moreover, every
weak limitpoint of {ue } in L2(0, T;gg) is an optimal controlforproblem (P).

Proof Denote by Je(u, u2,..., UN) the value of functional (5.1) at (u, u2,..., uv)
L/N (where, of course, y is given by (5.2)) and set J inf{Je(u,uz,...,uv)
(/Zl,/Z2,...,/_tN) 4(N}. We have J(u,u,...,uN)= J We(T,y). We shall
compare J(ue) with Je(u, u,..., UN).

Let u /.g such that h(u) < oc. Clearly,

Je(u{,u,...,Uv _< 4(u,u,..., u) _< const.,



990 CfiTALIN POPA

where the constant is independent of e. Hence, using (1.4) together with (ii) and (5.3), we
deduce that

T N

dt  1 $12 const.
=!

Consequently, on a subsequence of {e}, u u weakly in L2(0, T;L/) as e 0.
We may writeLet (y, y,..., Yv) be the solution of (5.2) corresponding to u u.

T

where

ye(t) =ye(ie)=y forte ((i- 1)e, ie], i= 1,2,...,N.

By virtue of Lemma 3.2 (see also the end of its proof),

lim ye (t) y,,,, (t) strongly in 7Y for all t E [0, 7"],
e--O

where y,, is the solution of (1.2), (1.3) corresponding to u u.
On the other hand, multiplying (scalarly in 7-/) equation (1.2), where u u, first by the

solution y. E Wl,2([0, T]; )N C([0, T]; ’1.;)N L2(0, T; D(A)) of (1.2), (1.3) and second by
y,, then integrating on [0, T], after some calculation we obtain

I(t)[ <_ const, and ]/ty(8)12 ds + [/(t)l <_ const, fort [0, r],

where the constants are independent of . Now applying the Arzelh-Ascoli theorem (do not

forget that the inclusion )2 C is compact), we infer that, on a subsequence, y -- /0
strongly in C([0, T]; ) as --+ 0. Subtracting the differential equations satisfied by
and multiplying the difference by /, /.,o, we get

ly.,(t) yo(t)l 2 <_ (Bu Bu,y,, yuo)ds forallt [0, T],

whence, letting 0, it follows that yo yo. Hence,

y - y.,,, strongly in C([0, T]; H).

Since 9 and are continuous, by the Lebesgue dominated convergence theorem we have

lim(J(u) Je(uf u Uv)) O.

But Theorem 3.1 asserts that

lim Je(u,u,...,UN) lim We(T,y) W(T,y) inf(J(u) u Lz(0, T;L/)},
e--O e--.O

which proves the first statement of Theorem 5.1.
Finally, let u be a weak limit point in Lz(0, T;b/) of {u}. Then take limits in (5.1)

where u u. Using the weak lower semicontinuity in L2(0, T;D/) of u -+ foT h(u(t))dt
and the first part of Theorem 5.1 (just proved), we conclude that u is an optimal control for
problem (P), which finishes the proof.
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6. The discrete feedback law. Let Q be an open bounded subset of R’. In this section,
we are forced to restrict ourselves to systems governed by

(6.1)

with the initial condition

(6.:) y(o) yO,

where A, B satisfy (iii), (v) with L2(Q), respectively, and/3 is a maximal monotone
graph in R2. As we have seen in the preceding section, (6.1) can be set in the form (1.2) where
0 is given by (4.4). Suppose that (4.5) holds as well.

Consider the following optimal control problem:
(P) minimize functional (1.1) over all u E L2(0, T; b/), where y E C([0, T]; 7-/) satisfies

(6.1), (6.2).
We impose on the data of (P) hypotheses (i) and (ii).
Let e T/N, where N is a positive integer. Define the function V [0, T 7-/ R

by

(6.3) V (t, y) W (T t, y), (t, y) [0, T] x 7-/,

where in (2.4)/3 replaces 0. We may regard V as an approximately optimal value function
associated with problem (P). Indeed, if (vi) also holds, then by virtue of Theorem 3.1,

lim V(t, y)= V(t, y) for all
e--+0

where in (1.7) is given by (4.4). Note that only the values of VC calculated at t ic (i
0, 1,..., N) will be relevant in our further considerations. By (6.3) and (2.4) we have

(6.4)

Finally, let us denote by (P) the discrete problem (P) where is given by (4.4). The
relationship between the components u, u,..., uv of a solution of (P) and the correspond-
ing y, y,..., Yv via V (a genuine feedback law for the discrete system) forms the content
of the following theorem.

THEOREM 6.1. Suppose that hypotheses (i)-(iii), (4.5), (v), and (vi) hold, and let yO
V D(O). If (u, u,..., u) Ltg is an optimal N-tuplefor (P) and y(, y,..., y are
given by (5.2) where u u l, 2,..., N (and O0 is replaced by f3), then the following
discrete feedback law holds:

e Ve(6.5) ui Oh* (-B 0v ((i 1), Y- 1)), 1,2,... ,N.

Here OvV (t, y) represents the generalized gradient (in Clarke’s sense) of y - V (, y).
(Recall that, by virtue of Lemma 3.3, V is Lipschitz continuous on bounded subsets of
with respect to y.)
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Proof. Inspired by an idea of F. H. Clarke and R. B. Vinter (see [8, Lem. 8.4]), we
consider the following perturbed discrete system:

,v (r + ;)- (r + A)- +(y_ +
yi+_ y_ +vi, i= 1,2,...,N,
y(( yo,

where (Ul, u2,... ,’ttN) - N and (Vl, v2,..., vN) C=_ _{N. Obviously,

y-- (I --}- g’/) -1 (I - eA)-’ (y-(-_, + eBui + vi).

Fix 5 > 0. Let (Ul, U2,... UN) e b[N, (Vl V2, vx) e N such that

v7 vl <_ e, v+ vl _< e foi , 2,..., :v .
From the definition of V (see (6.4)) we have

eh() + (v-) + v(i, v-) v((i- ), vL,) -> 0, i- 1,2,...,N.

For simplicity we set yi y-. Adding the above inequalities, we obtain

N N

il E(h(i) - 9(Yi)) -I(YN) -Z(Ve(( 1)g, Yi-1 -t- vi) -Vg((i- 1),Yi-1))
(6.6) .= i=l

>_ v (0, yo).

By the mean-value theorem for generalized gradient (see, for instance, [2, Cor. 1.2]),

Ve((i 1),yi_l -vi)- Ve((i 1)g, Yi_l)- (Pi_l,Vi)

wherepi_ e OvVe((i- 1)e, zi_,) with Iz_, yL,I ,i 1,2,...,N. We define

ki,e(v) sup{(p, v) p E OvV(ie, y), ly yUl }
for all v E 7-t, 1,2,..., N, and > 0.

Clearly, ki,e is convex, lower semicontinuous and finite everywhere (since V is Lipschitz
continuous on bounded subsets); therefore, it is a continuous convex function on 7J. Returning
to (6.6), we have

N N

(() + (v)) + _,,(-) + z(v) >_ v(o, vo).
i=1 i=1

Thus we have proved that (u, u, Uv, 0, 0, 0) e b/x x 7-{v and (y, Ye,2 Yv)
solve the following problem:

(Pe) minimize

(6.7)
N N

i=l i=l

over all (Ul, u2,..., UN, Vl, o2,..., VN) bl/N x ,_.{N, where

(6.8) { YoYi --_ (Iyo,@ g/)-I (I -- gA)-I (yi_, + gBui + vi), i-- 1,2,...,N,
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and

Roughly speaking, we shall get (6.5) from a set of optimality conditions for (P) as 5 -+ 0.
To this end, we associate with (P) the following family of smooth (and penalized) problems"

P,,I minimize

(6.9)

over all (u,..., uv, vl,..., vv) Ux v, where 9,i satisfies

(6. lO)
Yo 9o.

i-1,2,...,N,

Here 9, and 1.r/ are regularizations of 9 and 1, respectively (see [2, p. 28]), I,:,e,, is the
convex regularization of the indicator function L,,6 of the set {9 19 9[ -< 6},
0, ,..., N (i.e., Ie,,,() inf{ zl2/Z’lz Vgl -< 6}), and , is a regularization
of/3, r/- (I- (I + r/[) - (see [2, p. 75]).

Now fix 5 > 0. The proof of the following lemma is similar to that of Proposition 5.1.
LEMMA 6.1. For every 7 > O, problem (_P,,) has at least one solution (,,,...,

For the sake of simplicity, we set ui,, ui,-,/, v, v,, for any optimal 2N-tuple of

(P,) given by Lemma 6.1. The following result is an effect of the penalization terms.
LEMMA 6.2. For each r! > 0, let us consider a solution (ul,,,...,

jbr problem (P6,) and let (Yl,,, 92,r/,..., 9N,l) be the solution of (6.10) corresponding to

t t, and v v,v. We have

strongly in Ulim ui, ui
/--0

0 strongly in 7-{lim v, v
r/--+0

i= 1,2,...,N.
Proof. Letus denote by Je(u,..., uv, U1,..., )N) functional (6.7) and by J,,(u,...,

uN, v,..., vN) functional (6.9). Also, we denote by ,6,.(u,..., uN, v,..., Vv) the func-
2 and (1/2)]vi 12tional obtained from (6.9) by eliminating the penalization terms (1/2) ui ui

Arguing as below, we can show that the solution of (6.10) corresponding to ui u,
v 0 (i 1,2,..., N) converges to (9, 9,..., 9v) as r/ 0. But since I,e,(9) 0
when 19 91 <- 6, for each (5 > 0, we can find r/6- > 0 such that

(6.11) < const, for 7 (0, r]e],

where the constant is independent of 5. Hence, since k,e(v) >_ -L4[v (where L is the
Lipschitz constant of 9 V(ie, 9) corresponding to a certain ball with 9, as center), it
follows that there exists M > 0, also independent of 5, such that

(6.12) [u,l _< M and Iv , ,l for7 (0, r], i-- 1,2,...,N.
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Consequently, on a subsequence of {r/}, ui,v ui,0 weakly in L/and vi,v - vi,0 weakly in
as/ 0, 1,2,..., N. (Note that the independence of 5" of the boundedness constants

of {ui,5,v} and {vi,,v} will be important when we let 0.)
As in Proposition 5.1, we get that, on a subsequence, yi, --, Yi,0 strongly in 7Y as

7 0, 1,2,..., N. Let j(r) f/3(s)ds. Define O(Y) f j(y(x))dx for
y E L2(f). We have VCv(y) -/3(y) a.e. in f; therefore, we may write

Yi, + eVO(yi,) (I + eA)-’ (yi-,, + eBui, + vi,) + e(8(yi,,) v(yi,v)).

Since V(W,w) is the Yosida approximation of0 calculated at y and 1/3 (r) )(r) <_ 27
for all r E R (see [2, p. 78]), we obtain as 0,

Yi,o + O(Yi,o) (I + A) -1 (Yi-l,O + tti,o + vi,o).

So we have shown that, if ui,v ui,0 weakly in b/and vi,v --, vi,0 weakly in 7-/as r/---, 0, then
the components yi,v converge to the components of the solution of scheme (6.8) corresponding
to u u,0 and vi v,0 strongly in 7-/.

We still need the following semicontinuity property:

(6.13) liminfli_l,e,v(yi_l,v + vi,v) _> Ii-l,6(Yi-,0 + vi,0),
r/--,0

i-- 1,2,...,N.

To see this, letus observe that, in view of (6.11), Ii-l,&ri(Yi-l,r +Vi,v) is bounded with respect
to r/. Hence, by a well-known expression of the convex regularization (see [6, p. 121]), it
readily follows that

(I -- 7]./i_1,6) -1 (Yi--l,v -+- Vi,r) (Yi--l,v + Vi,v) --- 0 strongly in,
whence by the lower semicontinuity of I.i_,e we have (6.13).

Now, by the convergence of {ui,v}, {vi,v}, and {yi,v}, together with (6.13) and the weak
lower semicontinuity of u - h(u) + (1/2)lu ulZ,v - ki_,(-v) + (1/2)lvl 2,
1,2,..., N, we obtain the following chain of inequalities:

lim infJ,(u,v,... UN,v, v,v, VN,v)

> liminf J,v(Ul,v,..., Ug,v, Vl,v,..., VN,v)

J6(Ul,O,...,UN,O, Vl,o,...,VN,O)
>_ o,..., o)
-lira J,w( Uv 0,... O)

_> lim sup J6,(u,v, UN,rl, Vl,rl, VN,)
?--0

>_ lim sup Je,v(Ul,v,..., uN,v, Vl,,..., VN,v).
r---,0

So we infer that

rl---*O rl---O

Je(Uel,...,UN,O,...,O),

and hence

lim lui, ul= 0, lim 0,
r/---0 r/---,0

i= 1,2,...,N.
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The proof is thus complete.
In order to obtain the required optimality conditions for (P6,/), we shall compare the

optimal value with the values corresponding to ui ui,l + Agi, v,i v,, + Ai,
1,2,..., N, where A > 0, and gi E b/, E 7-/are arbitrary. We have

(6.14) J6’*J(u’v + A,..., UN,v + AZN, vl,v + Al,..., VN,v + /N)
J6,,(U,v,...,UN,v,V,v,...,VN,v) >_ 0 forallA > 0and b/,i E 7-/.

Denote by yi,,) the solution of (6.10) corresponding to
It is easy to check that

strongly in

where z,, satisfies the scheme

z,, (1 + e/;(y,,))-’ (I + eA)-’ (z_,,, + eB + i),(6.15)
Zo, =0.

Dividing (6.14) by A and letting A 0, we get

N

Z e(h’(u,,; ,) + (u,, u,) + (Vg,(yi,,), z,,)

(6.16)

i= 1,2,...,N,

+(x7z_,e,,(y_,,) + vz_,6,,(y_,, + ,,), z_,,))
N

+ ’(<_,,(-,,;-) + (,,, ) + (v_,,,,(_,,, + v,,), ))
i=1

+(Vlv(yu,v), Zu,) 0 for all (, 2,..., N) N,
(, :, u) e

where h’(ui,; ti) and k_l,6(-vi,v;-) denote the directional derivatives of h and
at u, and -v, in the directions g and -, respectively. Note that, for sufficiently small
> 0, we have

VIi_,e,v(yi_,) O, VIi-,,v(yi-,v + vi,v) O, 1,2,..., N,

since yi,v y and vi,v 0 strongly in H as 0.
Now define Pi, by

(6.17)

Pi-l,w (I + eA)-l((1 + g;(yi,v))-l(pi,v eVgv(Yi,v))), 1,2,...,N,
PN,v --Vlv(yN,V).

Some calculation in (6.16) involving (6.15), (5.17) together with the identity

(w, w-,,, z,) (p,, z,) (p_,,, z_,,) (w-,,,, z,, z_ ,,),
gives, for sufficiently small > 0,

N

(h’(,, a) + (, ,,
i=1

N

+ ’ -) + (,, v ,, ))-,,e(-,,,
i=1

0 for all(a,,2,...,N) NN (9 92 9x) N



996 CAT.LIN POPA

which yields, for /> 0 small enough,

(6.18) t*p_,
(6.19) Pi-l,v C Ok_,6(-v,v vi,, 1,2,..., N.

Obviously, like ui,v ui,6,v, vi,v vi,6,v, and Yi,v Yi,6,, pi,v also depends on (5 > 0
(even if we have purposely omitted, for simplicity, the subscript (5). So, in what follows we set

Pi,6, Pi,. As (6.12) shows, ui, and vi,, are bounded by constants which are independent of
(5; it easily follows that y,, Vgv (y,v), and Vlv (yN,v) satisfy similar boundedness conditions.
Hence Pi,6, is also bounded in the sense of (6.12) by a constant M > 0 which is independent
of (5, i.e., for each (5 > 0, we find 76 > 0 such that

IPi,6,vl <M for/C (0,6], i=0,1,...,N-1.

(Moreover, the above condition also holds in the norm of ", but with a different constant M.)
So, for each (5 > 0, on a subsequence of {/},

pi,6,v --+ Pi,6 weakly (or strongly) in 7-t as /- 0.

This, in conjunction with the boundedness condition for Pi,6,, yields

(6.20) ]p,6]_<M for all (5>0, i=0,1,...,N-1.

Letting r/ 0 in (6.18), (6.19), since Oh and Oki,6 are demiclosed we get

(6.21) B*p_ ,6 0h(u ),

(6.22) -Pi-l,6 OlCi-l,6(O)
for(5 > 0, 1,2,...,N.

On the other hand, by (6.20) we have on a subsequence of {(5}
(6.23) pi,6--p weakly in,as(5+0, i-0,1,...,N-1.

Now, the assertion of Theorem 6.1 will follow by taking limits in (6.21), as soon as we
show by interpreting (6.22) the following relationship among p, y, and V

(6.24) V Yi-), i- 1,2,...,N.

This inclusion is a discrete variant of the well-known connection between the maximum
principle and dynamic programming. Its proof is a simple adaptation for our discrete (but
infinite-dimensional) case of the proof of Theorem 3.1 from [8].

Let us first clarify the meaning of inclusion (6.22). Observe that

-Pi-,6 -d-6 U OvVe((i- 1),y), i- 1,2,...,N.
v-v_, 1<6_

Otherwise, there exists a hyperplane strictly separating -Pi-,6 and the above closed convex
set (see [6, Thm. 1.15, p. 21 ]), i.e., we find v 7-t such that

f
-v) > sup (p,-v) p -d-d

sup / (p’ -v) "p

U }
,U OvVe((i 1)e, y) }
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which contradicts (6.22) because ki-l,6(0) 0.
We let 5 tend to 0 in (6.21), (6.22) by using (6.23), and we get

(6.25) Oh(u/3 p_ ),

(6.26) -P-I N -d-d U OvVe((i 1)g,y), i- 1,2,...,N.
6>0

Now we shall show that (6.26) implies (6.24). Indeed, if this does not happen, then e-p_
and OvVe((i 1)c, Y-l) can be strictly separated by a hyperplane, i.e., there exists v E
and y > 0 such that

(-p_,,v) -7 > max{(p,v): p OvV((i- 1)c, y_)} (V)((i- 1)e, y_;v).

Here (Ve)((i 1)e, yL; v) is the generalized directional derivative of the function y -V ((i 1), y) at y_ in the direction v. (For the above equality, we refer to [7, Prop. 2.1.2].)
By the upper semicontinuity of (V) (see [7, Prop. 2.1.1]), we find ’ > 0 such that

(-p_,,v) - > (V)((i-1)e,y;v) forly-y_,]_<5’.

Now using the definition of the generalized gradient, we find

So we have obtained that

which contradicts (6.26).
Finally, we may rewrite (6.25) as

i= 1,2,...,N.

But the above inclusion combined with (6.24) gives (6.5), and the proof of Theorem 6.1 is
complete.

Remark 6.1. The feedback law (6.5) is expressed with the aid of the Trotter scheme (2.4).
A different feedback law is given, at least formally, by scheme (2.5) (via the function
However, in this case, even the existence of an optimal N-tuple for the approximating problem
(P) remains an open problem.

7. Concluding remarks. Theorems 5.1 and 6.1 apply to the control systems governed
by (4.2) where 0 /3(0). Thus the case of the control of the parabolic obstacle problem with
obstacle and boundary values 0 as well as that of the control of semilinear parabolic equations
are covered (see again 4 for details).

Let us emphasize that Theorems 5.1 and 6.1 must be regarded together. So, the knowledge
of the function V allows us to construct an approximately optimal control for problem (P) by
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using feedback law (6.5). In this context, pay attention to the fact that formula (6.5) is merely
a necessary condition of optimality for problem (P). But so is the Pontryagin maximum
principle and, nevertheless, in many specific situations, this offers us an effective tool for
constructing an optimal control.

Let us now see how we can use formula (6.5) to obtain an approximately optimal control
for problem (P). Clearly, (6.5) is an exact feedback law for problem (P). It may also be
regarded as an approximate feedback law for problem (P), which works as follows: Starting
with the initial state y0, we select u C Oh* (-B*OvV (0, y0)) (the first component of an

optimal N-tuple for (P)). Next we introduce the controller u(t) u on (0, c] in the
real system. (For the real system we may choose either the continuous model described by
equation (6.1) or the discrete model given by scheme (5.2).) Now we assimilate y in (6.5)
with the state of the real system observed at the moment t c; let us denote it by y (). With
y so specified, we further select u c Oh* (-B*OyV (, y ())) and we proceed as above.
Consequently, we have the following synthesis scheme:

(7.1) u(t) u Oh*(-B*OyV((i 1),y((i- 1)c))) on((/- 1),i],

where y is the state of the real system corresponding to the initial state y0 and the input u.
So, the control u obtained in this way is a feedback control.

Now let us look at formula (6.5) from another point of view (which does not require the
external concept ofobservation). According to Theorem 5.1 we can construct an approximately
optimal control for problem (P,) by starting with a solution (u, u,..., uv) ofproblem (P).
But, by virtue of Theorem 6.1, any such solution verifies the inclusions (6.5). Therefore to

calculate (u, ,..., u%), we consider the system

(7.2) y (I + /3)-’(I + eA)-’(y_, + cBu), 1,2,...,N,
v0.

Thus, starting with y0, one obtains alternatively all the components of two N-tuples
(u, u,..., Uv and (y, y,..., Yv). Here is the order in which the calculations are made:

Certainly, it is possible to find N-tuples (u, u,..., u) verifying (7.2) (or (6.5)) that are not

optimal for problem (P), but all optimal N-tuples lie among the solutions of system (7.2).
So, an adequate criterion of selection for the components u must be established separately
for each specific situation. Naturally, this is also true for synthesis scheme (7.1).

We point out that (7.2) is in essence an open-loop scheme: in order to determine the
(i for the state of theinput ui, one uses not the value observed at the moment t )e

real system, i.e., y((i- 1)e), but the value y_, calculated by (5.2). Moreover, as we
have seen in the proof of Theorem 6.1, OyVe((i 1)e, YL1) -P-I, where the N-tuple
(p, p,..., p%_ may be viewed as a dual of (y, y,..., Yv) in a Pontryagin-type maximum
principle implicitly contained in the proof. In fact, system (7.2) is equivalent to a maximum

principle for (P). However, in comparison with the continuous case, the attempt to establish
an explicit maximum principle for the discrete problem (P1) leads to some supplementary
difficulties. In the discrete case, it is a real problem to give a sense to the adjoint scheme
(which must be verified by p) even for the control of the parabolic obstacle problem or that
of semilinear parabolic equations (situations that were completely treated in the continuous
case by Barbu in [2]).
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Any optimal pair (u*, y*) for problem (P,) formally satisfies the following continuous
variant of (7.2)"

(7.3) y*’ + Ay* +/3(y*)

where V is the optimal value function associated with (PI). If we regard (7.3) as an open-
loop system, we are led to a very complicated equation whose unknown is y*. This happens
because, in the first inclusion of (7.3), u* (t) depends on y* (t). In other words, the unknown
y*(t) also appears in the right-hand side, incorporated in a strongly nonlinear term. The

depends on y_ (previously calculated) andsituation is different in the discrete case. Here
not on y. Now substituting ui in (5.2), we no longer obtain the unknown y in the right-hand
side. Scheme (5.2) preserves its characteristic: the calculation of y is reduced to the solution
of an elliptic problem followed by the inversion of a graph in R2.

For V, (1.11), (1.12) indicate two alternative ways to calculate it: one by a direct
approach of a relatively simple type of Hamilton-Jacobi equation and the other by solving
some minimization problems on
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REGULARITY CONDITIONS FOR THE STABILITY MARGIN PROBLEM WITH
LINEAR DEPENDENT PERTURBATIONS

ANTONIO VICINOt AND ALBERTO TESI:

Abstract. In this paper, the problem of continuity of the stability margin of a control system on problem input
data is addressed. The case in which perturbations are linearly correlated is considered. It is shown that the existence
of special points (called critical points) in the stability boundary manifold in parameter space plays a key role in the
analysis of the problem. Several conditions, either sufficient or both necessary and sufficient, are given, ensuring
continuity of the stability margin on problem data. The obtained conditions turn out to be easily checkable for
practical applications. Numerical examples are presented to illustrate the proposed techniques.

Key words, regularity conditions, robust stability, stability margin, parametric perturbations
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1. Introduction. The study of robustness properties of dynamic systems in the presence
of parameter variations is a classical subject in control theory. The renewed and stronger
interest of recent years in this area has produced many contributions (see 14] for a historical
survey on the subject for both linear and nonlinear systems and [2], 10] for specific reference
to linear systems). The (real) stability margin (or stability radius) of a control system is a key
concept in this field. Roughly speaking, it represents a measure of the minimum perturbation
which destabilizes a system designed to be stable in nominal operating conditions. Methods
for determining this quantity for the case where plant transfer function coefficients are linear
functions of physical real parameters may be found in [3], [7], [11], [15], [16], and [17],
whereas [4], 12], and 19] provide algorithms for the case of nonlinear (polynomial or rational)
dependence.

In this paper we make reference to the classic problem setting of Fig. 1. We assume
that the plant model uncertainty is "highly structured," in the sense that plant coefficients
depend on a vector of uncertain physical parameters p according to given relationships. The
regularity problem addressed in this paper can be summarized as follows. Suppose that the
designer has chosen a certain controller, i.e., a vector of controller coefficients A*, such that
it guarantees a prescribed stability margin ensuring robust stability of the closed-loop system
for a given uncertainty set in plant parameter space. Suppose that the controller parameters
are slightly perturbed with respect to their nominal design value A A*. Can we predict
whether the controller goes on doing its job, i.e., robustly stabilizes the system? Engineering
intuition suggests that a negative answer to this question would be considered an indicator of a
poor control design. In this perspective, the regularity assessment of a robust control problem
with respect to input data, i.e., controller coefficients or parameters, becomes a mandatory
requirement to perform a robust control design. Obviously, it would be particularly interesting
to characterize real uncertainty structures for which the stability margin is continuous in the
controller parameter space. Recently, results related to this problem have appeared in the
literature. The possibility of existence of discontinuities of the stability margin on input data
was pointed out in [1], where some examples are reported but no analysis is attempted. An
analytical characterization of the behavior of the stability margin with respect to changes
in system data has been given in [8] by employing the concept of strongly destabilizing
perturbation. This property is strictly connected to the separating property used in the present
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FIG. 1. Linearfeedback system.

paper and in the preliminary conference paper 18]. Although the analysis in [8] covers general
classes of perturbations, the results are not constructive, or at least how to build a technique
for verifying the existence of a strongly destabilizing perturbation is not clear.

This paper represents a complete and detailed development of the theory originally pre-
sented in 18]. In particular, we exploit a geometric view of the obtained analytical results in
the plant parameter space, allowing us to build an analysis technique for understanding how
and why certain model parameterizations generate ill-conditioned problems, also suggesting
ideas on changes to be made to regularize the problem. A distinguishing feature of this paper
is that the different sufficient or necessary and sufficient conditions can be fruitfully applied to

characterize completely the stability margin problem for several classes of real perturbations
of continuous and discrete time systems widely investigated in the literature, such as interval
feedback systems.

The uncertainty structure addressed in the present paper covers the case when plant transfer
function coefficients depend affinely on the parameter vector p. Actually, this hypothesis,
which may appear excessively restrictive at first glance, covers the vast majority of literature
on parametric robust control. Even in this relatively simple situation, an analytic solution of
the resulting stability margin nonlinear optimization problem is not available (see [3], [7],
[11], [15], [16], and [17].

The regularity problem could be attacked by using general results on sensitivity analysis
of nonlinear programming problems (see, e.g., [5]). Nevertheless, since the stability margin
represents the minimum distance of the origin from the stability boundary manifold in param-
eter space, the analysis can be made considerably sharper. In fact, information on the behavior
of the optimization problem can be obtained by studying the continuity of stability boundaries
on problem data. Using this approach, we are able to prove a number of sufficient as well as
necessary and sufficient conditions for the stability margin to be continuous on the problem
data. The problem is strictly related to regularity and bifurcations of the boundary of stability
in parameter space, an issue whose importance has long been recognized (see [13, pp. 404-
406]). Actually, it happens that possible discontinuities of the problem solution with respect
to data perturbations are strictly related to the presence of certain special points (called critical
points) in the stability boundary manifold and to their behavior for small data perturbations.
The basic results obtained show that under mild assumptions on the controller structure, the
stability margin in the plant coefficient space is continuous on the controller parameters. One
important implication of this result is that the robust stability problem for the class of interval
feedback systems widely investigated in the recent literature on robust control is regular with
respect to perturbations of the controller coefficients.

This paper is structured as follows. Section 2 introduces the stability margin problem
and gives conditions for regularity of the boundary manifold. In 3 the main sufficient or

necessary and sufficient conditions for continuity of the stability margin on problem data are
given. In 4 it is shown how the results of 3 can be exploited to prove regularity of robustness
problems for interval feedback systems. Section 5 reports some examples both taken from the
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literature and newly devised showing structural features of critical manifolds of the stability
boundary in parameter space.

2. Stability margin and critical manifolds in parameter space.

2.1. The stability margin problem. Consider an nth-order polynomial whose coeffi-
cients depend on a perturbation parameter vector p

(1) /k(s;p) 8 + cn_l(p)8n-’ /... / c,(p)8 + co(p)
T stands for transpose).

For notational simplicity, we will often identify p with the corresponding polynomial
A(s; p). To avoid trivial degeneracies which are not of interest for our purposes, it is assumed
that n, q > 1. We consider the case when polynomial coefficients are affine in the parameter p:

(2) (p) T(p + po) +
where c(p) [c0(p),..., cn-1 (p)]t C Rn is the coefficient vector, T is a given (n, q) matrix,
t is a given n-dimensional vector, and pO is a given "nominal" parameter vector. We assume
that the nominal polynomial A(s; 0) corresponding to the parameter pO is Hurwitz (or stable);
i.e., all its zeros have negative real part.

The (real) stability margin relative to the nominal parameter pO is defined as the radius p of
the maximal ball centered at pO, such that all its interior points generate Hurwitz polynomials.
If pO is chosen as the origin of the parameter space, where parameter deviations p represent
the coordinates, and the real and imaginary parts of A(jw; p) are denoted by t{(p; w) and
I(p; w), this problem can be formalized as a minimal-distance problem from the origin to the
boundary manifold defined parametrically by R(p; w) 0 and I(p; w) 0 for o >_ 0 (see,
e.g., [2] and [15]):

subject to
(3) ( 0

0

where R(p;w) 0 and I(p; w) 0 are two equations affine in p whose coefficients are
polynomials in w,

q

(4) R(p; w) Z a()p + ao(w) O,
i=1

(5)
q

+ o.
i--1

Any point (pT, w) (p, pq, w) /{q+l solving (3) will be called a solution point of the
stability margin problem. By introducing a (2, q / 1) matrix D(w), the boundary manifold
equations can be written as

(6) D(w)Tv O,

where

(7) D(c)_[ao(w) a(w) aq(W)
bo() b,() b() -[1,,,...,].
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We denote by Dij (co), 0,..., q, j (2, 2) submatrices of the coefficient matrix D(co)

()(8) Dij (co) b (co)bj (co)

and by D0 (p; co) the matrix

(9) D0o(p;co) a (co) OR(P;co)/Oco
v0() o(p;)/o

Note that since a0() and b0() are real and imaginary parts ofthe Hurwitz nominal polynomial
(s; 0), there exist no such that a0() b0() 0, and hence the first column in Doj and

D0 cannot vanish.
With reference to the stability margin problem (3), we will consider entries of T, t, and pO

as the problem data. Obviously, these data may represent perturbations of the plant parameters
p as well as perturbations induced by variations of the vector of controller coefficients A. In
the forthcoming subsection, we introduce the concept of the critical point of a manifold which
plays a key role in assessing continuity of p as a function of the data.

2.2. Critical manifolds in parameter space. Let us introduce the manifold Fp in Rq+

(0 rp r r,
where

( r {(p, ) + (p;) 0, 0},

(12) F {(pT,co) C Rq+’’R(p;co) --O, I(p;co) --0, co > 0}.

Fb will be referred to as the (stability) boundary manifold in Iq+l The boundary manifold

Fb in parameter space I{q, whose distance from the origin represents the stability margin, is
strictly related to Fb. It is defined as

(13) 1-’b

where

(14) Fo {pRq’co(p)-O},

(15) P {pCRq’Bco>O s.t. (pT,co) F}.
We notice that P (Fo) can be obtained as the image of Pa (Po) under the identity rectangular
operator 2-" Rq+l Rq.

The study of sensitivity of p on problem data leads naturally to the investigation of the
dependence of the manifolds Fo and F on the data; i.e., information about continuity of the
distance p on problem data is strictly related to conditions under which these manifolds change
smoothly with problem data. Since critical points of a manifold may undergo abrupt changes
for arbitrarily small data perturbations, their study is an important issue for our problem.

Consider a manifold defined by the equation f(z) O, z Rz, f t --+ 1T, with
m <_ l. Let Vfx be the Jacobian of the function z f (z).

(16)
Ofl/Oxl Ofl/Oxl ]Vfx
Of,/Oz Ofm/Ozz
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A point x* of the manifold is said to be critical (or singular) if all the minors of order m of

27fx are null at that point. Points of a manifold which are not critical are called regular. A
manifold whose points are all regular is called regular.

We study the regularity of Fb. However, since Fb is the representation of Fb as a

parametric manifold in Rq, we observe that any regular (critical) point of Fb corresponds to a
regular (critical) point of Fb.

A simple application of the above definitions to the maps defining manifolds Fo and F,
given by (11) and (12), respectively, allows one to reach the following conclusions.

Fo is regular (excluding the meaningless case co(p) O, Vp c Rq).
F has singular points only if * > 0 satisfying simultaneously the following
algebraic equations.

(17) IDoj(co*)l O, j 1,..., q,

where l" denotes determinant. Notice that condition (17) implies that R(p; z*) 0 and
I(p; *) 0 represent the same q dimensional hyperplane in parameter space. If (17) is
solved for some strictly positive *, according to the above definition, a critical point of F
must satisfy the linear equation in p

(lS) ]D0 (p; a;*)I =0.

Denoting by w* any real strictly positive solution of (17), critical points of Fn are the solutions
of the system of two linear equations in p,

(19) (pT, ,) Rq+,

q

Za(z*)p + a0(z*) 0
i--l
q

+ o,
i--1

where the second equation represents (18) and

(20) 5i() ao(w)b() bo(w)a’(w), O, 1,..., q,

with denoting differentiation.
Assuming that a0(co*) - 0 in (19), we can characterize the set of critical points of F

corresponding to each * in terms of minors of order 2 of the coefficient matrix of the linear

system (19). (If ao(co*) 0, the first equation of (19) should be replaced by the second
equation I(p;co) 0 of (6).) Solutions of (19) in parameter space can be characterized

according to three different cases.
Case 1.

(21) rank
80(co*) j (w*) < 2, j 1,..., q.

In this case, corresponding to a*, a q dimensional linear manifold of critical points is
detected. Notice that condition (21) is equivalent to imposing that

(22) IDoj(a*)l’ O, j 1,..., q,

d IDj ()1]where ]Dij(co*)[’ stands for
Case 2.

(23) ID (c*)l’ 0 for some i, j = 0, - j.
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In this case, it is concluded that system (19) determines a linear variety contained in 1a of
dimension q- 2.

Case 3.

(24)
Vi, j:i,jO, iCj

for some - 0.

and

In this case, it can be easily verified that system (19) has no real solutions and hence I"a is a

regular manifold.
Let us now introduce the sets of critical frequencies corresponding to the first and second

cases examined above and the overall critical set t2c:

(25) t2c, {co C 1+ IDoj(co)[ 0, and IDoj(co)l’ O, j 1,..., q}.

(26)
f { /+ ID0y()[ 0, j 1,..., q, and IDj(co)l’ 0 for some i, j =/- 0, j},

(27) t2c tic, U ’22.

We observe that t2c,, f/2, and tc have a finite number of elements. Denote by (71 and (72
conditions (25) and (26) defining the sets t2, and f/c2, respectively, and by 5’, and Sc the
corresponding sets of critical points of Ft:

(28) S(:) {(pT, co) [- s.t. co fc,(2)}"

We say that a critical point of F is of type (7 (Cz) if it belongs to S’., (S’. ). The next lemma
synthesizes the conclusions reached in the preceding discussion.

LEMMA 1. Assume that the origin ofparameter space is Hurwitz. The stability boundary
manifold F is regular ifand only if the set t2c is empty.

Note that from a practical point of view, the determination of critical manifolds of Fa,
if any, asks for the solution of an algebraic equation in co. More precisely, one of the first q
determinant equations of conditions C or C2 must be solved, checking successively if any of
its strictly positive roots satisfies the remaining polynomial constraints of (25) or (26).

3. Regularity conditions for robust stability problems. To study regularity of the
boundary manifold with respect to problem data, we introduce two vectors, x and y. The
first vector contains problem variables, i.e., z (p,..., pq,co)T, while the second vector

y /’ includes problem data consisting of the entries of matrix T, vector , and nominal

parameter pO. We will be concerned only with the manifold Fa defined in (12). In fact, all
solutions of the linear equation/(p; 0) 0, i.e., points of the q dimensional hyperplane
Ft, are continuous on the problem data. Thus, in this section, with a certain abuse of notation,
we will occasionally identify F with F. Moreover, we will refer to F or Ft according to the
space (the parameter space/q or the augmented space/q+l) in which the boundary manifold
is embedded. By taking into consideration the dependence on data y, the boundary manifold
Ff(y) can be defined as follows:

(29) F(y) {x I:gq+:G(x;y) O, Xq+ > 0},

where the two components G and G2 of G are the real and imaginary parts of A(jco; p). We
denote by p(y) the stability margin as a function of input data y and assume that G (x; y) and
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G2(3:; y) are continuous functions of the data g/. We refer to /= 0 as the nominal problem
data, which means that our vector /is to be interpreted as a vector of data perturbations with
respect to a fixed vector of data.

We say that the manifold P() is continuous at y 0 if for any point 3:* P(y),
there exist two variables 3:i,yj, defined implicitly by the two equations Gj (3:; /) 0 and
G2(3:; /) 0, which are continuous at (3:; /) (3:*; 0). We observe that, according to the
previous definition, continuity of 1 (/) on /implies that a sufficiently small perturbation on
the data g/induces a small perturbation ofpoints ofthe manifold I (/). We look for conditions
under which the boundary manifold If (y) is continuous at y 0.

Let Vo be a vector in a given space R1. We denote by U(vo) a neighborhood of Vo of
radius c > 0, i.e., U(vo) {v Rt: IIv Vol] <_ c}. Let VGx(x; y) denote the Jacobian of
the function G with respect to the variable x, and let Ue (0) be a neighborhood of the origin.
Since the functions G(x; y) and VGx(X; y) are continuous in Rq+u+, application of the
implicit function theorem allows us to derive the following lemma.

LEMMA 2. lfVGx(x; O) has row rank 2for any x Fft(0), then Ff(y) is continuous at

Proof. The proof is given in the appendix.
Remark 1. Note that continuity of Fba (y) at y 0 implies continuity of the boundary

manifold in parameter space Fb(y) at the same point. Since the stability margin p(y) is the
distance, according to some given norm, of the origin from Fb(y) in parameter space, i.e., the
minimum of the optimization problem (3), continuity of the manifold Fb(y) implies continuity
of p(y) at y 0 whatever norm is used in (3).

From the above lemma and remark, we obtain the following theorem.
THEOREM 1. The stability margin is continuous on input data at y 0 ifF is a regular

manifold.
Remark 2. It is well known that the collection of critical values of a manifold mapped

by a smooth map is a set of measure zero in the image space. This result is known as the
Sard-Brown theorem (see, e.g., [9, pp. 10-11]). In our case, since we assume that q > 1, the
critical points in the boundary manifold F form a thin set in Rq+j In particular, conditions

C and C2 state that a necessary condition for the existence of critical points is that q algebraic
equations in the unique unknown admit a common strictly positive solution. This implies that
an arbitrarily small data perturbation (i.e., a perturbation of the coefficients of the q equations)
generically destroys singularities. This does not mean that in general one cannot design a small
perturbation affecting continuously critical points; rather, the set of perturbations destroying
singularities is dense in the space of data.

The following theorem gives sufficient conditions for continuity of p(//) improving those
of Theorem 1.

THEOREM 2. The stability margin p(l) is continuous on the problem data at 1 0 if at
least one of the solution points of the stability margin problem for 1 0 is either a regular
point of the boundary manifold or a critical point oftype C2.

Proof The proof is given in the appendix.
Theorem 2 allows us to derive the following result on families of third-order polynomials.
COROLLARY 1. Given a family of third-order polynomials defined by a matrix T offull

column (or row) rank, the stability margin p(l) is continuous on the data

Proof. The proof is given in the appendix.
Before giving a theorem stating necessary and sufficient conditions for continuity of the

stability margin on the problem data, we need a definition which recalls the concept of strongly
destabilizing perturbation given in [8]. For the sake of clarity, in the rest of this section we will
call a parameter p strictly unstable if at least one of the roots of the corresponding polynomial
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has strictly positive real part. Consider a solution point z* (p.7, co*) of the stability margin
problem.

DEFINITION. A solution point z* (p.7, co*) ofthe stability margin problem is called a
separating point ifany neighborhood Ue (p* contains both stable and strictly unstable points.

The following lemma establishes a relationship between regularity and separating prop-
erties of solution points of the stability margin problem.

LEMMA 3. A regular solution point ofthe stability margin problem is a separating point.

Proof The proof is given in the appendix.
We can now provide the following theorem.
THEOREM 3. A necessary and sufficient condition for continuity of the stability margin

at 1 0 is that the stability margin problem admit at least one separating solution point.

Proof.
Necessity. Assume that p(/) is continuous at /-- 0. If there exists at least one regular

solution point, then necessity follows immediately from Lemma 3. If the stability margin
problem admits critical solution points only, necessity can be proven by contradiction. Con-
sider an arbitrary solution point (p.7, co* and suppose that the critical manifold corresponding
to co co* does not separate stable from strictly unstable points in Ue (p*). We show that there
exists an arbitrarily small data perturbation which induces a noninfinitesimal perturbation of
the stability margin. Consider the data perturbation generated by an arbitrarily small horizon-
tal shift of the imaginary axis into the right half plane of the complex plane. This means to
perform the change of variable s s /, with r/> 0 and arbitrarily small. For a given
r/, it is not difficult to realize that this perturbation can be generated as a sufficiently small
polynomial coefficient perturbation. In this new situation, p* becomes a stable parameter. In
addition, this perturbation destroys the entire critical manifold. Thus, since points which are
stable for r/-- 0 remain stable under the perturbation, U (p*) contains only stable points. If
several parameters p* exist such that (p.7, co*) is a solution point, the above argument holds
for each of them. Hence, there exists 7 > 0 such that neighborhoods U (p*) for all p* contain
only stable points. This means that all the solution points of the perturbed stability margin
problem in parameter space must necessarily differ from the corresponding points for r/= 0
for a noninfinitesimal quantity. This implies discontinuity of the stability margin.

Sufficiency. Let (p.T, co.) be a separating solution point of the stability margin problem.
For an arbitrarily small c > 0, the separating property of (p.7, co*) ensures that there exists a
strictly unstable parameter/5 C U (p*). Since the coefficients ofthe polynomial are continuous
in the problem data and the roots of a polynomial are continuous in its coefficients, it follows
that for any sufficiently small data perturbation,/5 remains strictly unstable. Thus, sufficiently
small data perturbations preserve strictly unstable points/5 arbitrarily close to p* and this
proves that the stability margin p(/) is continuous at /-- 0.

Remark 3. Theorem 3 is somewhat similar to a result given in [8, p. 403]. Actually, since
both results provide necessary and sufficient conditions for the same problem, they must be
necessarily equivalent. However, it turns out that, as explained below, the separability concept
used in Theorem 3 allows a direct characterization of continuity of the stability margin problem
in terms of easily checkable conditions.

First, we notice that, if the stability margin problem admits at least one regular solution
point or one critical solution point of type C2, then Theorem 2 ensures continuity, without
explicitly requiring the separating property. In the remaining cases, the condition of Theorem
3 requires that at least one of the q dimensional critical manifolds containing solution
point(s) (p.7, co*) of the stability margin problem (3) separates stable from strictly unstable
points in a neighborhood of at least one point p*. Since critical manifolds are hyperplanes in
parameter space, verification of the separability property asked by Theorem 3 turns out to be
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easily tested in practice.
As a further observation, we notice that all the obtained conditions are easily checkable,

and their verification provides information, if necessary, on how far the boundary manifold is
from the case in which it has singularities. For example, the fact that there exist values of co for
which IDoj(co)l O, IDoj(co)l’ " O, j 1,..., q in condition C of (25) can be interpreted
as an indicator that the problem may become critical to data perturbation.

Before concluding this section, we briefly summarize how the results obtained can be
used to assess the regularity of the stability margin problem for a given family of perturbed
polynomials. It is well known that many techniques for computing p, i.e., solving (3), are
based on a one-dimensional search along the frequency positive axis (see, e.g., [2], [15], and
[16]). We know that the domain of search f+ -" [0, oc) can be partitioned into three disjoint
subsets, f, cl, and c2, such that

(30) f+ r [--J cl [--J c2,

where f is the set of frequencies corresponding to regular points of Ia, while fcl and c2
are defined as in (25) and (26). Denote by p, pl, and pc2 the stability margins relative
to the three sets of frequencies f, f, and f2, i.e., solutions of problems like (3) with
co C f, co c f, and co c2, respectively. It is clear that p min {p, Pc1,/9c2}. By
applying Theorems and 2, the following condition ensuring continuity of the stability margin
on problem data is obtained:

(31) p min {p, Pc2} <_ Pcl.

On the other hand, if

(32) P pl < min {p., ,Oc2},

Theorem 3 requires testing if certain q dimensional critical hyperplanes in parameter space
separate stable from strictly unstable points around the corresponding solution point(s) of the
stability margin problem relative to f (see Remark 3).

4. Regularity conditions for the robust stability problem in plant coefficient space.
In this section, we show how the results obtained in the previous sections can be exploited
whenever the changes in system data are due to controller coefficient variations. In particular,
we will study regularity of the robust stability problem in plant coefficient space. The case
when plant coefficients are linear anne in the uncertain parameters falls in the general problem
setting developed in the previous sections, because in this case, for any fixed controller, the
closed-loop characteristic polynomial coefficients are affine linear in the parameters.

With reference to Fig. 1, we assume that G(s; p) is a strictly proper plant and C(s; A) is
a rational controller of given order

+ Pn+i+ s
N(s;p) =0 m <(33) G(s;p)- D(’;p)

s’+ (p{ + p,)s{__
i--1
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where the parameters p coincide with the plant transfer function coefficients and
A (A0,..., A,,,, A+,..., A,r+z+) rr is the controller coefficient vector. The closed-loop
characteristic polynomial is

(35) A(s; p; A) --" Dr(s; A)D(s; p) + N(s; A)N(s; p),

where, with a slight modification of notation with respect to (1), the arguments of A include
the controller coefficient A. This implies that T, t, and pO are now suitable functions of A. The
nominal closed-loop characteristic polynomial and the controller numerator and denominator
polynomials can be written as the sum of even and odd parts (subscripts e and o, respectively):

X(; 0; ) - ZX(; ) + Xo(,; ),
(36) N(s; A) -4- N(s2; A) + sN;(s2; A),

Dr(s; A) "-- D(s2; A) + sDo(Sz; A).

According to these definitions, the coefficient matrix D(w; A) becomes

(37)

D(w" A)
&o(&2; ) D(2" A) &D[(2" A) N(&2" A) &N(&2" A)

Consider now the nominal characteristic polynomial A(s; 0; A) and define the stability domain
A in controller coefficient space as the set of coefficients A stabilizing the nominal plant, i.e.,

(38) A -" {A C I-r+l+2:A(s; 0; ,)is Hurwitz}.

Assuming that the set A is nonempty, we can give the following theorem on regularity of the
stability margin p p(k) in plant coefficient space.

THEOREM 4. 1) Ifm O, i.e., the plantfamily is an all pole family, p(A) is continuous
VA c A such that C(s; A) does not have multiple purely imaginary poles.

2) Ifm >_ 1, p(k)is continuous V A A.
Proof. The proof is given in the appendix.
Observation. The above theorem holds independently of the norm used in coefficient

space. In particular, when an l norm is taken into account, Theorem 4 ensures regularity
of the stability margin problem for the well-known and widely investigated class of interval
feedback systems.

5. Numerical examples. In this section we present three numerical examples. The first

example is taken from ]. In this case, lack of regularity is detected analytically by applying
Theorem 3. A data perturbation producing a discontinuity in the stability margin is generated
according to the technique used to prove necessity of Theorem 3. The second example is new.
A fourth-order polynomial with two uncertain parameters is considered. A straight line of
critical points is detected, showing that is is possible to generate a discontinuity of the stability
margin/9 with respect to problem data. The third example reports the study of the behavior of
the stability margin of a feedback system with an interval plant and a controller as a function
of one coefficient of the controller. Of course, in this case, as predicted by Theorem 4, it is
found that p is continuous as a function of the considered coefficient. In the second and third
examples, perturbations on T, t, and pO will be denoted by T, St, and (Sp, respectively, and
will be assumed to enter additively in T, t, and pO.

Example ]. Consider the polynomial

(39)
A(s; p) 84 @ 20(1 -p2)S q-(44 + 2a + 10p, -40p2)82

+(20 + 8a + 20ap, 20192)8 q- 5Z2(1 -+- 2p, ),
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where a 3 + x/. The data are given by

(40)

T_ Oa2 20a 10 0 ]
T

0 -20 -40 -20
t- [5a2 20+Sa 2a+44 20IT; po_[o 0] T.

The boundary manifold Fb is made of points solving the following equation system with
w>0:

/(p; c) 10(a2 c2)p, + 40c2p2 + 5a) c(44 + 2a) + 60
4 0,

(41) I(p; v) cv[20ap, + 10(&2 2)p2 + 20 + as 202] o.
The manifolds Fo and F have the following expressions:

(42)

(43)

Fo {p p +0.5 =0},

The stability domain is represented by the dashed area in Fig. 2(a). To investigate the existence
of critical points we consider the following determinants:. IDol (:v)l- 20a;I(a 10)co4 + 2(4a2 20a + 5)Od2 + tzZ(tz 10)],(44) [Do2(C)l- 20:v[c6 -(2a + 5)Od4 + (4- 14a + 5a2)od2 5u,2].
Easy computations show that the equations [Do, (c)[ 0, [Doa(Cv)l 0 admit a common
positive root (of multiplicity 2) at 0a* v/-d. Since this root is multiple, it also solves the second
equation of (25) and hence it satisfies condition C1. The straight line 5(a 1)p + 20p2
2(11 a) 0, a subset of f’, is found to be a set of critical points. The solution of the distance
problem (3) according to the lc norm in parameter space is attained at the nonseparating
point p* [(7 a)/5, (7 a)/5] 7 [0.234, 0.234]7 of this critical line (see Fig. 2(a)).
The corresponding stability margin is p 0.234. Since p* is nonseparating, we deduce by
Theorem 3 that there exists an infinitesimal data perturbation such that the stability margin
changes are of a finite quantity. Figure 2(b) reports the perturbed boundary manifolds (1) and
(2) corresponding to perturbations given according to the technique used to prove necessity of
Theorem 3, with 7 0.001 and /= 0.01, respectively. The obtained stability margins are p
0.422 and p 0.456, respectively. The corresponding maximal stability balls are also shown in
Fig. 2(b).

Example 2. Consider the polynomial

(45) A(s; p) 84 + (P2 + 3) s3 + (Pl + 5.5) 82 + (Pl + P2 + 4.5)s + 3pl -P2 + 5.5

0 V 0 0
T

(47) ST-
0 0 0 0 St-[0 1.5r 0 0IT; @o_ [0 0] T.

This problem is obtained from the study of robust stability of the feedback control system of
Fig. with a plant family given by

(p, + 1.5)
(48) G(s; p)

84 + (3 @ p2)83 + (5.5 + Pl 82 + (3 @ p2)s + 5.5 + 3pl

and data perturbation

(46) T=[ 3 0
T

--1 0 t--[5.5 4.5 5.5 3] T" p--[O 0]T

F {p 5(a 1)pl + 20p2 2(11 a) 0} U {p:/)2 + a/lO-- 0}.

with T, t, and pO given by
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-0.5 0 0.5 Px
(a)

1.5

132

0.5

-0.5
-1 o o., px

(b)

FIG. 2. (a) Stability domain for nominal data of example 1. (b) Stability domains with data perturbations of
example 1.

and a proportional controller, whose unity gain represents the problem data subject to pertur-
bation

(49) C(s; ,)= + ),

where , r. The nominal manifolds I-’o and F are given by

(50) ro {p" 3p P2 -+- 5.5 0},

(51) r {P’P2 + 2 O} U {P’Pl P2 1.5 0}.
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-3 -2 -1 0 2
(a)

Pl

0

-1

-2

-3

-3 -2 0 2

(b)

FIG. 3. (a) Stability domain for nominal data of example 2. (b) Stability domains with data perturbations of
example 2.

The dashed area in Fig. 3(a) represents the stability domain in the parameter plane. Note that
the straight line of equation pl p2 1.5 0 separates two subsets of the domain of stability.

The determinants Do, and Do21 have the following expressions"

(52) IDol (co)[ -2co(co2 2) 2,
iDo2(co) _co(co2 2)2(co2 2.5).

It can be checked from (52) that co* x/ satisfies condition Cl; i.e., there exists a straight
line of critical points described by the equation Pl P2 1.5 0.

The solution of the distance problem (3) according to the l norm in parameter space is
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attained at the nonseparating point p* (0.75,-0.75) 3" of this critical line (see Fig. 3(a)).
The corresponding stability margin is p 0.75.

Since the point p* (0.75, -0.75)7 is nonseparating, Theorem 3 ensures that a disconti-
nuity in the stability margin can be generated by a suitable perturbation. Actually, it turns out
that arbitrarily small values of r destroy the critical manifold, inducing a discontinuity in p as
a function of r. Fig. 3(b) reports the perturbed boundary manifolds (1), (2), and (3) obtained
for r 0.1,0.01, and 0.001, respectively, and the maximal stability ball corresponding to

p 1.375 obtained for the given data perturbations.
Example 3. Consider the feedback control system of Fig. 1, where G(s; p) is an interval

plant

(53)
3+p3

and the controller C(s; A) is given by

(54)
+4s

C(s; A) + ,s

The closed-loop characteristic polynomial is

(55)
A(s;p; A) AsS+[l+A(3+pz)]s4+[3+pz+A(lO+p,)]s3+(lO+p,)sz+(4p3+12)s+3+p3.

One can compute that the stability domain in the controller parameter space is the segment
A (0, 2.286). For any given A c A, the equations defining the boundary manifold Fv are

( _> o)

(56) I(p; w) w[-Aw2p, w2p2 + 4p + 12 (3 + 10A)w2 + Aw4] 0.

The determinants [Do, I, Do2 [, and [Do are given by

(57)
IDo, (w)l -3w3[A2w4 + 0.?

2 / ,,k 4],
IDo2(C)l- -c3[A-c6 + ( lOA2)w4 + 2(6A- 5)w2 / 3],
IDo3(C)l- w3[(11A + 4)z2 + A- 37].

Since for any A c A, it can be readily verified that equations IDol (c)l 0, IDo2(a)l 0,
and IDo()l 0 do not admit any positive common root, neither condition C nor C2 is
satisfied so that fc(A) 13, V A A. Hence, as predicted by Theorem 4, the stability margin
is continuous on A.

6. Conclusions. In this paper theproblem ofcontinuity ofthe stability margin on problem
data has been addressed. The case in which the coefficients of the polynomials of an uncertain
family are affine in a vector of physical parameters has been considered. It has been shown how
the continuity problem is related to the presence of critical points in the manifold bounding
the domain of stability in parameter space. Sufficient and necessary and sufficient conditions
which are easily computable in practice have been given. By use of these conditions, it has
been shown that the important and widely studied class of interval feedback systems enjoys
the regularity property. Numerical examples have been illustrated to show applications of the
conditions obtained.
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Appendix.
Proof ofLemma 2. Suppose that for a given z* such that G(z*;0) 0, VGz(z*;O)

has row rank 2. By the implicit function theorem, there exist at least two variables, zk
and zl, /c l, such that the equation defining re(v), i.e., G(z; y) O, is uniquely solv-
able with respect to zk and zl, for any y E Ue(0), a sufficiently small neighborhood
of y 0, and any z Uw(z*), a sufficiently small neighborhood of z*. This means
that there exist functions x x(xl, ,x_,x+, ,Xl_l,Xl_t_l, ,Xq+l; y) and
Xl Xl(Xl,... ,Xk-l,Xk-+-l,... ,Xl-l,Xl+l,... ,Xq-+-l; y), y g(o) and Vx U(x*).
In addition, the same theorem ensures that these functions xk(.; .), xz(.; .) are continuous
at (x; y) (x*; 0). Thus, the statement of the lemma follows immediately from the rank
assumption on VG(x; 0) in all the domain of definition of the function z G(x; 0).

ProofofTheorem 2. Assume that for y 0 there exists at least one regular point solving
the minimal distance problem (3). Consider a sufficiently small neighborhood of the origin
U(0) in the space of data. By the implicit function theorem (see also proof of Lemma 2),
V y U (0) all regular points of Ff(y), and hence also the solution point(s) of the stability
margin problem (3), are infinitesimally close to points ofF (0), implying continuity of p(y)
aty- 0.

Suppose now that at least one solution point, say Y (i0T, c9), satisfies condition C2 in
(26). Of course, if a regular solution point also exists, the theorem follows from the preceding
argument. In the other case, the critical set corresponding to c c9 is a q 2 dimensional
linear manifold in parameter space (see the second case in the discussion preceding Lemma 1).
Since Y is a solution of G(x; 0) 0, which is a system of equations linear in the parameter p
and polynomial in c, any neighborhood Ue (Y) contains a q dimensional set of solutions of
G(x; 0) 0. This implies that even if the critical solution point : is destroyed by a small data
perturbation, regular points of Fa in arbitrarily small neighborhoods of ensure continuity
of the distance of the origin of parameter space from F.

Proofof Corollary 1. Consider a third-order polynomial with q uncertain parameters. It
is easy to check that a necessary condition for satisfying C1 is that there exist values of a such
that

(58)
Vi,j=l,...,q, iej.

Computation of determinants IDj(c)l and their derivatives gives

(59)
IDij(c)l- cd[(TliZ2j Z2iTlj) -[- (Z2iZ3j r3iZ2j)o2],
ID()I’ (TT TT) + (TT TT),

where Tij is the generic entry of the matrix T. Therefore, solutions cv of (58) different from
zero exist if and only if

(6O)
TliT2j T2iTIj O,
T2iT3j T3iT2j 0 Vi,j--1,...,q, ij.

It can easily be checked that if there exists such that T2i 7 0, then verification of (60)
necessarily implies that matrix T has column (or row) rank equal to l, which contradicts
the assumption on T. On the other hand, consider any of the infinite solutions of (60) with

T2i 0, V 1,..., q. In this case, the manifold F is given by a unique q dimensional
hyperplane defined by R(p; c) 0, where c is the only strictly positive solution of bo(cV) O.
This means that F is a regular manifold, excluding the existence of critical manifolds.
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Since any other value of Tj different from those satisfying (60) cannot verify condition
CI, it follows from Theorem 2 that the stability margin p(/) is continuous in the problem
data /.

Proof ofLemma 3. Assume that z* (p’T, c*) Fba is a regular solution point of the
stability margin problem.

If z* Fo, the separating property follows from the fact that the hyperplane Fo separates
points corresponding to polynomials such that c0(p) > 0 and Co (p) < 0 and the fact that any
polynomial with a negative constant term is strictly unstable.

Suppose now that z* E F. Consider the Hurwitz determinant of order n of the
polynomial A(s; p) and denote it by H_ (p). Since p* E F represents a polynomial which
has at least one pure imaginary root and all the remaining ones in the left half-plane, we know
by Orlando’s formula [6] that p* FH, where

(61) FH= {p Rq:H_(p)= 0}.
Moreover, continuity of roots of a polynomial on its coefficients implies that P coincides with
FH locally; that is,

(62) c > 0 FH N U(p*) F U(p*).

Thus, p* is a regular point of FH. As a consequence, FH admits at p p* a tangent
hyperplane. In turn, this implies that any neighborhood U (p*) of p* contains points p where
H_, (p) > 0 and points where Hn-,(p) < 0. Thus, U (p*) contains both stable and strictly
unstable points, implying that p* is a separating point.

Proof of Theorem 4. i) Let us assume that C(s; Ao) does not have multiple imaginary
roots and that Ao A. First, we show by contradiction that the set fc (Ao) is empty. Suppose
that f2c(Ao) is nonempty, and take an element Co f(Ao). Since A(s; 0; ko) is Hurwitz, the
determinants [Do(Co, Ao)l and IDo(Co, ,ko)l’, 1,2, obtained from (37)are null only if

CvOo-(2o; o) 0,O(oo) +o(63) ,2 2 n 2.o (o; o) + oDo (o, o) o.
As a consequence, the denominator of C(s; A) can be factorized as

(64) D(s;/o) 82 -- Cdo2)2c(8;/o),where/)(s; A) is a suitable polynomial. This contradicts the hypothesis that C(s; Ao) does
not have multiple imaginary poles.

ii) First, we prove by contradiction that the set ft,(A) is empty for ,k A. Let us assume
that Ao A and that there exists a positive value Co , ft(Ao). Since rn _> 1, we obtain from
(37) and condition C1 in (25)

zx(o; o)O;(o; o) ZXo(o; o)O(.o; o) 0,

2/o((-d2o; Ao)D(cV2o; Ao) 0,
(65)

A (C02o, Ao)D (C02o, o) + COo

x(o ao)X2(o; ao) Xo(o ao)X2(o; ao) 0,
(66)

A(, Ao)N (, ho) + Ao( ho) 2.N(o,o)-O.

Since A(s; 0; o)is Hurwitz, ,o" A(; Ao) Ao(W; Ao) 0. Hence, the two equation
systems (65) and (66) admit solutions only if

(67) D(; Ao) +D (; Ao) 0,

N (; o) + oN (; o) 0,
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which means that NC(jWo Ao) DC(jWo; Ao) 0. This contradicts the hypothesis that

A(s; 0; Ao) is Hurwitz. Thus, f(A) is empty V A c A. The theorem statement follows from
Theorem 1.
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Abstract. We study the Hc-optimal control problem for semilinear systems in Hilbert spaces in connection
with the corresponding Ho-problem for the linearized system around an equilibrium state. The result of this paper,
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1. Introduction. Consider the input-output system

(1.1)
z’ Az + Fz +/32U -Jr- /31J3,

_
0;

Z C133 -- DI2U,

-0,

in a real Hilbert space X Here z’ zx. A is the infinitesimal generator of a C0-semigroup
eAt on X; ib C C73(X); ,/7’0 0; J2 c L(UX);/31 L(WX); C1 L(X,Z); D12 G

L(U, Z); and U, W, and Z are real Hilbert spaces with the norms denoted [. I:, I" Iw, and
Iz, and scalar products (., .)7, (., ")w, and (., ")z. The norm and the scalar product ofX are

denoted by I" and (., .), respectively. In system (1.1) a3 is the state, u is the control input, w
is an exogenous variable which includes disturbances, and z is the controlled input. We shall
denote by VF X --. L(X, X) the gradient of F and by V2F the second-order differential.

Consider the linearized system around 0

(1.2)
y’- (A + VF(0))y +/2, --l--

V(0) -0.

Given -y > 0 we say that L L(X, U) is a suboptimal solution to the H-problem
associated with system (1.2) if the operator A + VF(0) +/32L generates an exponentially
stable semigroup and

(1.3) IC, y q- D,2L9 2
Z dt < (,72 e) Iw(t)lv dr, Vw C L2(/+; W),

where is the solution to (1.2) where u L,. Throughout the following we shall assume the
following standard hypotheses on linearized system (1.2).

(i) The pair (A + VF(0),/32) is exponentially stabilizable; i.e., there is G L(X, U)
such that A + VF(0) + t32G generates an exponentially stable semigroup.

(ii) The pair (A + VF(0), C) is exponentially detectable, i.e., there is K L(Z, X)
such that A + VF(O) + KCI generates an exponentially stable semigroup.

(iii) D2[’I DI2] [0, I].
Assumption (iii) implies that

IC, + D,2ul2z -IC,l + lul z, v (z,,,) x u.

Received by the editors February 8, 1993" accepted for publication (in revised form) January 19, 1994.
Department of Mathematics, University of lai, 6600 Iai, Romfinia.
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It is well known [2]- [4], [6] that under assumptions (i), (ii), and (iii) if the Ho-problem
for the linearized system (1.2) has a suboptimal solution, then the algebraic Riccati equation

(1.4) (A + VF(0))*P + P(A + VF(0)) P(BzB ?-2B, B)P + CCl 0

has aunique solution P L(X,X), P P* >_ 0 such that A+VF(0) (B2B
7-2B1B’)P is exponentially stable.

The main result of this work, Theorem below, relates the Ho-control problem for
the linearized system (1.2) to a certain Hamilton-Jacobi equation associated with the control
system (1.1).

THEOREM 1. Let O’ > 0 and assume that the Ho-problem for the system (1.2) has a

suboptimal solution L. Then the Hamilton-Jacobi equation

+ IC, [ 0, v e D(A) x0

has a solution p C2 (Xo) in a neighborhood Xo of the origin, satisfying

(1.6) (0) 0, V(0) 0, V2(0) P.

Moreover, the solutions z to the system.

(1.7) ’ Az + F- (B2B -7-2BB)V(z),
z(0)- z0 e X0,

which remain in Xo have the property that z L2(/{,+;X), limo; z(t) 0, and the

feedback control

asymptotically stabilizes system (1.1) on Xo and guarantees the closed-loop inequality

(1.9)

Vw L2(/{+; W), w 0 and all solutions z to system (1.1) which remain in Xo for all
t>O.

The solution to (1.5) is unique among the functions C2(Xo) satisfv, ing (1.6) and
having the property that every solution z L2(/{+; X) to the corresponding closed-loop
system (1.7) with z(O) Xo remains in Xo for all >_ O.

The approach we use here is quite different, and it relies on an existence result for the
Hamiltonian system (2.1) corresponding with the given Ho-problem (Proposition 1). As
a matter of fact, as we shall see below, the solution to (1.5) can be characterized by the
property that {(z, p) X0 x X; p + V(a:) 0} is a positively invariant manifold for this
Hamiltonian system and that the corresponding closed-loop system is asymptotically stable.
In [7], [8] the existence of such an invariant manifold follows via the stable manifold theorem.
It is likely, however, that the methods of [7] can be extended to the present situation by
using some recent results of center manifold theory in infinite dimensions. By quite different
methods this problem has also been studied by Isidori and Astolfi [5] and in the author’s work
[1] where the given Ho-problem is related to generalized solutions to the Hamilton-Jacobi
equation (1.5).

Theorem applies to semilinear distributed control systems, but we omit examples.
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2. The Hamiltonian system. We shall study the existence of the Hamiltonian system

(2.1)

x’ Ax + Fx + (B2B 7-2Bl)p,
p’= -(A + VF(x))*p +

.(o) o, ,(oo) o,

in a neighborhood Ke- {(x,p)E X x X; Ixl < e, IPl < e} ofthe origin.
PROPOSITION 1. Under assumptions (i)-(iii) there are > 0 and 0 < 5 < e such that

for Iz01 < , system (2.1) has a unique mild solution (z,p) L2(R+;X) x L2(R+;X),
((t), v(t)) e K, v t > o.

By mild solution to (2.1) we mean a pair of continuous functions (x,p) R+ X X
which satisfy the equations

X(t) eAtxo -4- cA(t-s)(Fx(8) -4- (2 --,.)/-2flj)p(8))d8, Vt>O,

T

v(t) u*(r.t)v(r) u*(.t)cTc.x(). 0<t<T<oc

for all T > 0. Here {U(s,t); 0 < t _< s < oc} is the evolution operator associated with
A + VF((t)).

ProofofProposition 1. We may rewrite system (2.1) as

(2.2)

X’-- (A -4- VF(0))x -4-(2 -’T-2/I)p q-- p(x),
p’ -(A + gF(O))*p + CC,x + u(x)p,

(o) + o, p() o,

where #(x) F(x) VF(0)z and u(z) (VF(z))* (VF(0))*. Clearly, we have

(2.3)

where E {z X; I1 <_ } and IILip(E,.) is the Lipschitz norm on E.. In the space

Y L2(R+; X) x L2(R+; X) define the operator A
(a) D(A) is the set of all (z, p) Y such that

(2.4)

X’-- (A q- VF(0))x _qL (2 y--2Bl)p nL_ f, t R+,
p’ -(A + VF(0))*p + C(C,x + 9, t R+,

.(o) 0, p() o

for some (f, 9) E Y.
The solution (z, p) to system (2.4) is considered in the mild sense, i.e.,

(2.5)

z(ti) c(A+VF(O))tXo q- e(A+VF(O))(t-s)((B2B "y-2BlB’)p(8

+f(s))ds,

p(t) e(A+VF(O))*(T-t)p(T) e(A+VF(O))*(s-t)(CCIX(S + g(s))ds,
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for all0<f<T< c.

(b) For (z, p) E D(,A), ,A(z, p) (f, 9).
Obviously A is well defined and single valued. Formally we may define ,A as

p’ + (A + VF(0))*p- C*C,z},

where

D(A) {(z, p) E Y; z(0) Zo, p(c) -0; A(z,p) Y}.

Let us denote by Ao the operator A in the case z0 0. We have the following lemma.
LEMMA 1. The operatorA is continuousfrom Y to Y C (C(R+; X) x C(R+" X)).
Proof. One must prove that for every (f, 9) Y the Hamiltonian system

(2.6)

x’- (A + VF(0))x + (./2B --")/-2Bl./’)p-- f, t _> 0,
p’ -(A + VF(0))*p + C" C, x + g, t >_ 0,

(0) 0, V(o) 0,

has a unique solution (x,p) Y (C(R+;X) C(R+;X)) and the map (f,g) --+ (x,p) is
continuous. To this purpose consider the sup inf problem

(2.7)

where/,/- L2(/+; U) and W L2(/+; W). We set

(2.8)

ga(w) inf (IClZ[ + * 7 + 2(9, z))dt;

Then by assumption (see (1.3)) the function 7211wllv (a(w) is convex and coercive, and so
the problem

(2.9) sup{(w) 7.)/2 12 A2 }

has a unique solution w*. Hence problem (2.7) has a unique solution (u*, w*) /.g x W. For
every w E 1/V we shall denote by 2 Fw the solution to problem (2.8), i.e.,

g rw arg inf c,.l + I,lb + 2(9, z))dt.

J
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Then by standard arguments in linear quadratic control theory it follows that there is/5
L2(-R+" X) 71C’(-R+" X) such that

(2.10)
(oo) -0.

(2.11) --B/5, Vt_>0.

Moreover, by assumption (i) we may write (2.10) as

i0’ -(A + VF(0) + B2G)*p -+- G* --]-- CCl -1- g,
(2.12)

(oc) -0.

Since A + VF(0) +/2G is exponentially stable, we infer that the solution i0 to (2.10) is
unique and

where w > 0. Hence La(R+" X).
Note also that

(2.14) VO(w) -2Bp, a.e.t > 0,

where is the solution to (2.10). Indeed if x is the solution to x’ (A + VF(0))x +
2Fw + lU;, x(0) 0, then we have for all W

+ (r, v( )): + (v,.’" .)).

Then using system (2.10) we get

as claimed. Since w* is the solution to (2.9), we see by (2.10) and (2.14) that system (2.6) has
a solution (z, p) where z z* is just the solution to

(z*)’ ( + (o))* +* + + f; (o) o

and (*,w*) x is the solution to problem (2.7). Since ClZ* L(R+’Z), it
follows by detectability assumption (ii) that z* L(R+" X). Similarly by (2.13) we see that
p L(+; X) and limt p(t) p() 0.

Now if (z, p) Y is any solution to (2.6), we have

(2.15) (C,. + ]Bp + 2(9, z))dt (IC,2 + I’ b + 2(9, 2))dr,
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for all (y, v) satisfying the system

(2.16) y’ (A + VF(0))y + B2v + B,Cv + f, y(O) O,

where @ _-2/3,p. On the other hand, after some calculation involving (2.6) we see that

(2.17) fo fo(1 + Ic, % + (g,) + (f,p))dt 3’-2 Itplv

Then substituting into (2.15) we get

fo o]/3PI at <_ (]C,y 2
z + ]Vl2u + (9,2y x) + (f,p))dt.

In system (2.16) we take v Ly, provided that (1.3) holds. This yields

where C and p > 0 are independent of f and 9. Hence

(/o /oI/3" 2 2
1P Wdt < Cp- (If] -[- I.c]12) dt -t- (If] Pl +

and by (2.17) we have

(2.18)
C(I/3P b IClXl2Z IBTplv)dt+ +

<_ C (If 2 _[_ Ool2
_

]fl P] + [gl x[)dt

for some positive constant C independent of (f, 9) E Y. Then by assumptions (i) and (ii) and
system (2.6) it follows that

f ]0Ix(t)l 2 + Ix(t)l2dr < C (IC, zI -I 2 2)B2PIu + I/3PI + {fl dr,

j’o ]’oIp(t) 2 + Ip(t) 2 dt <_ C (ICIxlZz -+-I/3,*2p12U -+-]gl2)dt

and by (2.18) we see that

(2.19) IX(t)l 2 + Ip(t)l 2 + (Ix(t)l 2 + Ip(t)12)dt < C (Ifl 2 --[-Igl2)dt,

V(f,g) EY, t>_0,

as claimed.

ProofofProposition (continued). We note that for all (f, 9) Y,

(2.20) A-l (f 9) A’ (f 9) +
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where (,/3) is the solution to the system

(2.21) ’ -(A + V(0))* +
(o) *o, () o.

We have

and

Here (, v) is the solution to system (2.16) where (0) z0 and f 0. Then arguing as in
the proof of Lemma we get the estimate

VzoX.

Once again using assumptions (i) and (ii) in system (2.21) we see that

/(/;)12
__
I( _+_ (Ij:

__
]12)dt C/(0)112c01, Vt>0

and therefore

(2.22) VzoX.

Now by virtue of (2.2) we may write system (2.1) as

(2.23) (;e, p) A(Tl (#, up) q- (c?, ib).

Consider the subset of Y,

By estimate (2.22) we see that for Iz01 _< (5(c), (a?, i5) Ye/2. Moreover, by Lemma
and estimates (2.3) we have

A(71(#,/"P) Ye ,/ 2 ’v 3g p Y

if c is sufficiently small. Finally, by (2.3) and (2.19) we see that

for all (z,p), (2,) Y. Here/2 #(2), D u(2), and C is some positive constant.
Then by the contraction principle, (2.23) (equivalently, system (2.1)) has a unique solution
(z, p) Y C X0 for z0 < (5 and 0 < (5 < e sufficiently small. This completes the proof.
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map
3. Proof of Theorem 1. Let Xo- {xo X" [xol _< 6} and let q" Xo -+ X be the

+(o) -p(o),

where p is the solution to system (2.1). As seen in Proposition I, (Xo)
LEMMA 2. C’1 (Xo) and d(:co) (o), Vo Xo where

(3.) (zo) (c,z(t)l + p()l -lp(t))d, Vzo No.

Pro@ Let h X be arbitrary but fixed. Consider the solution (y, q) Y to system

y’ (A + VF(x))y + (2 -2l)q,
(3.2) q’ -(A + VF(z))*q + CCv- (V2F(z)V) *q,

v(o) h, q() o.

We may write (3.2) as

q’ -(A + V(O))*q + c;c,v + :(v, q),
v(o) h, q() o,

where I()1 Cll, 12<, q)l 0<11 + Iql). Moreover, and 2 are Lipschitzian
with the Lipschitz constant Ce. Then arguing as in Lemma we infer that system (3.2) has a
unique solution (, q) Y (C(+; X) x C(+; X)).

Now let (z,p) and (z,p) be two solutions to system (2.1), corresponding to zo and

zo + h, respectively. We set z z 9 and p p q and notice that

’- (A + v(o)) +(--s)o+ (v()- v(o)) +

(0) -0, () -0,

where lUl (t)l + 12(t)l OIz, (t) z(t) 2, V t 0. Recall that by Lemma 1,

Then using the invertibility of No we see that for e sufficiently small

The latter implies that

Hence C(Xo) and VO(xo)h -q(0). In particular it follows that V(0) P
where P L(X,X*), P P* 2 0 is defined by Ph -q(O), q being the solution
to (3.2) where x 0. Hence P is the unique solution to (1.4), having the property that
A + VF(0) (B2B y-zBB)P is exponentially stable.

Let us denote by the function defined by the right-hand side of (3.1). Taking into
account (3.3) it is readily seen that is differentiable on Xo and

(v(o), h) ((cc,, ) +(,q) -(,,
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where ()7, q) is the solution to (3.2). Then by a little calculation involving (2.1) and (3.2) we
see that

(vv(o), h) -(p(o), h),

Hence V(xo) q)(xo), V xo E X0 as claimed. We will now prove that satisfies the
Hamilton-Jacobi equation (1.4) on X0. To this purpose we note that by uniqueness in system
(2.1) we have

(3.4)

where # is such that x(t) Xo, V t [0, #). Hence on the interval [0, #), x is the solution to
the closed-loop differential system

:c’(t) A:c(t)+ F:c(t)- (.2B --")/-21lB)(I)(:c(t))
x(o) xo.

Let zo D(A) N Xo. Since F and (I) are smooth, we conclude that z is continuously
differentiable on [0, #) and so is p. Then multiplying (3.5) by (:c(t)) we get

(3.6)

d
d(:c(t)) (A:c(t) + Fz(t), O(z(t)))

-IY>((t))l + -21F>((t))lv, vt

On the other hand, we have

Vt>O.

Along with (3.6) the latter yields

IC,01 + IY>(0)l ")/-21B(:C0)I/V -]- 2(A:co + F:co, (:c0)) 0,
g zo Xo D(A),

as claimed.
Consider now the closed-loop system

(3.7)
x’ Ax + Fx- B2BV(x) +

x(O) xo,

where:co X0 andw E L2(/+; W). We shall assume that :co D(A)andw CI(R+; W).
Then problem (3.7) has a unique local smooth solution :c :c(t). We restrict ourselves to
w, Zo for which z(t) Xo for all t > 0. (This happens, for instance, if [zol and IlWllc:(+;w)
are sufficiently small.) For such a solution we have

(3.8)

d
--dr (z(t)) (Az(t)+ Fz(t), Vg(z(t))- IBV(z(t))l 2U

+ (,(t), v((t)))
-2-’ (lV(*(t))l + -21TV(*(t))12w

Vt>O.
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Since by virtue of (1.6) is positive definite in a neighborhood of the origin (let it be X0) the
latter yields

+ U--

(3.9)
(()) 7

-2 I/V((t)) 2W(t)l dr.

This equality clearly extends to all w L2(+" W) and o Xo such that m(t) remain in

Xo for all t 0. Let K L(Z, X) be such that A + F(0) + KC is exponentially stable.
Then writing system (3.7) with w 0 as

’: (A + VF(O)+ KC,)z KC, z B:BV() + F(z)-

it follows by (3.9) that

where a; > 0 and fo E L2 (R+). Then for s sufficiently small the previous inequality implies
that a: E Lz(_R+" X) and limt_ Iz(t)l 0. We have proved, therefore, that the feedback
control (1.8) asymptotically stabilizes system (1.1) in X0. On the other hand, inequality (3.9)
for z0 0 implies (1.9) as claimed.

Now let z z(t) be a solution to system (1.7) such that z(t) Xo, Vt >_ 0. We may
write (1.7) as

x’: (A + VF(0)- B2BzP + 7-2B, B’(P)x + #(x),
z(o) zo,

where I#(x)l _< Clxl 2 51x I. Recalling that A + VF(0) B2BP + 7-2BIBTP is
exponentially asymptotically stable [6], we infer that if X0 is sufficiently small, then x
L2(R+; X) as claimed.

The uniqueness of solution to (1.5) satisfying (1.6) and having the property that A+F-
(B2B -7-2BIB)V is asymptotically stable in X0 remains to be proven. If C2(X0)
is such a function, consider the solution x to system (1.7) where xo Xo C? D(A). Then
x(t) Xo C D(A), Vt >_ O. We set p(t) -V(x(t)) and notice that by virtue of (1.5),
(x, p) is the solution to the Hamiltonian system (2.1). Indeed we have

p’(t) V2(x(t))(Ax(t) + Fx(t) (B2B 7-2/3 vt_> o
while by (1.5),

V2(x)(Ax 4- Fx (/32/
-(A + VF(z))*Vo(x) C(C,x, V e D(A) Xo.

Hence

v’(t) -(A + vF(.(t)))*p(t)+ vt >_ o.
By the uniqueness in system (2.1) (Proposition 1) we infer that Vg) is uniquely defined on X0,
thereby completing the proof.

Remark. By the previous proof it follows that in a neighborhood of the origin { (z, p); p+
V(z) 0} is a positively invariant manifold of the Hamiltonian system (2.1) and the closed-
loop system (1.7) is asymptotically stable. Moreover, the function is unique with these
properties. In fact, we may reformulate Theorem in these terms.
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RELAXED MINIMAX CONTROL*

E. N. BARRON AN) R. JENSEN$

Abstract. The relaxation of the optimal control problem with cost functional which is the supremum in time of
some function h(t, z, z) is determined. The trajectory is convexitied in the usual way but the cost functional is convex-
ified in a nonobvious manner. Thus, if the original value function is V(t, z) inf(e z h(s, (s), (s))]l t,.lt,7l,
then the relaxed value function is

where the inner norm is the essential sup of h over z Z with respect to the measure #(s). We prove that V and Q
coincide.

Key words. L optimal control, relaxed problem

AMS subject classifications. 49A 10, 49A40, 93C60

1. Introduction. Nonconvex optimal control problems with integral or terminal cost
functionals, the problems of Mayer, Bolza, and Lagrange, are generally not guaranteed to
possess optimal controls. The usual method of getting around this problem is to enlarge the
class of controls to include probability measures, the class of relaxed controls. Convexifying
the trajectory dynamics and the cost functional leads in classical problems to a weakly lower
semicontinuous and convex problem for which an optimal relaxed control is guaranteed to
exist. In general the optimal relaxed control can be approximated by ordinary controls. The
books by Warga [11] and Cesari [6] are good references (see also [9], [10]).

Considering the importance of relaxation, the question arises as to what is the relaxed
control problem when the cost functional is not the standard type mentioned above but is
instead a problem of minimax control. The minimax, or L problem, consists of minimizing,
using controls, the supremum in time of some given function h of time, the trajectory, and the
control. The value function is given by V(t,z) infcez IIh(s,{(s),(s))llc[t,r], where
{(.) is the trajectory given as the solution of d{/dr f(r, cs(r), ((r)) and ((.) is the control.
Now, there is more than one method for convexifying this problem. One way, which is
probably the most obvious, is to simply convexify f(.,., z) and h(.,., z) by replacing them by

fz f(t, z, z)#(dz) and fz h(t, z, z)#(dz), respectively, where # is a probability measure on
the control set Z. We present an example below where it is clear that this is not the appropriate
relaxation.

The question is what properties does one want the relaxed problem to have. The answer,
by analogy with classical problems, is that the relaxed problem should (i) possess an optimal
control and (ii) the value function of the relaxed problem should coincide with the value
function of the original problem for reasonably behaved functions h. In the example below,
the proposed relaxation on a first attempt is incorrect because (ii) is not satisfied, even though
the original problem has convex f and linear h in the z variable.

The way we approach determining the correct relaxation is to look at Lp approximations
to the L norm. The Lp problem is a problem of Lagrange and can be relaxed in the usual
way. When we take the limit as p -+ oc, we see that the L relaxation of h should not be
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fz h(t,z,z)#(dz) but instead h(t,z,z)ll.(z#), i.e., the essential supremum of h(., .,z)
with respect to the probability measure #. However, we see that # Ilh(t,z, z)llg<z;> is
not convex but is rather quasiconvex, i.e., the level sets are all convex. Further, this map is
lower semicontinuous with respect to weak convergence.

We prove that this relaxation will guarantee the existence of an optimal relaxed control.
Therefore (i) above will hold. We then prove that the relaxed value function and the original
value function coincide by establishing that the relaxed value function is a viscosity solution
of the same Hamilton-Jacobi-Bellman equation as the original value function. Uniqueness of
viscosity solutions yields the fact that they must be identical. Thus, both desirable properties
of a relaxed control problem will hold.

2. Statement of the problem. Consider the controlled system of ordinary differential
equations

(2.1) d(-)/d- f(-, c(-), (-)), 0 _< t < - _< T,

(t)-(2.2)

The control functions (.) are chosen from the class of functions

Z{t, T] {" {t, T] --+ ZI is Lebesgue measurable},

where Z, the control set, is a fixed compact subset of some euclidean space. We assume for
simplicity that

(A) f [0, T] R Z -+ R is jointly continuous and is Lipschitz in z. That is, there
is a generic constant/4 such that

(2.3) If(t,m,z) f(t,z’,z) < Clx- x’l, v,’ .
In addition, If(t,z,z)l <_ K(1 + Iz]).

We are also given a function h [0, T] x R x Z ---+/1 assumed to be jointly continuous
and also uniformly Lipschitz in z. Without loss of generality we assume that h is a nonnegative
function since otherwise we relace h by Ih].

Under (A), (2.1)-(2.2) has a unique solution for any h E Z It, T] (see Ill). The goal
is to choose a control function E Z that minimizes the largest that h(r,(r), (r)) can
be on the time interval It, T]. We approach this problem by studying the value function
V:[O,T] x R --+ R:

(2.4) V(t,z) inf esssup h(r,(r),
CEZ t<r<T

It was proved in [4] (see also [2] for a direct proof) that the ess supt<,<r in (2.4) can be
replaced by suPt<,,.<r. Intuitively, jumps of on time intervals of Lebesgue measure zero are
not necessary since they cannot change the dynamics.

The main result of [4] is that the function V is the unique continuous viscosity solution
of the problem

(2.5) max { Vt + min
zZlh(t,z,z)<V (t,z)

f(t z,z) minh(t,z z) V(t,z)} -O,
zEZ

(2.6) V(T, x) min h(T, x, z).
zEZ
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Remark 2.1. By examining the proofs of [4] one can weaken the continuity assumption of
h(t, z, z) in z Z to lower semicontinuity uniformly in (t, z). This is important because we
see that the corresponding relaxation involves a lower semicontinuous rather than a continuous
function.

Define the hamiltonian function

(2.7) H(t, z, r’, p) min p. f(t, z, z)

fort R andp R.
Remark 2.2. Observe that the minimum is over the set {z ZIh(f z, z) < r}. If this set

is empty, H is defined as +oc. The form of (2.5) implies that the set is nonempty. Furthermore,
the minimum in the hamiltonian is guaranteed since Z is compact and (A) holds.

We have that (see [4])

and

H*(f,z,r,p)=H(t,z,r-O,p)

are the upper and lower semicontinuous envelopes of H, respectively. The function V then
satisfies Eq. (2.5) as in the following definition [7], [8].

DEFINITION 2.1. V is a viscosity solution of (2.5) if
(i) V is a viscosity subsolution, i.e.,for any (to, xo) for which V has a maximum,

for a smoothfunction g), itfollows that

max{t + H*(to, zo, V(to, zo) D.(to, Zo)) min h(to, zo, z) V(to, zo)} > 0
and

(ii) V is a viscosity supersolution, i.e.,for any (to, z()) for which V g) has a minimum,

for a smoothfunction , itfollows that

max{t + H,(to,zo, V(to, zo) D(to,Zo)) min h(to, CCo, Z) V(to, Zo)} < 0.

[4] does not consider the important problem of the existence of optimal controls. In
the classical theory of optimal control one requires some sort of convexity of f and h in the
controls in order to guarantee existence. Without convexity assumptions there may not exist
an optimal control. In that event, one convexities the problem by convexifying f and h. This
is accomplished through the use of relaxed controls. Thus, we seek the corresponding relaxed
control problem for minimax optimal control.

To motivate what follows we first take the naive approach that we convexify f and h
in exactly the same way as .in the problem of Lagrange. We introduce the space of relaxed
controls.

Let M(Z) denote the space of bounded measures on Z. Viewing M(Z) as the dual
space of C(Z) continuous functions on Z, we endow M(Z) with the weak star topology
of C(Z)*. Let the space of relaxed controls be given by

Z[t,T] {# L([t, T]; M(Z))I#(’r is a probability measure a.e.-r It, T]}.

Let .M(Z) be the set of probability measures on Z. Then, we may write that Z[t, T]
L (It, T]; j/(Z)), the space of essentially bounded, Lebesgue measurable maps # It, T]
AA (Z). For any relaxed control # Z[t, T] there is a unique relaxed trajectory given by

(2.8) (7-) x + f (s, (s), z)#(s, dz)ds.
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For any # E J/(Z) define the functions

(2.9) f(t, x, #) fz f(t, x, z)#(dz)

and

(2.10) [z(t,z,#) #- esssup h(t,z,z)-
zZ

where L(Z; #) is the space of essentially bounded, with respect to the measure # E Jtd(Z),
real valued functions on Z. We show that the correct relaxation of the Lc problem involves
the functions f and . The relaxed dynamic is the usual f, but the classical relaxation of
the cost functional uses fz h(t, z, z)#(dz) rather than h. Now we show that replacing h by

fz h(t, z, z) d# is not the correct relaxation.

Define the relaxed value function W [0, T] x R’ --+ R as

(2.11) (t,z) i...nf esssup [ h(r,(r),z)#(r, dz).
I, EZ[t,T] t<r<T

The function W is easily shown to be the unique viscosity solution of

max {t + min D.f(t,x,z)#(dz),{#EA/I(Z)I fz h(t,x,z)l(dz)<_z(t,a:)}
(2.12)

,eza(z)min y2 h(t, z, z)#(dz) (t, z) } O,

(2.13) W(T,z)- min h(T,z,z)#(dz).
e(z)

Since it is possible that

min V"
Jz
[ f(t, x, z)#(dz) < (zeZlh(min,z)<.}t V" f(t, x, z)

{,e(Z)l fz h(t,z,z)p,(dz)%r’} ,z

it will not be the case, in general, that W V. Consider the following.
Example. On the time interval [-1,O], take f(t,z,z) z2 10, Z [0, lO], and

h(t, z, z) [z[ + z. First, we calculate an upper bound for the relaxed value for the initial
conditions z O, t 1. Choose the constant (in time) relaxed control

#(r) 0.9 6(z O) + 0.1 6(z 10).

We are using the notation that for any zo Z, 6(z zo) is the measure, all of whose mass is
concentrated at zo. The relaxed trajectory is given by

(T) Z
2 10 #(s, dz)ds 0

,10]

for all -1 r 5 0 since f[o,,o] z2 >(s, dz) 10. Since f[o, lo] z >(s, dz) 1, the relaxed

value function W then satisfies

W(-1,0) _<
L [-l,O]
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On the other hand, if V(- 1,0) _< 1, then it is clear that we may consider only controls for
which 0 <_ (-) _< for all -. Clearly the optimal control must then be (-) since that
is the control that keeps as close to zero as possible. But then (z-) -9(- + 1) and

V(-I,O)= sup (1((7-)1+(7))- 10> 1.
<’r<0

We conclude that the relaxed value W(-1,0) < V(-1,0) even though the function f is
quadratic and h is linear in z in this example. Therefore, this relaxation of the L problem
cannot be the correct version.

To motivate the relaxation using the function in (2.10), we look at Lp, p > 1, approxi-
mations to the L problem as in [4]. Define the Lp value function

V.p (t, x) inf
z[t,7]

Then Vp is the unique continuous viscosity solution of

(V,)t + minz D::Vp f(t,z,z) + -pi,fci
If we relax the Lp problem using classical theory, we obtain the value function

(2.14)

+/-

Vp(t, x) in h(s, (s), z)p #(s, dz)ds

Remark 2.3. Observe that the function W in (2. l) is obtained formally as a limit as
p ocof

(2.15) Wp(t,z) inf

This corresponds to relaxing h, not hp. But the integrals on the right side of (2.15) are not

weakly lower semicontinuous in # for all p > because this is a nonlinear nonconvex for odd
p, functional of #. Therefore, we are guaranteed the existence of an optimal relaxed control
for the Lp problemwhen we relax hp, but this is not the case when we relax h.

The function Vp satisfies for each p, the problem

V + t,min DV. f(t, z, #)+ 9 -(,- V(t,x) O.

If a limit is going to exist as p -+ oc, it is clear that we must have

>

or, in other words, for large p,

+/-
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If Vp converges to, say, V, then this puts the requirement on the measures # that

since (fz hP(t,z,z) #(dz)) I/p ]h(t,z,z)llr(z;,,) as p --+ oo. Thus, we arrive at the
following statement, whose proof is similar to the proof of Proposition 2.6 and Theorem 4.2
in [4] and is therefore omitted.

THEOREM 2.1. limp_+ V, t z) V t, z) exists on [0, T] x R and V is the unique,
continuous viscosi, solution of
(2.16)

max + min

and terminal condition

(D../(t, z, #)), min
,6M(z)

(t, a:, #) P(t, z) } -0
(2.17) P(T,z) min (T,z,#).

Furthermore,

V(t,x) inf

With this theorem as motivation, we make the following definition.
DEFINITION 2.2. The relaxed value function associated with the L problem is

(2.18) V(t,z) inf
,(.)z[t,7]

It is also possible to prove directly that V defined by (2.18) is the viscosity solution of
(2.16) and (2.17) by using the dynamic programming principle

(2.19) V(t,z) inf max{llh(r,(r), #(r))llL[t,.] P(s, .(s))}.

The proof is similar to that of Theorem 3.2 in [4]. However, one now uses the weakened
assumption that ,(.,., #) is lower semicontinuous (with respect to weak convergence), which
is proved in Lemma 3.2 below. Uniqueness of viscosity solutions is proved as in Theorem 4.2
in [4].

3. The relaxed L value: Existence of an optimal control. Having motivated the
definition of the relaxed value function for the L optimal control problem, we must now
establish that it is the appropriate relaxation in the sense that (i) an optimal relaxed control
will exist and (ii) the relaxed value is the same as the original value function. To begin, we
need some preliminary results.

LEMMA 3.1. For each (, .v) fixed, the mapping

is a quasiconvexfunction. In fact,

(3.1) h(t,z, #1 + (1 ,)#2) max{(t,z,#),h(t,z,#2)}

for0 < , < 1.
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Remark 3.1. A quasiconvex function is a function, say 9 X - R, X a convex set,
satisfying

9(Ax+(1-,k)y) <_max{9(x),9(y)}, 0A<_ 1, z,/EX.

Equivalently, 9 is quasiconvex if the level set of 9, {x E XIg(x) <_ r} is convex for all
r R This definition is not to be confused with quasiconvexity for functionals defined in
the calculus of variations.

Proof. Fix 0 < A < 1, #1, 2 J(Z) and set u A# + (I ,k)2. Then both #1 and

#2 are absolutely continuous with respect to u. Therefore,

,(t, :c, u) inf{ sup h(t, z, z)" E such that u(Z E) 0}
zEE

_> inf{ sup h(t, z, z) E such that #i(Z E) 0}
zEE

(t,z,#i), i-- 1,2.

Recall that we are assuming that h > 0 to simplify matters.

On the other hand, if h(t,z,u) > max{z(t,z,#),h(t,z,#2)} a, then there is a set
E C Z such that u(E) > 0 and h(t,z,z) > a, Vz E. Therefore, either #(E) > 0 or

#2(E) > 0, or both, and so either h(t, z, #) > a or (t, , #I) > a, which contradicts the
definition of a. Vl

To prove that h(.,., #) is not actually convex in general, consider the following example.
Example. Suppose h(z) is a continuous function that has the value at Zl and the value

0 at z2. Let 0 < A < and let #i 5(z zi),i 1,2, and u A#I + (1 A)#2. Then

z(u) 1, (#l) 1, h(#2) --0. Thus, z(z,,) > Az(#,)+(1 -/)z(#2).
We will next prove the following lemma.
LEMMA 3.2. For each (t, ) fixed,

is weakly sequentially lower semicontinuous.

Proof. If this is not true, then, given > 0, there exists a #* E .Ad(Z) and a sequence of
measures {#} C A//(Z) with # #*, and sets {Ei} such that #i(Z Ei) 0 and

for all large i. Set

F is a compact set. Then #i(Z F) 0 for all i. The fact that #,z #* implies that
lira infi_oo #i(Z- F) _> #*(Z- F) since Z- F is open. We conclude that #*(Z- F) 0.
Therefore,

sup h(s,x,z)<_
zEF

which is a contradiction.
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We are now ready to state the main theorem in this section.
THEOREM 3.3. For eachfixed (t, x) E [0, T x R there exists an optimal relaxed control

zk,
This theorem is actually a corollary of the following more general statement, which is

what we shall prove.
THEOREM 3.4. For each (t, x, a) [0, T] R R consider the set valued map

Assume condition (A) weakened to assume that h(.,., z) is merely lower semicontinuous in
z. If (t, x, a) is a convex setfor each (t, x, a) , then for any initial position (to, xo)
[0, T] R, there exists an optimal control * Z[0, T] and an associated optimal trajectory
*, with * (to) xo,for the L[to, T] problem (2.4).

Proq Under our assumptions on f and h, is upper semicontinuous and upper semi-
continuous with respect to set inclusion.

To verify the last statement, pick a point (t0, x0, a0) G . We have to show that given
0, there is > 0 such that (t, x, a) [(t0, xo, a0)]e for all (t, x, a) B6(to, xo, o).

Here [A], for any set A, is the set of points whose distance from A is .
Suppose this is not the case. Then there exists e 0, a sequence of points (t,x, a)

(to, xo, ao), k , and zl (t,x,a) so that d(,E(to,xo, ao)) . We use the
notation that d(x, A) is the distance from the point x to the set A. Now, f(t, x, z)
and a h(te, x, z) for each k 1,2,..., for some z G Z. Since Z is compact, z z*
on a subsequence, still denoted {k}. Passing to limits and using the lower semicontinuity
of h(.,., z), we obtain 0 f(to, xo, z*) and a0 h(to, xo, z*), which implies that 0 G

(t0, x0, ao), which is a contradiction.
Now, let ((, ) be a minimizing sequence, with : (to) x0, k 1,2, Then,

and, on a subsequence {k}, [* uniformly and d(/dw d*/dw weakly on It0, T].
We claim that there is a measurable function A(w) satisfying A(w)]]r[to,] V and

d(*/dw (w, * (w), V) for almost all w It0, T].
To see this, since d(/dw d*/dw by Mazur’s lemma, for every j there exists an

integer n.j, a set of integers 1,2,..., k, a set of nonnegative numbers .4, aJ, with

.4 1, such that, n.4+ > n.4 + k, and, if we define

d,,. +,i

i=1

then y(7) d*,/d7 for a.e. [to, T]. We are not distinguishing between convergence
on a subsequence. Now define

A. (7) <<max h(7, ,.+i(7), 6.;+,z(7)),

and

A(z-) -lim inf
.j--+

By lower semicontinuity,

IIh(-)llr[to,T] <_ liminf max IIh(-,,,+(;’),,j+j(-))llL[t,,,y] V.
.j--cx <i<k,
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Set

0.j (7-) Z aijf(7-, *(7-), +i(7-)), max h(7-,*(7-)+i(7-)).LgJ(T)
<i</

Then, since : ---+ c, uniformly in 7-, by assumption (A) it follows that on a subsequence,
.(7-) A(7-), and 0.j (7-) -+ d*/dT- for a.e. 7- E[to, T1. Therefore, we have that

f(7-,*(7-), ,,+i(7-)) E (7-,*(7-),j(7-)) a.e. 7- fro, T].

Since, for 7- fixed, Z2(7-,c*(7-), Oj(7-)) is a convex set, 0.j(7-) /2(7-,*(7-), 0j(7-)). By up-
per semicontinuity, since 0.j -+ d*,/d7- and Oj --+ , d*,/d7- Z2(7-, * (7-), A(7-)), for
a.e. 7- fro, T]. Hence ([51, p. 94), there is a measurable map * E Z[to, T], such
that d*/d7-- f(7-,*(7-),*(7-))and A(7-) _> h(7-,*(7-),*(7-)), a.e. 7- fro, T]. But
l/(to, zo) >_ ,(7-)llgIto,T1, and we conclude that (*,*) is optimal. V1

Remark 3.2. The proof of this theorem is adapted from that in [5, Thms. 4.1 and 8.1 ].
Remark 3.3. The proof of Theorem 3.3 is immediate by noting that f(.,., #) is linear and

h(.,., #) is quasiconvex.
We conclude this section by giving a result that shows that quasiconvexity of h in z is

a necessary condition for weak lower semicontinuity of L functionals in the calculus of
variations. The proof is adapted from [6, pp. 105-107]. The analogous result for classical
variational problems is that convexity is necessary for weak lower semicontinuity of integral
functionals [6, p. 104]. Under coercivity assumptions on h(.,., z), the converse is also true

[6, p. 1121.
THEOREM 3.5. Let Z be R and assume that h(t, x, z) is continuous and that f (t, x, z)

z. Then, considering thefunctional I[] h(s, (s), t(S))IIL[,b in the class ofabsolutely
continuous functions, if I[] is weakly lower semicontinuous for each fixed 0 <_ a < b <_ T,
then h(t, z, z) is quasiconvex in z for each (t, x).

Pro@ Suppose that h(to, zo, z) is not quasiconvex in z with t0 (0, T). Then, there
is a0. > 0 and aconvex combination z0 -i=l izi, zi R,i 1,...,m,,i _>
0, i=l "i- 1, such that

(3.2) h(to, xo, zo) >_ max h(to, xo, zi) + 0..

Pick 5 > 0 such that to + 6 < T and Ih(t, z, zi) h(to, :Co, zi)l < 0-/3 for 0, 1,..., rn, if

(t,x) /3(t0,x0). Set’7 iflz01 < 1/2 and U 6/(2]z01)if Izo[ > 1/2.
Consider the trajectory on fro, to + 7] corresponding to the constant control @(r) z0

given by {o(r) zo + zo(r- to). Now, construct a sequence of trajectories ca. (.) on [to, to + 7]
emanating from x0 such that d{(r)/dr z. if

7-E to+ j-+- hi ,to-+- j-+- A: r- 1,2,...
i=1 i=1

for each j 0, 1,... ,/c. Then [6, p. 1061, (7-) 0(7-) uniformly and at least on a
subsequence, d(7-)/dT- do(7-)/dT- a.e. as/c oc. Set j.,. to + (j + i=, i), r
1,... ,m,j- 0,... ,/c. For all/c sufficiently large, ,(7-) /3-(,Co(7-)). Now we estimate
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max max

max max h(to, zo,&.)[[ +

max h(t()() Zo) + (by (3.2))

2n
h(to, xo, zo)

o. 2o-
_< ’<_J<_max h(r, o(r), zo)l L [to+ (2’),,,+]- - 3 3

This contradicts the assumed weak lower semicontinuity of I. gl

4. Relaxed value original value: V- V. The final goal is to establish that the
relaxed value and original value coincide. To do that, we prove that V, which is a viscosity
solution of the relaxed Bellman equation (2.16),.z" is also a viscosity solution of the original
Bellman equation (2.5). We must also show that V satisfies the terminal condition (2.6). Then
uniqueness of viscosity solutions will yield the result.

Define the relaxed hamiltonian

(4.1) I2I(t, z, r, p) min p.

THEOREM 4.1. V(t, ;c) V(t, ;c) on [0, T] ’.
Proof. Consider first t T. We have that

9(T,z)- rain h(T,z,#)

min h(T,z,z)llL(Z:,,)
,..(z)

<_ min h(T, z, z) V(T, z).
zZ

The last inequality is true by choosing z zo Z arbitrarily and letting # 6(z zo). The

inequality V(T, z) >_ V(T, z) follows from

(T,z)- min z(T,,#)- min Ilh(T,z,z)llz-(z:,l >_ min h(T,z,z).
,,(z) ,(z) z

Therefore, V(T, z) V(T, z).
Similarly,

(4.2) min t(t, z, #) min h(t, z, z).
jv4(z) zZ

We show next that/(t, z, r, p) H(t, z, r, p), i.e.,

(4.3) min p..[(t, z, #) min p. f(t, z, z).
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First, it is clear that the set {p E AA(Z)I(t, x, #) _< r} is nonempty if and only if the set

{z ZIh(t, , z) < r} is nonempty. Without loss of generality, we may assume the sets are
nonempty since otherwise the hamiltonians are both +oc. Now, (t, z, r, p) <_ H(t, , r, p)
since, for each z0 such that h(t, z, zo) <_ r, we can let # 6(z z0). To see the opposite
inequality, let e > 0 be given and #* (Z) satisfy

(t,x,r,p) p. f(t,x,p*) e z p. f(t,x,z)p*(dz) e

and h(t,x,z)llL(Z:,.) r. LetB {z Z h(t,x,z) r}. Thenp*(B)- 1,p*(B)
0 and

(t, z, r, p) p f (t, z, z)* (dz) e

.1 p" f(t,x, z),*(dz)+ .l,,p. f(t,x,z)p*(dz)-

./ p. f(t, x, z)p* (dz) e

min p. f(t,x,z) e H(t,x,r,p) e.
zB

Therefore, (4.3) is true. Combining (4.3) and (4.2), we conclude that V and V both
satisfy the Bellman equation (2.5) (in the viscosi sense) and the terminal condition (2.6).
Uniqueness of viscosity solutions then yields that V and V are the same function.

Remark 4.1. A terminal cost can also be included in the results of this paper by considering
the value function

V(t,z)- inf max{ h(s,(s),4(s)) L[t,T], 9((T))}

In this case, V satisfies the same Bellman equation but now satisfies the terminal condition

V(T, x) max{min h(T, , z) 9(z)}.
zEZ

This problem is relaxed exactly as before.
We conjecture that when we allow lower semicontinuous terminal data 9, the correspond-

ing relaxed value function coincides with the lower semicontinuous envelope of the unrelaxed
value function. Furthermore, the relaxed value function will be the unique lower semicontin-
uous solution of Eq. (2.5) achieving the lower semicontinuous data 9. This is analogous to
the classical problem considered in [3].

Remark 4.2. A formulation of the relaxed problem using chattering controls is the fol-
lowing:

V(t, x) inf
(,(.),(.)

X-"n+ /.n+2 with i Z[t T]. Thewhere, a {ai}__+, ozi- ai(7-)> 0 z.,i=, ozi- l, {iji=,
max is taken over all _< _< n + 2 for which o(7-) 0, and

d n+2

Refer to [5] for chattering controls for classical problems.
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Abstract. Sufficient conditions for solution Lipschitz continuity, piecewise differentiability, and directional
differentiability are presented for parametric nonlinear programs and variational inequalities using the idea of con-
tinuous selections. The gaps between the sufficient conditions obtained here and the weakest possible conditions for
the corresponding conclusions are discussed and measured by known regularity conditions.
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1. Introduetiono This paper deals with sensitivity analysis for parametric nonlinear pro-
gramming (NLP) problems of the form

NLP(c) minimize f(x,c), s.t. x K(e),

as well as for parametric variational inequality (VI) problems of the form

VI(e) find x E K(e) such that F(x,e)(x x) >_ Ofor any x’ E K(c),

where K(e)= {x R:9(x,e RP__ x {0}q}, f, F, and 9 are functions from Rx R to
R, _R, and ]2pq-q, respectively, and e R is a perturbation parameter. We always consider
that e0 R is a fixed parameter and that NLP(e0) or VI(e0) is the original nonlinear program
or variational inequality problem, while NLP(e) or VI(e) is the perturbed version of NLP(e0)
or VI(e0).

The basic theory and computational aspects of sensitivity analysis in nonlinear program-
ming can be found in the pioneering work of Fiacco [2]. For recent developments in this field
the reader may consult Fiacco and Liu [3]. In his seminal paper on the generalized equation,
Robinson [29] introduced a key notion of strong regularity and proved that if the linear in-
dependence condition and strong second-order sufficient condition hold at a stationary point
of a nonlinear program, then the perturbed stationary point and its associated multiplier are
single-valued locally Lipschitz functions of the perturbation parameter. At nearly the same
time a similar result, without the Lipschitz continuity, was established by Kojima 13] under
the Mangasarian-Fromovitz constraint qualification and general strong second-order suffi-
cient condition as part of his investigation of strong stability. Shortly afterward, Robinson
[30] obtained the upper Lipschitz continuity of the perturbed stationary point and multiplier,
assuming the Mangasarian-Fromovitz constraint qualification and general second-order suf-
ficient condition. In view of these results, Robinson [30] proposed a very natural question:
can one find an appropriate combination of a constraint qualification (weaker than linear inde-
pendence) and a second-order condition, under which the perturbed stationary point or local
solution will be a single-valued locally Lipschitz function? He also gave an example to show
that under a constraint qualification stronger than the Mangasarian-Fromovitz constraint qual-
ification and the strongest possible second-order condition, the answer to the question is no.
The first purpose of the present research is to attempt to answer this question; we show that
under the assumptions of the Mangasarian-Fromovitz constraint qualification and constant
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iming@seas, gwu. edu)

1040



SENSITIVITY ANALYSIS IN NLP AND VI 1041

rank constraint qualification as well as the general strong second-order sufficient condition,
the answer is yes.

The second purpose of this research stems from a recent study Liu and Falk [24] that
is concerned with nonlinear two-level optimization problems. An approach in which ascent
methods are used in the upper-level problem with gradient information from the lower-level
problem is proposed and investigated. In the present paper we sharpen the classical results of
Jittorntrum [7] and Robinson [31 concerning the directional differentiability of the perturbed
local solution of a nonlinear program and the obtained results play an important role in [24].

The third motivation for this paper, along another closely related direction, comes from a
most recent work of Kyparisis [19] in which he extended the solution directional differentia-
bility result of Jittorntrum [7] in nonlinear programming to nonlinear programs and variational
inequality problems with nonunique multipliers under the assumption of constant rank con-
straint qualification and some other standard assumptions. We observed that in terms of solu-
tion directional differentiability, the rank assumption imposed on those inequality constraints
with zero multipliers can be dropped without losing the solution directional differentiability
so that the assumptions used in 19] can be weakened.

Parallel to the stability and sensitivity developments in nonlinear programs, the stability
and sensitivity theory for variational inequalities has been expanding rapidly after Robinson’s
work [29], [30] on the generalized equation. The results obtained before 1990 have been
surveyed in Kyparisis [18]. More recent advances can be found in Robinson [32], [33];
Kyparisis [20]; King and Rockafellar [11]; Gowda and Pang [4]; Pang [27]; Mordukhovich
[26] and Liu [21]-[23]. As with nonlinear programs, we investigate the sensitivity issue in
variational inequalities and parallel conclusions are obtained.

The overall approach of the paper is via continuous selections to obtain sensitivity results.
The idea of continuous selections in sensitivity analysis study has appeared in many papers, in-
cluding Jittorntrum [7]; Dontchev and Jongen ]; Jongen, Moebert, and Tammer [8]; Jongen,
Wetterling, and Zwier [9]; Jongen, Twilt, and Weber [10]; Kyparisis [19]; Kummer [15]; and
Klatte [12]. This idea is elaborated on and systematized to some extent here. Some results
concerning Lipschitz continuity, piecewise differentiability, and directional differentiability
of a function that is continuously selected from a finite number of other "better" functions are
provided in 2.

In 3 we concentrate on sensitivity analysis of nonlinear programs. Continuous selection
results for the perturbed local solution under the Mangasarian-Fromovitz constraint qualifi-
cation and general strong second-order sufficient condition are established first. Then various
sensitivity results can be obtained that not only sharpen some classical sensitivity results but
provide new conditions for the Lipschitz continuity, piecewise differentiability, and directional
differentiability of the perturbed local solution. Parallel development for variational inequal-
ity problems is made in 4. Similar to those in 3 we give continuous selection theorems
for the perturbed stationary point under the Mangasarian-Fromovitz constraint qualification
and general strong second-order condition and conclude then with several sensitivity results
concerning Lipschitz continuity, piecewise differentiability, and directional differentiability
of the perturbed stationary point in variational inequalities.

2. Lipschitz continuity, piecewise differentiability, and directional differentiability
of a continuous selection. In order to obtain the main results of the paper, we provide in
this section some results concerning Lipschitz continuity, piecewise differentiability, and
directional differentiability of a continuous selection.

Several references cited here were brought to our attention by a referee. Also, this referee pointed out that the
whole theory of implicit function theorems for nonlinear programs essentially uses the idea of continuous selections.
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We shall first define precisely what we mean by piecewise differentiability. Let K be
a collection of a finite number of closed convex polyhedral cones (7. K is said to be a
subdivision of/ if the union of all (7 in/4 is/t and for every pair of (71 and (72 in/ with
(71 f’h (72 : [, (71 f"] (72 is a common face of (71 and (72. Each (7 C K is called a piece of K.

Let co C Rt and N C /t be a neighborhood of co. We say that a continuous function
x(.) N ---, /,’ is piecewise differentiable at co if there exists a subdivision K of R
such that for each piece (7 of K, there are a neighborhood U C N of Co and a function
y(.) C (U):U --+ _R satisfying

x(co + d) y(co + d) + o(d) for allde(7.

Intuitively, a piecewise differentiable function x(.) at c0 is a result of locally bending a C
function at c0 along some faces of a subdivision K.

By definition it is obvious that if x(-) is piecewise differentiable at c0, then it is directionally
differentiable at c0 along any direction d. It is also true that piecewise differentiability is a
stronger property than the/3-differentiability introduced in Robinson [31], which in turn is
stronger than directional differentiability. To see this, let Dx(c0; d) denote the directional
derivative of x(.) at c0 in any direction d. According to [31 x(.) is said to be B-differentiable
at c0 if one has

x(c0 + d) x(c0) + Dx(c0; d) + o(d).

It is easy to see that if in addition the homogeneous function Dx(co; d) is piecewise linear
(see Kojima [13]), i.e., there is a subdivision K such that Dx(c; d) is a linear function of
d when restricted on a piece (7 K, then x(-) is piecewise differentiable at c0. Hence
B-differentiability does not imply piecewise differentiability.

An abstract and elegant Lipschitz continuous selection result was obtained in Hager [5]
which we state first. Suppose that Z is a Banach space, D is a convex subset of a Banach
space, and x:D - Z is a continuous function. Furthermore, suppose I:D --+ 2
(the power set of.{ 1,..., m}) has the following property:

(2.1) If{zi,} C Dwithz.,; -- z e Dasi -- ocandJ C I(zi)foralli, thenJ C I(z).

The points z’, z* C D are called compatible if I(z’) I(z*) and I(z) C I(z’) for all
z [z’, z* (the line segment joining z’ and z*).

PROPOSITION 2.1 (Hager [5]). If A satisfies

(2.2)

for all compatible z’, z* D, then k satisfies (2.2)for all z’, z* D.
Specifying it to our case, we obtain the following proposition that is a simple extension

of a result in Dontchev and Jongen 1].
PROPOSITION 2.2. Let co R and B(c0; r) {c C R  011 < r}, where r is a

positive number, and let xi :/3(c0; r) -- I be a Lipschitz continuousfunction with Lipschitz
constant Ai, 1,..., m. Suppose x B(c0; r) is a continuous function such that

for all c B(c0; r), x(c) xi(c) for some { 1,..., m}. Then x is Lipschitz continuous
with Lipschitz constant := max{Ai 1,..., m}.

Proof. See the proof of Theorem 2.2 in Dontchev and Jongen 1].
Similarly, we have the following result for piecewise differentiability and directional

differentiability of a continuous selection. It was pointed out by a referee that this result is
closely related to Kummer’s theorem 14] on the representation of the Clarke subdifferential.
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We say that a continuous function z(.) is directionally differentiable at eo of order p along
a direction d if there are vectors Dz(eo; d), DZ;e(o; d),..., DPz(o; d) such that for scalar
s>O

sPDPx(ao; d)+ o(sp)(o + ) x(o) + ,Dx(o; ) + . D(o; ) +... +

THEOREM 2.3. Let o E R and B(eo;r) { E R - oll < r}, where r is
a positive number, and let x Cp B(eo;r) -- Rn, 1,...,m, with integer p >_
1. Suppose x B(o;r) -+ R is a continuous function selected from {x}, i.e., for all

B(o; r), x() x().for some { 1,..., m}. Then x is piecewise differentiable
at o and directionally differentiable at o of order p along any direction d. Furthermore,
the directional derivatives Dqx(o; d) of orderq <_ p as functions of d are Lipschitzian and
Dqx(o d) Dqx(o; d) for some i.

Proof. We show first that x is directionally differentiable at e0 of order p along any given
direction d. Let I(d) {i { 1,..., m} and there is a sequence {sj } with sj 0 such
that x(e0 + sjd) x(eo + sjd) }. Obviously I(d) . We claim that for any k, q I(d),
we have that Dx(e0; d) Dxq(O; d), D2xk(O; d) D2xq(gO; d), DPxk(o; d)
Dxq(eo;d). Then it follows that x is directionally differentiable at 0 of order p and
Dqx(eo;d) Dqxi(eo; d) for any I(d)and _< q _< p. Without loss of generality
we may assume that when restricted on [0, r’] for some small r’ > O, x(s) x(eo + sd) is
continuously selected from {x(s) x(e0 + sd) I(d)}. To prove the assertion claimed
above, we defineRi {s "0 <_ s <_ r’ andx(s) xi(s)} for anyi I(d). From the
continuity of x and xi it follows that each Ri is a closed set. Define a relation in I(d) such
that u g if there is a sequence {sj } with sj + 0 satisfying both {s. } C R. and {sj }

Suppose now u g. Then by definition there is a sequence {sj } with s. 0 such that
{s.} C R, and {s.} C Re. Sincex, andxe are in Cp, we find from {sj} C R, and
{ s. } C _Re that

2D2 8pDp 0(8p)(o + ) *(o) + oD(o ) + }5. (o; ) +" + )7. , *(o; ) +

pDPze(eo d) + o(sp),2D2xe(eo d) /... 4- -. sjx(eo) + s.Dxe(eo; )+ .s
Then it follows from sj .L 0 and the above relation that

D(o; d) Dxe(o; d),
(2.3)

D2xu(0; d) D2xg(o; d), DPx,(e0; d) DPxe(eo d).

Furthermore, note that for any pair k, q I(d), since [0, r’] Ue(d)Ri, there is a chain
such that k g, , g2,...,gh- gh, gh q. So the desired assertion follows
from (2.3).

We have proved that x is directionally differentiable at e0 of order p along any direction
d. Note that using (2.3) and the continuity of x it is not hard to show that for _< q _< p
the q times directional derivative Dqx(go d) is continuously selected from the directional
derivatives {Dqxi(eo; d) 1,..., rn}. Since each xi is continuously differentiable at
of order p, we find from calculus (see Marlow [25, p. 202]) that

Dqxi(o;. d) Vqexi (eo)d d,

which is Lipschitzian as a function of d. Then from Proposition 2.2 we conclude that
Dqx(o; d) is Lipschitzian for each < q _< p.
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Now what we have left is to show that x is piecewise differentiable at c0, i.e., the directional
derivative Dx(c0" d) as a function of d is actually piecewise linear. Let Ai g7xi(c0) for

1,..., m. Each Ai is an n-by-t matrix. Denote the gth row of Ai by Af. For each direction
d define d(d) {i" { 1,..., m} and Dx(c0; d) Aid}. We shall construct a subdivision
/( of/ such that for each c /( there exists some {1,... ,m}, Dx(c0; d) Aid for all
d or. Note that for each direction d the relations between Dx(c0; d) and Aid, 1,..., m,
are such that for any J(d), any j d(d)\{i}, and any _< g _< n, one has

Ad Aid.
For any J(d), any j {1,..., m}\J(d), there exists some g, _< g _< n, and one has

Ad > Ad.eitherAd < Asd or

According to the above relationship we can construct a set Rel(d) for each direction d in the
following way. For any J(d), any j J(d)\{i}, and any _< g _< n,

put (i, j, g, -) into Rel(d).

For any J(d), any j {1,...,m}\J(d), and any _< g _< n,

put (i, j, g,-) into Rel(d)if Afd Aid;
put (i,j, g, <)into Rel(d)ifAd <_ Aid;
put (i,j, g, _>)into Rel(d)ifAfd >_ A.d.

In this way we have obtained finitely many different sets, say, Rell, Rel2, Relc. For each
Rela,, _< k _< L, define a convex polyhedral cone as follows:

o-(k) {z t Afz- Ajzif (i,j,g,-) Rela:;

Afz <_ Ajz if (i, j, , <_) Rely"

Az > Ajzif(i,j,e,>) Rela,}.

Then it is not difficult to see that/( t5{ }cr(k) forms a subdivision of Rt.
At this point what remains is to show that for each or(k) K we have that Dz(co" d)

Aid for all d o-(k) with some { 1,..., m}. Given a o-(k) K that is defined by Rela,
from the construction of/( we know that there exists at least one direction d whose Rel(d)
is equal to Rely. Take any d(d). Obviously Dx(c0;d) Aid. We shall show that
Dx(c0; d’) Aid’ for all d or(k) by contraposition. Suppose the contrary, i.e., there is a
d’ or(k) such that Dx(co; d’) Aid’. Let d(k) (1 k)d + kd’. Define

(5’ max{(5" (5 [0, 1] such that Dx(c0; d(A)) Aid(A) for A [0, (5]}.

The intuitive explanation of (5’ is that Dx(c0" d(A)) takes the value of Aid(A) for k from 0 to
(5’ and then switches to some other Aid(A) such that j J(d) right after (5’, i.e., there is a

sequence {Ah} ], (5’ such that Dz(co;d(A,)) Ajd(Ah). The existence of such j and {Ah}
can be proved because otherwise we would have Dx(c0; d) Ad, which contradicts our

assumption. By continuity we find that

(2.4) Aid((5’)- Aid((5’).
Since j J(d), this means that there exists at least one 8 _< 8 _< n, such that either

d or Afd > d. Without loss of generality we may supposeAd < Aj A.
(2.5) Ad < AJd.
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Then from the definition of Rel(d) we know that we have put (i, j, g, <_) into Rel(d), and
consequently it follows by the definition of a(k) that

d.(2.6) Afd’ < Ay
But (2.5) and (2.6) contradict (2.4) since 5’ (0, 1). S

Finally we give a result concerning the directional differentiability of a continuous selec-
tion. We omit its proof because it can be shown easily by reasoning similar to that used to
prove Theorem 2.3.

THEOREM2.4. Letco R andt3(co;r) {c /it lie-c011 < r},whererisapositive
number. Suppose x /3(c0; r) -- t is a continuous function selected from continuous

.[unctions {xi}, i.e.,for all c B(c0;r), x(c) xi(c) for some {1,... ,m}. If each xi
is directionally differentiable at co in a direction d, then z is directionally differentiable at co
in d and its directional derivative Dz(c0; d) Dz(c0; d) for some i.

3. Lipschitz continuity, piecewise differentiability, and directional differentiability
of solutions of NLP. The basic conditions we shall impose on the local solution in question
of a nonlinear program are the Mangasarian-Fromovitz constraint qualification and general
strong second-order sufficient condition. It is well known (see [13]) that these conditions
are the weakest ones to ensure the existence and local uniqueness of the perturbed local
solution. We shall show that under these basic conditions the perturbed local solution can
be continuously selected from the perturbed local solutions of related binding subprograms
and relaxed subprograms. These subprograms are derived based on the so-called limiting
index sets. Each such limiting index set determines a binding subprogram and a relaxed
subprogram of NLP(c) that have locally unique local solutions. Then using the fruitful results
established in 2, various sensitivity conclusions can be drawn that not only sharpen some
classical sensitivity results but provide new conditions for the Lipschitz continuity, piecewise
differentiability, and directional differentiability of the perturbed local solution of the original
problem.

We briefly review the optimality conditions for NLP(c). It is well known that if certain
regularity conditions, called constraint qualifications, hold at a local minimizer x to NLP(c),
then the Karush-Kuhn-Tucker (KKT) conditions or stationary conditions hold at x. There
exist multipliers u R_ _/7q such that (x, u) satisfies the following generalized equation
(equivalently, a variational inequality, see Robinson [30]):

(3.1)

where L(x,u,c) := f(x,c)+ uVg(x,c), and the notation N denotes the normal cone
operator. For a convex set C c/i’, and z /

{y Rt’y(z’- z) <_ 0for allz’ C}:Vc()

A point x that satisfies (3.1) with some u is said to be a stationary point of NLP(c) and
the pair (z, u) is said to be a KKT point of NLP(c). We shall denote the set of multipliers
associated with a stationary point x of NLP(c) by k1(z, c), i.e., l(x, c) {u (x, u) is
a KKT point of NLP(c)}, and denote the set of extreme points of M(z, c) by E(z, c). If
u /_ Rq, define the index set PM(u) that represents the inequality constraints with
positive multipliers and the equation constraints, i.e., PM(u) {i { 1,..., p} u,i > 0}U
{p + 1,..., p + q}. The stationary point set and local minimizer set of NLP(c) will be denoted
by SP(c) and LM(c), .respectively. Let x0 be a stationary point or a local minimizer of
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NLP(c0). For any f > 0 the localized stationary point set and local minimizer set are defined
by SPa(c) := SP(c) C B(zo; ) and LM(c) := LM(c) N B(zo; ), respectively, where

Let L be a subset of {1,...,p,p + 1,...,p + q}. We define the so-called binding
subprogram

BNLPL(C) minimize f(x,c), s.t. x BKL(C),

where B/Q(c) {:c R 9L(Z,C) {0}e}, 9c(:c,c) consists of functions 9i(z,c),
L, and g is the appropriate corresponding dimensionality, and the relaxed subprogram

RNLPL(c) minimize f(z,c), s.t.

where RKc(c) {:c R 9c(z, c) RP’__ {0} q’ }, and p’, q’ are the appropriate corre-
sponding dimensionalities. Loosely speaking, the binding subprogram forces some inequality
constraints of the original program to be binding but relaxes some inequality constraints.
Hence its solution may be or may not be a solution of the original program. The relaxed
subprogram is obtained by relaxing some constraints of the original program. Therefore, any
solution of the original program must be a solution of the relaxed subprogram, but not vice
versa.

Suppose z0 is a stationary point of NLP(c0). Two important index sets of inequality
constraints are defined as follows. The active set of inequality constraints is defined by

I(xo,co) {i {1,...,p}: 9i(xo,co) O}

and the Lagrange active set of inequality constraints

J(z0, c0) {i I(:c0, c0) there exist some u M(z0, c0) such that ui > 0}.

It should be noted that the roles of inequality constraints with different characters differ
substantially. If an inequality constraint 9i(z, co) of NLP(co) is inactive at :co, i.e.,
I(zo, c0), then we can simply eliminate it without losing any stability information near z0. If
its associated multipliers are always positive, then it can be regarded as an equation constraint
locally. Finally, if it is Lagrange inactive, i.e., ,J(zo,co), then the solution directional
differentiability will not be affected by its behavior, as we shall see later. In view of the above
arguments, to simplify the presentation we shall always assume that the inactive inequality
constraints have been eliminated, i.e., I(zo, co) { 1,..., p}.

Several regularity conditions at :co for the unperturbed problem NLP(c0) will be used in
what follows.

(a) The linear independence (LI) condition holds at :c0 if

{Vgi(z0, co) I(zo, c0) t {p + 1,..., p + q}} are linearly independent.

(b) The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at z0 if
(i) {V:9i(:co, co) {p + 1,..., p + q} } are linearly independent;

(ii) There exists a vector z /’ such that

V:r, gi(:c(), C())Tz <5. O,

V.,g(x0, e0)Tz =0,

(c) The strict Mangasarian-Fromovitz constraint qualification (SMFCQ) 16] holds at z0
if
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(i) {V,g(:co, co): E J(:co, co)U {p + 1,..., p + q}} are linearly independent;
(ii) There exists a vector z E R such that

eo) < o,

27xgi(:C0, C0)TZ=0, d(:co, Co) U{p+ l,...,p+q}.

(d) The strong second-order sufficient condition (SSOSC) holds at:co with u
if

zVVL(xo, u, c0)z > 0 for all z =/= 0

such that z Z(zo, u), which is defined by

Z(xo, u) :={z R*: Vxgi(xo, co)Vz 0ifui > O, I(xo, co),
o, {p + p + q} }.

(e) The general strong second-order sufficient condition (GSSOSC) holds at xo if

SSOSC holds at:c0 with u for all M(zo, co).

(f) The constant rank (CR) condition holds at :co if for any subset L C I(:co, c0) the
family {Vxg(z, c) L U {p + 1,..., p + q}} remains of constant rank near the point

(g) The weak constant rank (WCR) condition holds at :co if for any subset L
the family {Vgi(:c, c) L U {p + 1,..., p + q} } remains of constant rank near the point

Conditions (a)- (e) are well known in the literature. The CR condition introduced in Janin
[6] is a constraint qualification. The WCR is new and will be discussed later. At this point
let us summarize the relations between these conditions. The notation means "strictly
stronger than" in logical sense.

PROPOSITION 3.1. (i) LI =,= SMFCQ = uniqueness of multipliers ==;,= MFCQ +
WCR;

(ii) LI MFCQ + CR MFCQ + WCR;
(iii) CR= WCR;
(iv) SMFCQ CR, CR / MFCQ.
Remark 3.2. LI == SMFCQ <= uniqueness of multipliers == MFCQ can be found

in Kyparisis [19]. (2) LI == MFCQ + CR and SMFCQ , CR were shown by Kyparisis
[19]. CR MFCQ was proved in Janin [6]. (3) The implications SMFCO = WCR and
CR = WCR are evident. The counterexamples showing MFCQ + WCR -7 SMFCQ and
WCR CR are provided later.

The differentiability assumptions about the problem functions used in the paper are de-
scribed in a unified way. We say that the parametric program NLP(c) is C’e (k > 1, g > O)
near a point (:co, co) if the problem functions f and 9 are k times continuously differentiable
with respect to :c for z near :co with every c near Co, their gradients with respect to
times continuously differentiable in (z, c) near (:co, c0).

We shall first state below Fiacco’s sensitivity result for equation constrained nonlinear
programs and Kojima’s strong stability theorem.

PROPOSITION 3.3 (Fiacco [2]). Let L be a subset of { 1,..., p, p + 1,..., p + q}. Suppose
KKT, SSOSC, and LI hold at :co with multipliers L for BNLP(co) and that BNLPL(C) is
C+l, (k _> 1) near (:co, co). Then (a)for c in a neighborhood ofco, there exists a unique
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function !]L(e) [:eL(e), UL(C)]r E C satising that the KKTconditions hold at :eL(c) with

UL(C) for BNLPL(C) and that y(co) (x0, UL).
(b) The Jacobian QL (c) of the system

VxL(XL,UL,C) =0,
(3.2) 9(XL,C) --0, E L,

with respect to (XL, UL) is locally nonsingular and

where -N(c) is the Jacobian of the system (3.2) with respect to .
PROPOSITION 3.4 (Kojima [13]). Let xo be a stationary point of NLP(co). Suppose

that MFCQ and GSSOSC hold at co for NLP(co) and that NLP(c) is C’2’ near (Xo,
Then there exist 6, r > 0 and a unique continuous function ;c B(co; r) -- 1 such that

c(c) SPa(c) LM(c) and MFCQ holds at x(c) for all c /3(c0; r).
Under the hypotheses of the above proposition, M(;c(c), c) is a polytope for all

/3(c0;r) since MFCQ holds at c(c). For any c E B(co;r), the KKT conditions hold at

(c(c), tt), i.e.,

(3.3) o [

for each u E(x(c),). For any c E B(co; r) choose one u(c) E(x(), c) and let

L(c) PM(u(c)). It follows from (3.3) that [x(c), u(c)] is a KKT point of the binding
subprogram BNLPL() (c). Obviously, the number ofelements in the set {L(c) c B (co; r) }
is finite. We shall call some index set L belonging to this set a limiting index set in the sense
that if there exists a sequence of {cj } with cj c0 such that for all j

L L(c.i).

Denote by LIS(co, co) the set of all such limiting index sets; each is a subset of { 1,..., p, p +
1,...,p + q}. Without loss of generality we may assume that LIS(co, co) {L(c) c

B(c0; r) }. Now denote the elements in LIS(co, co) by L( ),..., L(s). Consider the following
binding subprogram

BNLPL(i)(c) minimize f(x,), s.t. x

for 1,..., s. In addition, we assume that CR holds at xo for NLP(c0). We observe that
(1) for each L(i) there exist ui E E(xo, c0) such that PM(u) c L(i), since by definition
there exists a sequence of {i } with c. Co such that for all j, L(i) L(j) PM(u(c.)).
So any accumulation point of {u(j)) can be chosen as such a ui. Consequently, the KKT
conditions hold at xo with ui for BNLPL(i)(co). (2) Since we have assumed that CR holds at

xo for NLP(c0), this implies that for each L(i) LI condition holds at xo for BNLPL(i)(co). To
see this, note that for each c. the vectors {V::g(x(c.),cj) k L(i) PM(u(c))} are
linearly independent since u(c.) is an extreme point of M(x(cj), cj). Therefore, LI holds at

xo for BNLPL()(co) as {X7:,:9a(x(c ), c) k L(i) } remains of constant rank. Furthermore,
LI condition indicates that ui is the unique multiplier at xo for BNLPL(i) (o). So the fact that
GSSOSC holds at no for NLP(0) implies that SSOSC holds at x0 for BNLPL(i)(co). (3) Now
applying Proposition 3.4 to BNLPL(i) (c) for each L(i), we find that there exist 6i, ri > 0, and a
continuous function x B(co; r) R such that for any c B(o; r), x(c) is the unique
stationary point of BNLPL(Z)(c) in B(:o; 6i). Also, Proposition 3.4 says that for any c
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/(0" r), x() is the unique stationary point of NLP(e) in B(xo" 5). (4) We may make r small
enough that a common 6 can be found such that for each e E B(e0; r), x(e), xl (e),...
are the unique stationary points of NLP(), BNLPL(I), BNLPL(.) in B(xo; 5), respec-
tively. For any fixed e E B(c0;r), let L(i) PM((e)). Note that the stationary point
x() of NLP(c) is also a stationary point of BNLPL(,i)() since [x(), u(c)] satisfies the KKT
conditions for BNLPL() (c). Then by the uniqueness property of stationary points, we deduce
that x(c) x(). Therefore, we have established an interesting connection between
and x() that for each c B(c0; r) x(e) can be identified to some x(e). We summarize this
fact in the following continuous selection theorem.

THEOREM 3.5. In the above setting, i.e., under the hypotheses ofProposition 3.4 and CR
condition, there exist 5, r > O and continuousfunctions x, x B(c0; r) --+ R’r, 1,...,
such thatfor any B(0; r), x() and x(), 1,..., ,s, are the unique stationary points
and local minimizers of NLP(c) and BNLP(i)(c), 1,..., s, on B(c0; (5), respectively.
Moreover, :e(.) is a continuous selectionfrom {:e,i(.) 1,..., } on B(0; r), i.e.,for each
c B(c0; r’), x(c) .:ci(g)for some { 1,...,

Having established the continuous selection theorem, we give below the two main results
ofthe section on Lipschitz continuity, piecewise differentiability, and directional differentiabil-
ity. Although the first one partially answers Robinson’s question, we stiI1 do not know whether
the imposed conditions are necessary for Lipschitz continuity of the perturbed stationary point
and local solution.

THEOREM 3.6. Let Zo be a stationary point ofNLP(o). Suppose that MFCQ, CR, and
GSSOSC hold at zofor NLP(o) and that NLP() is C+’ (k >_ 1) near (Zo, o). Then

(a) there exist 5, r > O, and a unique Lipschitz continuous function z B(co" r) 1
such that x() SP() Ll(c) for all c B(0; r);

(b) : is piecewise dfferentiable at co and directionally differentiable at co oforder h <_
along any direction d;

(c) the directional derivatives Dtz(c0; d) of order h <_ k as functions of d are Lips-
chitzian.

Proof. From Theorem 3.5 we know that there exist 6, r > 0, and continuous functions
x, xi B(c0;r) -- R’,i 1,...,s, such that for any e B(co;r),x(c) and x(e),

1,..., s, are the unique stationary points and local solutions of NLP(e) and BNLPL(i)(e),
1,..., s, on B(xo; (5), respectively and that x(.) is continuously selected from {xi(.)
1,..., s} on B(e0" r). Since under the hypotheses of the theorem each BNLPL(i) (c) is

C+, near (x0, Co), after applying Proposition 3.3 to BNLPL(,Z)(c) we conclude that each

x is in Ca in a neighborhood of Co. Then the desired conclusions readily follow from
Theorem 2.3.

The same reasoning yields the following result that sharpens some well-known classical
results.

THEOREM 3.7. Let Xo be a stationary point of NLP(co) with associated multipliers u.
Suppose that LI and SSOSC hold at xo for NLP(co) and that NLP(c) is C+’ (k >_ 1) near

(x0, c0). Then
(a) for c in a neighborhood of c0, there exists a unique Lipschitz continuous.function

y(c) [x(), u(c)]v such that [x(), u(c)] is the KKTpoint ofXLP() and y(co) [x0, u]"
(b) y is piecewise differentiable at o and directionally differentiable at Co oforder h

along any direction d;
(c) the directional derivatives D y(co, d) qf order h <_ k as functions of d are Lip-

schitzian.
Remark 3.8. (1) Conclusion (a) above was first obtained in Robinson [29] using the gen-

eralized equation approach. Here the same conclusion readily follows from a simple idea
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of continuous selections. (2) The directional differentiability of order of the perturbed
KKT points was first proved by Jittorntrum [7]. Subsequently, Robinson [31] showed that
the directional differentiability of order of the perturbed KKT point can be sharpened to
B-differentiability. Conclusion (b) above further improves the B-differentiability to piece-
wise differentiability. (3) To our knowledge the high-order directional differentiability of the
perturbed KKT point is obtained here for the first time in the literature.

It is interesting to compare the logical relations between LI, SMFCQ, CR, and MFCQ.
From Proposition 3.1 we know that

(i) LI =>=:> MFCQ + CR =>:=> MFCQ;
(ii) LI =>:=> MFCQ + SMFCQ (uniqueness of multipliers) =:>=> MFCQ.

Bearing Theorem 3.6 in mind, the reader may wonder if KKT / MFCQ / uniqueness of
mulipliers / SSOSC are sufficient for part of the conclusions derived in Theorem 3.6. The
next example, modified from an example of Robinson [30], shows that the Lipschitz property
(a) in Theorem 3.6 does not necessarily hold in this case. This finding was inspired by Robinson
[34]. However, some conclusions of Theorem 3.6 concerning the directional derivative are
still true in this case. Before proceeding to the example, we shall first give a result concerning
the Lipschitz property of the directional derivative of the perturbed stationary point under the
assumptions of KKT, SMFCQ, and SSOSC.

PROPOSITION 3.9. Let Xo be a stationary point ofNLP(eo) with its associated multipliers. Suppose that SMFCQ and SSOSC hold at xo for NLP(o) and that NLP(e) is C2’ near

(xo, o). Then there exist 5, r > O, and a unique continuous function x /3(e0; r) --+

such that x(e) 5’P6.() LI6(e) for all E B(e0; r) and that x(e) is directionally
differentiable at o along any direction d, and its directional derivative Dx(e0; d) uniquely
solves the following quadratic program

QP()
minimize v 2 r 2 7xgz 27egrd 0, PMz xLz + 2z gTe:,:Ld s.t. + E (u)

where 9 are evaluated at (x0, 0) and L at (xo, ’u, o). Furthermore, Dx(g0; d) is Lipschitzian
as a function of d.

Proof. The directional differentiability of the perturbed solution and the formula for its
directional derivative are direct applications of Corollary 3.1 in Qiu and Magnanti [28] and
thus the details are omitted. Note that if we treat the direction d in QP(u) as a parameter, we
have that MFCQ, CR, and SSOSC hold at any stationary point of QP(u) for any d. Applying
Theorem 3.6 to QP(u), we obtain the Lipschitz property of the directional derivative.

Remark 3.10. The directional differentiability of the perturbed local solution under as-
sumptions of KKT, SMFCQ, and SSOSC and its formula for directional derivative were first
derived in Shapiro [35] and [36], assuming more smoothness, however. His approach ex-
plicitly resorts to the second-order derivatives of the problem functions with respect to the
parameter and thus is not applicable here.

Example 3.11. Consider the following parametric convex quadratic program

,0v 2 1 2minimize
QP(’I, g2, e3) 2"

S.t. 9 A(2)a;" / a(e3) _< 0,

where
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e /3 and e0 (0, 0, 0)v. Let z0 (1,0)T. Obviously, QP(e) is C/’:q-l’/’: for any positive
integer k. It is easy to show that the constraints of QP(0, 0, 0) satisfy MFCQ at zo. Note that
the Hessian of the objective function is always positive definite provided that e > and the
constraints are linear. So the problem satisfies the strongest possible second-order condition
for e near e0. It is easy to verify that z0 is a stationary point of QP(0, 0, 0) with the unique
multipliers (0,0)v. Define for > 0, 2 > 0, and 0 3 /(1 + e),

*(gl, g2, g3) (1,0)v + /2(0, 1),
’/L(EI, E2, g3) gl (1, O)T @ (1 + El )g3/g(--1, 1)T,

and for e > 0, c2 > 0, and c3 > e c/ + c ),

Z(EI,E2,E3) (1,0)T @ 1/((1 + El)(1 @ g))(g3 @ gig3 glg, g2(gl @ E3 @ gig3))T,

We find that these vectors satisfy the KKT conditions of QP(e, e2, 3). Actually, we have

( + ,)*(,, <,3) (1,0) + A(2)(,, <,) o,

Therefore, for appropriate e near e0 the above vector z(e) is the unique local minimizer of
QP(e) On the other hand, for any e > 0, g2 > 0 and 0 < e3, e’ < el/(1 + e

-1 gt -I

This means that z(e) cannot be Lipschitzian in any neighborhood of e0.
The reasons why KKT + SMFCQ + SSOSC fail to ensure Lipschitz continuity of the

perturbed local solution should be of interest. We think this phenomenon may be explained
as follows: (1) locally Lipschitz continuity of the perturbed local solution is a neighborhood
property rather than a pointwise property; (2) unlike LI and MFCQ, SMFCQ is not preservable
under small perturbations; it can be destroyed even by small perturbations. Hence, in terms
of properties of neighborhood-type for the generally perturbed local solution, what we can
expect from SMFCQ is probably as much as that from MFCQ.

As mentioned before, in terms of directional differentiability the hypotheses of Theorem
3.6 can be weakened. Before proceeding to establish this result, we give a property of MFCQ.
This property plays a key role in the rest of the section.

LEMMA 3.12. Suppose that zo is a stationa point of NLP(eo) and MFCQ holds there
and that u E(Zo, eo). 6"an index set L C {l,...,p,p + 1, ,p + q} with L PM(z)
satisfies that {V,gi(z0, eo) L} is linearly independent, then there exist some z
such that

(3.4) V,9,i(z0, e0)Vz < O, LPM(u),

Proof By definition we find that for each J(zo, e0), there exist some u M(z0,
such that rz > 0. Then it is not difficult to see that there exist some u* M(zo, eo) such that

for each J(z0, e0),
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and

Let A denote the subspace spanned by {V:,,9i (x0, co), PM(u) } and/3 denote the con-
vex cone {A.iV:,.gi(x0, c0): (I(xo, co)\J(xo, co)) U (L\PM(u)), k,z > 0}, respectively.
Then, we claim that A V/3 (3. Otherwise, we have

{iEPSi(,) i:rgi(3gO’CO)l-qt-Zi:rli(380’CO)---;/\iVx’qi(Xo’C())--O’,iELi "iL2

where L C I(xo, co)\J(xo, co), L2 C L\PM(u), k,z I, and A,i > 0. Notice that
(PM(u) {1,... ,p}) c J(xo,co). Therefore, when L1 (, by multiplying the above
equation by sufficiently small s < 0 and adding it to (3.5), the fixed index set J(xo, c0) can be
made larger. This is a contradiction. When L1 (3, the above equation contradicts the linear
independence assumption. Having proved that A V/3 0, by the separation theorem we can
find z / with z 0 such that for any y A, zy >_ O, and that for any y B, zy < O.
Note that z-ry >_ 0 for any y A implies z-ry 0 for any y A. This establishes (3.4).

The conclusion of Lemma 3.12 can be interpreted as follows. For any 5I C I(xo,
d(xo, c0), SMFCQ holds at x0 for RNLP.zuL (e0), or equivalently, the multiplier u appearing
in Lemma 3.12 is the unique multiplier for RNLPauc (c0) at x0.

The next result provides sufficient conditions for the directional differentiability of the
perturbed local solutions of RNLPL (s) for certain index sets L. It is a refinement of Lemma
2.1 in [19].

LEMMA 3.13. Let Xo be a stationary point ofNLP(co ). Suppose thatMFCQ and GSSOSC
hold at xo for NLP(co) and that NLP(c) is C’1 near (x0,0). Then for every index set

L C {1,...,p,p+ 1,...,p+q} with L D PM(u) forsome u E(xo, co) such that
{V9i(x0, c0) Lf)J’(xo, co)} are linearly independent, where J’(xo, co) J(xo,eo)U
{p + 1,..., p + q}, there is a locally unique continuous local minimizer xL(c) ofeNLec().
Moreover, xc(c) is directionally differentiable at co in any direction d and its directional
derivative Dxc (c0; d) uniquely solves the following quadratic program:

QP,()
T 2minimize zVV2:Lz + 2z VLd, s.t. Vgz + Vg:d- O,

+ <_ o,
where u is such that PM(u) C L, thefunctions gi are evaluated at (xo, co) and the function
L at (xo, u, Co).

Proof We show that the KKT conditions, SMFCQ, and SSOSC hold at xo for RNLPL (eo).
Then the conclusions readily follow from Propositions 3.4 and 3.9. Note that u 0 for

{1,...,p} and PM(u). Since x0 is a stationary point of NLP(co), using the
assumption that u E(xo, e0) and L PM(u), we find that it is also a stationary point of

RNLPL(CO) with associated multiplier u. Evidently we have L J’(xo,co) PM(u) since

J’(xo,co) D PM(u). Applying Lemma 3.12 to the index set L J’(xo, co), we can deduce
that SMFCQ holds at x0 for RNLPL (c0). Finally, SSOSC holds at x0 with u for RNLPL(CO)
because L D PM(u) and GSSOSC holds at x0 for NLP(c0).

We give below a result that presents sufficient conditions for the directional differentiabil-
ity of the perturbed local solution of NLP(c). It partially extends Proposition 3.9 and includes
the main result of Kyparisis 19] in nonlinear programs as a special case.
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THEOREM 3.14. Let ;co be a stationary point ofNLP(co). Suppose that MFCQ, WCR, and
GSSOSC hold at ;co for NLP(co) and that NLP(c) is C2’1 near (;c0, c0). Then for c in some

neighborhood of c0, there exists a locally unique continuous local solution ;c(c) of XLP(c)
such that ;c(c) is directionally d(fferentiable at Co in any direction d t and its directional
derivative D;c(co; d) uniquely solves thefollowing quadratic programfor some E;(;e0, e0)

Qp(u)

minimize zVV,Lz + 2zrV2:,Ld, 9.V Ts.t. V:. z + V’gi d- 0,

where the functions 9i are evaluated at (;c(), c()) and the function L at

Proof. The idea of the proof is similar to that of the proofs for Theorems 3.5 and
3.6. Consider the KKT conditions (3.3) again. Choose any u(c) E(;c(),) and let

L(c) PM((c)). Then I;c(c),(c)] is also a KKT point of the relaxed subprogram
RNLP:()(c). The same reasoning that served for Theorem 3.5 yields that there exist, r > 0, and continuous functions ;c, ;c,: /3(c0;r) - R,’, l,...,s, such that for
all c /3(e0; r), ;c(c) and ;c,i(c), 1,..., ,s, are the unique stationary points of NLP(e)
and RNLPL(,)(c), 1,... s, on/3(x0; 6), respectively. Furthermore, x(-) is a continuous
selection from {;c,z(’): 1,..., s} on/(c0; r).

Consider the relaxed subprogram

RNLP(,i)(c) minimize f(;c,c), s.t. ;c Kz(i)(c)

for 1,..., s. We find using arguments similar to those used for Theorems 3.5 and 3.6
that (1) for each L(i), there exist uz E(;co, Co) such that PM(ui) C L(i). And the KKT
conditions hold at ;c0 with u,i for RNLPc(i)(co). (2) Instead of proving that LI holds at ;co for

BNLPz(i) (co), we can show that the index set L(i) satisfies the assumption in Lemma 3.13,
i.e., {V:,9(zo, co) h L(i) ,/’(;co,co)} are linearly independent. To show this, consider
the sequence {cj } with c.. -+ co such that for all j, L(i) L(cj) PM(u(cj)). Since u(ej)
isanextremepointofM(;c(e.),e.),thevectors {V:,9(z(c.), ej): k L(i)= PM(u(cj))}
are linearly independent. Therefore, the vectors in {V:,9(;co, c0) k L(i) J’ (;co, co) } are

linearly independent since by WCR the set {V:,9,(;c(c),c) k L(i) J’(z0, co)} remains
of constant rank. (3) It is easy to see by the definition of a relaxed subprogram that if (;Co, u)
is a KKT point of RNLPc() (c0) then it is also a KKT point of NLP(co). Hence the fact that
GSSOSC holds at ;c0 for NLP(e0) implies that GSSOSC holds at z0 for RNLPc(i) (co). Now
applying Lemma 3.13 to each RNLPc() (c) we obtain that ;ci is directionally differentiable at

c0 in any direction d. Then from Theorem 2.4 we find that z is directionally differentiable at

co in the direction d. The calculation of Dz(co; d) is straightforward by Lemma 3.13 and the
fact that for each I(;co, o), since 9(;c(c), c) < O, the inequality

V,,,g,z(z0, 0)vz + Vg,(.:0, eo)rd <_ o

is always true. This completes the proof.
The following example demonstrates a situation where the KKT conditions, MFCQ,

WCR, and GSSOSC hold at a local solution, so Theorem 3.14 can apply to the case. However,
SMFCQ or CR does not hold at the local solution. Hence Lemma 3.13 and the sensitivity
results in Kyparisis [19] are not applicable here. It also provides a counterexample showing
that WCR SMFCQ and WCR CR.
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Example 3.15. Consider the parametric nonlinear program

minimize f 2; 4, (2;2 C) 2, s.t. ]1 2;2 0,

Lq2 2:2 C 0,

93 --3;1 3’2 0,

94=(2;- 1)2+(2;:- 1)2-2-c<0,
where e R and c0 0. Let 2;) (0, 0)v. It is easy to check that the KKT conditions, MFCQ,
and GSSOSC hold at 2;) and that I(2;0, e0) { 1,2,3,4}, M(2;0,e0) {(u, u2, us, u4)-r

Ul 0, Z2 0, 1 4" 2 2, U3 0, ’tZ4 0}, J(x0, g’0) {1,2}. In addition,
v, (, ) (o, ), v:,(, ) (o, ), v:,.3(., ) (-,- ), v.(, )
(2(2; 1),2(:c2 I))v. Thus WCR holds at (2;o,co) and therefore by Theorem 3.14 we
find that the above problem has a locally unique local minimizer 2;(c) near eo that is direc-
tionally differentiable at eo in any direction. The calculation of direction derivatives can be
performed using Theorem 3.14; the details are omitted. Evidently, CR does not hold at
since the set {V.q3(2;, e), V:94(2;, e)} does not remain a constant rank near (2;0, co). Also,
SMFCQ does not hold since M(2;0, c0) is not a singleton set.

It is worth pointing out that a major difference between CR and SMFCQ is that the
former requires some rank condition on the active constraints while the latter imposes linear
independence on the Lagrange active constraints. This fact somehow suggests that Lipschitz
continuity of the perturbed local solution depends heavily on the stability behavior of the
active constraints while directional differentiability of the perturbed local solution is mainly
affected by the Lagrange active constraints. This is the main motivation for introducing the
WCR condition.

As far as the directional differentiability of the perturbed local solution of a C2, program
is concerned, the conditions KKT 4, MFCQ 4, GSSOSC are the weakest ones for the existence
and local uniqueness of the perturbed local solution (see 13]). Whether they are also sufficient
for directional differentiability of the perturbed local solution should be a very interesting
question. Our next counterexample gives the answer no to this question. This example may
be regarded as a modified version of Example 3.11.

Example 3.16. Consider the following parametric convex quadratic program

)T 2minimize f I1 (1,0 / . Ilzll 2,
QP(t)

s.t. g A(t)x + a(t) < O,

where

A(t) -t I ]t2 sin( It)’ [sin(1/0) 0],

t R, and to 0. Let 2;0 (1,0)T. The vector a(t) is once continuously differentiable
at to. Note that QP(t) is a special realization of Example 3.11 with cl 1, c2 t, and

3=t2 sin( It) /3. It is easy to check (see Example 3.11) that the KKT conditions, MFCQ
and GSSOSC hold at :Co for QP(0). And for t > 0 one has

Thus

)-.2;(t) (1,0)v 4- -tsin(1/t)l/3(O,

)v.(x(t) 2;(to))/t - sin(1/t)l/3(O,
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This implies that z(t) is not directionally differentiable at t0 in the direction d 1.
We close this section by summarizing informally the main results obtained in this section

as follows.
(1) KKT + MFCQ + CR + GSSOSC +C+i (k _> 1) = Lipschitz continuity + piece-

wise differentiability + directional differentiability of order h < k + Lipschitz continuous
directional differentiability.

(2) KKT + SMFCQ + SSOSC +C2’ = Lipschitz continuous directional differentia-
bility.

(3) KKT + MFCQ + WCR + GSSOSC +C2’ directional differentiability.
(4) KKT + SMFCQ + SSOSC +CA+’ (k _> 1) Lipschitz continuity.
(5) KKT + MFCQ + GSSOSC +C2’ directional differentiability.

4. Lipsehitz continuity and directional differentiability of solutions of VI. Similar
to those in 3, parallel results for VI problems can be established. It is shown under the
hypotheses of the Mangasarian-Fromovitz constraint qualification and general strong second-
order condition that the perturbed stationary point of the original problem can be continuously
selected from the perturbed stationary points of the binding subproblems and relaxed sub-
problems. Then using the idea of continuous selections, we derive several sensitivity results
concerning Lipschitz continuity, piecewise differentiability, and directional differentiability
of the perturbed stationary point. We should mention that we shall only consider stationary
points of VI problems in this paper. The corresponding results for local solutions of VI prob-
lems can be obtained if the VI problems in question satisfy the convexity condition since then
a stationary point of a VI problem is actually a local solution of the problem.

The necessary conditions for VI problems resemble those for NLE If x is a local solution
to VI() and some constraint qualifications hold at z, then the general Karush-Kuhn-Tucker
(GKKT) conditions or stationary conditions hold at x (see [18]). There exist multipliers
u E R_ x/q such that (x, u) satisfies the following generalized equation:

(4.1) O E
L’)(x’u’) ]

where Lz)(x,u,e) := F(z,e) + V,,.9(x,e)vu. A point x that satisfies (4.1) with some
is said to be a stationary point of VI(e) and the pair (z, u) is said to be a GKKT point of
VI(e). The set of multipliers associated with a stationary point 3: of VI(e) are denoted by
M(z, e) and its extreme point set by E(x, e). The sets of stationary points and local solutions
of VI(e) are denoted by SP(e) and LS(e), respectively. These sets will be localized, i.e.,
assuming 3:o is a stationary point or a local solution of VI(e0), for any 6 > 0 the stationary
point set and local solution set are localized by letting SP(e) SP(e) ? B(zo" (5) and
LS(e) LS(e) B(x0; 6), respectively.

Note that if 3: is a stationary point of NLP(e), then various second-order sufficient condi-
tions can ensure that x is a local solution of NLP(e). However, solution conditions for VI prob-
lems are usually more restrictive. A commonly used one is the so-called convexity assumption
(see [18]). We say that VI(e) satisfies the convexity assumption if 9{(’, s), 1,..., p, are
convex and 9z(’, e), p + 1,..., p + q, are affine. In this case a stationary point of VI(e)
is also a local solution.

Let L be a subset of { 1,..., p, p + 1,..., p + q}. The corresponding binding subproblem
is defined by

BVlc(e)

findx BKc(z) such thatF(x,e)v(z’- x) > 0for anyx’
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where BKL(e) {:c R’’ 9r(x,e) {O}e}, 9(:c,) consists of functions 9(x,e),
L, and g is the appropriate corresponding dimensionality, and the relaxed subproblem is

RVIL ()

findx RKL(X) such thatF(x,e)V(x x) >_ 0foranyx’

where RKc(e) {:c R 9L(Z,e) RP; x {0}q’}, and p’, q’ are the appropriate
corresponding dimensionalities.

Suppose :co is a stationary point of VI(eo). The index sets I(zo, eo), J(:co, e0), and the
regularity conditions LI, MFCQ, SMFCQ, CR, and WCR used in g3 apply to VI(eo) without
any modification. The difference in the second-order conditions between NLP (eo) and VI(eo)
is the replacement of VzL(x, u, e) with LD(X, u,

(a) The SSOC [18] holds at Xo with u M(xo, o) if

z’rV:LD(xo, u, e0)z > 0 for0 74 z Z(xo, u),

where Z(xo, u) is defined as in 3.
(b) The GSSOC holds at xo if SSOC holds at xo with u for all u E M(zo, o).

The differentiability assumptions for the VI problem functions are introduced in the following
text. We say that the parametric VI problem VI(e) is Ca’e (k >_ 1, g > 0) near a point
(z0, eo) if the problem functions F and 9 are (k 1) and k times continuously differentiable
with respect to z (near z0) for e near eo, respectively, F and V9 are g times continuously
differentiable in (z, e) near (:co, eo).

The VI versions of Fiacco’s basic sensitivity theorem and Kojima’s strong stability the-
orem in nonlinear programs were obtained in Tobin [37] and Liu [23], which we shall state
first.

PROPOSITION 4.1 (Tobin [371). Let L be a subset of{ 1,..., p, p + 1,..., p + q}. Suppose
KKT, SSOC, and LI hold at xo with multipliers u for BVI(eo) and that BVIr(e) is
Ca+’a (k _> 1) near (xo, o). Then

(a) for in a neighborhood of eo, there exists a unique function YL() (xc(),
UL(e))v Ca, where (xL(e),uC()) satisfies the GKKT conditions for BVIL(e) and
v( o)

(b) The Jacobian QL(e) ofthe system

(4.2)
LD(XL,L,) =0,

g(xc,z) =O, L,

with respect to (XL, UL) is locally nonsingular and

Vey(e) ((E’) -IN(g),

where -N(e) is the Jacobian of the system (4.2) with respect to e.
PROPOSITION 4.2 (Liu [23]). Let o be a stationary, point of VI(o). Suppose that MFCQ

and GSSOC hold at :co for Vl(o) and that Vl(e) is C2’ near (zo,o). Then there exist, r > O, and a continuousfunction x B(eo; r) -- R such that x(e) SPa(e) and MFCQ
holds at z(e) for all B(eo; r).

The limiting index sets for VI(eo) at o can be defined in a way similar to that used in

3. The union of limiting index sets are denoted again by LIS(zo, eo) and its elements by
L(1),..., L(s). For each following binding VI subproblem
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BVI6(,) ()

find z BKrj(.i) (z) such that F(z, g)r (z’ z) > 0 for any z’

where E {1,..., s}, under the hypotheses of Proposition 4.2 and CR condition, it can be
shown (similar to the case of nonlinear programs) that the GKKT conditions, MFCQ, and
GSSOC hold at z0 for BVI/(i)(c0). Then by Proposition 4.2 there exist (5i, ri > 0, and a
continuous function zz /3(c0; ri) + / such that z(c) is the unique stationary point of
BVIL(.,;)(c) in B(:c0; (5;). Furthermore, it can be proved that z can be continuously selected
from {zi } locally. Thus we have the following continuous selection theorem.

THEOREM 4.3. Under the hypotheses ofProposition 4.2 and the CR condition, there exist
(5, r > O, and continuous functions z, zi /3(c0; r) -+ /, 1,..., s, such that for any
c B(c0; r), z(c) and :c(c), 1,..., s, are the unique stationary, points of VI(c) and

BVIL(i)(c), 1,..., .s, on B(xo; (5), respectively. Moreover, z(.) is a continuous selection

from {xi(.) 1,..., s} on/3(co; r), i.e., for each c /3(Co; r), x(c) xi(c) for some
(1,...,,s}.
The next result provides sufficient conditions for Lipschitz continuity, piecewise differ-

entiability, and directional differentiability of the perturbed stationary point.
THEOREM 4.4. Let Zo be a stationary point of VI(co). Suppose that MFCQ, CR, and

GSSOSC hold at zofor VI(co) and that VI(c) is C+’ (k >_ 1) near (z0, c0). Then

(a) there exist (5, r > O, and a unique Lipschitz continuous function z B(c0; r) --+ R
such that z(c) SP(c) LX() for all c B(c0; r);

(b) z is piecewise differentiable at co and directionally differentiable at co oforder h <_ k
along any direction d;

(c) the directional derivatives Dhz(co; d) of order h <_ k as functions of d are Lip-
schitzian.

Proof. The proof of the theorem is similar to that of Theorem 3.6 except that it uses
Theorem 4.3 and Proposition 4.1 instead of using Theorem 3.5 and Proposition 3.3. S

The following theorem improves the classical results of Kyparisis [17] concerning the
directional differentiability ofthe perturbed GKKTpoint. Its proof is similar to that ofTheorem
3.7 and is omitted. Conclusion (a) in this theorem is proved by Robinson [29].

THEOREM 4.5. Let zo be a stationarypoint ofVl(co with associated multiplier. Suppose
that LI and SSOC hold at zo for VI(co) and that VI(c) is C+1’ (k _> 1) near (:co, co). Then

(a) for c in a neighborhood of Co, there exists a unique Lipschitz continuous function
V(c) [:c(c), u(c)] such that [:c(c), u(c)] is the GKKTpoint of VI(c) and V(c0) [:co, ul;

(b))7 is piecewise differentiable at co and directionally differentiable at co oforder h <_ k
along any direction d;

(c) the directional derivatives D/(c0; d) of order h <_ k as functions of d are Lip-
schitzian.

In order to establish the directional differentiability of the perturbed stationary point, we
need the following result concerning a relaxed VI subproblem.

LEMMA 4.6. Let :co be a stationary point of VI(co). Suppose that MFCQ and GSSOC
hold at :co for Vl(co) and that VI(c) is C2’1 near (:co, co). Then, for every index set L C

{1, p, p+ l, p+q} with L D PM()forsome E(:co, co) suchthat {Vzg(:co, Co)
LJ’(:co, co)} is linearly independent, where J’(:co, co) J(zo, c0) U {p+ 1,..., p+q},

there is a locally unique continuous stationary point :cr(c) of RVIc(e). Moreover, :cr(e) is

directionally differentiable at co in any direction d and its directional derivative D:c(c0; d)
uniquely solves thefollowing linear variational inequality
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such that(V:,.LDz + VLDd)T(z z) >_ O forallz’ LIKL(U)

where

where the functions .qi are evaluated at (zo, co) and the.function LD at (Zo,
Proof. The proof is analogous to that of Lemma 3.13. The differences are that we use

Proposition 4.2 instead of Proposition 3.4 and Corollary 3.1 in Qiu and Magnanti [28] instead
of Proposition 3.9. I3

Finally, we give below a sensitivity result for VI problems concerning the directional
differentiability, assuming GKKT, MFCQ, WCR, and GSSOC. It covers the results of both
Kyparisis [19] and Qiu and Magnanti [28] on directional differentiability. The former [19]
assumes GKKT, MFCQ, CR, and GSSOC, while the latter [28] uses GKKT, SMFCQ, and
SSOC.

THEOREM 4.7. Let Zo be a stationary point of VI(eo). Suppose that MFCQ, WCR, and
GSSOC hold at zo for VI(eo) and that VI() is C2’1 near (z0, e0). Then .for in some
neighborhood ofco, there exists a locally unique continuous stationary point z() to Vl(c) that
is directionally dfferentiable at co in any direction d and its directional derivative Dz(0; d)
uniquely solves thefollowing linear variational inequality.for some

LVI(z)

findz LI4[(,u) such that(VzLDz + VeLDd)V(z z) >_ O forallz’

where

where the functions 9 are evaluated at (3:0, o) and the function LD at (Zo, u, Co). Further-
more, ifwe strengthen MFCQ and WCR to SMFCQ, then the directional derivative D:c(co; d)
is Lipschitzian as a function of d.

Proof. The first part of the theorem can be proved in the same way as in the proof of
Theorem 3.14 except that we use Lemma 4.6 instead of Lemma 3.13. The second part of the
conclusions can be shown by applying Theorem 4.4 to LVI(). [3

To see an example where Theorem 4.7 is applicable but the sensitivity results of Kyparisis
[19] and Qiu and Magnanti [28] are not, we let F(z,c) Vf(:c,c), where f(:c, c) is the
objective function in Example 3.15 and there is no change in the constraints. We omit the
details.

Note that the KKT conditions of the parametric convex quadratic programs in both Exam-
ples 3.11 and 3.16 are variational inequalities defined over perturbed polyhedral sets. There-
fore, letting F(x, e) V:f(x, ), we obtain two nice examples in variational inequalities that
demonstrate that GKKT + SMFCQ + SSOC +C2, 7 Lipschitz continuity of the perturbed
stationary point and that GKKT + MFCQ + GSSOC +C2’ :/ directional differentiability
of the perturbed stationary point, respectively.

As in 3, we end this section by informally summarizing the main results derived as
follows. Note that these relations hold only for the perturbed stationary point. But if in
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addition each VI(c) meets the convexity assumption, then these conclusions are also valid for
the perturbed local solution.

(1) GKKT + MFCQ + CR + GSSOC +C+’ (k >_ 1) = Lipschitz continuity +
piecewise differentiability 4. directional differentiability oforder h _< k4, Lipschitz continuous
directional differentiability.

(2) GKKT + SMFCQ + SSOC +C2’ = Lipschitz continuous directional differentia-
bility.

(3) GKKT 4, MFCQ 4- WCR 4- GSSOC +C2’ directional differentiability.
(4) GKKT + SMFCQ + SSOC +C2’1 - Lipschitz continuity.
(5) GKKT + MFCQ + GSSOC +C2’ directional differentiability.

Aeknowledgrnents. The author is indebted to Professor S. M. Robinson for [34], which
led to Example 3.11, to Professor A.V. Fiacco for his interest, and to two anonymous referees
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A RESULT CONCERNING CONTROLLABILITY FOR THE
NAVIER-STOKES EQUATIONS*

E. FERNANDEZ-CARAtANr M. GONZALEZ-BURGOSt

Abstract. The main goal of this paper is to present a new result concerning controllability of the time-dependent
Navier-Stokes equations. Here, the control variable is the trace of the velocity field on a "small" part of the boundary.
The main result states that the linear space spanned by final states is dense in the L space of admissible fields. For the
proof, one uses a duality argument that is suggested by the linear theory. This reduces the task to an existence/regularity
result for a nonlinear problem.

Key words, approximate controllability, Navier-Stokes equations, nonlinear parabolic partial differential equa-
tions

AMS subject classifications. 93C20, 93B05, 76D05, 35D05

1. Statement of the problem" The main result. In what follows it will be assumed that
fi C Ex is a bounded open set (N 2 or 3) whose boundary 0f is of class C1,. We denote
by q, a component of 0f2 and we assume that 0f\7 has positive measure. We consider the
following spaces:

"f,’(f) {v; v D((2) N, V.v- 0, Supp v C f/U 7),

/(f2) the closure of(f) in the space L2(f) x,
9(f2) the closure of’l)(f)in the space H (f2) N.

Obviously, (f) and/(f) are Hilbert spaces for the usual scalar products in H (f)N and
L2()N, respectively. Furthermore, in fr(f), the seminorm

is in fact a norm, equivalent to the norm in Hl(f)N. For simplicity, we put fr and/_it instead
of fr(f) and/_it(f/), resp.

Let T > 0 be given. Consider the following Navier-Stokes problem in QT f x (0, T),
where we impose nonzero Dirichlet data:

0y
+ (y. V)y- uAy + VTr 0,

(I) y=v
y--O

y(0) 0

V.y 0in

on AT ’7 (0, T),
on ST- (0f\7) (0, T),
in f.

Here, u is the kinematic viscosity (u > 0) and v E L2(0, T; H-1/2(’7)N ).
THEOREM 1.1. (a) Assume v curl I-, with

(2)

e L2(0, T; H2()M),

L(0, T; W,P(f)3)
L(0, T; Wl,p(ft))

v(0) n 0

L2(0, T; H’

for some p > 3 ifN 3,

for some p > 2 ifN 2,

in H-IN
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1062 E. FERNNDEZ-CARA AND M. GONZLEZ-BURGOS

(here, n is the unit outward normal vector on Of; M ifN 2 and M 3 ifN 3).
Then, (1) possesses at least one weak solution (Yv, Try). One has

e 9) L (o, T;

Oyv
L (OOt

E (c 2 if N 2 and cr 4/3 if N 3),

Yv e C([0, T]; L2(ft) N) if N 2,

7rv L:(Q:r).

(b) IfN 2, there exists at most one weak solution to (1) (ofcourse, Try is unique up to

a constant).
The proof of this result can be easily obtained arguing as in [8], [9], 12]. Now, for each

v L2(0, T; HI/Z(’y)N), let us set

v(T) {yv(T); Yv solves, together with Try, problem (1)}.

In this paper, we are concerned with the following problems.
PROBLEM (P). Prove that the set

is dense in .
PROBLEM (Q). Let be the subspace of _fI spanned by

Prove that 2 is dense in .
Problem (P) is an approximate controllability problem in the sense of [10]. It admits

the following physical interpretation: assume (for instance) that f O\A, where (.9 and A
are bounded and simply connected open sets. Also, assume that , 0A. If Problem (P) is
solved, then a viscous incompressible fluid in O\A that is initially at rest can be conduced to
a mechanical state arbitrarily close to a given desired field acting exclusively on 0.

Unfortunately, we are not able to solve Problem (P); instead, we solve Problem (Q)
in this paper (see Theorem 1.2 below). Of course, the former is a much more interesting
question. However, it must be noticed that in a similar linear situation Problems (P) and (Q)
are equivalent. This happens, for instance, with (1) being replaced by the Stokes problem;
thus, arguing as in the proof of Theorem 1.2, we obtain approximate controllability in this
case (and this no matter how small is!).

On the other hand, recall that in the Navier-Stokes case not much is known on the nature
of the set formed by all final states y(T). In particular, it is not clear at all whether this set
is very different from its linear span Z. In our opinion, this suffices to justify an analysis of
Problem (Q).

Let us denote by rad the family of all admissible control functions"

gad-- {V; V L2(O,T;HI/2(’)/)N), solution (yv, Try) to (1)}.
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The main result in this paper is as follows.
THEOREM 1.2. (a) Assume N 2 and let be the subspace of spanned by the set

{yv(Z); v gad).

Then is dense in .
(b) Assume N 3 and let 2 be the subspace of spanned by

Then 2 is dense in I2I.
Theorem 1.2 is related to a conjecture formulated by Lions in [11]. In this reference, one

is also concerned with approximate controllability, but there one imposes vanishing Dirichlet
conditions on the whole Oft x (0, T) and one introduces L2 control functions in the right side
of the Navier-Stokes equations. In what follows this will be referred to as the distributed
control variant of Problem (P). Bardos and Tartar have considered in their paper a similar
question; this time, the control is exerted on the initial condition and boundary data and second
members vanish. Our result is similar to that in [l] (for N 2 and initial data control) and
also to those in [4] and [5] (for distributed control). See also [6] and the references therein for
some related questions.

2. Some technical lemmas. Before we give the proof of Theorem 1.2, we present some
technical results. First, we establish existence and regularity for the stationary Stokes problem
with boundary conditions ofdifferent kinds on 7 and on 0ft\7 (recall that Oft is a C’, boundary
and /is a component of Oft). Let f L2(f)N, 9 L2(f), and b H-I/2(7)N be given
and consider the following problem:

(3) -uAy+V--f, V.y-9 inft,

(4) (-TrId + uVy) n b on

(5) y 0 on 0f\,.

LEMMA 2.1. There exists one and only one solution to (3)-(5), (y, r) l) x L2(f).
For this couple, (3) is satisfied almost everywhere (a.e.) in 2, (4) is satisfied as an equality
in H-1/2(7) N, and (5) is satisfied in the sense of the trace on Oft\7. Finally, there exists a

constant C > O, only depending on and , such that

YH, + llg c(llfllg + Igg + IlbllH-,/).

The proof of this lemma can be achieved by means of well-known arguments. One also
has the following.

LEMMA 2.2. Let m 2 0 be an integer gOQ is Cm+l’l f Hm(Q)N, 9 Hm+I(Q),
andb Hm+/2(7)N then (y, ) Hm+2(Q) x H+I(). Furthermore, there exists a
constant C > O, only depending on , , and m, such that

The proof of this result is rather technical. For instance, when m 0, it relies on adequate
uniform bounds for the finite difference quotients

(y(x + he) y(x)) and ((x + hei) (x))
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in H(f)N and L2(ft), resp. The details are given in [7] (see also [2] and the references
therein for other related results).

LEMMA 2.3. There exists a sequence { Aj }, with

and an orthonormal basis of, denoted {Wj }, such that, for all j, one has

wj C(f)N Y H2(ft)x ?

and

Vwj Vv dx Aj J Wj Y dx VvE.

Thefunction wj is, together with some qj CC (ft) 73 H (ft), the unique solution to

-Aw. + Vqj Ajwj, V.wj 0
(-qj ld + Vwj n O on 7,

wj =0 on Of\7,

in

Of course, the proof of Lemma 2.3 relies on the fact that the embedding l)/ is dense
and compact (see [7] for the details).

DEFINITION 2.4. We introduce the trilinealform ) on H (ft)N by putting

(u, v, w) [((u. V)v, w) ((u. V)w, v)].

Here, (., .) stands for the usual scalar product in L2(ft) N. We also introduce the bilinear
operator [3" (7 x -+ (/’ by putting

(9(u, v), w) =/)(u, v, w) v u, v, w 9.

Now, (., .) standsfor the duality pairing between (7’ and 9.
Assume that u, v, w H (f)N and V u 0 in ft. Then

fo (u" n)v. wdS.(., v, w) ((u. V)v, w)

On the other hand,

{)(u,v,v) o Vu, v H’(a) x.
Finally, notice that if u and v belong to L2 (0, T; I)’) N Lc (0, T;/2/), then

/)(u, v) L (0, T;

where cr is arbitrary in [1, 2) if N 2 and cr 4/3 if N 3.
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3. The existence of a solution to a coupled nonlinear problem. In order to prove
Theorem 1.1, it will be convenient to demonstrate an existence result for a certain nonlinear
problem. More precisely, for each w E , let us introduce the system

(6)

Oy
+ (y. V)y- uAy + VTr 0,

0q
0t

(y. 27)q- uAq + 27Q -0,

(-v Id + uV’y), n (y. n)y q

(-Q Id + u27q) n + (y. n)q 0

y --q =0
y(0) =0, q(T)-w

V.y=0 inQT,

7.q=0 inQT,

onAT,

on AT,
on ST,
inf,.

Then one has the following theorem.

THEOREM 3.1. Ifw , then the corresponding problem (6) possesses at least one weak
solution (y, 7v, q, Q) also satisfying:

(7)
y,q L2(O,T;9) NLx(O,T;ffI),
y,q C([0, T]; Q’) N Cp([0, T];/7/),

0y 0q
(0, 9’),0’ 0t

7r, Q L2(QT),

(again, cr is arbitrary in [1,2) if N 2 and o- 4/3 if N 3). Moreover, y satisfies the
energy inequalities

(8) Ily(t)]]_ / 2u IlVy(s) 12 ds _< 2 q(s). y(s)dS ds

and one has

(9) (Y(T), w) f fA ql2 dS dt.
T

Proof. Let us see that there exist functions

y, q L2 (0, T; 9) N L (0, T;/),

which solve the weak formulation of (6), i.e., such that

(10)

(oy }-,v + D(y, y, v) + u(Vy, Vv) f. q(t). v dS

(-, v) (y,q, v) + u(Vq, Vv) 0

y(0) 0, q(T) w.

The proof consists of three steps.
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First step: The existence of approximate solutions. We use the orthonormal basis
furnished by Lemma 2.3. We denote by V the linear space spanned by wl, w2,..., Wm and
we put

j=l

i.e., w0. is the orthogonal projection of w on Q,. For each m >_ 1, we search for functions

Ym,qm C([0, T];

such that

(11)
(Y’m, w.) + {)(Ym, Y., W) + u(Vym, Vwo) -/, qm" wj dS

f

(1 < j < m), y, (0) O,

(12)
wj) )(Ym, qm, Wj) + u(Vqm VW.j) 0

(1 _< j _< m), qm(T) W0m.

We argue as follows. If the function p, is given in C([0, T]; ,), there exists exactly
one maximal (in time) solution y, Ym (Pro) to the ordinary differential problem (11) with
q,r P. It is not difficult to check that

Hence,

d 2r 2L2 / (t)dS.
2 dtllY(t) +  llVy  (t)ll Ym

T

for some C only depending on f, 7, and u. From this inequality, we deduce that y, is defined
for all t E [0, T]. Now, let us denote by q, qm (Ym) the unique maximal solution to (12).
It is clear that q,j is also defined for all t E [0, T]. Moreover,

whence

2 dt
Ilqm(t)I[ + U Vqm(t)112L O,

IIq(t)ll /2u IlVq. ( )ll wo ll Ilwll  ,2

This proves that q, is bounded in C([0, T]" m) independently from yj. Let W be the ball
/)(0; }lwll.,)in C([0, T]" ,) and let I, be given as follows:

(Pm) q,r(Y,(P.)) VPm W.

Then W -+ W is a continuous compact mapping (due to the fact that (Pm)
CI([0, T]; ,) for each p). Consequently, Schauders’ theorem applies and possesses
a fixed point qm W. Obviously, qr, and yTi, y,, (q,) satisfy (11) and (12).
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(13)

Second step: "A priori" estimates. From (11) and (12), one easily obtains

y,q E bounded set in L2 (0, T; Q) N L (0, T; ).

Consequently,

/)(y, y),/(y, q) E bounded set in L (0, T; 9’),
with a being as before. Now, the choice of the basis (wj } yields

(14) y,q bounded set in L (0, T; Q’).

On the other hand, from (11) and (12), one easily deduces that

(15) (y, (T), w0) [ [q 12 dS dr.
dAT

Third step: The choice of a convergent sequence conclusion. From (13) and (14),
one deduces that functions y and q and subsequences {yp} and {qp} must exist with

Y,q Lz(0, T; 9) L(0,T;) C([0, T]; 9’),

and

0y 0q
Or’ Ot

L (0, T; 9’),

Yr, (resp., qp) y (resp., q) weakly in L2(0, T; 9),
yp (resp., qp) y (resp., q) weakly in L (0, T;/),
yp (resp., qp) y (resp., q) strongly in L2(0, T; ),

resp.
0qp 0y 0q

L, resp., weaklyin (0, T; ).

Here, 1/2 < s < and Q stands for the closure of with respect to the norm in H ()N (a
new Hilbert space for the same norm). These convergence properties allow us to take limits
in (11) and (12), which proves thaty and q solve (10). Obviously, (8) is satisfied; on the other
hand, from (15) and the previous properties, it is easy to deduce (9). This ends the proof of
Theorem 3.1.

4. The proof of the main result. From a well-known consequence of the Hahn-Banach
theorem (for instance, see [3, Cor. 1.8]), we know that the following is a statement equivalent
to Theorem 1.2.

THEOREM 4.1. Assume w satisfies

(Yv(T), w) 0 Vv Uad f X 2,

(16)
(Yv(T)’w)=0 Vv (vUu,,dPv(T))n ifN-3.

Then w O.
Proof. Let w / be given and assume that (16) is satisfied. Let (y*, 7r*, q*, Q*) be the

weak solution to (6) furnished by Theorem 3.1. Recall that (y*, 7r*, q*, Q*) satisfies (7) (9).
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Let v be the trace of y* on AT "7 x (0, T). Then v gad and, moreover, the couple
(y*, 7r* is a state associated to v. Accordingly, taking into account (9) and (16), one has

(17) q* 0 on AT.

From (8), we also deduce that y* 0. Thus, we have found a function q* that vanishes on

AT and solves, together with Q*, the following final value-boundary value problem:

0q
(18)

Ot
uAq+VQ-0, V.q=0 inQT,

(19) (-Q Id + uVq) n 0 on AT,

(20) q 0 on Sir,

(21) q(T) w inf,.

It is not difficult to prove that (18)-(21) possesses exactly one solution pair (q, Q), with
(at least)

q E L2(0, T; I)) rl C([0, T]; ),

0q
Ot

Necessarily, (q, Q) (q*, Q*). Consequently, Theorem 4.1 is implied by Proposition 4.2
(see below).

PROPOSITION 4.2. Assume the couple (q*, Q*) satisfies

q* E Ll2oc (0, T; l)) A L,o (0, T;/),

Ot Loc(0 T" ’), Q* L2oc(0, T; L2(f))

and (17) (20). Then q* 0.

Proof. Let x0 "7 be given. Choose r > 0 such that

B(z0; r) r 0f2 c

and consider the open sets a B(f0" r) and 2 f2 U c. Let (, d)) be the extension by zero
of (q*, Q*) to the whole cylinder f x (0, T). From (17), we see that

L2oc (0, T; V()) VI L,o(0 T; H()),

Here,

V() {v;v E H(()N, V.v 0in},
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H(h) {v;v E L2(h) N, V.v 0inh, v. n 0on0h}.

V() and H(O) are endowed with the norms of H ()N and L2(t)N
check that

resp. It is easy to

O--- E L2(0’ T; V()’)

and

In particular, we deduce that both and 0 are analytical functions in the space in f) x (0, T)
(cf. e.g. [8]). But- 0 in ()\() x (0, T). Hence, necessarily 0.

For the sake of completeness, let us state (and prove) a regularity result for (18) (21).
LEMMA4.3. Letw Hand(}> O be given. Then the unique solution (q, Q) to(18)-(21)

satisfies

q L2(0, T " H2(f)N) Loo(O,T- 5; I)) L2(0, T; 1)) C([0, T];/),

0q
Ot L2(0, T ; H’ (f)v) Loo (0, T f; L2(f2) N) L2(0, T;

Q L2(0, T ; H (’)) fc (0, T ; L2(F2)) L2(QT).

Sketch of the proof. Let 0 05 be a real-valued Co function on [0, +oc) such that

0- lin[0, T- 0-0in T-,+oc).
Using 0, we introduce

/l-0q and Q-0Q.

Then/1 e L2 (0, T; 17) Loo (0, T;/) and, also,

{ /I(T)-<0/1__ (t)0, v)+ u(V/l(t), Vv)0.-(f(t). v)o: V v 9, t (0, T)a.e.,

where f- -01q. Notice that

f L2 (0, T; 9) Loo (0, T;/-) and N of &(0,T; 9’).

It is clear that/1 is the limit of approximate solutions/1, with

(t)
j-
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(22)
(1 j m), m(T) 0.

Differentiation with respect to t leads to the equalities

(23) -(qm(t),wj)0: + p(Vq(t), Vwj)0; (f’,w).

Now, multiplying the jth equation in (22) by AjO (t), adding for j m, and integrating
with respect to t, we are led to the inequalities

2 -, 2q dr,0; + (s) ]0: ds < C f(t)Jl 2
0;

where C is a constant. This proves that

r; r; 9).
On the other hand, multiplying (23) by (0)’(t) and adding for j m, we obtain

ld
Vq / 0f ^’ )0;f2

After integration with respect to t, one has

T 0f
6q ds < C

where []. . stands for the norm in L2(0, T; 9’). Hence,

This proves the lemma.

L2(0, T; H (f)N) (-1 L (0, T; L2(ft)N).
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SMOOTHLY GLOBAL STABILIZABILITY BY DYNAMIC FEEDBACK AND
GENERALIZATIONS OF ARTSTEIN’S THEOREM*

JOHN TSINIAS

Abstract. The purpose of this paper is to explore the dynamic feedback stabilization problem for general
nonlinear systems extending previous works of Artstein, Sontag, and the author. First, sufficient conditions for global
stabilization by smooth dynamic feedback are provided concerning a wide class of triangular systems, where the
linearization at the equilibrium is controllable. For the general nonlinear case, we derive a necessary and sufficient
condition for global stabilization by means of an almost smooth dynamic feedback.

Key words, global, dynamic stabilizability, smooth, almost smooth feedback

AMS subject classification. 93D 15

1. Introduction. We consider general nonlinear single-input systems of the form

(1.1) a- f(x, u), (x,u) > x

where the map f >’]+ + >’. is continuous vanishing at zero.
We say that (1.1) is static asymptotically stabilizable (S.A.S.) at the origin if there exists an

ordinary state feedback u u(x), vanishing at zero, which is smooth (C) on >:n\{0}, such
that 0 >’7 is asymptotically stable with respect to the closed-loop system 5: f(x, u(x)).
We say that (1.1) is dynamic asymptotically stabilizable (D.A.S.) at the origin if the extended
(n + 1)-dimensional affine in the control system

(1.2) c f(x, y); ) v

is S.A.S. Finally, 1. l) is said to be smoothly S.A.S. (D.A.S.) when the corresponding feedback
stabilizers are smooth on the whole space >’7 (>’7+ respectively).

Our purpose is to analyze the feedback stabilzability problem in terms ofcontrol Lyapunov
functions (clf) extending previous works on the same problem (see for instance [1 ], [2], [5],
[8], [11], [13] and references therein).

First, we derive sufficient conditions for smoothly dynamic global stabilization for general
triangular systems of the form

2 f2 (X l, X2,393),

where the mappings f >’_+ + >’., 1,...,n are C vanishing at zero. A typical
example of nonlinearizable systems having triangular structure are systems of the form x()

(x,x(l),... ,x(-1), u), x "_, where the map is purely nonlinear with respect to u.
Necessary and sufficient conditions for a general system to be triangularizable by applying
change of coordinates plus dynamic feedback are given in 10].

The following theorem is one of the main results of our paper extending previous works
on the feedback stabilization for triangular systems (see for instance [6], [9], 12], 14]).

THEOREM 1.1. Suppose thatfor each <_ <_ n the following conditions hold:

Received by the editors December 28, 1992" accepted for publication (in revised form) March 24, 1994.
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(i) for every xl,... ,x the map f(xl,... ,x, .) ’_ -- ": is a surjection, namely,
fi;(xl,..., x, ’_) ’_. Furthermore, assume that

(1.4a) f(o,..., 0,_;:+)

whereas

(1.4b) fi(0,...,0, xi+,) =-0 iffxi+, --0;

(ii) for each compact set A c i andfor every unbounded subset 13 ofthe real line, the
set

{t E:t f(x,,...,x;y), (x,...,x;y) A B)

is unbounded;

oL(o,... o,o) # o,(iii)

which means that the linearization of(1.3) at the origin is controllable.
Then the system (1.3) is smoothly globally D.A.S. If in addition we assume that

(iv)

then (1.3) is smoothly globally S.A.S.
Remark 1.2. A particular case of systems (1.3) satisfying all conditions of Theorem 1.1

arises when we assume that each fi; has the form

f(xl,..., x, x+) x+ + g(x,..., x),

where each 9i is smooth and independent of zi_t_ It is well known that every single-input
system (1.1), which is affine in the control, can locally be transformed into (1.3) with dynamics
(1.5), provided that Brockett’s linearization conditions are satisfied (see [3], [10]). Further-
more, as it was pointed out in [10], [14], the system (1.3) with dynamics (1.5) is globally
feedback equivalent to a controllable linear system. Since the latter is globally S.A.S. by
means of a linear feedback, it follows that the original system is smoothly globally S.A.S. and
therefore according to 13, Thm. 4] it is smoothly globally D.A.S. Theorem 1.1 of the present
paper consists of an extension of the previous case for general triangular systems (1.3).

The proof of Theorem 1.1 is based on the following result providing sufficient conditions
for dynamic stabilization for the general case (1.1).

THEOREM 1.3 15]. Suppose that there exist a closed subset ]lJ C .+1, a pair ofdisjoint
open subsets U+, U- C ’_+ and a C positive definite function V ’_ - .’_ such that

(i) 0M, N":+ =U+UU-UM, 7r(M)--N’’,
where 7r(hl) denotes the projection ofM on ’_ along the y axis;

(ii) the following conditions hold:

(1.6) {0} (0 + oc)C U+, {0} (-oc,0)C U-,

andfurtherfor each compact set Q c I:" the set SQ -. {(x, y) M, x Q} is compact;
(iii) .for each nonzero (x, y) M we have

(1.7) DV(x)f(x, y) < O,
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where DV denotes the derivative of V;
(iv) V is uniformly unbounded on .,=n, i.e., V(x) --+ +oc as Ilxll --+ +oc, where

denotes the usual Euclidean norm.
Then there exists a C map (x, y) such that the function L(x, y) . V(x) / (x, y) is a

global clf with respect to (1.2), namely, L is C positive definite, uniformly unbounded on
2,.,r+ 1, and satisfies

((OL/Ox)f)(x,y) < O, V(x,y) # 0: (OL/Oy)(x,y) O.

Hence, according to Artstein’s theorem (1.1) is globally D.A.S. The system (1.1) is locally
D.A.S., if U+ U U- U M and r(M) are neighborhoods of 0 _n+l and 0 , respec-
tively, and (1.6) and condition (iii) are fulfilled.

Remark 1.4. The well-known Artstein’s theorem [2] asserts that the Lyapunov condition
(1.7) is satisfied for each x 0 and for some y y(x) depending on x, if and only if (1.1) is
stabilizable by means of a relaxed static feedback. Stabilization by means of an ordinary static
feedback, which is smooth on .: \ {0}, is in general feasible if we further assume that (1.1) is
affine in the control. It should be noted that conditions (i)-(iv) are satisfied in the particular
case where (1.1) is S.A.S. by means of a feedback law that is continuous at zero (see [15]). In
that case the assumption 0 M is equivalent to the fact that the control function V satisfies
the "small control property" (see [2], [11], [13]).

A second aim of the paper is to provide a generalization of Theorem 1.3. In particular,
in Theorem 3.1 we provide a necessary and sufficient condition for global stabilization of
(1.1) by means of a dynamic ordinary feedback that is smooth on .:+\{0}. The proof of
Theorem 3.1, similar to that of Theorem 1.3, is based on the construction of an appropriate clf
guaranteeing feedback stabilization. However, the weaker assumptions imposed in Theorem
3.1 do not permit following the same procedure as in 15] to construct the desired clf. A more
careful analysis is required.

Finally, relationships between global controllability and conditions of Theorem 1.1, as
well as remarks on global stabilization by means of a continuous static feedback for planar
systems, are included in 2..2 and 3, respectively.

2. The triangular case.

2.1. Smoothly global stabilization. To prove Theorem 1.1, we first need the following
elementary lemmas.

LEMMA 2.1. Suppose that conditions (i) and (ii) ofTheorem 1.1 are satisfied and without
any loss of generality assume that f(0,’:+) + and f(0,"-) ’- for every
1,..., . Let s ’J --+ ’ be a continuous.function vanishing at zero. Then conditions (i) and
(ii) of Theorem 1.3 are satisfied with

Proofl Conditions (i) and (1.6) ofTheorem 1.3 follow immediately by taking into account
the definitions of M, U+, and U- and the fact that fi(0, }’+) ’+ and fi(wi, ’) ’_ for
all w. The latter also asserts that M, U+, and U- are nonempty. Next we show that for
each compact set Q c ’J the set SO, as defined in the statement of Theorem 1.3, is compact.
Indeed, suppose on the contrary that there exists a sequence (wi,, y,) M, wi, Q, u

1,2,..., with wi, -+ w Q and lY,I -- +oc. This, in conjunction with assumption (ii) of
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Theorem 1.1, implies that limlf(w; y,)[ +oc. On the other hand, by the definition of
M, f(w.,, y) s(w) for all u and so lim f(wi,, y) s(w), a contradiction.

LEMMA 2.2. In addition to the hypothesis of Lemma 2.1, assume that condition (iii)
o.f Theorem 1.1 is satisfied and the functions f and s are Cc near zero. Then there is
a constant p > 0 and a unique map ’ -+ I’_ vanishing at zero that is C on the
region {(w,:, y) ’_;+’, ]]w:ll _< p}, where w . (x,, ,x) and y . x+, such that the
intersection ofthis region with the set M as defined in Lemma 2.1 coincides with the graph of
the mapping y (w;).

Proof. Since f satisfies condition (iii) ofTheorem 1.1 and both f and s are C vanishing
at zero, by the implicit function theorem there exists a constant p > 0 and a unique smooth
map 4) _’_ -- "_ with (0) 0 such that f(w, (w)) s(w) for ]]w]l <_ p. This
implies that the graph of restricted to the sphere St) of radius p centered at 0 .i+ is
contained in M. To complete the proof, suppose on the contrary that there exists a sequence
(wi,, y,) M\Sp with wi, -+ O. Then fi(wi,, y,) s(wi,), whereas by using assumption
(ii) and the continuity of f and s we may assume that lira y, c < +oc. Consequently,
f(0, ) 0 with ]c > p, which contradicts (1.4b). The latter implies the desired conclu-
sion.

Proofof Theorem 1.1. For reasons of simplicity we consider the case n 2, namely, we
show that the system

(2 f2(Xl, X2 X3) X3 # U

is globally D.A.S. by means of a dynamic feedback, which is smooth on ..,.2. The proof of the
general case follows by induction and applying the same arguments. We divide our proof into
two steps. In Step we use assumptions (i)-(iii) of Theorem 1.1 for the map f in order to
establish that the system

(2.2) a? fl (Xl, X2), 332 U

is smoothly globally D.A.S. or, equivalently, the system

(2.3) fl (xl, Z2), Lb2 V

is globally S.A.S. by means of a smooth static feedback v v(x,x2). In Step II, taking
into account the smoothness of the map ul, assumptions (i)- (iii) imposed for the map f2, and
following the same procedure as in Step I, we prove that (2.1) is smoothly globally D.A.S. or,
equivalently, the system

(2.4) ,-- fl(x,x2), 2 f2(Xl,X2, X3), Jg3 --)

is globally S.A.S. by means of a smooth static feedback v v2 (x l, x2, x3). As in the statement
of Lemma 2.1 we assume in what follows that fl(O,i+) f2(0, 0,$I+) Y’-+.

Step I" Smoothly global stabilization of (2.3). We define

]/II-- {(Xl,X2) -’-2" fl(Xl,2)-- --Xl}, U? # {(Xl,X2) -’_2 fl(Xl,X2) >

UI-- -- { (Xl, *2) >:2. f] (x,, x2) < -x, }.

Taking into account assumptions (i) and (ii) of Theorem 1.1 and Lemma 2.1, it follows that
these sets are nonempty, disjoint, and further that all conditions of Theorem 1.3 are fulfilled
with x, X2, _’:, V (Xl) ----’. Xl, Ml, U1+ and U- instead of x, y, ’_, V(x), M, U+, and U-,
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respectively. Hence according to Theorem 1.3 the system (2.2) is globally D.A.S. In particular,
there exists a C nonnegative map (Xl, x2) such that the function

is a global clf with respect to (2.3). Equivalently, the following Lyapunov condition holds:

(2.5a)

OL

xlfl (Xl,X2) XlfI(Xl,X2)+ xlfl (Xl,X2) < 0,

0

OX2
(2.5b)

0

(x,,x2)>0 for(x,,x2)U+,

(xl,x2) <0 for(xl,x2) EU?,

and since L is uniformly unbounded

(2.5c) (I)(Xlu, X2,) --+ --I-OO

for any sequence (z,u, z2} with lim IXl,] < -Jr-OO and lim Iz2,l +oo.
Moreover, from condition (iii) we get (Of/Oz2)(O,O) - O, and so by Lemma 2.2 there
exist a positive constant p and a real map z2 1 (z) vanishing at zero, which is smooth
on {(z,z2) E I:2 Izl < p}, and the intersection of this region with the set M equals
{(Xl,X2) ,_2:X2 (/)l(Xl), IXll < /9}; equivalently

(2.6) f, (x,, 4), (Xl)) -x,, x, --- P.

(Note that (2.6) implies that the feedback law X2 2(Xl) locally asymptotically stabilizes
(2.2) at 0 ’_.) It turns out that the map can be constructed so that the following additional
conditions are satisfied:

(2.7a) (I)(x I, X2) --0, ]Xl] < /9 X2

(2.7b) (o/o)(,,,2) > 0, v (,,2) > Ix, < p; >

(2.7c) (O(I)/OX2)(Xl,X2) < O, V (Xl,X2) L:2 IWll %/9; X2 <

and therefore, since is positive definite,

(2.7d) DcI)(ml, x2)--0, V(xI,X2)withx2--el(X,), Ix, < p.

(See 15] or 3 of the present paper for a detailed construction of .)
Until now we have shown that the function L is a global clf with respect to (2.3) and so

(2.3) is globally asymptotically stabilizable by means of an ordinary static feedback that is in
general discontinuous at 0 L’_2. Next, using the additional properties (2.6), (2.7), and the
fact that 4) is C near zero, we build a smooth stabilizer. First, we recall Theorem 4 in 13],
which asserts that since is smooth and satisfies (2.6), the function

)(I).s(Xl, X2) - 1 (Xl) -- (X2 51(Xl)
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is a local clf with respect to (2.3); in particular, there exists a smooth feedback u us (39, 392)
and a positive constant p _< p such that

(2.8)
0(I)s / 0(I)s

(39 392) < 0-1 fl (391,392)-l- Us (391 392)----392-39 1, for0 < 11(,,2)11 ,.
Let k -_2 __> ._+ be a smooth map taking values on the interval [0,1] such that k(391,392) 0
for 11(39,, 392)11 < pl/2 and k(39,, 392) for 11(39, 392)11 >- P,. We define

(2.9) V2(391,392) # V’I (391) -1-/g(391,0)(I)(391,392) -+- X(1 /g(391,0))(392 1 (391)) 2
z

Obviously, V2 is C positive definite. Indeed, V2 is nonnegative definite, whereas if

V2(39,392) 0 it follows that 39 0, /c(39,0) 0, and so 392 1(0) 0. Next we
establish that V2 is a global clf with respect to (2.3) and construct the desired global smooth
stabilizer. First, we show that V2 is uniformly unbounded on E2. Consider any sequence
(391u, 392u) 1’-2 with 11(391,, 392u)11 + nt-OO" Without any loss of generality we distinguish
two cases. The first is 139,1 -+ +oc and lim 1392,1 < +oc. Then k(391,, 0) for sufficiently
large u and so

lim Vz(xl,, X2u) lim V1 (xl,)

The other case is 1392,1 -+ -+-cx and lim 1391,[ < +oc. Then by (2.5c) (I)(391,392c,) +
+oc, 1392- 51 (391,)1 ---’ +oc, 0 _</c(39,, 0) _< for all z., and so

lim V2(391v,, 392v,) lim(/c(39,,, 0)(I)(391z., 392u) @ (1 -/g(391v,, 0))(392 I (391v,)) 2)
z

therefore V2 is uniformly unbounded on _]>2. We now show that (0V2/0391)fl (391,392) < 0 for
every (391,392) = 0 with (0V2/0392)(391,392) 0, which asserts that V2 is a global clf with

respect to (2.3). Indeed, for each nonzero vector (39, 392) with

(0V2/0392)(391,392) /g(391,0)(0(i)/0392)(391,392 _qt_ (1 -/g(391,0))(392 (, (39,)) 0,

we get by (2.5)- (2.9) and the definition of k that (391, X2) M1 and

01/2
lfl(x,x2)+ fl (39,x2) <0; (xl,x2) M,,lxll >p.

Hence according to Artstein’s theorem there exists an ordinary map v 2)1(391,392) that is
smooth on _>2\{0} and satisfies

OV2) 01/2
(2.10) -Tz f, (39,, 392) --t- U, (39,, 392)----392 (391,392) < 0, V (391,392) 0.

We are now in a position to prove that the map

2(391,392) #- /C(2391,2392)31 (391,392)-+-(1 /g(2391,2392))Vs(391,392),

where v. and v are defined in (2.8) and (2.10), respectively, is the desired global smooth
stabilizer for (2.3). Obviously, U2 is smooth on the whole space ._2 and vanishes at 0 E2. We
use the Lyapunov inequalities (2.8) and (2.1 0) to prove that the map 32 globally asymptotically
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stabilizes (2.3). Indeed, we evaluate the derivative 1)2 of V2 along the trajectories of the closed-
loop system

We obtain

1 fl (091,092), 2b2 V2 (391, 392 ).

For 11(271,392)11

__
pl/2 we find h(2Zl,2392) and so the previous expression is equal to

(OVz/O391)fl + v, (0V2/0392), which by (2.10)is strictly negative. For0 < II(Zl, 092)11 < pl/2
it follows that 139| < P/2, k(09, O) O, V2(39|, 392) (I)(z, 392), and so

which by (2.8) and (2.10) is also strictly negative. Therefore ?2(Xl, X2) < 0 for all (Xl, X2)
0; hence we conclude that the map v2 globally asymptotically stabilizes (2.3) at 0 c >i2.

Step II: Smoothly global stabilization of (2.4). we now show that (2.1) is smoothly
globally D.A.S. The procedure is analogous with that of Step so we present it briefly.
Since the map f2 satisfies conditions (i)-(iii) of Theorem 1.1 we can establish by again
using Lemma 2.1 that all conditions of Theorem 1.3 are satisfied with respect to (2.1) with
(391,092), 093, ,2, b/’2 (091,092),

U2-- -- {(091,092,393) ]23 f2(391,092,093) < v2(391,092)},

instead of 09, y, ?, V(09), M, U+, and U-, respectively. For reasons of completeness we
note that the definition of M2 and the fact that (0V2/0391)fl + (02/0392)V2 is strictly negative
for all (09, 392) - 0 imply

(OV: ) OV2 (x x2)f2(09 x2 x3) < 0 V(Xl 092 393) M2\{O}(2.11) xx fl (xl,x2) + 2x2 ’ ’
Furthermore, from condition (iii) of Theorem 1.1 we get (Of2/Ox,)(O, 0, 0) -/= 0, which by
Lemma 2.2 implies that the restriction at the set M2 near 0 >."_ is the graph of a smooth
mapping x, q52(x, x2) vanishing at 0 c }._2. Hence by (2.1 1) and the definition of M2 we
get

(OV2)OXl OV2(x x2)f2(x 092 (752(x x2)) < 0(2.12) _w-- f, (Xl, x2)-+- 1, 1, 1,
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for (:el9 :e2) 0 near zero, which means that the map :e3 2(:el, x2) locally asymptotically
stabilizes (2.1) at 0 E ,_.2. Using (2.11), (2.12), and the same procedure as in Step I, with
V’2, 2 and M2 instead of V1, 1 and M1, respectively, we can construct a smooth map v
v3(xl, x2, :e3) vanishing at zero, which globally asymptotically stabilizes (2.4) at the origin.

Finally, assume that property (iv) of Theorem 1.1 holds for n 2. In that case the
equation fz(:el, X29 X3) VZ(Xl, X2) can globally be solved with respect to x3, namely, there
exists a smooth function x3 2(Xl, :e2) with 2(0, 0) 0such that fz(xl,x2, 2(Xl, X2))
vz(xl ,x2) for all x and x2. Therefore (2.12) is fulfilled for every nonzero (xl, x2) E ]2 and
so the static feedback 2 globally asymptotically stabilizes (2.1) at the origin.

The following proposition provides an algebraic description of the sufficient conditions
of Theorem 1.1.

PROPOSITION 2.3. Suppose thatfor every there exist smooth mappings hi, 9i +
vanishing at zero such that f hi 4- 9, andfurthermore assume

(A1) for every :e0 (:el0,... ,:ei0) Ni there exist an odd integer hi and a positive
constant ri such that

0 hi (wi, y) > o(2.13)
Oxjl

for every wi - (:el,... ,:ei) in a neighborhood ofzo andfor every y . :ei+l; in particular, if
kmin(:e0) denotes the smallest odd integerfor which (2.13) is satisfied, then we assume that

(2.14) kmin (0) 1;

(A2) there exists a positive definite C function Mi . -- ’ such that

(2.15) ]9i(wi, y)] <_ Mi(wi)

for all wi and y.
Then conditions (i), (ii), and (iii) of Theorem 1.1 are satisfied and so (1.3) is smoothly

globally D.A.S.
Proof. According to assumption (A 1), for every and :e0 there exist an odd integer ki and

a compact neighborhood S of z0 such that fi is written

ki-l__ Ohf(, v) , v ( o) + c(, v) + (, v)
=o OX+l

(2.16)

c(, ) -*.

and (2.13) is satisfied for each w S and for all y x+. Since hi is odd, it follows by
(2.13) that

(2.17) limly ICi(wi., y.) > 0, as ]y.] +x

for every sequence wi. S. From (2.15), (2.16), and (2.17) we get lira f(wi., y.) +x
as y, -- +oc. This in conjunction with the continuity of f implies that for every a ’and w E ’J there is a y with f(w, y) a from which it follows that the map f(wi, .)
is a surjection. Similarly, condition (ii) of Theorem 1.1 is a direct consequence of (2.17).
Finally, notice that, since 9i is C vanishing at zero, it follows by (2.15) that 9i(0, y)
(09/Ox+l)(O, y) 0 for every y Xi+l. The latter in conjunction with (2.13) and (2.14)
implies (1.4) and condition (iii) of Theorem 1.1.
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Example 2.4. Consider the system l x2(1 x l) -+- x32 -+- X sin X lX2, :2 u(1
3:1 x2) + 3 q_ XlX2 sinxlxzu. We define fi =."
x, h2 @ (1 Xl X2) q-- U3, gl @ Xl sin xlx2; 92 . XlX2 sin xxzu. Then we can easily
justify that conditions (A1) and (A2) of Proposition 2.3 are satisfied and so the system is
smoothly globally D.A.S.

The following corollary is a direct consequence of Proposition 2.3 and extends the main
result in 14] dealing with global stabilization by linear feedback for triangular systems of the
form:

:1 X2 + gl (Xl, X2)
2 X3 + g2(Xl, X2, X3)

(2.18)

den-1 Xn -k gn-l(Xl,X2,... ,Xn-l,Xn)
n U -+- gn(Xl,X2,. ,Xn-l,Xn,

where the mappings 9, _< < n are globally Lipschitzian.
COROLLARY 2.5. Suppose that each 9 is smooth vanishing at zero and satisfies (A2) of

Proposition 2.3. Then (2.18) is smoothly globally D.A.S.

2.2. Controllability. We conclude this section by giving some links between the main
assumptions of Theorem 1.1 and the null controllability of (1.3). It is well known (see [7])
that if a nonlinear system, whose linearization at the origin is controllable, is globally S.A.S.,
then there exists a t > 0 such that the domain C consisting of all points x0 E >:’, each of
which can be steered to zero at time t by some measurable input u, is the whole state space.
It turns out that the domain of null controllability, namely, the set C -+- tot>0 C, covers the
whole state space. It is not difficult to establish that the same result holds under the weaker
assumption that the system is globally D.A.S. Moreover, for triangular systems (1.3) this result
is strengthened as follows.

PROPOSITION 2.6. If conditions (i), (ii), and (iii) of Theorem 1.1 are satisfied, then C
]’ for every > O, namely, each initial state xo .’’, can be steered to zero at any time

> 0 by an appropriate measurable input.

Proof. For reasons of simplicity consider the planar case (2.1). Condition (iii) ofTheorem
1.1 guarantees that for every > 0 the set C, covers an open neighborhood S of 0 :2.
To complete the proof it suffices to show that for any initial state x0 (x0, x20) ...,2 there
exists a measurable controller such that the endpoint of the corresponding trajectory of (2.1)
lies in S at time/72 7 1. Let (a, a2) be an arbitrary vector in S and let x
be a C function with Xl (0) x0 and x (t2) al. Then by using assumptions (i) and (ii)
of Theorem 1.1 we can find a measurable function u" [0, t2]- >’: such that

(2.19) a(s)- fl(x(s),ul(s)), ’s [0,72]

(see also [7, p. 162] where analogous arguments are used). From (2.19) it follows that x
is the solution of the subsystem 5: fl (xl, x2) with input X2 Ul starting from x0 with

endpoint x (t2) a; equivalently

(2.20) z,(.s) zlO + f,(z(p),,(p))dp, Vs [O, t2].

Let z(s), s [0, t] be a sequence of C functions such that

(a.l I.() ()
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and Z2u(0) X20; x2,(t2) a2 for all u. Then by (2.20), (2.21), and using Gronwall’s
inequality it follows that for every e > 0 there is an integer k such that la -: (t2)l < e, where
2l(s) - x(s, ZlO,Z2) denotes the trajectory of 1 =/l(Xl, x2) with input az(s) zz(s)
starting from z0. Consider finally a measurable function u2 [0, t2] --+ "= such that

(2.22)

whose existence is also guaranteed by assumptions (i) and (ii) ofTheorem 1. I. From (2.19) and
(2.22) it follows that (l, 2) [0,/;2] --+ ]’- is the trajectory of (2.1) with input x3 u2, starting
from (xlo, x20) and with endpoint I1(1 (t2), 22(t2)) (al, a2)ll < e. Taking into account that
(al,a2) E S and by choosing c appropriately small it follows that :(t2) -" (1(/2), 2(t2))
also lies in S. Since S c Ct, :(t2) can be steered to zero by some input w [0, tl] --+ E.
We conclude that xo can be steered to the origin at time t //72 /; by the concatenation of

U2 and w. The proof of the general case follows similarly by induction. 71

3. The general case: A necessary and sufficient condition. The following theorem
generalizes Theorem 1.3. It provides a necessary and sufficient condition for dynamic stabi-
lization for the general nonlinear case (1.1).

THEOREM 3.1. The system (1.1) is globally D.A.S. ifand only ifthere exist a closed subset
M C _._n+l, a pair ofnonempty disjoint subsets U+ and U- of’]+1 and a C nonnegative

function W ’_ + --+ ’ such that
(i) 0 E M, >’]+ U+ tO U- tO M; rr(M) >’_’;
(ii) for any > 0 the following hold:

(3.1) {o} (o, e) v+ 0, {o} (-e, o) n u- #

(iii) tke function W is strictly positive on tke region M\{O}, wkereas W(O, O) O.
Moreover assume tkat

(3.2) (ow)
where c >’+ -+ :+ is a positive definite function with c(O) 0 andfurther

OW OW
(3.3) (x,y) >0, V(x,y) U+; (x,)__0, V(z,) U-;Oy Oy

(iv) W is uniformly unbounded on ’7’+
The system (1.1) is locally D.A.S. ifand only ifU+ U U- 0 M and rr(M) are neighborhoods
ofO .E+1 0 ’7, respectively, and.further (3.1), (3.2), and (3.3) are satisfied.

Proof. We establish only the global part of our theorem. Similar arguments can be
repeated in a local setting. We proceed to the construction of a global clf guaranteeing global
dynamic stabilization as follows. For each integer u consider a locally finite partition of
that consists of subsets A. c ’_’, 1,2,..., with intA.., intA. ) for il -/= i2. The
diameter of each A. is tending to zero as u -+ +oc uniformly on i, there exists an integer
io io (v’) such that

(3.4a) 0 intA,z

and further for every x ’_ and for almost all u we can find an integer i(u) with
x intA,,i. Similarly, for each u and consider a partition of the y axis of subintervals

B,j -+- [y,j, Y-z(5+)], J { :[: l, :t:2,...} such that y,,z. > 0 for j 1,2,... y,j < 0 for
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for all u, j" and further each nonzero vector (z y)j--I,-2,... Y.j-Yz(j+)[ <
belongs to the interior of S.ij .’- A.i x B,j.z, for almost all u and some and j depending
on u. Obviously, for each u the family {S..z. } consists of a partition of _’_"+ and due to our
assumption (3.1) we may assume that there exists an integer jo jo(u, io) depending on
and i0 (i0 being the integer defined by (3.4a)) such that

(3.4b) 0 intS,,:,,.),), S,,,(jo_ ) c U-, S,a,(jo+ C U+.
We are in a position to construct for each u and a nonnegative smooth function 0, (y), y

’_ such that DO.(y) 0 for y cl[luij with S,,j M 0; DO.(y) > 0 for y intB..j
with S.,j C U+, D,z(y) < 0 for y intB..zj with S.j C U-and ]D.(y)] <_ 1; 0 <
0,.,z(y) < 1, for every y ::.. In particular, 0z(y) is strictly positive for y intB,ij with
S,.zj C U+ U- and furthermore by (3.4) the map ,.z,, can be constructed such that the
previous conditions are satisfied and in addition

(3.5) 0,o (y) 0 for y e B.ojo.

Consider now for every u and a nonnegative smooth map a,i + ’_ such that
Da.(x)ll <_ for x A,i, 0 < ai(x) < for x intAi’ ai(x) 0 otherwise,

and define

(3.6) g,(x, y) . Z i(y)ai(x), (x, y) : x ’..
i=1

Obviously, .(. is smooth nonnegative definite and vanishes at zero. Moreover b as well
as its derivative are bounded. Indeed, 0 < .(x, y) .(y)a.i(x) < 1; ID(x, Y)I <
ID.(y)la.(x) + IiDa.(x)ll.i(y) < 2 for all y ’_ and x A.. It turns out that the
map

(3.7) ’(x, y) . Z 2-"O,.(x, y)

is well defined and C In particular, D(x, y) 2-’Df.(x, y), where the series on the
right-hand side uniformly converges to D. Moreover, , is nonnegative definite, vanishes
at 0 f,’_+, and satisfies ,(x, y) > 0 for all (x, y) M. Indeed, for (x, y) 0 we
get from (3.5)-(3.7) that ,(0,0) 0, whereas if (x, y) M, it follows that (x, y)
intS’.j C U+ U U- for almost all integers u and for some i, j depending on u; therefore
O.(x, y) > 0 and so ,(x, y) > 0. We can also easily establish that

(3.8a)
Oy--(x, y) > o , (x, y) u+,

(3.8b)
Oy

(3.8c)
Oy

For reasons of completeness we prove that (x, y) U+ implies (0,{,/0#) (x, y) > 0. Indeed,
let (, y) U+. Then for almost all integers u there corresponds a pair of indices i, j
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depending on v with (z, y) e int&,./,.j. C U+. Consequently, DqS,.z. (y) > 0, a,,i, (z) > O,
and so (Ob/Oy)(z, ) a,i,. (z)DqS,i,. (Y) > 0 for almost all u, whereas (Op, /Oy) (x, y) >_
0 otherwise. Therefore (O/Oy)(x, ) 2-"(&/9,/Oy)(x, y) > 0.

Consider now a pair of continuous functions a, b ’_+ + 5!.+ such that b is positive
definite, a is increasing and everywhere strictly positive, and furthermore

(3.9)

(3. 0) +2 f (x, y)

where c and W are defined in (3.2). Note that the existence of the map satisfying (3.10)
follows from our assumption that W is strictly positive on M\{0}. Finally, we define

L(x, y) @ a(r)dr + b(r)dr.

Obviously L is C and positive definite (the latter follows by our assumption that W(x, ) > 0
for (x, y) E M\{0}), and because of assumption (iv) it is uniformly unbounded on >’7+ We
complete the proof by showing that L is a clf with respect to (1.2). Indeed, for each nonzero

(X, y) E :.n-t-I with

OL
(3.1 1) YO(X’ y) 0

it follows that ((OW/Oy)a(W) + (O,,/Oy)b(a))(x, y) 0 and so by (3.3) and (3.8) we get
(OW/Oy)(x, ) (Oa/Oy)(x, y) 0 and (x, ) M. Therefore by (3.2), (3.9), and (3.10)
it follows that

(3.12)

The implication (3.11) => (3.12) asserts that L is a global clf with respect to (1.2); hence, the
system (l. 1) is globally D.A.S.

The converse part of the proof is straightforward. Assume that there exists a map v
:’+ ---+ ta": that is smooth for (z, y) =/0 and such that 0 >:’+ is globally asymptotically
stable with respect to :b f(z, y), ) v(z, y). Then according to Artstein’s version of the
well-known Kurzweil’s converse stability theorem (see [2]) there exists a uniformly unbounded
smooth Lyapunov function W of 0 LU’+ with respect to (1.2), namely, ((OW/Oz)f +
(OW/Oy)v)(z,y) < 0 for all (z,y) 0. Using the previous inequality we can easily
justify that all conditions of Theorem 3.1 are fulfilled with W as above: M {(, y)
"_’+’ (OW/Oy)(z,y) 0}, U+ {(z,y) E >’_’+’ (OW/Oy)(z,y) > 0}, and U-
{(z,y) >"7+l (OW/Oy)(x,y) < 0}. For reasons of completeness we note that the
previous definitions of M, U+, and U- and the fact that W is positive definite and uniformly
unbounded on ’7+ imply conditions (i) and (ii) of the present theorem. [3

Next we show that if conditions (i)-(iv) of Theorem 1.3 are fulfilled, there exists a
function W satisfying conditions (iii) and (iv) of Theorem 3.1. This in conjunction with
the fact that assumption (1.6) is a special case of (3.1) asserts that Theorem 3.1 is indeed a

generalization of Theorem 1.3.
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PROPOSITION 3.2. If conditions (i)-(iv) of Theorem 1.3 are fulfilled, there exists a C
nonnegative map W :.,,J+i --, 2: satisfying conditions (iii) and (iv) of Theorem 3.1.

Proof(outline). By using condition (ii) ofTheorem 1.3 we can construct a C nonnegative
function W0(:e, y) that vanishes in a closed neighborhood of M, is strictly positive otherwise,
and satisfies

OWo OWo> 0 v u+. < 0, v (,, u-;oqy

W0(xz,, y,,) -- +oc, for any sequence (x,, y,) with lira x,] < +oc and lim

Then the map W(x, y) V(x)+)(:e, y) is C nonnegative definite, and satisfies conditions
(iii) and (iv) of Theorem 3.1. Indeed, W(0, 0) 0, and for each nonzero (x, y) M with

(OW/O’.q)(x, y) 0 it follows that D)(x, y) 0 and ((OW/Ox)f)(x, y) (DVf)(x, y),
which by (1.7) is strictly negative. Furthermore, similar to [15], by condition (ii) of Theorem
1.3 we can establish the existence of a positive definite continuous function c ’_+ ’.+
such that (3.2) holds. Condition (3.3) is an immediate consequence of (3.13). Finally, (3.14)
and the uniform unboundedness of V imply that W is uniformly unbounded on ,[z+l.

The following example has been carefully devised to show the applicability of Theorem
3.1 for systems (1.1) that are not necessarily stabilizable by ordinary static feedback.

Example 3.3. Consider a planar nonlinear system (1.1) with

where is continuous, vanishing at zero, and satisfies O(u) 2 2u for all u 0. We show
that this system satisfies all conditions of Theorem 3.1 and so is globally D.A.S. We define

(z2l 2 2

2

J/ # {(1,’2,/) :3 2 qS(/), / > 0} 1._.1 {(l,:e2,/) ],_3 / 0, 3?2 <

U- # {(:el,2,/) ]?3 2 > qS(ff),] > 0} L_.J {(:el,:e2,) .3 / 0,2 > 0}

{(*,,-2, v) >3.v < 0}.

Then W is nonnegative definite (W(a;I, ;c2,/) 0 for :el a;2 0; ] [-1,0] and
W(:e,z2,.t) > 0 otherwise) and uniformly unbounded on _>_3. We now evaluate
(OW/O’9)(:el, :e2, ) 2/(5(/) :e2), /_> 0. It follows that for each nonzero (:el, :e2, 9) with

(OW/Ol)(:e,:e2,) 0 and y > 0 we have :e2 qS(y) and so ((OW/O:e)f)(:e,:e2,,)
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---- ()2 (+-- -- 6, Whe[e s for 2 ( 0 and 77 :Owe find ((OW/Ox)f).
(mi, x2, 77) -x + x2 < 0. Therefore (3.3)is fulfilled with W and M as previously defined.
We can also easily justify that the remaining conditions of Theorem 3.1 are satisfied and so
the system is globally D.A.S. It must be noted that the system above is not necessarily S.A.S.
Indeed, suppose for instance that <b has the form <b(u) 2u2 + u (1 + 2 sin ), u > 0. Since

the region {(xi, x2) ,_2. xi 0} is invariant with respect to :hi -xi 4- x2i ((u) u2)2,
it suffices to show that the system 92 -4D2(u)/4 4- (x2 4b(u)) 2 cannot be S.A.S. Suppose
on the contrary that there exists an ordinary feedback u u(x2) that is continuous for x2 0
near zero and locally asymptotically stabilizes the previous system at 0 6 2’. This implies

S2(u(x2)) + (x2 (u(x2))) < 0, or qS(u(x2)) < x2 < -}(u(x2)) for x2 > 0 near
zero. The latter is impossible because of the particular choice of q5 (see also [15], where an
analogous example is investigated).

4. Conclusion and further remarks. Sufficient conditions for smoothly global dynamic
stabilizations for a wide class of triangular controllable systems have been presented. A
necessary and sufficient condition for almost smoothly global dynamic stabilization for the
general nonlinear case has also been provided.

It is worth remarking that the approach of the present work can be applied to derive further
interesting results. For instance, we can combine Theorem 1.3 and a well-known result in [4],
[5] concerning the local stabilization problem for planar systems

(4.1) -- f(x, y), {I =., (x, y) .,:2

in order to prove that (4.1) is globally S.A.S. by means of a feedback law that is smooth on
.=2\{0} and further it is continuous at 0 .,:2, provided that

(B 1) the map (x, 77) --, f(x, 77) is analytic near zero;
(B2) there exists a pair of disjoint open sets U+, U- C 2 and a closed subset M C ,,,2

containing zero such that conditions (i) and (ii) of Theorem 1.3 hold and further

(4.2) xf(x,y) < O, V (x,y) M.

For the sake of completeness we note that assumption B in conjunction with (4.2) implies
the existence of a continuous map x (x), (0) 0, and a real constant p > 0 such that
xf(x, (x)) < 0 for 0 < Ix <_ p. Then according to [4], [5] there exists a real map u

v (x, 77), v (0, 0) 0 that is smooth for (x, 77) - 0 near zero and continuous at zero and that
locally stabilizes (4.1) at 0 ,_2. The assumption B also asserts that the system (4.1) satisfies
condition (B2) with M’ {(x, y) ..2; 0 < Ixl /9, y (x)} {(x, y) M, Ix] D}
instead of M. Then we can combine Theorem 1.3 and the approach in [4] as in the proof
of Theorem 1.3 to build a feedback law v v2(x, 77) that globally asymptotically stabilizes
(4.1), is smooth on >=2\{0}, and coincides with v(x, 77) near zero; hence it is continuous on
the whole state space. Details are found in [16].
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A MIXED l/Tl OPTIMIZATION APPROACH TO ROBUST
CONTROLLER DESIGN*
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Abstract. In spite of its practical importance, the problem of designing controllers capable of
satisfying mixed time/frequency domain performance requirements under model uncertainty remains,
to a large extent, open. In this paper we propose a design procedure for minimizing the maximum
amplitude of a regulated error to a specified input while, at the same time, addressing model uncer-

tainty through bounds on the 7t norm of a relevant transfer function. This problem is of interest in

optimal tracking applications where the objective is to achieve minimum tracking error while, at the
same time, maintaining an adequate robustness level. We show that for the SISO case, the problem
can be solved by solving sequence of problems, each one consisting of a finite-dimensional convex

optimization and an unconstrained Nehari approximation problem

Key words, robust control synthesis, 7-tc control, Ic control, discrete-time systems
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1. Introduction. A large number of control problems involve designing a con-
troller capable of achieving acceptable performance under system uncertainty and de-
sign constraints. However, in spite of its practical importance, this problem remains,
to a large extent, open. During the last decade a large research effort led to proce-
dures for designing robust controllers, capable of achieving desirable properties under
various classes of plant uncertainties while, at the same time, satisfying frequency-
domain constraints. However, these design procedures cannot accommodate directly
time-domain performance specifications.

Recently, some progress has been made in this direction [1]-[5]. By using a

parametrization of all stabilizing linear controllers in terms of a stable transfer ma-
trix Q, the problem of finding the "best" linear controller can be formulated as the
constrained optimization problem of minimizing a weighted oc-norm over the set of
suitable Q. In this formulation, additional specifications can be imposed by further
constraining the problem. The resulting optimization problem has been solved using
convex programming [1] and constrained nondifferentiable optimization [2]. However,
although these methods are effective when the specifications are easily expressed in
terms of the frequency response, presently they can handle time-domain specifications
in a conservative fashion, through the use of several approximations. Additionally,
they may require solving very large nondifferentiable optimization problems. A differ-
ent approach has been pursued in [3]-[5], where time-domain constraints over a finite
horizon are incorporated into an optimal control problem that is then transformed
into a finite-dimensional optimization problem. However, at this stage constraints over
an infinite horizon can be handled only indirectly.

Finally, in [6] and [7] the problems of finding an internally stabilizing compensator
that minimizes the maximum error to I bounded disturbances and to a fixed, given

*Received by the editors May 15, 1992; accepted for publication (in revised form) January 10,
1994. This research was supported in part by National Science Foundation grant ECS-9211169 and
Florida Space Grant Consortium.

Department of Electrical Engineering, The Pennsylvania State University, University Park,
Pennsylvania 16802.
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signal was solved. However, these designs cannot accommodate frequency-donain
specifications.

In this paper we address tile problem of finding an internally stabilizing compen-
sator that minimizes the maximum amplitude of the error to a fixed given input subject
to constraints upon the norm of a relevant transfer function. This problem, which
can be thought of as the dual of tile problem proposed in [3]-[5], is of particular in-
terest for optimal tracking problems where the objective is to achieve minimum error

magnitude, while at the same time maintaining an adequate robustness level against
model uncertainty.

The paper is organized as follows: In 2 we give a formal definition to the mixed

loo/o optimization problem. In 3 we propose a solution method using a technique
similar to the one that we presented in [8]-[10]. The main result of this section
shows that the mixed optimization problem can be solved by solving a sequence of
modified problems, each one consisting of a finite-dimensional convex, constrained
optimization problem, and an unconstr’ained Nehari approximation. In 4 we present
a simple design example and compare our controller to the unconstrained optimal
controller. Finally, in 5, we summarize our results and indicate directions for fixture
research.

2. Problem formulation.

2.1. Notation. By/2o we denote the Lebesgue space of complex-valued transfer

functions essentially bounded on the unit circle, equipped with the norm

supll= IG(z)l. (Jo) denotes the space of stable (antistable) complex functions
G(z) oc, i.e analytic in Izl >_ 1 (Izl <_ 1), equipped with the norm I1.11o. The
prefix 7 denotes subspaces formed by real rational transfer matrices. TCJ-te denotes
the subspace of transfer matrices in TC?-goo that are analytic outside the disk of radius

f, 0 < f < 1, equipped with the norm G(z)llte=sup0<0<r la(&a0)l. 1 denotes the

space of bounded real sequences {ek} equipped with the norm IIllz-sup levi.
denotes the space of real sequences, equipped with the norm Ilqll, -0 Iqt <
Given a sequence q lx we will denote its Z-transform by Q(z) 7J-too. To avoid
confusion and by a slight abuse of notation, we will denote the I1o11 norm of a transfer
function as I1.11 and the loo norm of a sequence as

Throughout the paper we will use packed notation to represent state-space real-
izations, i.e.,

G(z) C(zI A)_.B + D/X ( A 13)C D

P+: 7oo 77-t denotes the projection operator; i.e., given G 7, {j P+ (G)
is the stable part of G. For a transfer function G(z), G-G(!). Given R
FH(R) denotes its maximum Hankel singular value (for R 7&, Fn(R) denotes the
maximum Hankel singular value of R~).

Finally, given two transfer matrices T r.. Tg

dimensions, the lower linear fractional transfor’matior is defined as

.(T, Q)ZXTi + TQ(I TgQ)-Ti.

Strictly speaking this norm should be denoted as II.ll since it will be applied to both functions
in oo and "H. However, we decided to use the notation I1.11, to avoid confusion with the
continuous-time ;oc norm.
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2.2. Statement of the problem. Consider the SISO system represented by
the block diagram in Fig. 1, where S represents the system to be controlled; the
scalar signals w, 0, and u represent an exogenous disturbance, a known, fixed signal,
and the control action, respectively; and , e, and y represent the outputs subject to
frequency-domain performance constraints, the tracking error to the signal 0, and the
measurements respectively. Note that w and include fictitious signals used to assess
stability in the presence of model uncertainty. Then the problem that we address in
this paper is the following:

U

S

FIG. 1. The generalized plant.

Mixed l/o control problem. Given the nominal system (S), with frequency-
domain performance specifications of the form

where W(z) is a suitable weighting function, find an internally stabilizing rational
controller

(c)

such that the maximum amplitude of the regulated output e due to 0 is minimized
subject to the performance specifications (P)

3. Problem solution. In this section we show that the mixed 1/7-/ problem
can be solved by solving a sequence of problems, each one requiring the solution
of a finite-dimensional convex optimization problem and an unconstrained Nehari
extension problem.

3.1. Problem transformation. Assume that the system S has the following
state-space realization (where without loss of generality we assume that all weighting
factors have been absorbed into the plant):

(s)

A

Cf
Ct
C

Dff Dft Df2
Dtf Dtt Dt2
D2f D2t D

where Dr2 has full column rank, D2f has full row rank, and the pairs (A, B) and
(C2, A) are stabilizable and detectable, respectively. It is well known (see for instance
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[111) that the set of all internally stabilizing controllers can be parametrized in terms
of a free parameter Q as

(1) I( ’l(J, Q)

where J has the following state-space realization:

(J)
A + B2F -4- LC2 -t- LD22F

F
-(C9. + Dg.9.F)

-L B2 + LD22
I

-D22

where F and L are selected such that A + B2F and A + LC2 are stable. By using this
parametrization, the closed-loop transfer functions Tcw and %o can be written as

T.u, .) T, Q) T1 + T2Q,
%o Q) +

where TT, T2= 12T21, ZlZZ11 qO__,T,O ,T,O
2-12. E /?. and T and To have the

following state-space realizations"

(3)

A + B2F -B2F
0 A + LC2

Cf + Df2F -Df2F
0 C2

Blf t32
Blf + LD2f 0

Dff Df2
D2f 0

A + B2F -B2F
0 A + LC2

Ct + Dt2F -Dt2F
0 C2

Bit B2
Bit + LD2t 0

Dtt Dr2
D2t 0

Moreover (see for instance [9]), it is possible to select F and L in such a way that
T.(z) is inner (i.e., T2~T2 I). Since II.ll is invariant under multiplication by an
inner function, we have

(4)

where R(z)ZXT(z)T2(z) has all its poles outside the unit disk [9].
By using this paratnetrization the mixed optimization problem can be now pre-

cisely stated as solving

(l/o) #o inf IIllz

subject to
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where

and 0 E 112 is a known, fixed signal.

3.2. l Optimization analysis. In this section we analyze the l optimization
and show that it can be handled by considering a finite number of constraints. We
begin by recalling a result for the l problem without T/ constraints.

THEOREM l(Dahleh and Pearson, [7]). Let T(z)O(z) have n distinct zeros ak
outside the open unit disk. Then

(6) #* inf Ilell max chRe{T(a)((a)} / E ci+Im{T(a))(a’i)}
Kstab

i=1 i=1

subject to

(7)
j=0 i=1 i=1

Furthermore, let

(8) rj-- E c{Re{a{ ’} + E c{+Im{a-Y}"
i:1 i:1

Then the optimal error ek satisfies the following condition:

, if r --0;
levi- < , if r O.

Remark 1. Note that the optimal solution may have infinitely many terms such
that leil I*.

Since all the solutions to a suboptimal Nehari extension problem of the form IIR+
QII -< y can be parametrized in terms of a free parameter W(z) , IIWIlt <
3,- problem l/7-t can be thought of as an optimization problem inside the origin
centered ,--ball. However, the ,--ball is not compact in o. Thus a minimizing
solution may not exist. Motivated by this difficulty, we introduce the following modified
mixed loc/Tloo problem: given 6 < 1 and Tl(z), T2(z), and (E)(z) 7, find3

(l/Tls) #= min IlcllzQ

subject to

Remark 2. Problem loc/e can be thought of as solving the problem lo/oc with
the additional constraint that all the poles of the closed-loop system must be inside
the disk of radius . A parametrization of all achievable closed-loop transfer functions,

2This restriction on 0 can be relaxed to include steps functions, by absorbing the pole at z
into the plant, thus forcing a controller with integral action.

3problem l/7-t5 was suggested by Dr. H. Rotstein and Prof. A. Sideris, Department of
Electrical Engineering, Caltech.
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such that T satisfies this additional constraint, can be obtained from (1) by simply
changing the stability region from the unit-disk to the &disk using the transformation
z 55 before performing the factorization. Furthermore, by combining this transfor-
marion with the inner factorization, the resulting T2(z) satisfies Tg_(z)T,e(7)llzl=6 1
(i.e., T is inner in

In what follows we will show that if loo/7-t6 is feasible, it always admits a min-
imizing solution. Moreover, this solution is rational (i.e., Q 7oo) and requires
considering only a finite number of elements N(f) (independent of Q) of the sequence
{e}. The proof is constructive and is based upon showing that loo/6 can be de-
coupled into a finite-dimensional convex optimization and an unconstrained Nehari
approximation problem, both of them admitting a minimizing rational solution.

LEMMA 1. Assume that 1oo/6 is feasible. Then there exists N(5) such that for
every Q 6 satisfying the constraint IIR + QIlt < "y, the corresponding sequence
{e} satisfies levi < #* for all k > N, where #* indicates the unconstrained
optimum introduced in Theorem 1.

Proof. Proof of Lemma 1 is given in Appendix A. El
COaOLARY 1. Problem 10o/7-t6 is equivalent to the following semi-infinite convex

optimization problem:

min {max(9)
Qea 0</<N-

II+QII5

where

(10)

t_l A- (t01o t01N_l)’,
tOo 0 0

o o

tO2N_l t022o
qA=(qo qN-1)

where to,ik, q denote the kth element of the impulse response of Tg(z)O(z) and Q(z),
respectively

Proof. Let #o denote the solution to 1/7-/6. From Lemma 1 it follows that (since
#o >_ #,)

rain
III+QII

Therefore the peak value of levi is achieved for some k < N. The proof is completed
by noting that (9) gives e in terms of the impulse responses of Tl(3(z), T(3(z), and
O().

3.3. The /-/oo performance constraint. In this section we show that i) the
modified loo/oo problem loo/7-/6 has a global minimum that can be explicitly found by
solving a constrained finite-dimensional convex optimization followed by the solution
to an unconstrained Nehari approximation problem; and ii) the mixed loo/oo problem
can be solved by solving a sequence of modified problems. Let qi denote the terms of
the impulse response of Q(z). The key observation to show the first result is that (from
Lemma 1) only the first N terms of this expansion appear in the l,o optimization. The
second result follows then by constructing a nonincreasing sequence {#,i}.
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LEMMA 2. Consider the following Sylvester equation:

(11) AYA Y c’e’N
where An is a nonsingular antistable matrix, CR is a row vector, and

(12)

0 0 0
1 0 0

Aq ...
0 1 0

eN (0 1).

Then the solution Y to (11) can be explicitly calculated as

(13) Y ((A)N-c (AR)(N-)C CR).

Proof. The proof follows by successive right multiplications of (11) by the columns
of the identity. E]

In the following theorem we consider the case where the first N coefficients of the
expansion of Q(z) are specified and establish a necessary and sufficient condition for
the existence of a tail to complete Q(z) in such a way that the approximation error
veria I1 + C211 <- Z.

THEOREM 2. Let

cu di

N-1with McMillan degree n, and QF i=0 qiz-i be given. Then there exist QR, such that IIR + QE + z-NQII < , iff I12112--(2) _< G, ’where-e denotes
the maximum singular value, Q is a matrix affine in the coefficients of QF of the
following form:

(14)

hi- qN-i + b(A)N-l-ic, 1 <_ <_ N- 1,

hN qo + dR;

and W and Lc are positive definite matrices depending only on R.

Proof. Let G-R + Q. Given Q, there exist QR such that IIR + Qr +
z-NQll <_ iff the corresponding unconstrained 1-block Nehari approximation
problem [121 has a solution, i.e. if

(15)

rain
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where we used the facts that zx is an inner function and I111 II-II, Moreover,
from Nehari’s theorem it also follows that Q E 7?-/o. In order to compute FtI we

need a state-space realization for the stable part of z-NG~. Let GIR~z-N. Standard
space-state manipulations [13] yield

)/---
b(A)_ dR bR(AR)-lcR

where Al exists since R E T/- and

0 0 0
1 0 0

Aq
.Oo

0 1 0

e= (0 1).

1
0

Hence

(17)
(A)-1 --(AR)-I’ cRe

G, 0 Av
bn(a)- d ,(A,) ereN

Finally, the similarity transformation

0 IN

0

where Y is the unique solution to the Sylvester equation

AYA Y ’’cReN

yields

(18) G1
b(A)-1 dv b’(A)-I(, + V)

Yel

0

Since AR is antistable, A is stable. Hence P+[(71] (71. Similarly,

(19)

N-1

G23z--NQF---" E qN-iZ-i
i=1

Cq 0

where
Cq qN-1 qo
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Hence

(20)
A)-+ o

0
Aq
H

where

(2)

Finally, note that Y can be computed explicitly by using Lemma 2. Substituting (13)
in (20) and (21)yields

(22)

In order to compute the approximation error we need to compute the observability and
controllability grammians of G. Although, in principle, this requires the solution of
two Lyapunov equations, with coefficients that are functions of QF, we will show that
the particular structure of the problem allows for computing these solutions explicitly.
For the controllability grammian Lc we have
(23)

((A)-1 0 ) (LIC1 L1C2)((A)-1 0 ) ( LI n2)0 Aq n] L 0 Aq L L

( (A)N-ccn(A)N- -(A)N-Ic e’ )--elCR(AR)N-1 le
Solving for each of the blocks of the grammian yields

Lc L,
(24) Lc (A)N-lc (, N-2

LC IN

where L is the solution of the following Lyapunov equation:

(25) ALCo An Leo (A)cc(A)N

and the expression for Lc was obtained from the corresponding equation by successive
right multiplications by ei. Note that the controllability grammian of is independent
of Q. Similarly, for the observability grammian Lo we have

(26)
0 Aq L2 Ll2) Q(A) -1 0 ), (L110

{ (An)-lb,,.H)HH
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Solving for each of the blocks of the grammian yields

(27)
L Lo,

L 7tTt’

where

(28)

aN hN-1
hN hN-1 h2

hN hN-
hN

A(N-1)bR...AlbR)
and Lo is the solution to the following Lyapunov equation:

(29) ARLoA Lo bnb

(i.e., the controllability grammian tbr R), which is independent from QF. Finally, note

that

(30)
I 0 ,4 0

0 7t’)
Let

(3i) W,_}W_}=(Lo A)A’ I

Then

I
(32) Lo= 0

Hence, frolIl (24) and (32) we have that

1 1

LJ LoL Q’ Q
(33) QXW1/2 ( I O) -}

0 H L.

From Nehari’s theorem [12] it follows that

(34)
p1/2

where p indicates the spectral radius.
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Remark 3. Note that
Lo A
A’ I )

is positive definite, since from (29) it can be easily shown that

(35) Lo- .AA’- An-NLoAN > O.

Remark 4. Although tile similarity transformation used to diagonalize (17) is
useful in establishing the desired result, attempting to compute Q from (33) may be
numerically ill conditioned since the matrices Lc and 7-t contain the powers A,
1... N, and AR all its eigenvalues outside the unit disk. An alternative expression for
Q that avoids this ill-conditioning is given in Appendix B.

Remark 5. This result can be easily extended to the case Q
by using the change of variable z

Combining Corollary 1 and Theorem 2 yields the main result of this section.
v--N-THEOREM 3. Qo QO + 2_NQo, where QO 2.,i.o qiz- solves the modified

1o/7{o control problem l/5 iff qo qo... qN- solves the following finite-
dimensional convex optimization problem:

(36) qO-- argmin { max
0<k<N-1q E tg

and QO solves the unconstrained Nehari approximation problem

(37) Q() argmin IIR(2) + Q,% +

where z 52, R is defined in (4), N is selected such that

(38)
Ne5N <_ #*,

tfe.-- (’]T0(2)" + ]]T(2),, ("/+ [,R(2),,))
and #* is the unconstrained loc optimum.

Remark 6. Qo 7-t since Q% is a finite impulse response filter and, from
Nehari’s theorem,

4. Synthesis algorithm. Based upon tile results of Theorem 3 and 3.2 and
3.3, the mixed lo/7-to problem can be solved by using the following algorithm:

O) Data: An increasing sequence & 1, e, > 0.
1) Solve the unconstrained loo problem using Theorem 1. Compute II<,,ll. If

]]To][ <_ 3’ stop, else set i= 1.

2) Solve the problem loo/5i proceeding as follows:
2.1) Let z 5i and consider the system S(i).
2.2) Perform the factorization (1) to obtain T(),T(2).
2.3) Compute N from (38).
2.4) Find 0(2) and #i using Theorem 3.

3) Let Q 0(),K Ft(J,Q). Compute IlT,(z)llt. If IlT,o(z)ll > -stop, else set + 1 and go to 2.
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Step 2.4) entails solving first the nondifferentiable constrained optimization prob-
lena (36) and then the unconstrained problem (37). The latter is a well-understood
problem, and efficient computation techniques are available for finding the solution
(see for instance [5]). The finite-dimensional problem (36) can be solved by using the
deep-cut ellipsoid method [14, p. 329]. This algorithm requires computing subgra-
dients of the objective function and the constraint (Q) < ". Since the objective
function is affine in (2, a subgradient is readily available. From the explicit expression
for Q given in Appendix B. (eq. (B4)), it can be easily shown that a subgradient of
the constraint is given by

c9
() (s)Oq

where u and v are right and left singular vectors of Q corresponding to # and S
indicates the shift right operator applied times, i.e.,

SVzS (O 0 Vl ...Vn-i ).

THEOREM 4. Asstme that infct IIT + T2QIIt FH(R) < 7" Then the
sequence #i #o, the solution to the mized l/o problem.

Proof. From the maximum modulus theorem it follows that the solution (i to

lo/5i is a feasible solution for lo/e,t+l. Thus, the sequence tt,i is nonincreasing,
bounded below by the value of the unconstrained l controller. Therefore the sequence
has a limit # _> #o. We will show next that # #Oo Assume by contradiction that

#o < # and select #o </2 < #. Since F(R) < -, there exists Q/ such that

I1 / Q1 ]17-/c < ")/. From the definition of #o it follows that, given r > 0, there exists
Qo z, I1 / Qoll <_ ", such that II(Qo)llz <_ o / w, where c(Q) denotes the
output corresponding to the controller Q. Let E(Q) denote the z-transform of c(Q)
and define QQo + e(Q1 Qo). Then

and

(40)

Hence

It follows that

I()1 I(Oo)l + IIT(Q1 0o)

I1(0)11,oo sup

< sup e(Qo)l / lIT (O Oo)011oo

_< o + + llr0 (0 0o)11.
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Since E 77-/, there exists 51 < 1 such that T1 + T2O is analytic in Iz[ > 51.
Moreover, since IIT1 + T2] < 7, it follows (from continuity) that there exists

52 < 1 such that T1 + T2Q]] . Therefore, by taking e and small enough and

5max{51,52} < 1 we have that T + T2n and e() < . Hence for
5 5, . However, this contradicts the fact that the sequence is nonincreasing
and that < p lim p.

Remark 7. Theorem 4 shows that as 5 1 the objective of the modified
problem converges to the solution p of the original problem. Moreover, pi is a non-

increasing sequence of upper bounds of . Note, however, that as 5 1, N(5) will
in general increase, thus increasing the size of the constrained optimization problem
(36).

5. A simple example. Consider the problem of minimizing the step response
error for the nonminimum phase plant used in [7], subject to robust stability against
the unstructured multiplicative uncertainty shown in Fig. 2. Table 1 shows Ilellto and

IITII for different designs, with the corresponding step and frequency responses
shown in Fig. 3. From Theorem 1 it can be easily shown that the infimum of the error
is Ilellt -, achieved with the controller C(z) z-l.z The same controller yields

IITolln 5, thus guaranteeing robust stability against unstructured perturbations

IIAII < 0.2. Note that this controller is not internally stabilizing due to the pole-
zero cancellation at z 1. The optimal 7-/ controller yields IITCwll 3 and

Ilellt 4. Mixed l/Tl optimization with IITCwll < 3.3 yields Ilellt 3.31.
However, this procedure results in a controller with 104 states (since it can be easily
shown from Appendix A that the l optimization needs to consider no more than 50
steps). Finally, the last entry in Table 1 corresponds to a reduced-order controller with
five states. In spite of the substantial order reduction, this controller yields virtually
the same performance as the mixed l/7-lo controller.

FIG. 2. Block diagram with multiplicative uncertainty A "pulled-out."

TABLE

I[Tcwll vs Ilellt for the example.

gOoD

3

l/7-l 3.3 3.311

/cx/7" d 3.3 3.312

6. Conclusions. In this paper we address the problem of finding an internally
stabilizing compensator that minimizes the maximum amplitude of the error to a fixed
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101

lO
lO-S

Step R_ponsees,................................... mixed:-::.:-::::::.

5 10 15 20 25 30

Time

,Fre,q,u,e,n,c, Rpo,e,

35 40 15 50

............................:.-:...............................
....."

,l’l’*l*illl

10-4 10- 10-2 lO-t 10 lO

Frequency (radians/sec)

FIG. 3. Step and frequency responses for different designs.

given input subject to constraints upon the 7-( norm of a relevant transfer function.
This problem can be thought of as the problem of designing a controller capable of
guaranteeing an adequate robustness level against dynamic uncertainty while using
the extra available degrees of freedom to optimize a time-domain performance. We
show that the problem can be solved by solving a sequence of modified problems, each
one entailing solving a finite-dimensional constrained optimization problem and an

unconstrained 7-/ problem.
Perhaps the most severe limitation of the proposed method is that may result in

very-large-order controllers (roughly 2N) necessitating some type of model reduction.
The example of 5 suggests that substantial order reduction can be accomplished
without performance degradation. Research is currently under way addressing this
issue and pursuing the extension of the formalism to allow more control on the shape
of the error response.

Acknowledgments. The author wishes to thank Dr. H6ctor Rotstein and
Prof. Athanasios Sideris, Department of Electrical Engineering, Caltech, for many
comments and for suggesting problem l/7-[.

Appendix A: Proof of Lemma 1. Since E(z) E TiTle, it is analytic in Izl >_
and

1 e. E(z)zk-ldz(A1) ea- 2r---
where C is the origin centered circle with radius 5. From (A1) it follows that, for any
K :> supz=0 IE(z)l- IIEIIT, we have

(A2) lekl <_ K5k.

An upper bound of IIEIIT can be found from (2) as follows. Since II.llt is submulti-
plicative, we have

(A3)
IIE(z)ll, _< I1%o11,11OI1,

<_ (IIT#II, + IIT#II,IIQII,)IIII,.
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From the hypothesis we have that

(A4)

Substitution of (A4)in (A3) yields

(A5)

It follows that if N is selected such that

(A6) Ke5N <:

then, for > N, let] < #*.

Appendix B: Some numerical considerations. In this appendix we give an
alternative to (33) for computing Q. Since this alternative expression does not involve
increasing powers of An, it is preferable in cases where N is large or An has large
eigenvalues. From (24) we have that

(B1) Lc y, IN 0 I 0 I Y’ I

where WonZXLo- YY satisfies

AWoRAn Won cRcR
(i.e., Won is the observability grammian of An). From (30) we have

(B2)
LO (, o)(.o o)0 A I 0 TI

=(I A I
0 7-l) ( L-AA’ o)

Finally by using (35) we get

(B3)
L ( Io TI’A ) ( A NLoAR IO ) ( IA TI )

(A
y fl, 0 -N 0

o
o

Since the spectral radius of LoLc is invariant under a similarity transformation, it
follows that Q in (33) can be replaced by

Lo 1/2 0 An An Y
0 I A’ A’Y+’

Kon 0(B4)
0 I

where the only terms that contain powers A, 1... N, are in ’ + A’Y. Finally,

note that by defining fiIH + b’(A’)-Y + b’(A’)-cRe ( ]zN), (22) yields

]ti qN-i
(B5) N qo -t- dn.

l<_i<_N-l"
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Hence, we have that

(B6)

7-{ + AY

hN
cAbi cAb

cRA bR cAb
.o

cRAbR

cRANbR
cRA(N-1)bR

cnAn bt

Since (B6) does not contain increasing powers of Au, it is preferable to (33),
especially in cases where N or the spectral radius of Au are large.
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ORDERS OF INPUT/OUTPUT DIFFERENTIAL EQUATIONS AND
STATE-SPACE DIMENSIONS*

YUAN WANGi AND EDUARDO D. SONTAG

Abstract. This paper deals with the orders of input/output equations satisfied by nonlinear
systems. Such equations represent differential (or difference, in the discrete-time case) relations
between high-order derivatives (or shifts, respectively) of input and output signals. It is shown
that, under analyticity assumptions, there cannot exist equations of order less than the minimal
dimension of any observable realization; this generalizes the known situation in the classical linear
case. The results depend on new facts, themselves of considerable interest in control theory, regarding
universal inputs for observability in the discrete case, and observation spaces in both the discrete and
continuous cases. Included in the paper is also a new and simple self-contained proof of Sussmann’s
universal input theorem for continuous-time analytic systems.

Key words, control systems, input/output equations, observation spaces, universal inputs,
observability

AMS subject classifications. 93B15, 93A25, 93B25, 93B27, 93B29

1. Introduction. Previous papers by the authors (see [40], [41]) studied various
relationships between realizability of continuous-time systems and the existence of
algebraic or analytic input/output differential equations. These are equations of the
form

(1) E (u(t),u’(t),u"(t),...,u(-l)(t),y(t),y’(t),y"(t),... ,y()(t)) 0

that relate inputs u(.) and outputs y(.). Such equations, and their discrete-time
analogues, are of interest in identification theory and arise also naturally in the "be-
havioral" approach to systems (see, e.g., [43]). They provide a natural generalization
of the autoregressive moving-average representations that appear in linear systems
theory, where E is linear (in that case, the Laplace transform of the equation leads
to the usual transfer function).

The papers [37], [40], [41] (see also [28] for analogous work in the discrete-time
case) dealt with the relationships between the existence of such equations and the
possibility of realizing the corresponding input/output (i/o) operator u(.) - y(.) by
a state-space system of the type

x’(t) f(x(t)) + G(x(t))u(t) y(t) h(x(t))

whose state x(t) evolves in an n-dimensional manifold. (Precise definitions are given
later; for the rest of the introduction we give an informal discussion. The main
assumption will be that all functions appearing are analytic.) While i/o equation
descriptions of type (1) are well suited to identification algorithms, state-space de-
scriptions of type (2) are often the basis of feedback design tools and are needed for
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the statement and solution of control problems. Thus, it is of great interest to study
the possible relationships between the two kinds of descriptions.

A question that has not been sufficiently studied and was not addressed in [40],
[41] is that of comparing the order r of an i/o equation (1) to the minimal possible
dimension n of a realization (2). In discrete time, for the analogous equations

E e), ,(t- 0

and systems

(4) E: x(t + l) f(x(t),u(t)), y(t) h(x(t)), t O, 1,2

it was known for a long time (see [28]) that one may have r < n, even if the system
in (4) is minimal. It turns out, perhaps surprisingly, that this cannot happen in the
continuous-time case: we prove here that if there is a minimal realization of dimension
n, then no i/o equation can have order less than n. Moreover, we show that the result
holds true also for discrete-time systems that are reversible, that is, those for which
the controls induce one-to-one maps on the state space (the examples in [28] were not
reversible).

The results in [40], [41] depend on an important equality among observation
spaces. The latter are sets of functions on the state space that are obtained by per-
forming different kinds of "experiments" with the system and extracting infinitesimal
information from the observed data. The basic fact needed was established in [391,
and it related the space obtained by using piecewise constant controls (and derivatives
of the output function with respect to switching times between constant pieces) to
the space obtained when using differentiable inputs instead (and the corresponding
jet of derivatives of the output at time zero). The new results given in this paper
depend on new facts, themselves of considerable interest in control theory, regarding
subspaces obtained by the application of "generic" smooth inputs.

The results in this paper were announced and their proofs sketched in the confer-
ence paper [32] (and for discrete time in [42]). To be more precise, in [32] we derived
our results from an equality between observation spaces that is somewhat weaker than
the corresponding one proved here; namely, instead of the current Lemma 2.1, we only
had that die(x) djrj(x) for generic jets # and for generic states x. This is all that
is needed in order to establish the desired results on orders of i/o equations. However,
while this journal version was being written, Coron [5] showed that the equality can
be strengthened so that it holds for all (not merely generic) states (but still generic #).
Since it turns out that the stronger equality can in fact be obtained with essentially
the same proof as in [32], we now present the result directly in that form. (Since
we are only interested in analytic systems, we can use elementary facts from analytic
geoinetry to present a simpler approach to the problem than in [5]; in that reference
the techniques of proof are very different, as the focus is on applications to feedback
control problems for smooth systems. See also [31] for remarks on applications of
results of the type proved here to path planning and feedback.)

In the development of the new observation space results, we needed to extend
to discrete time the well-known and fundamental theorem by Sussmann on universal
inputs for distinguishability of continuous-time analytic systems. It turned out that
our proof also applies in continuous time. The theorem is obtained in a fairly direct
way from a stronger result, Lemma 2.1 in this work. The proof of Lemma 2.1 is very
elementary and intuitive, as it does not use anything more complicated than the fact
that every descending chain of sets defined by analytic equations stabilizes relative
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to any fixed compact. (The original proof of Sussmann’s theorem relies heavily on
the stratification theory of subanalytic sets, a considerably deeper set of tools. Thus
one contribution of this paper is to provide an alternative and simpler proof of that
important result.) In addition to its role in helping to derive the universal input
theorem and our main results, Lemma 2.1 also has its own independent interest, as it
provides relationships between observation spaces defined in different ways and, thus,
provides connections between several different notions of observability. We also note
the very recent work [33], where further results on universal inputs are presented;
these results show in particular the existence of inputs that are universal uniformly
over the class of all analytic systems.

Another set of results that arose naturally while studying the problems in this
paper, and which are included here, deals with the relationships among various al-
ternative notions of observability, especially those proposed in the context of tile
differential-algebraic approach to control theory. We are able to characterize, for in-
stance, the notion of observability proposed in [10], [9] in terms of more standard local
observability concepts.

1.1. Other related work. In addition to the references already mentioned,
work by many authors is related to the topic of i/o equations and realizability; see
for instance [6], [13], [37]. In particular, [7], [8] showed that one must add inequality
constraints to (1) in order to obtain a precise characterization of the behavior of a
state-space system, unless stronger algebraic conditions hold. In [26], [38], [4], local
i/o equations were derived under nondegeneracy rank conditions, for smooth systems,
under observability assumptions. The notions of observation space and algebra that
we employ were introduced for discrete-time systems in [28], and their analogous
continuous-time versions were given in [2], [3].

1.2. Outline of paper. In 2 we introduce continuous-time systems and a tech-
nicai result on observation spaces for generic jets. Certain special cases for which
stronger conclusions can be given, namely bilinear and rational systems, are also
studied there. In 3, we define universal inputs and relate their properties to tile
results on equality of observation spaces and to the orders of i/o equations. The fol-
lowing section has a proof of the main technical results stated in 2 and 3. After
this, 5 provides the discrete-time results. There are also two appendices with some
technical lemmas that are required by the proofs.

2. Observation spaces for continuous-time systems. In this section we first
discuss several natural ways of defining observation spaces for continuous-time systems
and then explore the relationships between the different definitions.

2.1. Observation spaces. Consider an analytic sstem

z’(t) go(z(t)) + g(cc(t))u,(t),2.

where for each t, z(t) 3/[, which is an analytic (second countable) manifold of
dimension rt, h 2t4 --, IR is an analytic function and go, 91,..., 9.rn are analytic
vector fields defined on Ad. Controls are measurable essentially bounded maps ’u

[0, T] ---, IRm defined on suitable intervals. In general, (t, z, u) denotes the state
trajectory of (5) corresponding to a control u and initial state z, defined at least for
small t.
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In the special case in which 2t4 IR and the entries of the vector fields gi’s
(on the natural global coordinates) and of the function h are rational (with no real
poles), we call (5) a rational system. If, in addition, the entries of the gi’s and h are
polynomials, we call (5) a polynomial system.

For a given continuous-time system, let be the subspace of flmctions A/I
spanned by the Lie derivatives of h in the directions of g0, gl,..., gin, i.e.,

:= sp n a h" 0, 0

This is the observation space associated with (5) (see, e.g., [30, Rem. 5.4.2]) For each
x , let (x) denote the space obtained by evaluating the elements of at x.

For each a , we may consider its differential da, seen as a l-form. For each
x , we let d(x) be the space of covectors defined by

dY(x) {d(x) Y}.

We also let d be {d } as a space of 1-forms.
mA related construction is as follows. First let m, =1 endowed with

the box topology, for which a base of open sets consists of all sets of the form =1
where each Ui is an open set of N. A generic subset of’ is one that contains
a countable intersection of open dense sets. It can easily be shown that with the above
topology, N’ is a Baire space; thus, a generic subset is always dense.

Now for any (0, ,’" ") in ’, we define

d
(7) .(z,) t=oh((t,z,u))
for k 0, where is any C control with initial values ()(0) . The functions

i(z, ) can be expressedapplying repeatedly the chain ruleas polynomials in the

(, ) whose coecients are analytic functions (rational functions if
the system is rational) of z. Take the single-input case

f (x) + g(x), y= h(x)

(for simplicity of notation) as an example. The functions are

(x, ,) nh()+ Ponh(),
+,(x, ,) n}h(x) + Po (LLfh(x) + Lfn.h(x)) + "o

and so forth. For instance, for single-input single-output linear systems

we have,

x’=Ax + bu, y cx,

)l(X’ ) cAlx nL E Ii-lcAi-lb’
i=1

0, 1,....

For each fixed # I[{m’ let bru be the subspace of fllnctions from 3d to IF(

defined by

(8) span {b0(’, p), @1 (’, t), )2 (’,/t), ...}
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and let -,(x) be the space obtained by evaluating the elements of ’, at x for each
x E Yt4. Let dg, (x) be the space of covectors given by

d(x) {d#(x, #): E ,}
for each x A//. For instance, for linear systems, dCt (x, #) cA and

d,(x) span {c, cA, cA2, ...},

which is independent of # (and x). We also let dgC be {d#(., #): 9r}, seen as
a space of covector fields.

Clearly, for each #, is a subspace of , and therefore, for each x also d(x)
is a subspace of dgC(z). The main result in [39] says that

(9)

This equality is fundamental in establishing results linking realizability to the ex-
istence of i/o equations, in [40] and [41]. In intuitive but less rigorous terms, the
equality in (9) can be interpreted as follows. We consider the successive derivatives
y(O), y’(O), y"(O),.., expressed as functions of x(0) and u(0), u’(O), u"(O),.... For
particular controls u(t), the y(0), y’(O), y"(O),.., are just functions of x; taking the
span of all such functions, over all possible smooth controls, one obtains the right-
hand side of (9). On the.other hand, taking all possible piecewise-constant instead of
smooth controls and taking derivatives with respect to the times at which the controls
switch values, one obtains the space in the left-hand side of (9).

The following is a technical result for continuous-time systems, which will help in
deriving the desired facts about i/o equations.

LEMMA 2.1. Assume that (5) is an analytic system. Then there exists a generic
subset 142 of IR"’ such that

(10) jr(x)

and

(11) d(z)

for every x All and all
Remark 2.2. The above conclusions are also true if instead of the box topology

one uses the weak topology on ]R"’. This is the topology for which a basis of open
sets consists of all sets of the form rIi=1
and only finitely many of them are proper subsets of IR". Clearly, the weak topology
is coarser than the topology used before. With this topology, IR’ is again a Baire
space. We will remark at the end of the proof of Lemma 2.1 in 4 that the conclusions
of Lemma 2.1 also hold for the weak topology. Moreover, these conclusions can be
established as consequences of a more general result about convergent generating
series, that ensures there exists a generic subset 142 of IR"’ with the property that
these jets suffice for distinguishing all possible convergent generating series; more
details are given in [33].

Remark 2.3. The conclusions in Lemma 2.1 do not always hold for every
IR’’. Consider as an illustration the following bilinear system:

(12) x--x2, x2=x2+xu, y=x2.
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For this system, .7" span {371,372}, thus, ’(z) 0 for all z - 0. But on the other
hand, we have

/)0 (37’ #) 372,. 1 (37’ #) 3?2 -- 371#0’

and in general, /J (z, #) P(37,#o, #1, #-2)+ zl#t-i where P is some poly-
nomial. Clearly, for every z (371, z2) for which Zl =/= 0, one can find a solution
recursively for the equations i(z,#) 0 for > 0. Hence, as long as zl - 0 and

z 0, there exists some jet # such that ,(z) 0, which is therefore different from
/’(z) when 371 0 and z2 0.

2.2. Algebraic formulation. In this section, we assume for simplicity that
A// IRn; we could work with more general manifolds but this would complicate
notation, and in any case we will only need to apply the results given here locally.
We say a function/ is a merornorphic function if/ , where p and q are analytic
functions defined on 3/1, and q 0. (Note that this global definition is different from
the local definition usually given’ see, e.g., [17]. It will be enough for our purposes.)
For each function a E , da is a covector field defined on Ad. If is a meromorphic
function defined on 2t4, then//dR is a well-defined 1-form on some open dense sub-
set of 3/l and any finite sum of such partially defined covector fields is defined on
common open dense set. Thus, we may introduce the subspace dc of the cotangent
space defined by

d$" "-span a {dR" a E $-}

where IR is the field of meromorphiK functions defined on 3/I. Similarly, one can

define, for each # IR"’, the space d by

d. ’-span Ia {dR" a }

Note that there are natural identifications dc d (R) IRa and

Since Ad IRn, we can identify elements of dr with vectors

of meromorphic functions defined on A//. Thedimension of d over IR is the size of
the largest matrix that can be formed out of such vectors and has full rank, i.e.,
has a minor that is not zero as a function. That is, dimn%, d$" is the same as

Inaxz4 dim d$’(3?), a similar argument can be made for each d)r,(3?); together
with Lemma 2.1, we can then conclude the following cor211ary.

COROLLARY 2.4. For any analytic system, doP,, d.P for all # in a generic set
oflR’ ,

Yet another object is obtained if one instead views the elements

as rational functions (in particular polynomials), on the formal variables U- {Uj},
whose coefficients are functions of 3?, as opposed to seeing them as functions of 3? for
each numerical choice Ui #i. We proceed as follows. Let

K-IR({Uij" l_<i_<rn, j>_0})
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be the field obtained by adjoining the indeterminates Uij to IR, and let

be the field obtained by adjoining the indeterminates Uii to lRx. We then let be
defined as the subspace of Kx spanned by the functions i over the field K, i.e.,

’=spanK{i" i_>0}.

Thus, " consists of finite linear combinations qi(U),i(x, U), where the qi(.) are
rational functions on the variables {Uii}. Such a linear combination can be seen. as
a rational function on the {Uii} whose coefficients are meromorphic functions of z

(and hence also meromorphic fllnctions) and, thus, elements of Kx. The differentials
(with respect to z) of elements of K are viewed as rational functions in {Ui }, whose
coefficients are (in general, partially defined) covector fields. Finally we define

d’ := span

Then Lemma 2.1 implies the following corollary.
COROLLARY 2.5. For any analytic system, dim d9c -dimgx dg.

Pro@ Clearly dimK dg <_ dim d9r. Conversely, dim dg max dimR, dgC,.
The desired conclusion then follows from Corollary 2.4.

2.3. Bilinear and rational systems. Now consider the bilinear system

’m

x Aox + E uiAix,
i=1

y CX

where A0, AI,..., A, are n x n matrices and c is an 1 x n matrix. For each multi-index
ii...i, where 0 _< ij <_ m for each j >_ 0,

L,L L,, h(x) cAi,,,Ai,_ Ai x.

Note that 2i (as defined in (7)) is also linear in x for each i; for instance, in the
single-input case (for simplicity of notation),

.(x, #o, # c(Ao + PoA)x + #cAx.
Thus, for the bilinear case, we have the following corollary.

COROLLARY 2.6. For a bilinear system,

(14) Y=Y# and d9c=dgr"

for every tt in a generic subset of IR"’.
Remark 2.7. We would like to point out that this corollary does not hold in

general. The following simple example shows that for a general nonlinear system,
and 9c (respectively, d5c and d/,) may not be the same for any p, even though tile

two spaces d5c and dC are the same.
Example 2.8. Consider the system

x3 x2
X + , y--X.
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It is easy to see that

y= x, y x3 + x2u,
y" 3x5 + 5x4u + 2x3u2 + x2u,

and in general, y(k) (2k 1)!!x2k+1 + p(u, u,..., u(-2), x) + x2u(-1), where p
is a polynomial in x of degree less than or equal to 2k. It can be seen that

jr span 1 {x, x2, X3,... }
However, 2 u for any for the following reason. Assume that

k

x2 aii(x, )
i=0

for some k and some a0, a,..., a . Then a 0 for 2, otherwise the degree
of x in the left-hand side would be higher than 3. Thus the above equation becomes

x aox + a (x + XPo),
which is impossible. This shows that for any p even though, in this case,
d d, span {dx} for all p.

In this example, it is also true that d d for any p. This can be shown
as follows. If d d, then dx 2xdx d. From here it would follow that
x2 a(x,,) + 2(x,p) +’.. + at(x,,) + c for some elements a e and some
constant c . But it can be seen from the above argument that this is impossible.

Assume now that (5) is a rational system. Define A (A,, respectively) as the
-algebra generated by the elements of (,, repectively). Then we define the
observation field Q (Q,, respectively) as the quotient field of A (A,, respectively).
For a field extension Q of , we use trdegQ to denote the transcendence degree of
Q over . Then we have the following conclusion for rational systems, in analogy to
the above conclusion about bilinear systems.

COROLLARY 2.9. For a rational system,

trdegQ trdeg

for each # in a generic subset of ]R"’.

3. Observability and universal inputs in continuous time. Consider an

analytic system (5). Fix any two states p, q E A and take an input u. We say
p and q are distinguished by u, denoted by p
(considered as functions defined on the common domain of (., p, u) and (., q, u));
otherwise we say p and q cannot be distinguished by u, denoted by p , q. If p and
q cannot be distinguished by any input u, then we say p and q are indistinguishable
denoted by p q. If for any two states, p q implies p q, then we say that system
(5) is observable. (See [30, Chap. 5].)

An input u is called a universal (distinguishing) input for system (5) if every
distinguishable pair can be distinguished by u. The existence of universal inputs was
first studied in [15] for bilinear systems, in [27] for analytic systems with compact
state spaces, and for arbitrary analytic systems in [35] for the continuous case. In
this work, we will provide a different and simpler proof of the general result in [35].
(Also, we later give a discrete-time version.) We now state the result to be proved.
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For each T > 0, we consider Cool0, T] endowed with the Whitney topology, that
is, the topology for which a neighborhood base for each function u(.) E Cool0, T]
consists of the sets of the following form:

v C [0, T] max
o<<_, re{0, T]

(t) _< a}
for some k >_ 0 and some 5 > 0. This is well known to be a Baire space (see [14]).
By a generic subset of Coo [0, T] we mean a subset of Coo [0, T] containing a countable
intersection of open dense sets.

THEOREM 3.1 (Sussmann’s universal input theorem). For any analytic system
(5), and any fized T > O, the set of universal inputs is a generic subset of Cool0, T].

PROPOSITION 3.2. There is always an analytic universal input for any analytic
system.

We will provide proofs of Theorem 3.1 and Proposition 3.2 in 4.1.
Consider the following more general class of systems:

(15) x’(t) f(x(t), u(t)), y(t) h(x(t))

where for each t, z(t) Ad, which is an analytic manifold of dimension rt, h 3// IR
is an analytic function and f A/[ xlR" TAd is analytic and f(z, u) TxYM for each
(z, u), so in particular, f(., ’u) is an analytic vector field for each u IR". Controls are
measurable essentially bounded maps: u: [0, T] ---, IR", for some T T, > 0. We
apply the same definitions of distinguishability, observability, and universal inputs as
for system (5) to system (15). One can then generalize the conclusion of Theorem 3.1
to systems of type (15) by means of the following argument. We consider the following
system:

x’(t) f(x(t) z(t)) z’(t) v(t)(16) (t) h(x(t)),

where v is now a new control. By Proposition 5.1.11 in [30], one knows that if (Zl, Z2)
is a distinguishable pair for (15), then z,z2 can be distinguished by a differentiable

(in fact, an analytic) control u. It then follows that for (16), the pair ({, ), where
{ (Zl, u(0)) and .( (z2, u(0)), is distinguished by v(t) u’(t). On the other
hand, if for (16) the pair ((oct,z), (z2, z)) is distinguished by v, then for (15) (z,z2)
is distinguished by the control

z + v(s) ds.

Therefore, (z,z) is a distinguishable pair of (15) if and only if there exists some
z IR such that ((z,z), (z,z)) is a distinguishable pair for (16) for some z.

Applying Theorem 3.1 to system (16), we proved the following conclusion.
COROLLARY 3.3. The universal inputs for system (15) form a generic subset of

C[0, T], for any T > O.

3.1. Other notions of observability. In what follows, we study relationships
among several alternative notions of "observability" that have been proposed by var-

ious authors.
Take an open subset b/of A/[ and any two points p, q G b/. If for every input ’u,

h(99(t, p, )) h(p(t, q, u)) for each t for which (T, p, ,) and 99(T, q, u) are both
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defined and in/d for all 0 <_ t _< T, then we say that p and q are hi-indistinguishable
(see, e.g., [29]).

Fix a point p E Ad. If for every neighborhood b/p there is a neighborhood Vp c
such that for any q E Vp the condition that q and p are b/p-indistinguishable implies
p q, then we say the system (5) is locally observable at p. If (5) is locally observable
at every point p, then we say (5) is locally observable. If there is an open dense set
b/ c Ad such that (5) is locally observable at every point p of b/, then we say (5) is
generically locally observable. See [29] for details on local observability and related
concepts such as the slightly different definition in [26]. The following fact is an
immediate consequence of Lemma 2.10 and facts (2.4) and (2.8) in [29].

PROPOSITION 3.4. An analytic system (5) is generically locally observable if and
only if maxx dim d’(z) n.

PROPOSITION 3.5. Let All IRn and let (5) be an analytic system. Then the
following are equivalent:

(1) The system is generically locally observable.

(2) dimKx d n.

(3) dim d- n.

Proof. The maximum dimension of dPr(x) is the same as the dimx d)c. This
shows that (1) and (3) are equivalent; (2) is equivalent to (3) by Corollary 2.5.

For a polynomial system, the pi(z, U)’s (as defined in (13)) are polynomial func-
tions of both and U. We say that a polynomial system is weakly algebraically
observable if each coordinate z is algebraically over the field K({p >_ 0})
(= IR({Ui,, 1,..., m; j, k > 0})). It follows that E is weakly algebraically
observable if and only if dim/(x) d n, where K(z) is the field of rational functions
over K. (This is proved as follows: The dimension condition is equivalent, by [18,
Thm. III of III.7], to the property that the transcendence degree of K0 K(-{.
> 0}) over K should be equal to n. On the other hand, we have the inclusions
K

_
Ko

_
K(z), so trdeg/K0 + trdegoK(x n. Thus the dimension is n if and

only if trdegKoK(X 0, i.e., if and only if K(z) is algebraic over K0.) By Proposition
3.5, we have the following corollary.

COROLLARY 3.6. A polynomial system is weakly algebraically observable if and
only if the system is generically locally observable.

The notion of weakly algebraic observability used here was called "weak observ-
ability" in [28]. The same notion was used in [10] and extended to cover implicit
systems as well.

3.2. Orders of i/o equations in continuous-time case.

3.2.1. State-space systems. We say that a state-space system E admits an

i/o equation such as

(17) A(u(t), u’(t), u(-)(t), y(t), y’(t) y()(t))- O,

where A is a nonzero analytic function from IR’r x IR+ to IR, if (17) holds for every
initial state x, every (J i/o pair (u, y) of (5), and all t such that y(t) is defined. The
order of an equation (17) is defined to be the highest r _< k such that

0
A(#0, #k-X, /0, /21,

is not a zero function.
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For a given system E, we define 5(E) to be the lowest possible order of an i/o
equation that E admits. In the case that there is no such i/o equation, (E) is defined
to be

THEOREM 3.7. Assume E is an n-dimensional analytic system defined by (5).
If E is generically locally observable, then 5(E) >_ n. If, in addition, E is a rational
system, then 5(E) n.

Proof. Let 5/ C_ 3// be an open subset diffeomorphic to IR. We consider the
restriction of E to /d. This system is still generically locally observable, and an

equation for E is also an equation for the restriction. So without loss of generality,
we assume from now on that A//= IR.

Assume that 5(E) k < oc and E admits i/o equation (17) of order k. For each
integer > 0, let

0
A o, A ft ftk -1, l/O l/1, l/k

Claim. There exists an i, such that Ai is not an i/o equation of E.
We prove the claim as follows. Assume that Ai is an i/o equation of E for every

i. Then for any fixed i/o pair (u, y) and any fixed t, it holds that

A(u(t), u(-)(t), y(t), y()(t)) 0

for all i. Thus, as a function of for these fixed values u(t), y(-)(t), all
derivatives of

(18) A(u(t),

evaluated at , y()(t) vanish. It then follows from the analyticity of A that (18)
vanishes for all values of . Let be such that the function

(ft0, #-, "0, "k_) := A(#o,..., #-, l/o,..., l/_, ’)

is not a zero function. Clearly it holds that

(19) (u(t), u(k-1)(t), y(t), y(k-1)(t)) 0

for all i/o pairs of E. If one can show that does not depend on #-1’ then one

concludes that A 0 is an i/o equation for E. For this, we proceed as follows. First
of all, (19) holds for all i/o pairs of (u, y) if and only if the following holds:

(ft0’ ftk--l’ 2/)0(X’ ft)’ "’’’/--1(X’ ft)) 0

for all z E 34 and all ft. Note here that i defined by (7) does not depend on ftj for
j >_ i. It follows that for any #k-l’

"/(ft0’’’’ ’ftk--2’ #k--l’ )0 (x’ ft)’’’’’k--l(X’ ft))---0

for all x and all ft. Finally, pick #k-1 such that

2(ft0’ ftk--2’ l/0, l/k_1 2(ft0, ftk-2’ fitk-l’ l/O’ l/k-l’ k)

is not azero function. Then A- 0 is ani/o equation of order k-1 for E. This
contradicts the assumption that 5(E) k. The claim is thus proved.
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Now let r _> 1 be the snallest number for which A,r 0 is not an i/o equation
for E. Replace A in (17) by A,r-1. Evaluating (17) at t 0, the equation implies the
identity

0.

Since A 0 is not an i/o equation of , it follows that there exists some
such that

(21) A(Po, ...,P_,o(x, Iz),..., (x, ,)) # O,

as a function of x, and hence, by analyticity, the complement of

is an open dense subset of *.
Combining (20) and (21), one sees, for each B, that d(., H) is a linear

k k--1
combination of d&0 (., H), d_ (., ) over ,. Thus dff, dY** where, for

each i, dye, is the subspace of dY, spanned by dg0 (., ), d’&i (., ), d (., H).
Differentiating (17) with respect to time, one sees that for any > 1 it holds that

A(u(t),..., u(-)(t), V(t), ,()(t))v(+’i)(t)
Ai(u(t), ...,u(+i-)(t), ...,y(t), y(+i-1)(t))

for every i/o pair (u, y) of E, where Ai is some analytic function. Thus, by induction,

one can show that dfft+i d for all p B. It then follows that dimd
for all p B, where B C’ is defined by B B x x m x....

On the other hand, by Corollary 2.4 and Proposition 3.5, one knows that dim:,d
dim, dff ’n for all p in a dense (in fact, even in a generic) subset of

Thereibre, E cannot admit any i/o equation of order lower than n.
If E is a rational system, then an easy elimination argument (based on the fact

that any set of n + 1 rational functions in n variables must be algebraically dependent;
see [40] for details) shows that it admits at least one i/o equation of order n; therefore,

3.2.2. i/o operators. Next we consider i/o equations for i/o operators rather
than for state-space systems. By an i/o operator we mean an i/o map given by a

convergent generating series. For a detailed definition of i/o operators, we refer the
reader to [41]. We say an i/o operator F satisfies an i/o equation (17) if every C i/o
pair (, )of F satisfies (17).

For any given operator F, we define (F) to be the lowest possible order of an

i/o equation for F. Again, in the case when there is no i/o equation for F, 8(F) is
defined to be +.

An operator F is said to be realized by an initialized analytic system

(M, h)

if every i/o pair (u, y) of F satisfies the equations

z’(t) 9o(z(t))u(t) + gi(z(t))u,i(t), z(O) zo,
i=1

9(t)- h(z(t))
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for t small enough.
Let A(F) be the Lie rank of F, as defined in [11], [19], or [26]. It is well known

that F is realizable if and only if A(F) < oe, and the dimension of any canonical
realization for F is &(F); cf. [11] and [34]. Here, by a canonical realization we mean
a realization by an accessible and generically locally observable system.

PROPOSITION 3.8. Assume that F is an i/o operator. Then:
_<

(b) if there exists a rational canonical realization for F, then/(F) 5(F).
Proof. It was shown in [41] that if 5(F) < oc, then A(F) < oc. Thus we may

assume that A(F) < oc, and in this case, one knows that F is realizable by some
canonical system E (3/[, x0, {go, gl,..., g,}, h).

By Remark 4.2 and Lemma 4.3 in [41], one knows that F admits i/o equation
(17) if and only if (17) holds at any point t at which u(-l)(t) exists. Combining this
fact with the accessibility of the system, one sees that F admits i/o equation (17) if
and only if (20) holds for E for all x in an open subset 3/of Ad and for all #. On
the other hand, it can be seen that (20) holds for all x E Af and all # for system E
if and only if (17) is an i/o equation for E as a system restricted to A/’. Applying
Theorem 3.7, we obtain the desired conclusion.

4. Proof of Lemma 2.1. In this section, we will prove Lemrna 2.1. We will
show first that there exists a generic subset IN1 of IR"’ so that

for all z and # E W1 and then that there is a generic subset W. of IR’ so that

(23) d() dUt,(x

for all z and all It ]A2. Then we just let IN- ]1 )/]2.
Proof of first part (equation (22)). For system (5), let

u 0}.

To prove (22), we consider, for each subset A/" of the open subset A//\ B, the set

g/.- # 0, w
where (z, #)- (%(z, t), 1 (z, #),...).

To prove the desired conclusion, it is enough to show that g is open dense
whenever iV is a compact subset of 2t4 \ B (since 3d \ B can be written as a countable
union of such subsets). In the following we let Af be a fixed compact subset of 3/I \ B,
and we just write g instead of g. To show that g is dense, we need the following
fact.

Let r > 1 be an integer. For each fixed vector
we say that #- (#1,#1,’") IR’’ is an extension of if #i . for each

LEMMA 4.1. Let zo Ad and let u be a fized vector in lR". If (zo, lt) 0

for every extension # of u, then z 13.
The proof of the above lemma will be given in Appendix A. We now return to

show that g is dense. Take any open subset 5/of IR’’; without loss of generality,
we may assume that 5/- No x 5/1 x x 5/t x ..., where each 5/i is an open subset of
IR". For each integer r > 0, let 5/ -1YI,z=0 L/i. For each define
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where .,.(x, #r) (’%(x, #), 1 (x, #), /)r--1 (X’ [.t)) [Or any extension of .
Note that ,r is well defined because (, g.) does not depend on for j i. For
each finite jet , B is an analytic subset of , that is, a set defined by analytic
equalities. As a consequence of the Weierstrass preparation theorem (in the form
given for instance in [17, Thin. 2.7, Cor. 3]), one knows that analytic subsets of a
compact set satisfy a descending chain condition. That is, if z
are analytic subsets of a conpact set, then there exists some r > 0 such that
for all j k r. From here it follows immediately that there is a minimal element
of the family {B} in the sense that whenever C B. Assume now that
P N provides such a minimal element.

Claim. .
Assume that the above claim is not true. Then there exists some 0 such

that .,.(0, P) 0. Pick such an x0. By Lemma 4.1, there exists some extension of
P such that (x0, ) # 0, so there exists some > r such that t (0, ) 0. Write

l (0’ 1’ Pr--l’ r, 1--1) ml.

Note that (P0, P, P.,--) r by construction. For these fixed P0,
and 0, the functiSn t(0, ) does not depend on for j k and is analytic in

(, ,.+, z-)" Since it does not vanish at (.., 1--1 )’ there is also some

(r’ r+l’ /--1 ’r X +1 X X --1

such that, for (0, ,;-1, , -1)’ (z0, ) 0 for any extension

1) of , and hence, (z0, ) 0. So z0 B B. Also, obviously B B, since
is an extension of . This contradicts the minimality of B. So we proved that
.(z, ) 0 for all z , as claimed.
Take any extension lz of ’ to an infinite jet. Then (z, ) 0 for all

that is, is not empty for any open subset of ’’. Since was arbitrary,
one concludes that is dense.

To prove the openness of , let

By the compactness of, is open. Let . x ’. Then g; is open. Since

.= , it follows that is open.
oof ofo prt (qto (a)). Cay d,(’) d() for n

nd fo h, ’, d,() d(’ fd oy f

(4)

We now let

ker d(z) ker d$C(z).

s {(, ) T. , k a()}.

Then T.M\B is open. Let tP(oc, v, iz) (% (a:, v, #), (z, v, #),...), where .,; (a, v,

#) d’p(z, #)v. To prove the desired conclusion, it is enough to show that there

exists a generic subset /V of IRm’ such that for any # E l/V, (z, v, it) - 0 for all

(z, v) /3. For this, it is enough to show that for any compact subset A/" of Tgt4 \ 13,
the set

g { m,. (, , ) 0, V (z, ) At)
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is open dense. We now fix a compact subset N" of T34 \ B and write instead of
Similar to the prooof the first part, we need the following conclusion to prove the
density property of . The proof of the conclusion will again be provided in Appendix
A.

LEMMA 4.2. For any given fized point (z, v) E T./M, if (z, v, #) 0 for all
eztensions # of/].r, for some/] IR", then (z, v) E 13.

To show the density of , we take any open subset b/of IR’’. Again, without
loss of generality, we can assume that N b/0 x b/1 x x b/z x ..-, where each b/,i is an
open subset of IR". Using the same notions for # and b/ as used before, we define

where ,,.(z, #’r) (0(z, v, #), 1 (z, v, #), r-1 (z, v, #)) for any extension

of #. For each finite jet u, B is an analytic subset of A/(with the obvious analytic
manifold structure on the tangent bundles). Using the same argument as before, one

knows that there exists a minimal element of the family {B}. Let /] E 5/s be such
that B is a minimal element.

Claim. s(x, v,/]) 0 for all (x, v) N’.
Assume that the claim is not true. Then there exists some (x0, v0) A/such

that (x0, v0, /]) 0. By Lemma 4.2, there exists some extension # of/] such that

(x0, v0, #) 0. This means there exists some >_ s such that (x0, v0, #) =A 0. By
analyticity of t, one knows that there exists some

(s’ /s+l’ //--1 b/s X 4/s+l X X bll_l

such that, for /2 (/]0, /Is-i, ts, fitl-1), i(xo, vO, t) O. So (x0, v0)
B, \ B. Also, obviously B

_
B,, since is an extension of/]. This contradicts the

minimality of B. So we proved that (x, v,/]) -- 0 for all (x, v) 3/. Noting then
that for any extension tz of/], (x, v, #) =A 0 for any (x, v) E A/, we conclude that
G5/ 0. This proves the density of G.

To prove the openness of , we again let

0,

By compactness of Af, r is open. Let Gr G x IRm’. Then r is open. Since

Ur=l ’r, it follows that O is open. The proof of Lemma 2.1 is then complete.
Fnally, we remark that also with respect to the weak topology on IR"’, j

and @ are still open and dense. Density is obvious, as they are dense with respect

to a stronger topology. The openness of Gj and Gj follows from the compactness of

A/and A/. Thus, the conclusions of Lemma 2.1 also hold with respect to the weak
topology on IR"’.

4.1. Proof of Theorem 3.1. In this section, we provide a proof for Theo-
rem 3.1.

To study the observability for system (5), we consider the system

{’
i=1
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where _
x AA xAA i(()= 0<i<rn,

and [() h(z) -h(z). Clearly, z @ z for system (5) if and only if 7, 0 for system
(25). Thus, to prove Theorem 3.1, it is enough to establish the following conclusion.

PROPOSITION 4.3. Assume that for an analytic system (5), the i/o map ind’uced
by the zero initial state is a zero map, that is, h (t, O, t) 0 for all t and all u.
Then for any T > O, the set

is a generic subset of C[0, T].
Proof. Let B’- {z" z 0}o ThenA4\Bis an open subset of Ad. To prove

Proposition 4.3, it is enough to show that for every compact subset 32 of A/I \ B the
set

w={uC[0, T]’ :cTc0forall zA/’}

is an open dense subset of C[0, T].
Note that for u Cc, z . 0 if’b,i(z, #) 0 for some i, where # (I0, #1, ")

IR with # -u()(0), and . is as defined in (7) for each i. Also, by Theorem 3-1.5
in [19], one knows that for z A/l, if $-(z) 0, then :c B. This means that for each
z iV, c(z) - 0. Thus, by Lemma 2.1, there exists a dense subset of IR"’ such
that (z, #) =/- 0 for all A/and all # .

To complete the proof of Proposition 4.3, we need to show that (R); is an ()pen

dense subset of C[0, T].
Take & C[0, T], and let b/be a neighborhood of &. Without loss of generality

when showing the density of 5,, we may assume that

b/- {w C[O, T]" max w(i)(t)- &(i)(t)l < , t [0, T]}0<i<k

for some integer k >_ 0 and some 6 > 0.
Let /2 (/2o, #,...), where #: &(i)(0), and let W be the open subset of

IW’ defined by

As W0 0, there exists some u e IA2 such that (z, u) =/= 0 for all z G A/’. By
compactness of A/’, there exists some r > 0 such that

(26) ,,.(x, ) 0, for any x 32.

Without loss of generality, one can always assmne that r > k.
r-i tZNow let c0(t)’-c(t)- Ei=0 "i Note then that Z0

(i).. (0) 0 for all 0 _< <

Finally, we define

r-1

t.-Zo(t)+
i=0
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Then, for 0 <_ <_ k and 0 _< t _< T, we have

< (e-Te < 5.

j=0
j

Thus, w E b/.
On the other hand, (26) implies that for every z E iV’, there exists some <_ r- 1,

such that

d
0.

dti t=0

From here it follows that z o 0 for every z A/’, that is, cv Ov. This proves that
(5 is dense.

We then conclude the proof of Proposition 4.3 by noting that the openness of
follows from the compactness of JV’.

Remark 4.4. Note that the above proof only depends on the first half of Lemma 2.1,
i.e., formula (22), and the proof of (22) is fairly straightforward (though it calls upon
some notions and elementary results from the theory for generating series).

Proof of Proposition 3.2. As indicated in the beginning of this section, it is enough
to show the following:

Assume that for an analytic system (5), the i/o inap induced by the
zero initial state is a zero map, that is, ]t o 99(t, O, u) 0 for all t and
all u. Then there exists some analytic input it such that z ,, 0 for
all z 0.

Proof. Consider the following open subset of IR’"
Z,,/0 X Ait’l XZ4f2 X

where 5/i (-1, 1) for all >_ 0. By Lemma 2.1, there is at least one jet # in b/such

that 9r,(x)= Y(z), from which it follows that

0, w 0.

Now let

Pi ti"
i!

i=0

Then u is an analytic function and u()(0) #{. By (27), one knows that z A 0 for
all x 75 O. ]

5. Main results for discrete-time systems. In this section, we discuss our
inain results for discrete-time systems.

5.1. Basic definitions for discrete-time systems. Ve consider analytic sys-
tems as in (4), where for each t, x(t) 24, an analytic manifold, and u(t) IKm.
We assume that h :/ IRp and f 3/l x IR A4 are analytic. If 2Vl IR and
the entries of f and h are rational functions with no (real) poles, then we call (4) a
rational system. A system E will be called reversible if f(., u) is one-to-one, for each
fixed u E IR". (Reversible systems are a more general class than the systems usually
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called invertible in the discrete-time controllability literature, for which one inakes
the stronger requirement that f(., u) is a diffeomorphism of td, for each u. Invertible
systems arise naturally through the sampling of continuous-time systems in digital
control, by integrating flows over a sampling period; their controllability properties
were studied in, among other papers, [20], [12], [21], [24], [22], [23], [1].)

For each control sequence co E IR", we define fo 4 ---, 2kl inductively by
f(x) x for the empty sequence e and f"(z) f(f"(x), u). We also let h :=
h o f. For # (#0, #1,’" ") E lRm’, we let HP(x):= (h(x), h(x), hP"(x),...).

Two states p and q are said to be distinguished by # IR"’, denoted by p 7c q,
if H"(p) H-’(q). A discrete-time system is said to be observable if any two distinct
states p and q can be distinguished by some I. See [27] for a detailed introduction to
observability and related concepts and, in particular, [25] for results on observability
of discrete-time systems.

For an analytic system, we define the observation space of E as tile following
subspace of the space of analytic functions defined on 2M:

span a {h co IR", r _> 0}.

This space plays an important role in studying observability of discrete-time systems;
see, e.g., [28] and [27]. See also [16] for related algebraic structures.

Associated with the above space, for each z Ad we let d)C(z) be the subspace
of tile cotangent space at x defined by

dY(z) {dcx(z) c $’}.

In analogy to tile continuous-time case, we define, for each # (#0, #,’" ") E
IR"’, tile following subspace )c, of analytic functions:

span {h, h’0, h"0l,...}.

For each # IR"’a and each z . 24, we also consider

dY(z) {d(: c

Clearly, }--u * and d)r(z) y, d/u(z for each z. Here we will need the
following result.

LEMMA 5.1. Assume that (4) is reversible a’nd observable. Then there ezists a

generic subset of’ such that for each p W,

d$C(z) d(z) IR,
for all x in an open dense subset of

The proof will be given later; it will rely on a result about universal inputs for
discrete-time systems that is presented in the next section.

Assume now that 3//= IR’. Still using the notation used in 2.2, we introduce

d$c’= span{da" a’}, d/, := span{da" aEY,}.

From the lemma and using an argument analogous to that used in proving Corol-
lary 2.4, we have the following corollary.

COROllARY 5.2. For an analytic, reversible, and observable ,system, d’ -d
for all # in a generic set of IR"’.
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5.2. Observability and universal inputs. An input sequence is said to be a
universal input of a discrete-time system E if it distinguishes every distinguishable
pair of E.

THEOREM 5.3. Assume that (4) is analytic, reversible, and observable. Then the
universal inputs of (4) form a generic subset of IR’.

Proof. First of all, we let

By observability, every pair (x, z) (M M) is a distinguishable pair of (4). For
each. e, we let A(x, z, .) h’(x)- h’(z), and we also let Ao(x, z) h(x, z).
For each (o, 1," "), we define

,) ,0), z,

To prove the desired conclusion, it is enough to show that for each compact subset
of (M x M) D, the set defined by

is an open dense subset of m,.
For each open subset U of ’ given by U0

x U x ..., consider, for each

i=o Ui, the subset B, of defined by

.={(x,z) e" a(,,,)-0},

where A,.(x, z, ) (A0(x, z), A(x, z, w0), k,(x, z, )). Using the same argu-
ment as that employed in the proof of Lemma 2.1, we know that there exists a minimal
element Bo of the family {Bo}. Suppose > U. We next show that distinguishes
every pair (x, z) . Assume that there would exist a pair (x0, z0) such that
x0 z0. Since (4) is reversible, x z,, where x f’(xo) and z, f’(zo). By
observability of (4), one knows that there exists some * such that x z.
Let - # (concatenation of sequences); then it ibllows that A+(x0, z0, o#) 0.
By the analyticity of A.+ when fixing x0, z0 and p, one knows that there exists
some U x x U,+_ such that A+(x0, z0, ) 0. This implies that
(x0, z0) Bo Bg,, which, in turn, implies that Bo is a proper subset of B,, contra-
dicting the assumed minimality of B. Thus, we showed that A(x, z, 0) 0 for any
(x, z) . Clearly, any extension p of in U is an element of . This shows that

U for any open subset U of m,. The density of is thus proved.
Again as in the proof of Lemma 2.1 for the continuous case, G is open since

is compact. U
In the statement of Theorem 5.3, we assumed more than we did in its continuous

counterpart, Theorem 3.1 (and also concluded slightly less). One 0f the extra condi-
tions is observability. We needed to impose this because the counterpart of Lemma 4.1
is not available in the discrete-time case. The discrete case analogy would be that
any distinguishable pair is again carried to a distinguishable pair by the flow of the
system, no matter which input is applied. Unfortunately, this not true in general. The
following example, suggested by F. Albertini, shows that distinguishable pairs can be
carried to indistinguishable pairs. (Note that this can never happen with analytic
continuous-time systems.)

Example 5.4. Consider the system

(29) x(t + 1) x(t) + 1, y(t) h(x(t)),
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where h(z) is defined by

si,.x if x-/=0
,xj 1 if x 0.

Clearly the system is analytic and reversible. However, the distinguishable pair (0, 1)
is carried to an indistinguishable pair after t 1.

Proof of Lemma 5.1. To obtain the desired conclusion, it is enough to show that
(28) holds in an open dense subset of 2bt for every universal input # (since universal
inputs themselves form a generic subset).

Fix any universal input #. By observability, one knows that H(., #) is a one-to-one
map. Let k maxp dim (p). It is sufficient to show that k n. But this is an iln-
mediate consequence of Lemma B.1 (see Appendix B), applied to {h, hu, hUUl,...}
seen as a family of maps.

5.2.1. Orders of i/o equations. We say that the discrete-time system (4) ad-
mits the i/o equation such as that if (3) holds for all input/output pairs of (4) (for
t _> r and any possible initial state z(0)). The order of the equation is r if

is not a zero function. For any given system E, we let 5(E) be the lowest possible
order of an i/o equation that E admits. If there is no such equation, 6(E) is defined
to be ec. Following the same outline as in the proof of Theorem 3.7 but now using
Lemma 5.1, we conclude as follows.

THEOREM 5.5. Let E be an n-dimensional analytic system. Assume, further,
that E is reversible and observable. Then 5(E) >_ n. If, in addition, E is a rational
system, then 5 E n.

Remark 5.6. The result in Lemma 5.1 is false if the assumption of reversability
is dropped, as discussed in [28]. As a consequence of this, the above conclusions may
be false without the invertibility assumption. To illustrate this, consider the following
system of dimension 3:

x(t + l) t(t) x.(t + l) x3(t)
xa(t + 1) x3(t)xl(t) + x (t) Jr- x.(t)u(t)
(t) xa(t).

This is an observable polynomial system. However, it admits an equation of order 2"

y(t) y(t- 1)u(t- 2) + y(t- 2)u(t- 1) + u(t- 2).

Note that this system is not reversible.

Appendix A. Proofs of two lemmas. In this appendix, we will prove Lem-
mas 4.1 and 4.2. For this, we need to recall some basic definitions and properties of i/o
operators defined by convergent generating series. For a detailed study of generating
series and i/o operators, we refer the reader to [41].

Let m be a fixed integer and I {0, 1, m}. For any integer k > 1, we define
I to be the set of all sequences ii....i, where i I for each s. We use I to
denote the set whose only element is the empty sequence . Let I* >0 I’
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A generating series

is a formal power series in the noncommutative variables r0, rl,..., r, for some fixed
number m, where we use the notation rh ’]i17]i2... 7]i for each multiindex
ili2.., it. The coefficients (c, rh} are assumed to be real.

We shall say that a power series c is convergent if there exist K, M >_ 0 such that

(30) I(c, 7}1 <_ KMkk! for each E Ik and each k >_ 0.

For any fixed real number T > 0, let /AT be the set of all essentially bounded
measurable functions

[0,

endowed with the L norm. We write [lull1 for max{lluil[1 ", 1 <_ <_ m} and [lull
for max{llui[l ", 1 <_ < m} where ui is the ith component of u and Iluill is the L
norm of ui, Iluill is the L norm of u,:. For each u E/AT and each It, we define
inductively the functions

by

f0
where V$ 1 and ui is the ith coordinate of u(t) for 1, 2,..., m and u0(t) 1.

For each formal power series c in %,,r],...,’r/,, we define a formal operator on

/AT in the following way"

(31)

If the series is convergent and (30) holds, then it is known that for any

r < (II II (M, +
the series (31) converges uniformly and absolutely for all t [0, T]. Let

YT {u e LZ" IlullT < (Aim + M)-}.

We refer the reader to [41] for the proof of the following lemmas.
LEMMA A.1. Assume that c is a convergent power series. Then the operator

is continuous with respect to the L norm in VT and the CO norm in C[0, T].
LEMMA A.2. Suppose c is a convergent series. Then F[u] is analytic if u VT

is analytic.
For each convergent series c, we let, for each # E IR"’ and each integer >_ 0,

d
(32) c(#) - t=o
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where u is any smooth input with u(0(0) #. Note that c(#) is a polynomial in #
and c.i(#) doesn’t depend on #j for j >_ i.

By Lemma 2.1 in [39], one knows that for a convergent series c, Fc[u] 0 for
every piecewise constant input u if and only if c 0. On the other hand, it is not
hard to see that for each piecewise constant function u, there exists a sequence {uj }
of analytic functions such that Ilujll < Ilull and uj --, u as j -+ ec in the L1 norm.
By Lemma A.2, one concludes that Fc[u] 0 for every analytic input u if and only
if c 0. Since F[’u] is analytic if u is analytic, it then follows from (32) that for an
analytic u with u(i)(O) #, F[u] 0 if and only if ci(#) 0 for all >_ 0. Thus we
conclude that c 0 if and only if ci(#) 0 for all # and all i. To prove the desired
conclusions, we need the following well-known fact.

LEMMA A.3. Assume that f is a continuous function defined on [0, to] for some

to > O. Then for any given integer r and any vector (wo, wl, ...,wr), there exists a

Loo-bounded sequence of analytic functions fj defined on [0, to] such that f!i) (0) w
for all < r and fj converges to f in the L1 norm.

Proof. For the given vector, let

f(t) f(t)- witi
i=0

Without loss of generality, one may assume that f(0) 0. Otherwise, one can always
choose a L-bounded sequence of continuous functions fj converging to f in the L
norm and such that fj(O) 0. Now one may apply Lemma 4.3 in [41] to f to conclude
that there exists a sequence fj converging to " uniformly (hence also in L norm) with

the property that !i)(0) 0 for all < r. Then the functions

fj (t) := fj (t) /
i!

i--0

give the desired sequence.
Combining the above conclusion and Lemma A.1, one proves the following.
LEMMA A.4. Assume that c is a convergent series and that r is an integer. Let

#’ be a given vector in IR". If for every eztension # of #’, ci(#) 0 for all i, then

Proof of Lemma 4.1. For analytic system (5) and for each x A//, we define a
generating series by letting

(33) c’, 7 li 7,, Lg,, LgLg,, h(x).

By Lemma 4.2 in [36], such a series is always convergent, and it follows from Theo-
rem 3-1.5 in [19] that for any # IRm’,

(34)

where

d
c(x, #) t:oFc[U](t).

The conclusion of Lemma 4.1 then follows from Lemma A.4.
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Proof of Lemma 4.2. For analytic system (5), instead of considering the series
defined by (33), we consider, for each (x, v) E TAd, the series defined by

(35) (d(x, v), r]il]i ri,r dLg.. .Lg.2Lglh(x)v.

Claim. For each (z, v), the series d(x, v) is a convergent series.
First of all, by Lemma 4.2 in [36], there is some constant M0 > 0 such that for

9o(z), 91(x),..., g,(z), v Tx.A4, there exists some M0 > 0 such that

(36) IdL,,Lg,. ...Lg,rh(x)v ILL,Lg,. ...Lg,h(x)v < M+(r + 1)!.

It is then not hard to see that there exist some constants K and M > M0 such that

IdLg{ Lg,, Lg,,.h(x)v <

for all r > 0. Therefore d(x, v) is a convergent series for each pair (x, v).
For each smooth input u with u(’i) (0) #i, let

d
d (z, v,

t=0

Then it follows frorn (34) that

dbi(x, #) dci(x, #),

from which it follows that

dg),:(x, #)v di(x, v, #).

Applying Lemma A.4 to the series d(x, #), one obtains the desired conclusion of
Lemma 4.2.

Appendix B. A simple consequence of the rank theorem The next result
is a simple and well-known consequence of the rank theorem; we include its proof as

it seens difficult to find a precise reference. (We provide a somewhat stronger form
than needed, which applies in more generality, including to nonobservable systelns.)

LEMMA A.5. Assume that 7-/ {hx :Z IR,k A} is a family of continu-

ously differentiable real-valued functions on an n-dimensional differentiable manifold
Z, parameterized by a set A. Then there exists an open dense subset Zo c_ Z with the
Jbllowing property. For each zo Zo there exist an integer r r(zo), an open neigh-
borhood V of zo in Zo, and parameter values ;,..., , so that, for each parameter

where hx x,(z) .= (hx(z),...,hx..(z)) and Fx is some C function from some

neighborhoodbl of hx x., (V) to IR. Moreover, the rank of the differential of hx x (z)
is r at all z V (so the nonempty fibers h-xt x(q) intersect V at sub’rnanifolds of
dimension n- r). In particular, if it is known that z - (hx(z), A E A) is one-to-one
on any open subset of Z, then r(zo) n for some zo Zo.

Proof. Consider for any s and any A,..., A the rank px x (z) of the differential
of hx x at z, and let p(z) be the maximum possible value of this rank over all s
and A,...,/k.. A point z is regular if p(z) is constant in a neighborhood of z. The
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regular points form an open set by definition, and it is an easy exercise to show, by
induction on n, n 1,..., 1 that the set Z0 of such points is also dense. Now pick any
z0 in Z0, and let p(0) r. By definition of p, there are parameters A1,..., A so that

Pal a,.(z) r for all z in some neighborhood of z0. By the rank theorem, there are
local changes of coordinates in Z so that, in some neighborhood V of zo, ha.i. (z) zi
for 1,..., r, and without loss of generality one may assume that pal a. (z) r
for all z in this same V. Now pick any ) E A. Let f ha. If it were the case that
f(z) is nonzero for some z E V and somej > r then the map ha ,aa wouldOzj
have rank r + 1 at z, contradicting the choice of V. It follows that ha depends only
on z,..., z on this neighborhood, as desired.

Remark A.6. Observe that, when dealing with analytic mappings and Z con-

nected, the rank is constant on regular points, and one could pick the elements
A1,..., A globally on an open dense set. Also, in general this argument shows that
locally there are always n control sequences that (locally) distinguish states, even in
the nonanalytic case.
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MATRIX PAIRS IN TWO-DIMENSIONAL SYSTEMS: AN
APPROACH BASED ON TRACE SERIES AND HANKEL MATRICES*
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Abstract. Two-dimensional system dynamics depends on matrix pairs that represent the shift
operators along coordinate axes. The structure of a matrix pair is analysed according to its charac-
teristic polynomial and to the traces of suitable matrices in the algebra generated by the elements of
the pair. Necessary and sufficient conditions for properties L and P are provided by resorting to Han-
kel matrix theory. Finite memory and separable systems, as well as two-dimensional systems whose
characteristic polynomials exhibit one-dimensional structures, are finally characterized in terms of
spectral properties and traces.

Key words, two-dimensional systems, finite memory systems, separable systems, L property,
P property
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1. Introduction. "Two-dimensional systems theory" connotes a fairly large col-
lection of problems and methods held together by a central theme: to understand
better the behaviour of processes and devices whose dynamics depends on two inde-
pendent variables. Most of two-dinensional systems theory is concerned with quarter-
plane causal models, whose state variable description essentially depends on a pair of
square matrices associated with the shift operators along the coordinate axes. There
is a long stream of research concerned with the problem of characterizing the struc-
ture of matrix pairs (see [16] for an extended bibliography). In spite of its relatively
long history, however, several questions are far from a definite solution and stimulate
further research in linear algebra.

The purpose of this paper is to highlight how purely algebraic results on matrix

pairs apply to two-dimensional system modelling. Conversely, assuming a comple-
mentary point of view, we shall show that system theoretic methodologies, connected
with the realization problem, lead to a satisfactory algebraic characterization of some
special matrix pairs.

The two-dimensional models to which we refer are quarter-plane causal two-
dimensional systems, described by the following equations [3]:

(1.1)
x(h+l,k+l) Alx(h,k + 1) + A2x(h + 1, k)

+ Blu(h, k + 1)+ B2u(h + 1, k),
Cx(h,

where the input, state, and output sequences u(., .), x(., .), and y(., .) are defined on the
discrete plane Z x Z and take values in R", Rn, and Rp, respectively. A1, A2, B1, B2,
and C are real matrices of suitable dimensions. In general, the initial conditions are
assigned by specifying the local state values x(i,-i), E Z.

The n x n matrix pair (A1,Ae) fully encodes the free evolution of the system,
providing at the same time valuable insights into the forced motion. From this point
of view, (A,Ae) plays the same role as the state transition matrix A in the one-

Received by the editors March 29, 1993; accepted for publication (in revised form) January 19,
1994.
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dimensional discrete system

(1.2) x(t + 1) Ax(t) + Bu(t),
(t) C(t).

In the two-dimensional case, however, no decomposition of the state space into {At, A2 }-
invariant subspaces can be given, allowing an effective representation of the system
behaviour as a superposition of elementary modes with simple structure. As the
modal analysis approach to the unforced dynamics does not extend to system (1.1),
we need to resort to different tools.

The characteristic polynomial of the pair (At,A2),

(1.3) AA,A(Zt,Z) := det(I- Azt Az),

is probably the most useful one. Like the characteristic polynomial of A, which in
general does not capture the underlying Jordan structure, AA1,A2 does not identify
the similarity orbit of the pair. Nevertheless, several important aspects of the two-
dimensional motion completely rely on it. There is, first of all, the internal stability
of system (1.1), which depends only on the variety of the zeros of AA,A,. On the
other hand, the two-dimensional Cayley-Hamilton theorem implies that the free-state
and output evolution of (1.1) satisfies an autoregressive equation that involves only
the coefficients of AAI,A.. Additional insights into the structure of two-dimensional
systems come frorn the factorization of the characteristic polynomial. Actually, prop-
erties like finite memory and separability and interesting features of the spectrum of
cA1 +A such as property L can be restated as conditions on the factors of

A different tool is constituted by the traces of suitable matrices in the algebra
generated by At and A2 and the associated formal power series TA,A.. As the
trace series TA,A2 biuniquely corresponds to the characteristic polynomial AA,A,
in principle both of them provide an equivalent information on the pair (A, A.). On
the other hand, we shall see that sorne properties, originally defined as constraints
on the structure of AA,A,, are better understood when the trace series point of view
is undertaken. This happens, for instance, when finite memory and separable pairs
are considered and, more generally, when each irreducible factor of the characteristic
polynomial has a support included in some straight line of Z x Z. Interestingly enough,
resorting to trace series and to well-established realization methodologies of system
theory facilitates the translation of property L of the pair (AI,A) into a bound on
the rank of the Hankel matrix associated with TA,A.

As previously mentioned, some properties of a matrix pair and, consequently, of
the associated two-dimensional systems do not reduce to conditions on the structure
of the characteristic polynomial. Perhaps, the most relevant example is that, accord-
ing to a celebrated result of McCoy [10], property P is equivalent to simultaneous
triangularizability.

Actually, when considering only characteristic polynomials, properties P and L
prove to be indistinguishable because both of them correspond to linear factorizations
of AA,A.. Deeper insights into the structure of a matrix pair are offered by the
traces of all matrix products AiA,i ...Ai,, k N, i {1,2}, and by the associated
noncommutative power series. Indeed, representation methods of recognizable and
exchangeable power series [2], [14], borrowed from automata and languages theory,
provide a general framework for analysing property P and, what is more important,
a finite criterion for deciding whether a matrix pair is endowed with it.
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This paper is organized as follows. In 2 we explore the main connections exist-
ing between characteristic polynomial and traces of a matrix pair and we present a
recursive algorithm for computing the coefficients of the series TA1,A2 starting from
the characteristic polynomial and vice versa. Successively a partial fraction expansion
of TA1,A2, whose terms are explicitely connected with the irreducible factors of the
characteristic polynomial, is provided.

Sections 3 and 4 deal with properties L and P and their characterizations in terms
of commutative and noncommutative power series, respectively. Criteria for testing
both properties are provided, based on the aforementioned Hankel matrix approach.

In the last section, the previous results are applied to investigate two important
classes of state models, i.e., finite memory and separable two-dimensional systems. As
both classes have matrix pairs (A1, Ag.) with property L, it is natural to expect that
a variety of different characterizations, typical of the L property, is made available.
These are based on the factorization of AA1,A2, on the structure of the trace series
and on the spectrum of the linear combinations cA1 +/A2. Here, however, we
follow a somewhat different approach and analyse first matrix pairs (A1, A2) with the
property that the support of AA1,A2 is a subset of a straight line. The corresponding
two-dimensional systems have a free state evolution that exhibits a one-dimensional
pattern and provide the building blocks for synthesizing other classes of systems, in
particular finite memory and separable systems, which constitute the main concern of
the section. Finally we show how a Levitzki theorem, suitably revisited, allows for a
neat characterization of finite memory and separable two-dimensional systems having
property P.

2. Characteristic polynomial and traces of a matrix pair. Given an au-
tonomous one-dimensional system

(2.1) x(t + 1) Ax(t),

the motion corresponding to any initial state z(0) can be represented by the power
series (I Az)_x(O) +oot=0 Atz(o)zt Thus the knowledge of the powers of A or,
equivalently, of matrix (I- Az) -1, provides a complete information on the dynamics
of (2.1).

Weaker but nevertheless significant information is given by the traces of the pow-
ers of A. Actually, as shown by the following lemma, the assignment of the traces
is equivalent to that of the characteristic polynomial, which constitutes an invariant,
yet not complete, relative to the similarity relation.

LEMMA 2.1. Let A be in Cnx, and assume det(I-Az) 1-dz-dz
dnz. Then we have

(2.2) trA dl 0, trA2 dtrA 2d 0,..., trA dtrA-1 nd, 0

and, for k > O,

trA+k-(2.3) trA’+ d dtrAk 0.

Pro@ Let A, A2,..., A, be the eigenvalues of A, so that det(zI- A) 1-[." (z-
)) z dz"-1 d. As the symmetric polynomials s i__ , satisfy
Newton’s identities [7]

s dls_ k d 0, k 1,2,...,
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and sk trAk -.n__ A, then (2.2) and (2.3) follow. Fl

Referring to the unforced motion of system (1.1), namely

(2.4) x(h + l,k + l) A1 x(h,k + l) + A2 x(h + l,k),

the doubly indexed sequence of local states x(h, k) induced by an initial global state
2go -e=- x(-g, g)zez2 is represented by the formal power series

Z1Z2 (I AIZ1 A2z2) 12go (AliLj-JJA2 ZlZ)2go,
h,k i,j=o

where the matrix coefficients AImJA2, i,j E N, of the power series expansion of
(I- Alzl- A2z.) -1 are inductively defined as

(2.5) AlimA2 A, AIJA2 AJ2
and, when and j are both greater than zero,

(2.6) AIiJA2 AI(AI-lt_LjJA2) + A2(AIJ-A2).

Given (2.5) and (2.6), one easily sees that AImJA2 Y. A,1A, A,..
’1 t"2 .../ iWj z"e3

where the summation is extended to all matrix products that include the factors
and A, and j times respectively. The above decomposition of matrices
facilitates a better understanding of how the free-state evolution depends on the tran-
sition matrices A1 and A2. Actually, assuming x(i,-i) 0 for 0, the state in

(h, k) is given by

y’.
1/1 I)2 12i +j

and it can be interpreted as the sum of the elementary contributions along all paths
connecting (0, 0) to (h,k)in the two-dimensional grid (Fig. 1).

(0,0)

i o

The analogy between the roles played by the matrix family {AliLj_JjA2} and the
powers of A can be further highlighted by extending both the Cayley-Hamilton the-
orem and Lemma 2.1 to the two-dimensional case.
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PROPOSITION 2.2 (Two-dimensional Cayley-Hamilton theorem [4]). Let

(2.8) /A1,A2(Z1,Z2)-- 1- dijziz
l_i+j_n

be the characteristic polynomial of the n x n matrix pair (A1, A2). Then, for all pairs
(h, k), with h + k > n:

hwki) A1 A2 E dij Alh-im k-jAg.
l<_i+j<_n

(where AI,,. 3A9.; is assumed to be zero whenever or j is negative);

illlJA2 < h, j < k + j < n}.(2.10) ii) AlhmkA2 E span{A1
iii)span{AhA2 h,. k N} span{AhmAg. h, k < n}.

Proof. i) Since the (n- 1)th-order minors of I- Azl Ag.zg. have degrees less
than n, we have

(2.11) adj(/- Azl A.z2) E llrsz[z.
O_rWs<n

Replace (2.8) and (2.11)into (I-Alzl-A2z2)-IAA1,A2(Z,Z2) adj(I-Az-A2z2),
and use the power series expansion of (I- Az A2z2) -1, obtaining

(2.12) E A1 kA2ZlZ2 1- E d,rzz2 E ].Ijzz.
h,k rWs<_n iWj<n

Thus, (2.9) simply states that the Cauchy product on the left-hand side of (2.12) does
not include nonzero monomials with degree greater than n- 1.

ii) If h + k n, the statement is trivial. If h + k + 1 > n, assume by induction
that (2.10) holds for all (h,k) G NxN, withn_< h+k_< . So, for r+s > 0, all
matrices Ah--’A2 linearly depend on {AIJA2 <_ h,j _< k, + j < n} and
the same holds true for AhmAe, because of (2.9).

iii) It follows directly from ii) Cl

In order to extend Lemma 2.1 to the two-dimensional case, rewrite the charac-
teristic polynomial of the pair (A,A) as

(2.13) AA1,A(Z1,Z2)- 1- dijZlZ 1- (h(z1,z2)
h h=l

and introduce the "trace series"

(2.14) E ik-tJJd2)zz22 Th(ZI’Z2)TAI,A (Zl, Z2) tr(A
h=l "=+3 h h=

where bh(z, zg.) and 7h(Zl,Z2) are homogeneous forms of degree h.
PROPOSITION 2.3. Let (A1,A2) be an n x n matriz pair with entries in C,

and AA,A_ (Z Z) and TA,A. (Z, Z2) its characteristic polynomial and trace series,
respectively. Then"
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i) the homogeneous components 5h(Zl, z2) and h(Zi, z2) satisfy

(z, z) 5 (z, z) 0,
T2(Z1, Z2) (1 (Zl, Z2)TI(Z1, Z2) 2(2(Z1, Z2) 0,

,(z,z) 5(z,z)_(z,z) n(z,z) 0

and, for all k > 0,

(2.16) n+(z, z) +_(z, z)(Zl, z) 0;
i=1

ii) the traces of AlimJA and the coefficients dij of AA1,A2(Zl,Z2 satisfy

(2.17) tr(AlwJA2) Z
O<rWs<i+j

i--rLl.J- (idrstr(A1 SA) + + j)dij,

where dr8 0 for r + s > n and A,,A2 is the zero matrix whenever r
andfor s is negative.

Proof. i) Let a, E C, and substitute in (2.8) z and z2 for cz and/3z:

det[I (aA + A)z] 1 E 8h(a’/)z’"
h=l

Taking the traces on both sides of (cA +/3A2)h h oi[h_,’]=0 A Ag., one gets

h

(2.18) tr(cA1 + IA2)h E (/h-tr(Ah-A2)"
i--o

As (2.18) holds for all c,/3 in C, it is immediate to recognize in tr(cA + A)h the
homogeneous forms 7h(C,/3) of (2.14). Thus we can apply Lemma 2.1

(2.19) - (,/) 5 (, ) o,
T2(Og, ) (1 (, )T1 (,/) 2(2 (Ct,/3) 0,

Tn(Og, ) 61(0, )Tn--I(O, ]) Tt(n(OZ,/ 0

and, for all k > 0,

As c and are arbitrary, (2.15) and (2.16) follow.
ii) Substitute the expressions of 5h(Z,Z2) and "rh(Zl,Z) given in (2.13) and (2.14)

into (2.15) and (2.16), and equate to zero the coefficients of all monomials on the left-
hand side.

Equation (2.15) has some simple but useful consequences. First, it provides an

algorithm for recursively computing the traces of AliraA2 from the coefficients of
the characteristic polynomial. On the other hand, once the traces are given, also the
converse, i.e., the computation of the coefficients of A, is made possible. Actually, if
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an upper bound g on the degree of A is known, assigning tr(AlimJA.) for + j _< fi
allows the recovery of both A and the traces of AliLjA2 for + j > ft.

Consider the set of all matrix pairs 34 {(A1, A2) A1, A. E Cnxn, n E N}, and
introduce in 34 the equivalence relation

(A, A) (A, A) <= AA1A2 (Zl, Z2) A2122 (Zl, z:2

Corollary 2.4 below exhibits different sets of complete invariants for relation . Ac-
tually, two matrix pairs have the same characteristic polynomial if and only if (the
coefficients .of) the corresponding trace series coincide. The equivalence relation on
Aft can also be described in terms of spectra and traces of the linear combinations of
the elements of each matrix pair.

COaOLLARY 2.4. Let AI,A. be in Cn and ft,, in Caxe. The following
statements are equivalent:

i) na, (1, .) A,,. (1, );
ii) for all a,/ C, A0(aA +A) A0(al +/), where A0(M) denotes the

set of nonz.ero eigenvalues of the matrix M, each of them counted according
to the corresponding algebraic multiplicity;

iii) for all a,[ C and k
imA.) tr(iv) for all (i, j) -7/= (0, 0), tr(A1

Proof. i) ca ii) As both i) and ii) are equivalent to

det[I- (cA +/A)z] det[I- (c + ,zi.)z] Yc,/ C,

they are equivalent to each other, too.
i)ca iii) ca iv) By Proposition 2.3, (A1, A,).) and (-1, .) have the same character-

istic polynomial if and only if the corresponding homogeneous forms tr(aA +/A.)
and tr(a + ..)k, k 1, 2..., coincide. This, in turn, is equivalent to assuming
tr(AliJA.) tr(lim/].), for all (i,j) :/: (0, 0). S

It is easy to realize that TA,a. has to be a rational power series, since its coeffi-
cients satisfy the recursive equations (2.17). In what remains of this section we aim to
make explicit its rational structure and identify its connections with the characteristic
polynomial.

PROPOSITION 2.5. Let A(Zl,Z.) 1- h= 5h(Z,Z.) be the characteristic
polynomial of the matrix pair (A, A.). The corresponding trace series TA1,A2 can be
expressed as

(2.21) TA,A(Z,Z.) (l(Zl, Z2)+ 2(2(Zl, Z2)+’’’ + rtD’n(Zl,Z2)
/(Zl, Z2)

Pro@ Consider the linear system defined on C[c,/], the ring of the polynomials
in the indeterminates c and with coefficients in C:

xi+ Fxi + gui

yi Hxi,

with

0 1 0 0 0

0 0 1 0 0

F g-
1 ;

n (0<, ) (’n-- 1(,, (---2 (0,/ 1(0, 1
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H=[ 0 0 0 1].

By assuming z0- 0 and

(i -t- 1)(i+1 (C, ),
Zti 0

i=0, 1,...,
otherwise,

it is a matter of direct computation to check that the corresponding output sequence
is given by yi --i(a, ), 1, 2,

As the system transfer function is H(I- zF)-lgz z/(1- Yt=l 5u(a,/)zU),
the input U(z) u0 + ulz +... + un-lz

n- produces the output

(2.22) V(z) E -(c, /)z
i--0

n

So, letting zl az and z2 z, one gets (2.21).
Representation (2.21) of TA1,A. is not necessarily irreducible, but its special struc-

ture makes it quite easy to obtain an irreducible one. To this purpose, consider the
injective homomorphism

n n

+. c[+, z] c[+, z, z]. z) + ++(+, z)++,
i=0 i=0

where, as usual, 5i(c, ) denotes a homogeneous polynomial of degree i, and introduce
the derivation map

(2.23)
m

Dz C[c,/,z] C[a,/,z] Epi(a,)zi -- Eip(a,)zi.i=0 i=0

Clearly (2.22) can be rewritten as

(2.24) Y(z)

By assuming that A factorizes as /(ZI,Z2) Hti=l Ai(Zl,Z2) ’i with Ai irreducible
distinct factors, Ai(0, 0)- 1, 1, 2, t, one easily gets

Dz((A (c,/)))
(2.25) Y(z) E r’i

i=1

Thus, letting zl cz and z2 z, we have proved the following proposition.
PROPOSITION 2.6. Let A(z,z2) I-Iti= Ai(Zl,Z2) be a factorization of A, with

ri i)Ai(z, z2) 1 _ji= (z, z) irreducible distinct polynomials, 1, 2, t. For
every matriz pair (A, A.) such that Aal,a(z,z.) A(z,z), the corresponding
trace series is given by

(i)(z ,z2)EI J (j
(2.26) TAI’A2 (Zl’ ()

i= 1 EI (j zl’ Z2)
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Equation (2.26) expresses the trace series TA1,A,(Zl, Z2) as a partial fraction ex-
pansion, whose ith term is the trace series of the irreducible factor Ai(zl, z2), weighted
with the corresponding multiplicity i. Thus the denominator of every irreducible ra-
tional function that represents a trace series factorizes into distinct irreducible factors.
On the other hand, once an irreducible rational function T(z,z2) has been given,
(2.26) suggests a quick way to check whether T(zl,z.) can be expanded into a trace
series.

3. Pairs of matrices with property L. In the next two sections we focus
specifically on matrix pairs endowed with property L and property P.

Pairs with property L occur quite frequently in the applications: indeed, the
important classes of finite memory and separable two-dimensional systems that we
are going to discuss in 5 are described by pairs with property L. A pair of n n
matrices, (A1, A.), with entries in C, is said to have property L if the eigenvalues of
A and A2 can be ordered into two n-tuples

such that, for all , in C, the spectrum of A(aA + A2) is given by

(3.2) A(aA + 3A2)= (cA1 + 3#l,...,ah +

It is not difficult to show that property L corresponds to the possibility of factorizing
the characteristic polynomial into linear terms [11], [12]. Thus each term of the partial
fraction expansion of TA1,A2 has the very special structure ()z +#z2)/(1-)zl- #z2),
which has far-reachng consequences on the possibility of characterizing property L
using the Hankel matrix theory.

PROPOSITION 3.1. Let A1,A2 be in C"n, and consider the orderings of their
spectra given in (3.1). The following statements are equivalent:

L) (A1, A2) has property L (w. r.t. the orderings (3.1));
n

L2) for all (, C and k
(h+k h kL) for every (h,k) N N, tr(AhA) h =1 A #;

L4) TAI,A h+>0 tr(Alhd)zh z2 }-= (Azl + #z)/(1 Azl #iz2).
Proof. Clearly matrices ft.1 diag{/1,/2, ,/n } and fi2 diag{#l, #2, #,- }

fulfill all conditions L)-L4) of the proposition. Any other pair (A, A2), of the same
dimension, with property L w.r.t, the orderings (3.1), satisfies

(3.3) A(aA1 + 3A2) A(aA1 + 3A),

which corresponds to ii) of Corollary 2.4. Therefore all equivalent statements in
Proposition 2.3 hold true; in particular, property L of (A, A) is equivalent to any
one of the following:

L) /kAI,A,(Zl,Z2) /kfi.l,A2(Zl,Z2) I-Ii=1(1 AiZl #iz2);
L) tr(aA + 3A2) tr(a + 32) i(aAi + 3p,i);
L3) tr(AhkA) tr(2 (h) E+ Ah,.,
L4) (h,)(0,0)tr(dhA2)zz

hk2)ZZ Ei=I (iZl + ,iZ)/(1 Aiz ,z).(h,k)(0,0)tr(
Conditions L)-L4) do not provide direct methods to check, in a finite number of

steps, whether a given pair (A, A2) is endoved with property L. To reach this goal,
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we shall analyse the rank of suitable matrices associated with the power series

-1

(3.4) RAI’A2(Zl’Z2) E tr(A1 zz.
i,j=O

Let C[[zl, z.]] be the ring of formal power series in the commuting variables Zl,Z2,

and denote by

.=

h,k

a generic element of the ring. We associate with s the infinite Hankel matrix [2]

whose rows and columns take indices in the multiplicative lnonoid of the (commuta-
tive) termsT" { j N}zzg, "i,j E

For all M,M" E N, we shall denote by -M’xM"(8) the submatrix, appearing
in the upper left corner of 7Y(s), whose rows (columns) are indexed by the terms of
homogeneous degree not greater than M (M").

When rank 7-t(s) is u < oc, we can choose u rows and u columns, indexed by the
terms r,r.,..., r, and Cl,C,... ,c,, respectively, so that the submatrix

No

is nonsingular. Thus, for all terms c e T, the u-tuple [(s, rc}... (s, r,c)]T belongs to
the range space of No, i.e., there exists a (unique) vector x(c) C" such that

N0

Moreover, the rank assumption on 7-t(s) implies

(3.6) (s, rc) E xj(c)(s, rcj}
j=l

VrT.

We therefore have, for all r, c 7",

(3.7)

We are now in a position to state the following proposition.
PROPOSITION 3.2. Let At, A be in Cnn. (A1, A2) has property L if and only if

(3.8) ft rank -(n_l)x(n_l)(tA,A2) rank 7-tnx(RA,a) <_ n.
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Proof. For the sake of brevity, within the proof we shall drop in RA1,A2 subscripts
and A2. Assume first that (A1,A2) has property L. Then, by Proposition 3.1,

imjAe) -+- j jtr(A1

and, therefore,

j

i,j=O h--1

Since the Hankel matrix 7-/(R) factorizes as

(3.9) -/(R)

clearly rank 7-/(R) _< n.
Finally, apply the two-dimensional Cayley-Hamilton theorem to the pair of ma-

trices Q := diag{A, Ag., A,} and Q2 := diag{#, #,..., #}. Since the matrices

h+k>_n,

are linear combinations of

Qlik_jjQ2 (i+ j)diag{A#y j j
1’ A2P2’ AnP’n }, i+j<n,

all rows (columns) in the first (second) factor of (3.9) that include homogeneous terms
of degree greater than or equal to n, linearly depend on the previous ones. Hence
rank T/(n-1)(_)(R) rank 7-{(_R) and (3.8) holds.

To prove the converse, assume that (3.8) holds and select in T{(n_l)(n_l)(/),
rows and g columns indexed by terms rl, r, r and cl, c,..., c,n, respectively,

such that the submatrix No := [(R, r:cj}] is nonsingular. The following matrices

(3.10) 1 :-- N-l[</, rizlcj>], /2 :-- N-l[</, riZ2Cj>]

commute. Indeed, rizz2cj are terms of degree not greater than 2n, and consequently
assumption (3.8) allows us to resort to (3.7), which gives

(R, rizlz2cj) [(R,rzc),..., (R,rzlc,n}]Nl I Vi,je {1,2,...,fi}.
(R, r,z2cj}

This implies that

]/I/2-M2]//I N-I [[</, rizlcj}]Nl[<I, riz2cj>]-[( riz2cj}]Nl[<,, riZlCj}]] O.
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Next introduce the matrices

H "= [<R, cl)<R, c2)... <R, cn)] and

and consider the commutative power series

(3.12)

G N-

S H(I- Mzl)-(I- M2z2)-G-- E HMMJG zzJ"
i,j=O

By resorting again to (3.7), it is easy to check that <R, Jzlz2> (S,zz}, for i+j <_ 2n,
and therefore Tlnn(R) Tlnn(S). As _M and M2 commute, they are endowed with
property L, and the power series

(:

S :=
i,j--O

can be represented as a rational function of the form

(3.13) :=
q(zl,z2)

deg q < < n.
1-I= (1 Az tz)

Note that S satisfies <S, 1> IS, 1} <R, 1} n, and, for 0 < + j <_ 2n

(3.14)

On the other hand, being the trace series of an n n matrix pair, TA1,A2 can be
expressed as in (2.15) and, consequently we have

p(z,z)
TAt,A2 + n- AA,A2 (Z, Z2)’

deg p _< n.

Therefore, in the rational function S- TA,A --n the denominator has degree not
greater than 2n and nonzero constant term, while the numerator has degree not
greater than 2n. As all the coefficients of the power series expansion of S-TA,A --n,

namely (- TA,A n, zzl, are zero for + j <_ 2n, then TA,A + n.
It is clear now from (3.13) that the denominator of an irreducible representation

of TAI,A2 factorizes into linear factors. Therefore, by Proposition 3.1, (A1, A) has
property L.

4. Pairs of matrices with property P. Given the alphabet {1, 2}, the
free monoid * with base is the set of all words

The integer m is called the length of the word w and is denoted by Iwl, while }wl{
represents the number of occurrences of i in w, 1, 2. If v jj j, is another
element of-E*, the i)roduct is defined ly concatenation:
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This produces a monoid with 1 0, the empty word, as unit element. Clearly,
+ I 1- 0.

C{1,@.} and C{{1, 2}} are the algebras of polynomials and formal power series,
respectively, in the noncommuting indeterminates 1 and 2. For each pair of matrices
A1,A. in Cn, the map p defined on {1,1,} by the assignments p(1) In and
P(.i) Ai, 1, 2, uniquely extends to an algebra morphism of C{4,} into C.
The ’&-image of a polynomial (1, 2) E C{1,2} is denoted by P(A1,A2).

A pair of n n. matrices (A1, Au).with elements in C is said to have property P
if the eigenvalues of A1 and A2 can be ordered into two n-tuples

A(A1)-- (/l,/2,...,/n), A(Ae) (#, #:,..., #),

such that, for every polynomial 7(1, 2)

(4.2) A(’P(A, A2)) (7)(., #),’P(2, #2), 7")(, #)).

It is easy to check that property P implies property L, while examples can be given
[11], [15] showing that the converse is not true.

Two-dimensional systems (1.1) whose transition matrices A1,A2 have property
P are endowed with several interesting features. Indeed, property P is equivalent to
simultaneous triangularizability, a feature that allows good insight into the geometric
structure of the free state evolution. In particular, it implies that there exists a
maximal chain of {A1, A.}-invariant subspaces of the local state space X

{0} Xo < X < Xz < < X X

with dim(Xi) i, i 0, 1,2,...,n.
When the local states x(-g, g) of the initial global state Xo =_ x(-g, f)zez,

are in Xi, all local states x(h, k), h + k >_ O, are in Xi too. Correspondingly, systems
(1.1) can be viewed as cascades of two-dimensional systems of dimension one.

Moreover, systems with property P constitute a class of two-dimensional systems
large enough for realizing all transfer functions p(z, z.)/q(z, z2) with denominators
of the form q(z,z2) I-Ij(1 -/jZl #jz2) and in particular, all transfer functions
with separable denominators [1]. It should be stressed that the same is not true if we
consider only commutative two-dimensional systems, i.e. systems (1.1) that satisfy
the (stronger) constraint AIA- AAI O.

As a consequence of Proposition 3.1, matrix pairs endowed with property L can
be equivalently described as those whose characteristic polynomials factorize into a
product of linear terms. This class of polynomials, however, corresponds also to matrix
pairs with property P; so there is no possibility of finding an equivalent description of
property P that relies only on the characteristic polynomial. Appropriate tools turn
out to be certain noncommutative polynomials [12] and power series associated with
the pair, as well as the corresponding Hankel matrices.

PROPOSITION 4.1. Let A, A. be n x n matrices with entries in C, and consider
the orderings of their spectra given in (4.1). The following statements are equivalent:

P) (A,A) has property P w.r.t, the ovdevings (4.1);
P l) for any w E*, with lwl h and Iwl k,

(4.3) tr(w(A1,A2)) E #’i’,
i--1
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P.) the noncommutative power series, whose coefficients are the traces of the
matrices w(A1, A.),

(4.4) A/= E tr(w(Ai,A2))w,
wE-Z*

can be represented as A/" = (1 AI #,i2)- and, hence, is recognizable

P3) for any w E E*, with [wl h and Iw12 k,

(4.5) det(zI w(Ax, A2)) E(z
i=1

Proof. P) = Pi) If Iwl h and iwl2 k, the definition of property P directly
implies A(w(A1 A2)) (Ap,,.. -h ,

,’n#,), and therefore (4.3) holds.

P) = P) Extend the monoid morphisms Oi’-=* C" w -, AIll"til’l’-
w(Ai,t), 1,2,...,n, to the algebra C/,), letting i(P) P(X.i,p),
1,2,..., n, for all P(,2) E C/,@.). Then we have

From assumption P) we deduce that tr(w(A,A)) Ei= i(w), and hence, by the
linearity of the trace operator,

tr(V(A, A2)) E i(7)) E V(Ai,
i=1 i=1

Using (4.6), for all h N+
n n

(4.7) tr(P(A1, A2)) h E i(Ph) E P(Ai, #i) h

i=1 i=1

which gives A(7)(A, A.))= (’)()1,,1) ,)(n,#n)).
P1) ** P) Assuming Pt), we may write

jkf-- tr(w(A1,A2)w)-- AlW[1.i W.

w E * i=lw E E*

On the other hand, we obtain

which proves (4.6). The converse can be shown in the same way.
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P1) = P3) Given w E E*, for all h E N we have

n n

i=I i=I

Thus (Avl #111, A,Inwll#ln1) is the spectrum of w(A1,A2) which proves (4.5).
Pa) = P1) This part of the proof is obvious. [3

Remark. As a consequence of Pl), property P can be equivalently stated referring
only to the words of the free monoid .=.* instead of the whole algebra C/cl, .}. Indeed,
(A1, A.) has property P if and only if for all w F.* we have

A w(A,A.) =(A I#
where (A1, A2,...,,k) and (#1, #,..., #) are the spectra of A1 and A., suitably
ordered.

As for property L, we aim now to provide an effective method for testing property
P that depends on the study of the noncommutative power series A; and the associated
Hankel matrix [2], [14]. By the Hankel matrix of iV" we mean the infinite matrix
7-/(A/’), whose rows and columns are indexed by the words of E* and whose element
with indexes u and v is equal to IN’, uv).

It will be convenient to order the words in E* and, consequently, the row and
column indexes in 7-/(A/’), according to their length; while the lexicographical order
will be adopted for words of the same length. For all M’, M" N, we shall denote by
7-tM, x M" (Af) the submatrix appearing in the upper left corner of H(A/’), whose rows

(columns) are indexed by words of length not greater than M’ (M").
LEMMA 4.2. Let A1,A. be n x n matrices with entries in C. Then

(4.8) rank 7-fi(.-1)x(,n.-1)(Af)= rank 7-t(A/) <_ n.

Pro@ For all w E*, we have

(4.9) tr(w(A1, A.)) [e e ]diag{w(A1,A.),... ,w(A1,A)}
en

where e,..., e are the vectors of the canonical basis of C. It is clear that
can be expressed as 7-/(A/’) O7, where (9 is the oc x n matrix whose row of index
v * is given by

(4.10) T[elw e] diag{v(A1,A), v(A1,A)}

and, similarly, T is the n2 x oc matrix whose column of index w E E* is given by

(4.11) [elidiag {w(A1,A),...,w(A1,A)}
en

This shows that rankT-/(A;) <_ n2.
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To complete the proof, suppose that all rows of (9 indexed by words of length
linearly depend on the rows indexed in Z {w E *, iwl < }. We deduce that any
row of index v ui, lul , also depends on the words indexed in Z, because

T (A1 A2),.. v(A1 A2)}[ew en] diag{v
[eT enw] diag{u(A1,A2),...,u(A,A2)} diag{Ai,...,Ai}
--ez a,[ew ew] diag{w(dl, d)di,..., w(A, A2)A}
ezfl.[ew enw] diag{w(A,A.),...,w(A,A)}.

An easy inductive argument proves that all rows of (9 linearly depend on those indexed
in Z. Moreover, as rankO <_ n2, it is clear that in the definition of Z we can assume
u n2. The same reasoning applies to the rows of T, showing that

rank l(n._l)x(n2_l) (j) rank (Af). 0

PROPOSITION 4.3. Let Ai, Av. be n x n matrices with entries in C, and consider
the associated noncommutative power series N" =_. tr(w(A1,A2))w. The fol-
lowing statements are equivalent:

i) (A, A) has property P;
ii) rank 7/(n--i)x(,-l)(Af) fz <_ n and, for all pairs of words w, @ with length

not greater than

(4.12) Iwli Ili, 1,2 == tr(w(A1,A.)) tr((A,A));

iii) (4.12) holds for all pairs of words w, with length not greater than 2n".
Proof. i) = ii) By Proposition 4.1, property P implies that

(4.13) tr(w(A,A)) ’1# Yw e-
i--1

for suitable orderings of the eigenvalues of A1 and A2. This immediately proves (4.12).
Moreover, H(Af) can be expressed as 7-t (Af) O7, where (9 is the ec x n matrix whose
row of index v -Z* is given by [v(A, #), v(/., #2),..., v(A, #.) ], and 7 OT.

We deduce that rank 7-/(Af) _< rank (9 _< n and, therefore rank (--1)x/-l)
_<
ii) = iii) By the previous lemma, rank (Af) ft. So, there exist [2], [141

M,M. E CX,H E Cx’, and G E Cx such that (Af, w} Hw(M,h)a,
Vw E F.*, and H(Af) can be expressed as (Af) OT, where (9 is the ec x fi matrix
whose row indexed by v E E* is Hv(Ii, I2) and 7 is the fix oc matrix whose cohlmn
indexed by w E E* is w(Mi,M.)G.

By the same argument used in the proof of Lemma 4.2, there exist 2 words
r, r2,..., r and el, c2,..., c, of length less than fi, such that both tim fix fi matrices
O, and whose rows are Hr(M,M2) and 7Zr and whose columns are cj(M,M)G,
are nonsingular. Consequently, the x fi submatrix of (Af)

is nonsingular too.
Introduce next the matrices

(4.14)



MATRIX PAIRS IN 2D SYSTEMS 1143

(4.15) H := and 0 := N-1

Using the assumption on the rank of (YV), we apply the same arguments as in 3 to
derive a counterpart of (3.7) for noncommutative power series. So, for all r, c E E*,
we have

(4.16)

It follows that

J711.2 /’/27/1 N-l([(J, TilCj}]Nl[(Jf, Ti2cj}] [(jf, ri2cj}]Nl[(Jf, rilCj}]}
N- [(Af, ri{i2c>- (Af, r{2ccj>] O,

because of assumption (4.12). So, 1 and I2 commute.
As an immediate consequence of (4.16) and definitions (4.14)-(4.15), we get

(4.17)
<.Af, rli)

i= 1,2,

and, for all v E =*

(4.18)
i= 1,2.

Finally, we propose to prove that, for all w _.*

(4.19)

which corresponds to showing that tr(w(A1,A2)) tr(@(A1, A2)), for all w,
such that Iwli- I li, i- 1, 2.

Equation (4.19) is easily verified for w 1. For any w ii i,,, > 1, by
(4.16) and (4.17), we have

and, by iteratively applying (4.18),

iii) i) By Lemma 4.2, := rank (=-:)x(-)() rank (). Thus, as
in the proof of ii) iii), we can represent as

(4.20) ff (I- 711 fff22)-1,

where M,M2 Cx commute, and (4.12) holds for all words in E*, independently
of their length. Therefore, for all w in E*, with h- w] and k ]w2, we have

(4.21) r(w(A1,A2))
h tr(A A2).
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Taking the commutative images on both sides of (4.20), we obtain

TA,A + n _fiI(I flz Iz.)-;,

and, consequently,

TA,A. -n +

where A-1,$2 (Zl, z2) splits into linear factors, because of the commutativity of I,
I. Thus the characteristic polynomial of (A,Ae) is given by AA1,A(Z,Z2)
i(1- Aiz- piz), and (A,A) has property L.

h kas Proposition 3.1 gives tr(AhmkA2)= (hk)i= Ai Pi, condition (4.21)im-
mediately implies

tr(w(A , V e -,
i=1

which is equivalent to property P.

5. Special factorizations of the characteristic polynomial. In this section,
we consider a further property of a matrix pair (A, A) that, like property L, can be
expressed as a constraint on the factors of AAt,A as well as a condition on the spectra
of the linear combinations aA + A, a, C. Pairs we refer to are those whose
characteristic polynomials split into the product of distinct polynomials Ai(z,z),
each of them having support included in a straight line of the plane Z x Z, passing
through the origin. The interest in this property is mostly due to the fact that, as we
shall see, it constitutes an immediate generalization of finite memory and separability.

To begin with, we consider a single polynomial A(z, z) whose support is a subset
of a straight line in Z x Z; i.e., there exists (g, m) (0, 0) in N x N such that

(5.1) supp(A) c {(kf, km),k N}.

Two-dimensional systems having A as characteristic polynomial exhibit several fea-
tures that strictly resemble those of one-dimensional systems. Indeed, the local state
at (0, 0) determines a free evolution that is identically zero except on a "strip" that
includes the straight line {(e, m), e z} (see Fig. 2, for e 2 and m 1).

So, no matter how far (h,k) is from the set {(i,-i) Z} where the initial
conditions are given, the local state in (h, k) is determined only by a finite subset of
the initial global state, whose cardinality does not exceed a fixed integer N.

PROPOSITION 5.1. Let (A1,Ae) be a pair of n x n ’matrices with entries in C and
AAA(Z,Z) its characteristic polynomial. Assume moreover that (g, m) is a pair of
nonnegative integers and 1 g.c.d.(g, m). The following statements are equivalent:

i) AA,A(Zl, Z2) 1 2= dh(Zfz)h; (5.2)
ii) there exist el, c,..., c in C such that, for every (,) C x C and every

(g + m)th root 4 ae,

+

iii) there exist 51, C2,..., C,n E C such that

(5.4) A(uA + u-eA) (c, c. c) V u E {1,2,... (g + m)n + 1};
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FIG. 2

iv) (i,j)

_
{(kg, km),k e N+} implies tr (AI+JA2) 0;

v) for all ,/9 E C and suitable b C,

(5.5) tr(ad + ZA) { 0b(am)" ifotherwise;k(g +

vi) (i,j) S := {(i,j) e N x N :l mi gj < N} implies AYA O.
Proof. i) ii) Since AA,A(Z,Z) e C[zz], there exist A,A,...,A e C

such that

AA,A(Z,Z) (i AhZZ)
h=

and, consequently,

(5.6) det(zI cA1 A) z-<(+’) (z+m
h:l

Let (lh) and (aB) be arbitrary ((+m)th roots of lh and a, respectively,
and any primitive ( + m)th root of 1. The spectrum of (aA + A) is given by

A(A + A)= c(e),...,c,(e) where

Crv+h (lh)e h 1, r and v 1, f + m
c, O, p > (g + m)r.

ii) iii) This part of the proof is obvious.
iii) iv) Clearly, for all {1, 2,..., (e + m)n + 1} and h N+

h

i=0 i=1
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h ikj_j h fh ,h.whence }-’-i=o u(e+m)itr(A1 -iA2)- O. As in the polynomials

h

ph(X) E x(e+’Oitr(Aimh-iA) fhxhe’
i=0

h 1,2,...,n,

the number of zeros exceeds the degree, all their coefficients have to be zero. We
distinguish two cases.

Case 1. k(g + m) hg, for some k N. Since 1 is the unique common divisor of
g and m, there exists t N+ such that k gt and h- k mr, and therefore

tr(A -iA2)=
0

if (i. h i) t(e..).
otherwise.

Case 2. k(g + m) 7 hg for allhN. Then, for0<_i<_h, tr (Aimh-iA2) O.
iv) = v) This part of the proof is obvious.
v) i) Equations (2.15) and (2.16) show that the homogeneus form 5 of the

characteristic polynomial satisfies

if k (t + m),
otherwise.

i) = vi) Note that

E AkA zz (I- Azl A2z2)
adj(I- Az A2z2)

i,j=O
1 E=I dh(ZfZ)h

As

supp(adj(I- Alzl Az2))
supp((1 }-fh=l dh(Zfz)h)-)

C_ {(i,j)NxN’i+j<_n},
C_ {(i,j)NxN.mi=ej},

it is clear that the support of (I-Alzl-A2z2)- is a subset of 8N,N n--max(l, rn).
vi) = i) Consider the injective ring homomorphism C[[z,z2]] - C[[r, , -1]]

obtained by linearly extending the map that associates zz2, i,j N, with @h,
where h, k are given by

h -m t

O maps any series in C[[z, z.]] with support in SN into an element of C[[r/]][,-],
the ring of Laurent polynomials [12] in the indeterminate , with coefficients in C[[r/]].
As the support of (I- Azl Az)-1 is included in SN and hence

supp(det(I- Az- Az2)-) c_ 8N

applying the map on both sides of det(I Azl A2z2)-AA,A (Zl, z2) 1, one
gets

(5.7) (det(I- Az A2z2)-O(Ad,d.(zl,z)) 1.

As both factors on the left-hand side of (5.7) can be viewed as elements of C[[r/]] [, -],
we have that (AA,A(Z,Z2)) is a unit of that ring, i.e. (AA,A(Z,Z2)) hs(rl)
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for some h E Z and s(r) E C[[r]]]. Condition AA1,A. (0, 0) 1 implies h 0 and,
therefore, /At,A. is & polynomial in zez. [

An immediate consequence of property ii) in the above proposition is the folloving
corollary.

COaOLLAaY 5.2. Consider A1, A. in Cnxn. If supp(AA,A) is a subset of a

straight line, different from the coordinate axes, then both A and A are nilpotent.
The results of Proposition 5.1 provide a convenient framework for understanding

the internal dynamics of two-dimensional finite memory state models, which arise
quite naturally in several applications. For instance, when considering the realization
of F.I.R. filters and dead beat regulators, the requirements on the state models that
we have to use cannot be exclusively expressed as conditions on the polynomial trans-
fer matrix that represents the input-output map. Further aspects should be taken
into account, which introduce additional constraints on the choice of the matrix pair
(A,A).

a) If the state-output transfer matrix C(I- Az Az)- is not polynomial,
local states x exist, which give rise to free output evolutions C(I- Azl Az.)-tx
with infinite supports. Clearly such states, when induced by noise, generate infinite
error sequences in the output signal.

b) If the input-state transfer matrix (I- Az A2z2)-1(l1z1 q- 2Z2) is not
polynomial, finite support input sequences possibly produce infinite support sequences
in the state space. Therefore the system could remain indefinitely excited by a finite
signal, even though the corresponding output dies out in a finite number of steps.

Both previous drawbacks can be avoided if (I- Az A2z2) -1 is polynomial or,
equivalently, if the characteristic polynomial of the system is unitary, i.e.

(5.8) AA,A,(Z,Z.) det(I- Az Az.) 1.

Two-dimensional systems satisfying condition (5.8) are called "finite memory" [4],
[6], since they reach the zero state in a finite number of steps after zeroing the input
signal.

COROLLARY 5.3 (Finite memory systems [5], [9], [17]). Let A, A be in Cxn.
The followings are equivalent:

FM) Aa,a(z,z.)= 1;
FM.) A(cA +/Ae) (0, 0,..., 0), Vc, C, namely A and Ae arc nilpotent

and satisfy property L;
FMa) A(,A+A)=A(A+-A.)=(0,0,...,0), -= 1,...,n+1;
FM4) tr(AlimjA.) 0, V (i,j) =fi (0, 0);
FM5) AlimjA2=0, fori+j>_n.
Pro@ Condition FM) is equivalent to assume that the support of AAA.(Zl,Z2)

is a subset of both {(i,0): N} and {(0,j): j N}. Thereibre finite memory
systems are exactly those that satisfy properties i)-vi) of Proposition 5.1 both for
(e, m) (, 0) and (e, m) (0, 1).

FM.) Choose first (e, m)= (0, 1) and then (e, m)= (1, 0). Then

A(cA1 + A) (c/,..., c./) (dc,..., d,c) Yc, C,

which obviously implies a(cA +/A) (0,..., 0).
FM3) Assumptions (g,m) (0,1) and (e,m) (1,0) give a(cA1 +/A.)

(c,..., c) and + ZA ) respectively. These imply

a(A + A.) (d d) (,..., ;) W, ; C.
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Therefore A(uA1 + A2) A(A1 + tAg.) (0,..., 0).
FM4) This part of the proof is obvious from iv) of Proposition 5.1.
FMh) Assume first (t,m)- (0, 1) and then (g,m) -(1,0). Point vi) of Propo-

sition 5.1 gives AliJA2 O, when >_ n or j > n. So (I- Az,- Ag.z2)- is
a polynomial matrix and coincides w.ith adj (I- A,z- Agz), whose support is
included in { (i, j)" + j < n}.

The results of Proposition 5.1 partially extend to the case of a characteristic poly-
nomial A(z, z2) that factorizes into irreducible factors, each of them having support
on a straight line through (0, 0). For sake of simplicity, we confine ourselves to the
case when A factorizes as

with

(5.10) Ai(Zl, z2) 1 E dj
j=l

i-- 1,2,

and g.c.d.(gi, mi) 1. The extension to the case of more than two factors is straight-
forward. If (A1, A.) is an n x n matrix pair with characteristic polynomial A, it can
be easily shown that

i) there exist two positive integers p and or, p+a <_ n, and p+cr complex numbers
Cl,...,co ,dl,...,d, such that, for all a,/ E C

ii) tr(AimJA) 7 0 implies either (i,j) (el,]?Ttl) or (i,j) (he,hm),
h,k EN+.

Conversely, each of the above properties guarantees that A factorizes as in (5.9)-
(5.10).

We are now in a position to obtain a fairly complete description of two-dimensional
systems whose characteristic polynomials factorize into the product of a polynomial in

z and a polynomial in z2. Such systems are called "separable" [4], [5] and are usually
thought of as the simplest examples of I.I.R. two-dimensional systems. Actually,
many properties that one may hope to extrapolate from an understanding of one-

dimensional systems carry over to separable systems. Indeed, just the knowledge
that the system is separable allows one to make fairly strong statements about its

behaviour; in particular, internal stability can be quickly deduced from the general
theory of discrete-time one-dimensional systems, as the long-term performance of
separable systems is determined by the eigenvalues of A1 and A..

PROPOSITION 5.4 (Separable systems). Let A, A. be in Cx. The following
statements are equivalent:

S1) /AI,A2(ZI,Z2) r(Zl)8(z2);
$9) A1 and A2 satisfy property L w.r.t, the orderings of the spectra

A(A) (1,..., Ap, 0,..., 0, 0,..., 0)

A(A.) (0,...,0,#,...,#,0,...,0),

so that, for everyc, G C A(cAI+/3A.)= (ctA,..., aA;,/3#,... ,/3#, 0,... ,0);
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Sa) tr(AliJA,2) 0 if both and j are nonzero;
84) tr(cA1 +/A2)k tr(cA1) k + tr(A2), Vc, E C,k E N+.
Property L, separability, and finite memory have been introduced by progressively

strengthening the constraints on the irreducible factors of AA1,A..(Zl,Z2). On the
other hand, the set of matrix pairs with property L properly includes the set of pairs
with property P, which in turn is strictly larger than the set of commutative pairs.
So, the question naturally arises whether the above constraints on the characteristic
polynomial of the pair (A1, A2) can be related to property P and to commutativity.

We first observe that examples can be given of commutative pairs and, hence, of
pairs with property P that are not finite memory and not even separable. Actually,
just by taking diagonal matrices A1 and A, we easily see that commutativity and
property P do not imply any particular consequence on the characteristic polynomial,
except that it factorizes into first-order factors.

On the other hand, the pair

A= 0 0 1 A.=
0 0 0 11 0 0

0 -1 0

is finite metnory (and hence separable). Yet, it does not satisfy property P.
In view of this, no implication exists between comlnutativity and property P

on one side and finite memory and separability on the other. What is remarkable,
however, is that if we restrict our analysis to matrix pairs with property P, finite
memory and separable pairs can be nicely characterized in terms of semigroups of
nilpotent matrices. This is made precise in the following proposition, which provides
a slight extension (and an alternative proof) of a classical Levitzki theorem [8, p. 135].

PROPOSITION 5.5. Let AI,A2 be in C,x, and consider the mtltiplicative semi-

groups

and

S {w(AI,A2), w E*, I’w] >_ 1}

S := {w(A,A2), w :. [W "_ 1, Iwl 1}.

The pair (A, A.) has finite memory and property P (respectively, separability and
property P) if and only if all matrices in S (respectively, in ) are nilpotent.

Proof. Ve first remark that, if (A,A.) has property P, the nilpotency of all
elements of S and S is equivalent to finite memory and separability, respectively. In
fact, when A1 and A are in upper triangular form, the nilpotency of the elements
of S and S corresponds to the assumption that the characteristic polynomial AA,A
satisfies FM) of Corollary 5.3 and S) of Proposition 5.4, respectively.

Suppose now that the multiplicative semigroup S, generated by A and A, is
constituted by nilpotents. Since we have tr w(A1,A) 0 for all w E*, l’wl 1,
(4.3) is clearly fulfilled. Consequently (A,A) has property P and, by the above
remark, (A,A) is a finite memory pair.

On the other hand, assume that all matrices in are nilpotent. This implies

(8.11) tr[(AiA2 A2A)w(A,A2)]- 0

which is a necessary and sucient condition [13] for the pair (A1, A) having property
P. Again, the remark at the beginning of the proof shows that (A, A) is a separable
pair.
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LYAPUNOV-LIKE TECHNIQUES FOR STOCHASTIC STABILITY*

PATRICK FLORCHINGER

Abstract. The purpose of this paper is to study the stabilizability problem for control stochastic
nonlinear systems driven by a Wiener process. Sufficient conditions for the existence of stabilizing
feedback laws that are smooth, except possibly at the equilibrium point of the system, are provided
by means of stochastic Lyapunov-like techniques. The notion of dynamic asymptotic stability in
probability of control stochastic differential systems is introduced and the stabilization by means of
dynamic controllers is studied.
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Introduction. The stabilization of deterministic nonlinear control systems has
been widely studied in the last past years by many authors (see [3], [1], [5], [17],
[23], [27], and [28] for example). In these papers, sufficient conditions for the exis-
tence of smooth stabilizing feedback laws are provided using the Lyapunov machinery.
Nevertheless, Sontag and Sussmann [26] have proved that in general, controllable de-
terministic nonlinear systems cannot be stabilized by means of continuous feedback
laws. Therefore, if one does not assume the smoothness of the stabilizing feedback
laws, some extensions of the results listed above have been obtained (see [3], [15], [22],
and [23] for example).

Different types of stabilizing feedback laws have been studied by different authors.
Sontag [22] has studied piecewise linear feedback laws, whereas Artstein has studied
relaxed feedback laws [3]. Furthermore, note than in the case where the system is
affine in the control, stabilizing feedback laws that are continuous for every x -7(: 0, in a
neighbourhood of the origin, can be computed by means of Lyapunov-like teclmiques
(see [17], [24], [27], or [28]).

Actually, only few results on the stabilization of nonlinear stochastic systems can
be found in the literature. The stabilization of linear stochastic control systems has
been adressed by Willems and Willems [29] and by Gao and Ahmed [12]. In [29],
sufficient conditions based on the properties of the solution of the algebraic Riccati
equation are provided. The existence of stabilizing feedback laws for a class of non-
linear stochastic control systems has been discussed by Gao and Ahmed [13]. The
procedure used in [13] is based on the properties of the solution of the stochastic alge-
braic Riccati equation introduced by Wonham [30]. More recently, control nonlinear
stochastic systems, the drift of which is aifine in the control, have been studied from
the point of view of the stabilization by means of the stochastic Lyapunov theorem
developed by Khasminskii [18] (see [6], [8], [10], [11] for different types of nonlinear
stochastic systems and [7], [9] for stochastic bilinear systems).

The aim of this paper is to extend the stabilization results proved in [28] by
Tsinias to control stochastic differential systems driven by a Wiener process.

This paper is divided in four parts and is organized as follows. In 1, we recall
some definitions and results, proved by Khasminskii [18], on the Lyapunov stability
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in probability of the equilibrium solution of a control stochastic differential equation.
In 2, we introduce the class of control stochastic differential systems and the asso-
ciated notions of stochastic stabilizability with which we deal in this paper. In 3,
we study stochastic differential systems, the drift of which is affine in the control.
The main results proved in this section extend the Artstein [3] and Jurdjevic-Quinn
[17] theorems. Moreover, a stabilization result is also proved for a class of stochas-
tic bilinear systems and for some nonlinear stochastic differential systems by means
of a slight extension of the stochastic Jurdjevic-Quinn theorem obtained previously.
In 4, we deal with the stabilization of nonlinear stochastic differential systems by
means of dynamic feedback laws. Necessary and sufficient conditions for the dynamic
stabilization of control nonlinear stochastic systems are provided.

1. Some elements of stochastic stability. The purpose of this section is to
recall some basic facts about the Lyapunov functional approach of stochastic stability
theory that we need in the sequel. For a more detailed exposition of this subject refer
to Khasminskii [18], Arnold [2], and Mao [21].

Consider a complete probability space (Ct, $-, P) and a standard IR’-valued Wiener
process w defined on this space. Denote by {)ct}t-+ the complete right-continuous
filtration generated by the Wiener process w; i.e., for any t

$- c(w; 0 <_ s _< t) v 3?

where N" is the class of all P-negligible sets.
In the rest of this paper, if zt is a semimartingale on the probability space

{.Pt}teIa+,P), the term odzt (respectively, dcct) will denote its differential in the sense
of Stratonovitch (respectively, ItS) (see for example Ikeda-Watanabe [161).

Let b and (k, 1 _< k <_ m, be (rn + 1) functionals mapping IRn into IR such that:
1. b(0)= 0 and (0)- 0 for any k E {1,...,rn}.
2. There exists a non.negative constant K for which

+ <_ +
k=l

Yx, y IR’, Ib(x) b(Y)l + E Icrk(x) cr(Y)l <- Ix YI"
k=l

Consider the stochastic process solution xt IR of the stochastic differential equation

t f0(1) at zo + b(z, ds + (z) dw
k=l

where z0 is given in n. For any s + and z , denote by z’, s t, the
solution at time t of the stochastic differential equation (1) starting form the state z
at time s.

Next, we introduce the notions of stochastic stability used in this paper.
DEFINITION 1.1. 1) The equilibrium solution zt 0 of the stochastic differential

equation (1) is said to be stable in probability if for any s 0 and > O,

,,m =0.
xO st
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2) The equilibrium solution xt 0 of the stochastic differential equation (1) is
said to be locally asymptotically stable in probability if it is stable in probability and
for any s >_ O,

x-+O

Remark 1.2. It should be noted that, in the case eL 0, 1 <_ k <_ rn, these
definitions reduce to the corresponding deterministic ones.

Denoting by L the infinitesimal generator of the stochastic process solution xt
of the stochastic differential equation (1), that is, L is the second-order differential
operator defined for any function in C2(IRn) by

i=1 i,j=l

where aij(x) Ekrn=l o’k(x)o’ (X), 1 i, j t, one can prove the following stochastic
version of the Lyapunov theorem.

THEOREM 1.3. Assume that there ezists a Lyapunov function V defined in a
bounded open neighbourhood D ofx 0 (i. e., a proper function V of class C mapping
D into IR that is positive definite) such that

LV(x) <_ 0 (respectively, LV(x) < O)

for any x E D, x 0; then the equilibrium solution xt 0 of the stochastic differential
equation (1) is stable (respectively, locally asymptotically stable) in probability.

Remark 1.4. If one assumes that era 0, 1 _< k _< m, Theorem 1.3 reduces to
the well-known Lyapunov theorem for deterministic systems (see, for example, [25] or

[,4]).
For a detailed proof of Theorem 1.a, we refer the reader to Khasminskii [18,

Chap. V, pp. 156-1"/1] or Arnold [2, Chap. XI, pp. 176-187].
2. Setting of the problem. The purpose of this section is to introduce the

class of control stochastic differential systems with which we are concerned in this
paper.

Denote by (t, 9, P) a probability space and by w a standard IR’-valued Wiener
process defined on this space.

Consider the multi-input stochastic differential system in IR’

(3) xe xo + f(x,, u)ds + g(x,) dw,

where
1. x0 is given in IR.
2. u is an ]RP’-valued control law.
3. f and g are Lipschitz functionals mapping ]R IRp (respectively, IR’) into

IR (respectively, IRn x IR") such that f(0, 0) 0 and 9(0) 0, and there exists a

nonnegative constant K such that for any x E IR and u IRp,

{f(x,u)l + Ig(x)l <_ K(1 + Ixl + lul).
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The stochastic differential system (3) is said to be locally feedback stabilizable in
probability at the origin if there exist a neighbourhood D of the origin in IRn and a
functional 4) mapping D into IRp such that:

1. (0) 0.
2. For every x E D, the solution xt’x of the closed-loop system

0 fot(4) xt x + f(x, (x))ds + g(x) dw

is uniquely defined.
3. The equilibrium solution at 0 of the closed-loop system (4) is asymptoti-

cally stable in probability.
The concept of dynamic stabilization for deterministic nonlinear control systems was
introduced by Sontag and Sussmann [26]. Here, we introduce an extension of this
concept to stochastic differential system as follows.

The stochastic differential system (3) is said to be locally dynamic asymptotically
stabilizable in probability at the origin if the stochastic differential system

is locally feedback stabilizable in probability at the origin.
To illustrate the main ideas of this paper, we introduce the following class of

nonlinear stochastic differential systems that are aifine in the control

)(1 x o + Xo(x) + (x) d + X(x) od

where Xo, X,...,X,,Y1,...,Yp are (m +p+ 1) vector fields in C(]Rn, IRn), which
we write for any x E IRn as

x(x) x(x)x
k=l

O<_i<_m,

k=l

l<_j<_p,

and such that the vector fields Xi, 0 <_ <_ m, vanish at the origin.
Introduce the second-order differential operator L associated with the uncon-

trolled part of the stochastic differential system (6) defined by

Xo + x.
i=1

Assume that there exists a Lyapunov function V defined in a neighbourhood D of the
origin in IR, such that for any x D, x 0, there exists at least one {1,..., p}
such that (Y,V)(x) 0 (here, YV is the Lie derivative of the functional V in the
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direction of the vector field Y/). Then the feedback law whose ith component
(1 <_ <_ p) is the functional i defined on D by

-LV(m), (x)
(
0

ifx0,

if x=0

is stnooth for x - 0 and renders the stochastic differential system (6) locally asymp-
totically stable in probability. Indeed, denoting by the infinitesimal generator as-
sociated with the resulting closed-loop system yields

p

i--1

for any x E D, x - 0. So, according to Theorem 1.3 the equilibrium solution xt 0 of
the resulting closed-loop system is locally asymptotically stable in probability. This
result extends a well-known result from [4] (see also [28]) to a stochastic differential
system.

A simpler formula for the feedback law may be obtained if one assumes that there
exists a Lyapunov function V defined in a neighborhood D of the origin such that
LV(x) < 0 for all x E D and LV(x) < 0 for all x D \ {0} such that YV(x)
0 for all G {1,...,p}. Then, the feedback law -(Y1V,...,YpV)* (where *
denotes the transpose of matrices) renders the stochastic differential system (6) locally
asymptotically stable in probability at the origin.

Denoting by /2 the infinitesimal generator of the resulting closed-loop system
yields

p

i=1

for any x D. Therefore, V(x) < 0 for any x D, and according to Theorem
1.3 the equilibrimn state of the closed-loop system is locally asymptotically stable in
probability. A deterministic version of this result is due to Tsinias [27].

The aim of this paper is to extend the ideas developed in the above examples to
compute stabilizing feedback laws for a larger class of stochastic differential systems.

3. Affine control stochastic differential systems. In order to state some
sufficient conditions for the local asymptotic stability in probability of stochastic dif-
ferential systems that are affine in the control, we introduce the following definition.

DEFINITION 3.1. 1) The stochastic differential system (6) is said to satisfy a

stochastic Lyapunov condition at the origin if there exists a Lyapunov function V
defined in a neighbourhood D of the origin in IRn such that

a. For every x e D \ {0} such that YiV(x) 0 for all {1 ,p} one has
LV(x) < O.

2) The stochastic differential system (6) is said to satisfy a strong stochastic Lya-
punov condition at the origin if there exists a Lyapunov function V defined in a

neighbourhood D of the origin in IR satisfying condition 1 above and real functions
a and b defined in D such that:

b. The function a is smooth and nonnegative on D.
c. The function b is continuous and nonnegative on D.
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d. The inequality

ILV(x) + a()I < b(x) I(rV(),..., rV())l
holds for every z E D.

Remark 3.2. Since the differential operator L appears in the conditions stated in
Definition 3.1, the computations in the stochastic case are more tedious than in the
deterministic one.

Then, one can prove the following result, which extends Artstein’s theorem (see
[3], [24]) to the feedback stabilization of stochastic differential systerns.

THEOREM 3.3. If the stochastic differential system (6) satisfies a stochastic Lya-
punov condition at the origin, then it is locally feedback stabilizable in probability at
the origin by means of a feedback law that is smooth in a neighbourhood D of the
origin except possibly in O. Moreover, if the stochastic differential system (6) satisfies
a strong stochastic Lyapunov condition at the origin, then the stabilizing feedback law
is bounded on D and is continuous at the origin if b(O) O.

Proof of Theorem 3.3. 1) Assume that the stochastic differential system (6) satis-
ties a stochastic Lyapunov condition at the origin. Then, applying in (6) the control
law u defined by

where is a new real-valued control law, one gets the following control stochastic
differential system:

(7) 0 + (x0() + . ()) d + x(.) o dw

where Y denotes the vector field on IR defined by

P

(v).
i=1

Then, for any x E D\{0} such that (YV)(x) 0, one can deduce easily from condition
1 in Definition 3.1 that LV(x) < 0. Therefore, the stochastic differential system (7)
satisfies a stochastic Lyapunov condition at the origin.

To define a stabilizing feedback law for the stochastic differential system (7) we
make use of the partition of unity theorem. With this aim, denote by C1 and C2 the
two relatively closed subsets of D \ {0} defined by

C1 {x D \ {0): YV(x)= 0}

and

C2 {z 6 D \ {0}: LV() >_ 0}.

Then, C, V/C2 0 and there exists a Cc function p mapping D \ {0} into [0; 1]
such that b 0 on a neighbourhood of C in D \ {0} and b 1 on C..

Consider the real-valued function H defined on D by

H()
-(z) (LV + a )YV ()- i if z D \ {0} s.t. (VV)(x) O,

0 ifz {0}UC
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where a is any smooth and positive real-valued function defined on D.
Then, applying the feedback law H in (7) yields

(8) xt xo + (Xo(xs) + H(xs)Y(xs)) ds + Xi(x) o dws.

Moreover, one can easily prove that the feedback law u given by

u (H.(Y1V), H.(YpV))*

is smooth on D \ {0}, and denoting by the infinitesimal generator associated with
the stochastic differential system (8) yields

/2V=(1-p) LV- YV- 2a.

Hence, .V(x) < 0 for any x E D \ {0} and, according to Theorem 1.3, the equilibrium
solution xt 0 of the stochastic differential systetn (8) is locally asymptotically stable
in probability. Therefore, the control law u given by (9) is a stabilizing feedback law
for the stochastic differential system (6).

2) Assume that the stochastic differential system (6) satisfies a strong stochastic
Lyapunov condition at the origin. Then, one can construct a stabilizing feedback
law for the stochastic differential system (6) as above where the function a in the
definition of the functional H is given by assumption 2 in Definition 3.1.

On the other hand, by condition d in Definition 3.1, for any x E D, it holds that

]LV(x) + a(x)] < b(x) ](YV)(x)] /2

and, since 1]-< 1 and IY/VI _< (YV) 1/2 for any {1,... ,p}, one has

IH(YV)] ]hi + IYVI
for any {1,... ,p}.

Therefore, by condition c in Definition 3.1, one can deduce easily that the stabi-
lizing feedback law u defined in (9) is bounded on D.

Furthermore, if b(0) 0, it is easy to prove that the feedback law u is continuous
at the origin.

This completes the proof of Theorem 3.3.
Remark 3.4. The stabilizing feedback law obtained in Theorem 3.3 depends ex-

plicitly on the system coefficients and the Lyapunov function given by the hypothesis.
However, the presence of the function , obtained by means of the partition of unity
theorem, in formula (9) makes the result rely on nonconstructive techniques.

Note that under a slightly different hypothesis (the small control property intro-
duced by Sontag in [24]) one can obtain a more easily computable stabilizing feedback
law for the stochastic differential system (6) (see [6]).

To conclude, note that a serious drawback of both approaches is the lack of
information about the construction of the Lyapunov function V in the assumptions
of the theorem.

To illustrate the results stated in Theorem 3.3, consider the following two exam-
ples.
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Example 1. Let xo be given in IR3 and denote by xt E IR3 the solution of the
stochastic differential system

x21/2Xl,t x, 1,t Xl,t

-x2 dt + x2,t o dwtdxt -x2,t dt + u 0 dt+ u2 2,t

--Xa,t --X2,tXa,t 0 X3,t

Then, using the Lyapunov functional V defined on IR3 by

+ +

one can prove that the above stochastic differential system satisfies a stochastic Lya-
punov condition at the origin and thus by Theorem 3.3 is feedback stabilizable at the
origin by means of a feedback law that is smooth in a neighbourhood of the origin
except possibly in zero.

Example 2. Consider the stochastic differential system defined in IR3 by

--2Xl,t x2,t Xl,t

dxt -2x2,t dt+ u -xl,t dt + x2,t o dwt

x2-x,txa,t + ,tx3,t x, + x2
3,t x,tx3,t

where x0 is given in IRa. Then, denoting by V the Lyapunov functional defined on

IRa by

1
+ +

and by a, b the two functionals mapping IRa into IR defined by

a(x) x + x,

one can prove that the stochastic differential system introduced above satisfies a strong
stochastic Lyapunov condition at the origin.

Therefore, by Theorem 3.3 this stochastic differential system is feedback stabi-
lizable in probability at the origin by means of a feedback law that is smooth in a

neighbourhood of the origin except possibly in zero and is continuous at the origin.
The method used in the proof of Theorem 3.3 leads to the following result that

extends the well-known theorem of Jurdjevic and Quinn [17] for the stabilization of
deterministic control systems to stochastic differential system.

DEFINITION 3.5. The stochastic differential system (6) is said to satisfy a stochas-
tic Jurdjevic-Quinn condition at the origin if there exists a Lyapunov function V
defined in a neighbourhood D of the origin in IR such that:

1) For every z D \ {0} such that YiV(x) 0 for all {1,...,p} one has
LV(z) <_ 0 for all z in some neighbonrhood Dx of x in IRn.
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2) For every x e D \ {0} such that LV(x) 0 and YiV(x) 0 for all e
{1,... ,p} there exist integers k e IN* and e {1,... ,p} such that (LkYi)V(x) 7 O.

Remark 3.6. Condition 2) in Definition 3.5 is not as easy to check as in the
deterministic case since one has to compute iterates of the differential operator L.

Then one can prove the following stabilization result.
THEOREM 3.7. If the stochastic differential system (6) satisfies a stochastic

Jurdjevic-Quinn condition at the origin, then it is locally feedback stabilizable in prob-
ability at the origin by means of a feedback law that is smooth in a neighbourhood of
the origin except possibly at zero.

Proof of Theorem 3.7. Under the hypothesis of the theorem, one can construct,
as in tim proof of Theorem 3.3, a function mapping D \ {0} into [0, 1] except that
now C2 will denote the closure relatively to D \ {0} of the set

{x E D \ {O} LV(x) > 0}.

Here, one has C1 C2 0 by condition 1) in Definition 3.5.
Therefbre, the feedback law u given by

(10) u (H(Y1V), H(YpV))

where the function H is defined as in the proof of Theorem 3.3, is smooth on D \ {0},
and denoting by/2 the infinitesimal generator of the closed-loop system deduced from
(6) when the control law u is given by (10) yields

,V (1- ) LV- YV- a
where Y is the vector field defined on IRn by

P

Y E(YV)Y.

Hence, V(x) <_ 0 for any x e D \ {0}, and according to Theorem 1.3, the equilibrium
solution xt 0 of the closed-loop system deduced from (6) when the control law u is

given by (10) is stable in probability.
Moreover, according to the stochastic version of La Salle’s theorem (see [19]), the

stochastic process xt tends in probability to the largest positively invariant set whose
support is contained in the locus V(xt) 0 for all t e JR+. On the other hand, it is
obvious that V(x) 0 for an x =/- 0 if and only if LV(x) 0 and YV(x) 0 for all
e

Then the successive application of Ith’s formula yields LkV(x) 0 for
1,...,p, and k IN, which contradicts the second condition in Definition 3.5.

Thus, the equilibrium solution xt 0 of the closed-loop system deduced froIn (6)
when the control law u is given by (10) is asymptotically stable in probability. There-
fore, the control law u given by (10) is a stabilizing feedback law for the stochastic
differential system (6).

This completes the proof of Theorem 3.7.
Remark 3.8. If instead of condition 1) in Definition 3.5 one assumes that LV(x) <

0 for all x D, then one can choose =_ 0 and the stabilizing feedback law reads
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which is the same stabilizing formula as the one proposed in [17] for the stabilization
of deterministic control systems (see also [8]). In the latter case, note that the equi-
librium solution of the uncontrolled part of the stochastic differential system (6) is
stable in probability.

As has been noted previously, a serious drawback for practical applications of The-
orem 3.7 is the presence of the functional , obtained by means of a nonconstructive
technique, in the design of the stabilizing feedback law (10). Successive application
of ItS’s formula to the conditions deduced from the stochastic version of La Salle’s
theorem leads to Lk+lV(x) 0 and LYiV(x) 0 for 1,... ,p and k E IN. Hence,
one can improve condition 2) in Definition 3.5 by assuming that the set

]C- {x IRn/Lk+IV(x)- LYjV(x)= O; k IN j 1,... ,p}

is reduced to {0} (see [8]).
Example 3. Let z0 be given in IR2

stochastic differential system
and denote by xt IR the solution of the

dxt dt + u dt -t- o dwt
Xl,t X2,t -- X,t(Xl,t,X2,t) 0 X2,t

where is a smooth functional mapping IR2 into IR such that z2(0, z2) < 0 for
any z2 IR, z2 =/= 0. Then this stochastic differential system satisfies a stochastic
Jurdjevic-Quinn condition at the origin with the Lyapunov function V defined on IR2

by

1
+

Indeed, ifY denotes the vector field defined on ]R2 by Y(x)= (021 ), one has LV(O, x2)
0 for all x IR2, x - 0, with YV(x) xa 0. Therefore, there exists a neighbour-
hood D of the point x such that LV(z) zz(z, z) <_ 0 for all z Dx. Further-
more, by means of easy computations, one can prove that LaYV(O, x2) -6x 0
if x2 -0.

On the other hand, for some particular stochastic control systems, one can state,
by means of stochastic Lyapunov-like approaches different from those of Theorems
3.3 and 3.7, more easily computable assumptions on the system coefficients that lead
to the existence of stabilizing feedback laws.

For instance, consider the stochastic process solution xt IRn of the single-input
stochastic bilinear differential system

(11) xt xo + (Ax + uBx) ds + Cix dw

where A, B, Ci, 1 <_ <_ m, are matrices in 24x(]R) and assume that (11) satisfies a
stochastic Lyapunov condition at the origin where the Lyapunov function is quadratic.
Then the stochastic Lyapunov condition at the origin leads to the following result.

PaOPOSITION 3.9 (see also [9]). If there exists a symmetric and positive definite
matrix P in Adn x (IR) such that

ker (PB + B’P) \ {0} C {x IR / (Px, x) < O}
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where is the matrix given by [ A*P + PA + C’PC, then there exists a positive
constant c such that the stochastic differential system (11) is feedback stabilizable in
probability at the origin by means of the feedback law u defined by

(12)
(PBx,x}-c ixl if x - O,

0 if x-O,

which is smooth for x 0 and bounded.
Proof of Proposition 3.9. Since the matrix P is symmetric and positive definite,

the function V defined on IRn by

is a Lyapunov function. Denoting by L the infinitesimal generator of the closed-loop
system deduced from (11) when the control law u is given by (12), one has for any

c )2(13) LV(x) (Px, x} ]]Xli (PBx, x

Therefore, since for any x E IRn \ {0} there exists a unique pair (r, z) E IR+ x Sn-1

(where Sn-1 denotes the unit sphere ih IR) such that x rz, equality (13) reads

(14) LV(x) r2 ((Pz, z} c(PBz, z}).
Hence, for any x IR, x 7 0, one has

LV( ) < o

provided that

c>
max iPz,

zES.n-

min (PBz, z) 9"
zES’-l,(Pz,z)>O

Then, according to Theorem 1.3, the equilibrium solution xt =- 0 of the closed-loop
system deduced from (11) when the control law u is given by (12) is asymptotically
stable in probability.

This completes the proof of Proposition 3.9.
Remark 3.10. The matrix /5 in Proposition 3.9 appears in the stochastic Lya-

punov equation that gives a necessary and sufficient condition for the exponential
stability in mean square of the equilibrium solution of a linear stochastic differential
equation (see Arnold [2]). Conditions for the existence and the uniqueness of the
solution to the stochastic Lyapunov equation are given by Wonham [30].

For more general stochastic differential systems that are not necessarily linear in
the control we are unable at this time to formulate a proper Lyapunov condition and
to apply one of the above methods to achieve the feedback stabilization. Only some
specific cases can be solved properly (see [9] for stochastic bilinear systems or [10] for
homogeneous stochastic systems). In the following, we propose a slight extension of
the stochastic version of Jurdjevic-Quinn theorem to a class of stochastic differential
system given by (3) that are not linear in the control.
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PROPOSITION 3.11. Assume that there exists a Lyapunov function V defined on
a neighbourhood D of the origin in IRn such that LV(x) <_ 0 for x E D where L
denotes the second-order differential operator given by

m

i=1

and Xo, X, 1 <_ <_ m, are the vector fields on IR defined for any x IR’ as

and

n( n

Xo(x) f(x, o) + (x)o()
j--1 k=l

OXk Xj

n 0
X(x) .(x) Ox"j--1

For any e {1, p} let Y(x) (of)(x 0)" and assume that condition 2 of Def-u
inition 3.5 is fulfilled. Then the stochastic differential system (3) is locally feedback
stabilizablc in probability at the origin by ’means of the smooth control law u defined
on IR by

(15) ui(x) -YV(x), 1, p.

Proof of Proposition 3.11. The hypothesis on the system coefficients implies that
there exist a function R mapping IR IRp into IR and a positive constant C such
that one can write the stochastic differential system (3) as

)(16)xt Xo + Xo(xs) + E uJYj(xs) + R(xs, u) ds + X{(xs) o dws
j:l ":

where iIR(x, u)l <_ ClIull 2 for any (x, u) in a neighbourhood of the origin in ]Rn IRp.
Then, applying the feedback law u given by (15) in equation (16) yields

(17) xo + Xo(x)- (y)(x)(x) d
j=l-- t(Xs, (]/l V)(xs), (YpV)(Xs))d8 -- Xi(xs) o dwis.

Denoting by the infinitesimal generator of the closed-loop system (17), one has for
any x D, x :/: 0,

P

V(x) LV(x) E((Y.V)(x))(1 + O(x))
j=l

where

O(x) VV(x)(x, (V)(x), (y,V)(x))
P

((V)(x))
j--1
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and O(x) tends to zero when x tends to zero.
Therefore, according to the hypothesis on the function V, one can deduce that

z;v(z) <_ 0

for any x E D, z - 0. Furthermore, one has V(z) 0 for any z E D, z- 0, if
and only if LV(x) 0 and (YjV)(z) 0 for all j {1,... ,p}. Then, arguing as in
the proof of Theorem 3.7, one can prove that the equilibrium solution at 0 of the
closed-loop, system (17) is asymptotically stable in probability. Therefore, the control
law u given by (15) is a stabilizing feedback law for the stochastic differential system
(16). This completes the proof of Proposition 3.11.

4. Stochastic dynamic stabilization. The purpose of this section is to study
the stabilization of the nonlinear stochastic differential system (3) by means of a
dynamic feedback control law. With this aim, one has to extend the concept of a
stochastic Lyapunov condition introduced in Definition 3.1 as follows.

DEFINITION 4.1. The stochastic differential system (3) is said to satisfy a @-
namic stochastic Lyapunov condition at the origin if there ezists a Lyapunov functional
V defined on a neighbourhhood D of the origin in IR x IRp such that:

I  ctio  , ooth D \ {0}.
ov (x, z) 0 one has2) For any (x, z) e D \ {0} such that -5

1 ’ 02V
(x,z)<O.Ei=I fi(x, z)OV (x, z)-4- - i,J=iE (g(x)g(x)*),tj

Ox,iOxj

Note that according to Definitions 3.1 and 4.1 the stochastic differential system
(3) satisfies a dynamic stochastic Lyapunov condition at the origin if and only if
the stochastic differential system (5) satisfies a stochastic Lyapunov condition at the
origin.

The following result underlines the relationship between stabilization and dynamic
stabilization of the stochastic differential system (3) and the dynamic stochastic Lya-
punov condition.

THEOREM 4.2. 1) If the stochastic differential system (3) satifies a dynamic
stochastic Lyapunov condition at the origin, then it is dynamic asymptotically stabi-
lizable in probability at the origin.

2) Ifthe stochastic differential system (3) satisfies a dynamic stochastic Lyapunov
ov (x, z) 0 has a solution z c(x) 4)(0)condition at the origin and the equation z

O, that is continuous on a neighbourhood S of the origin in IRn, smooth on S \ {0},
and such that 2v(z, c(x)) 0 for any x S \ {0}, then the .stochastic differential
system (3) is locally feedback stabilizable in probability at the origin by means of the
control law u (x).

3) If the stochastic differential system (3) is locally feedback stabilizable in proba-
bility at the origin by means of a locally smooth feedback law u (x) with (0) O,
then it satisfies a dynamic stochastic Lyapunov condition at the origin with V .smooth
in a neighbourhood of the origin.

4) If the stochastic differential system (3) satisfies a dynamic stochastic Lyapunov
condition at the origin with V smooth in a neighbourhood S of the origin such that

2V (x z)=Oforany (x z) S with OV(x z) -O then it isdet 2V(o O) 0 and
locally feedback stabilizable in probability at the origin by means of a locally smooth

feedback law u (x) with (0) 0.
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Proof of Theorem 4.2. 1) The first assertion of thetheorem is an immediate
consequence of Theorem 3.3. Indeed, if the stochastic differential system (3) satisfies
a dynamic stochastic Lyapunov condition at the origin, then the stochastic differential
system (5) satisfies a stochastic Lyapunov condition at the origin. Hence, according
to Theorem 3.3, there exists a stabilizing feedback law v r(x, z) for the stochastic
differential system (5) that is smooth for (x, z) -/: 0 in a neighbourhood of the origin
in IRn x ]Ip.

2). Let be a function mapping ]R into ]tp satisfying the hypothesis of assertion

2) in Theorem 4.2. Then the closed-loop system deduced from the control stochastic
differential system (3) when the control law u is given by u(x) O(x) reads

(is) x xo + f(x, (x))d + () d.

Denote by the function mapping S into IR defined for any x E S by

/() y(x, (x))

where V is the Lyapunov function given by Definition 4.1. Then is a Lyapunov
function; and denoting by the infinitesimal generator of the stochastic process xt
solution of the closed-loop system (18), one has

for any x E S, x 0.
ov (x, (x)) 0 forThen since, by assumptions, one has av (x (x)) 0 andz

any x E S, x :/: 0, one gets

Hence, condition 2) in Definition 4.1 yields

:(x) < 0

for any x S, x = 0.
Therefore, according to Theorem 1.3 the equilibrium solution xt 0 of the closed-

loop system (18) is locally asymptotically stable in probability at the origin, which
implies that the control law u given by u(x) (x) is a stabilizing feedback law for
the stochastic differential system (3).

3) Let be a smooth functional defined on a neighbourhood S of the origin in
IRn with values in IRp such that (0) 0 and the equilibrium solution xt 0 of the
closed-loop system

f0 fot(19) xt Xo + f(xs, c(xs))ds + g(xs)dw
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deduced from the stochastic differential system (3) when the control law u is given
by u(x) (x) is locally asymptotically stable in probability. Then, by the converse
Lyapunov theorem proved by Kushner [20], there exists a Lyapunov function V defined
on S such that

for any z E S, z =/: 0.
Define the function I) mapping S x IRp into IR by

1 14(21) f/(z,z) V(z) + -{Iz O(z)l

Then, 1) is smooth and positive definite on a neighbourhood D of the origin in IR x
IRp Furthermore, for any (z, z) E D \ {0} such that ov (x, z) O, one has z (z)
and since (20) holds, yields

i=1 i,j=l

< 0

for any z S, z # O.
Hence, the stochastic differential system (3) satisfies a dynamic stochastic Lya-

punov condition at the origin. Note that for any z
0.

4) If the stochastic differential system (3) satisfies a dynamic stochastic Lyapunov
v (0 0) - 0 one can deduce,condition at the origin with V smooth and such that det -05-z

applying the implicit function theorem, that there exists a smooth functional defined
on a neighbourhood S of the origin in IR with values in IRp such that 4)(0) 0 and
OV
0x (z, 0(z)) 0 for any x E S.

v (x 0(x)) 0 for any z q, one canMoreover, since by assumptions one has
deduce by application of assertion 2) in Theorem 4.2 that the stochastic differential
system (3) is locally feedback stabilizable in probability by means of the control law
u defined for anyx S by u(x) oh(x).

This completes the proof of Theorem 4.2.
Remark 4.3. In assertion 2) in Theorem 4.2 one has to assume conditions on the

second derivative of the Lyapunov function V which are not needed in the determin-
istic case. The hypotheses stated in assertion 3) in Theorem 4.2 do not lead, as in

the deterministic case, to det O-z (0, 0) 0. Therefore, it seems that assertion (c) in
Theorem 3 from [28] cannot be easily generalized to stochastic differential systems.

Example 4. Let x0 be given in ]R and denote by xt IR the solution of the
stochastic differential system

f02 3 U4 U8 3 dws

Then the feedback law u defined by u(x) ((1 + v/1 4z2)/2) 1/4 which is smooth for
z # 0, z in a neighbourhood of 0, and continuous at the origin renders the stochastic
differential system (22) asymptotically stable in probability. Indeed, the equilibrium
solution of the resulting closed-loop system

3 ds + 3 dw(23) xt Xo x x
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is asymptotically stable in probability.
Furthermore, the stochastic differential system (22) can be dynamically asymp-

totically stabilized in probability. With this aim, one has to prove that the stochastic
differential system (22) satisfies a dynamic stochastic Lyapunov condition at the origin
or, equivalently, that the stochastic differential system

Xt XO --X Xs -- Z Zs X

(24) + ds + dws
zt 0 v 0

satisfies a Lyapunov condition at the origin.
Let V be the functional mapping IR2 into IR defined by

V(X,Z) { 3:20 -- (Z- (X2 -}- Z8)1/4) 4
if (z, z) =fi 0,

if (z,z)=0.

Then the function V is positive definite, smooth for any (z, z) - 0 on a neigh-
bourhood S of the origin in IR2 and continuous at 0 Moreover, for any (z, z) E S
(z z) =/= 0 such that OK

-0-z (x, z) 0 one has Z4 X2 -- Z8 and so

f(z, z)
OV 1

-Z (X, Z)-- g(x)2 (X, Z) --X
4 nt 6

which implies, according to Theorem 4.2, that the equilibrium solution (xt, zt) 0 of
the stochastic differential system (24) is asymptotically stable in probability.

Using a different stochastic Lyapunov approach from that of Theorems 3.3 and
4.2, one can prove the following result.

PROPOSITION 4.4. Assume that the stochastic differential system (3) is asymp-
totically stable in probability by means of a smooth feedback law u(z) (z) such that
(0) 0 (or equivalently that condition 4) in Theorem 4.2 is fulfilled). Denote by V a
Lyapunov function associated with the closed-loop system deduced from (3) when the
control law u is given by u(z) (z), and assume that there ezist smooth functions
hi, 1 < <_ p, mapping IR x IRp x IRp into IR such that

ovE(f(x, z) f,z(x, O(x))-x. g (x) (x))
= i,j=l

P

(R)(x), z)
i=1

for any x in a neighbourhood of the origin in IR. Then the stochastic differential sys-
tem (3) is dynamic asymptotically stable in probability by means of a smooth feedback
law.

Remark 4.5. The existence of a Lyapunov function V in the hypothesis of the
theorem is given by the converse stochastic Lyapunov theorem proved by Kushner

Proof of Proposition 4.4. Denote by V the function mapping IR x ]Rp into IR
defined by

1f/(x,z) V(x)+  llz- (x)ll
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Then is smooth and positive definite on a neighbourhood S of the origin on IR lRp.
Let r be the smooth feedback law mapping ]Rn IRp into Ip defined by

(26)

for/=l,...,p.
Denoting by the infinitesimal generator associated with the closed-loop system

deduced from (5) when the control law u is given by (26) one has

(27)

Then, denoting by the infinitesimal generator associated with the closed-loop
system deduced from (3) when the control law u is given by , one can deduce from

that

(28) (x))- IIz- (x)ll

for any (x, z) E IR x IRp.
Thus, since V is a Lyapunov function associated with the closed-loop system

deduced from (3) when the control law u is given by O, one can deduce from (28) that
for any (z, z) E IR x IRp, one has

z) < 0.

Therefore, according to Theorem 1.3, the equilibrium solution (Xt, Zt) (0, 0) of
the stochastic differential system (5) is locally asymptotically stable in probability,
which implies that the stochastic differential system (3) is dynamically asymptotically
stable in probability.

This completes’the proof of Proposition 4.4.
Remark 4.6. One has to assume that equality (25) is fulfilled in the hypotheses

of Proposition 4.4. Indeed, equality (25) cannot be obtained by easy computations,
as in its deterministic version computed in the proof of Theorem 4 in [28], since the
second term in the left-hand side of this equality does not depend on (x, z) IR x IRp
but on x e IRn only.

Example 5. Let x0 be given in IR, and denote by xt IR the solution of the
following composite stochastic differential system:

x2, - x 1,t 0 x 1,t

dt + dt + dwt(29) dxt
--Xl,t 1/2X2,t P (Xl,t, X2,t, t) X2,t
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(30) u=z i=v

where r is the functional defined on IRa by

(31) r(zl, z., z) z(azl + bz.) + z2P(z, x2, z),

/ being a smooth functional defined on IR3 and a, b real numbers such that a2 + b2 - 0.
Our aim is to prove that the composite stochastic differential system of (29) and

(30) is asymptotically stabilizable in probability (or equivalently that the stochas-
tic differential system (29) is dynamic asymptotically stabilizable in probability) by
means of a smooth feedback law.

Denote by X0, X, and Y the vector fields defined on IR by

Xo(x) Xl (X) Y(z)
-Xl x2 ax -t- bx2

and let V be the Lyapunov function defined on IR2 by

1
+

Then, denoting by L the second-order differential operator defined by

1L=Xo+ X ,
one can prove, by means of easy computations, that for any z E IR2
holds:

the following

LV(x) O, YV(x) xz(ax + bxz),

LYV(x) a(x’ x) 2bxlxz,

and LYV(x) -2b(x x) 4axx2.

Therefore, since

a -2b )det -4(a + b2) 0,
-2b -4a

one can deduce that for any x IR, x =fi O, LYV(x) and LYV(x) are not both zero.

Hence, by Proposition 3.11, the smooth feedback law z -YV(x) -axx2 -bx
renders the stochastic differential system (29) asymptotically stable in probability at
the origin. Furthermore, applying Proposition 4.4, one can prove that the stochastic
differential system (29) is dynamic asymptotically stable in probability at the origin
by means of a smooth feedback law.

Remark 4.7. The result proved in Example 5 is an extension to stochastic differ-
ential systens of a stabilization result studied by Aeyels [1] for deterministic control
systems.
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Abstract. The following question is considered for a smoothly parameterized family of control
systems: Does there exist a smooth family of transformations (feedback only, feedback plus diffeo-
morphism, or feedback plus diffeomorphism with some restrictions on the parameter dependence of
the diffeomorphism, called "matching conditions") changing the systems of the family into a single
one? Some abstract necessary and sufficient conditions are given, under which an explicit construc-
tion of the transformation is proposed. Both local and global results are obtained. No constant rank
assumption is needed for the general conditions, but they can be translated more explicitly under
such assumptions.

Key words, nonlinear systems, feedback equivalence, family of systems, nonlinear adaptive
control
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1. Introduction and problem statement. We consider a family of nonlinear
systems, indexed by a parameter vector p (pl,...,pz) E z Although 6
briefly outlines the generalization of some results to nonaffine systems, most of this
paper is devoted to systems that are affine in the control variables. The system Sp
corresponding to a given value of p is therefore described by

fo( , x) +
m

fo (P, X) + E Uk fk (P, X)
k--1

where x exists in an n-dimensional C manifold Mn, the input u (ul,... ,Un) is
in/R", and the fk’s are C vector fields C-ly depending on the parameter p.

The problem we are addressing here is finding, if possible, a family of transforma-
tions (feedback, feedback + diffeomorphism) that transforms the family of systems
(Sp) into a family of systems that are all identical.

This implies in particular that any two systems of the family are equivalent via
feedback or via feedback and diffeomorphism. This equivalence has been explored
(see [3], [1], [2], and references therein) but as an equivalence between two systems,
possibly on different manifolds, and one of the important questions is of course to find
a set of invariants for this equivalence. Looking at the problem under the point of view
of families of systems is rather new. Note that we ask the family of transformations
to depend on the parameters as smoothly as the systems themselves do.
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For the most general problem (feedback and diffeomorphism), we give some rather
abstract infinitesimal necessary and sufficient conditions. We also consider a stronger
type of equivalence, where some "matching conditions" on the diffeomorphisms are
imposed. These matching conditions come from nonlinear adaptive control and are
also related to the possibility of controlling the time-varying system that is obtained
when p is a function of time with control laws designed for p constant. It turns
out that a much more explicit characterization of this equivalence is possible since,
basically, the partial differential equations that characterize the general problem de-
generate here into algebraic linear equations. Actually two different kinds of matching
conditions are considered. One leads to a naturally integrable set of conditions and
can be thoroughly characterized in terms of some system of algebraic linear equations
having some solutions; the other involves some integrability conditions, but these
are automatically satisfied in small dimensions (at the most four controls). Finally,
pure feedback equivalence is an even more restrictive equivalence, since no diffeomor-
phism is allowed (or one independent of the parameters), and it may be completely
characterized.

The paper is organized as follows. Section 2 is devoted to some definitions, prelim-
inary results, and notation. Section 3 deals with pure feedback equivalence. Necessary
and sufficient conditions are given for both local and global equivalence. Section 4
deals with general feedback and diffeomorphism equivalence. Some abstract necessary
and sufficient conditions are given, both for local and global equivalence, and it is ex-

plained how they translate into some systems of linear partial differential equations.
Section 5 is devoted to feedback and diffeomorphism equivalence with some "matching
conditions" on the family of diffeomorphisms. After giving some abstract necessary
and sufficient conditions, both for the local and the global case, which are of the same
kind as those for the general problem, we give an explicit characterization of these, at
least for the "first type" of matching conditions considered. We find as a consequence
of the present result some known characterizations for matching conditions in the case
of linearizable systems ([4], [5]). The two different sets of matching conditions that
are considered are similar in a lot of cases; an example is given on which we have
evidence that they are not equivalent, that some integrability conditions are actually
necessary, and in which it is illustrated how constructive our method is, all the trans-
formations being explicitly written. Finally 6 presents an extension of our result to
systems that are not affine in the control, and 7 gives a brief conclusion.

2. Families of systems: Definitions and basic remarks. This section is
devoted to some notation and basic preliminary results. The main notation is summed
up in 2.7.

2.1. The product manifold /R Ms. We will relate parameterized families
of systems, or of vector fields, on M to some more ordinary systems or vector fields
on the product manifold ii x Mn.

x Mn being a product, we may define the natural projections rl and 7r2 by

(3) 71" (1), X) 1); 71"2(1) X) X.

We may also write the tangent space at any point (p, x) as a product:

(4) T(p,z) (]2 X /Zn) r,p X Tx ],Jn 1X TxJkIn,

which allows us to define the "vector" projections I1.1 and II2: for a vector field Y,

(Y)+ Y,
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(6)
(7)

(z) (;,  r, ta

We refer to rI(Y) and II2 (Y) as the p-component and z-component of Y, respectively.
o o the natural coordinate vector fields in/R and inFinally, we denote by -,..., opt

x M:

0

for any (p,x), {el,..., et} being the canonical basis of the vector space Tp/R t.
2.2. Vector fields, systems. A Coo parameterized family of vector fields is an

f that maps any (p, x) E )x Mn into a vector f(p, x) of TxMn such that f(p, x)
is a Coo function of (p, x). In particular, for any p, fp, also denoted by f(p, .), and
defined by

(9) fp(x) f(p, x),

is a Coo vector field on M. A Coo family of systems (afiine in the controls) $ with m
inputs is defined by m + 1 Co parameterized families of vector fields fo, fl,...,
and we simply write S (fo, f,..., f,). In this family, the control system that
corresponds to the value p of the parameter is described by (2).

We say that a vector field on x Mn is parameter preserving if it has a zero
p-component. We also say that a control system (Fo, F,...,F,) on /R x M is
parameter preserving if Fo, FI,. F, are parameter-preserving vector fields.

Clearly, a "Coo parameterized family of vector fields" f on A.I may be identified
with the "parameter-preserving Coo vector field" F on t x M that is defined by

F(p,x) O, f(p,x) ).

Also, for a parameter-preserving system (Fo, F,..., Fro), the submanifolds T-1 ({p})
(i.e., {p constant}) are invariant: for any p, identifying the submanifold 71--1 ({p})
with M, we obtain a control system on AI, which is exactly @ defined in (1) if the

fi’s are given by Fi(p,x) 0, fi(p,x) ). Therefore, a family of systems on AI and
a parameter-preserving system on x 5.I describe the same object.

2.3. Lie brackets. If f and f are two Coo parameterized families of vector fields,
we define their Lie bracket If, f’] to be the Coo parameterized family of vector fields
such that for any p, If, f’](p, .) is the usual Lie bracket of f(p, .) and f’(p, .):

(11) [f f’](p, x) = [f(p, .), f’(p, .)](x).

We have the following obvious relation, if F (0, f) and F’ (0, f’), where the
right-hand side is the usual Lie bracket on z x M:

(12) (0, [f, f’])= IF, F’].

2.4. Derivative with respect to the parameters. Considering a Coo parame-
terized family of vector fields f and noticing that, for a fixed x, vhen p varies, f(p, x)
remains in the same vector space TxSln, one may define the Coo parameterized families

ofof vector fields of (i 1 l) (x) being just the ith partial derivative of theOp
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map p f(p, x) from /R to TxMn. A straightforward computation provides, if f
and F are related by (10} (F (0, f)), the relation

(13) 0,p p,F
2.5. Diffeomorphisms. A C parameterized family of diffeomorphisms on

the manifold M is a C map

such that for any p, (defined by () (p, )) is a diffeomorphism of M.
A C diffeomorphism of x Mn is called parameter preserving if

(14) 1,

which just means that for any (p, x) the p-component of (p, ) is p. There is a one-
to-one correspondence between parameter-preserving diffeomorphisms on M and
parameterized families of diffeomorphisms on t x M", relating and p by

() (p, x) p, (p, x) , (x) ).

It is clear that is a C parameter-preserving diffeomorphism on M if and only
if is a C parameterized family of diffeomorphisms on Mn because is one-to-one
onto if and only if p is so for all p, and the differential of is given by

( z o )( e’(p,) o o(p,x)
We define the C parameterized family of diffeomorphisms p- by - (p, .). With this natural definition of - and defined according to (15), we have

(7) -(,x) (, ;(x) (, -(,) ).

Let f be a parameterized family of vector fields and be a parameterized family of
diffeomorphisms. For any fixed p, fp is a vector field on 5,I and p is a diffeomorphism
from Mn to in. We may therefore define the vector field transformed of fp by
p, fp whose value at x is

(s) ,, y, () (,- (,)).y(, (,))

(with the above definition of -) and whose flow at time t is

(19) t o

if t is the flow of f(p, .) at time t. We then define the parameterized family of vector
fields ,f by

(0) (,) (, .) ,, y,.
If F and f are related according to (10), i.e., F (0, f), and and are related
according to (15), we have the following obvious relation:

(1) (0, ,)=
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where , is defined by (,,F)((p,x)) ,’(p,x).F(p,x), i.e., it is the usual
transformation on vector fields induced by

Of course, all of this is also meaningful locally. If is defined only on an open
subset U of l Mn, it is a d family of diffeomorphism if and only if it is a
d map and it induces, for any p (such that p E rl(U)), a diffeomorphism from
{p} x 7r-l(p) to ({p} x r-l(p)). The corresponding (defined according to (5)) is
simply a parameter-preserving diffeomorphism from U to (U).

2.6. Modules of vector fields, distributions. Since we wish to give some
results without assuming that certain ranks are constant, we will not use distributions
but modules of vector fields. A module (over the ring of C functions) of vector fields
is a set of vector fields closed under addition and multiplication by C functions. A
module $- of vector fields on a manifold X defines a distribution 79 on X: 79 is the
subset,of TX defined as follows: for any x on X,
it is clear that for all x X, 79x is a vector subspace of TxX. If the rank of 79 is

locally constant, i.e., if the function x X dim79x G z’+ is locally constant,
then 79 determines 9r, but otherwise there are in general several distinct modules that
define the same distribution. In this sense, modules of vector fields are more precise
a tool than distributions.

Of course, one may speak of modules, over the ring of C functions of p and x, of
parameterized families of vector fields on M, and of modules, over the same ring, of
parameter-preserving vector fields on l x M. If fl,..., f are some parameterized
families of vector fields on Mn (resp., FI,..., F are some parameter-preserving vector
fields on x 2/’)’,

(22) Span{fl...fr} (resp., Span{F...Fr})

stands for the module of parameterized families of vector fields generated by f,..., ft.
(resp., the module of parameter-preserving vector fields generated by F,... ,F),
which is composed of all the linear combinationson the module of C functions of
(p, z)--of f,..., f,, (resp., F,..., F). Therefore, if f is a parameterized family of
vector fields,

(23) f Span{f,...,f,}

means that there exists some C functions al... a such that

(24) f(p,x) Z a(p’x)f(P’X);
k=l

and if F is a parameter-preserving vector field,

(25) F E Span{F,...,F.}

means that there exists some d functions a... a such that

(26) F(p,x) Z a(p’x)F(p’x)"
k=l

Of course, if f and the f’s are related to F and the F’s according to (10), then (23)
is equivalent to (25) and one may take the same coefficients a in (24) and (26) if
they hold.
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Remark 1. A parameterized family of vector fields on Mn defines, for any p, a
vector field on Mn. Therefore, a module 34 of parameterized families of vector fields
on Mr (or equivalently a module of parameter-preserving vector fields on Mn)
defines, for any p, a module 34p of vector fields on M. Then one might expect that a
parameterized family of vector fields f belongs to a module of parameterized families
of vector fields 34 if and only if, for any p, the corresponding vector field fp belongs
to the corresponding module of vector fields 34p.

This is true if 34 (or the associated module of parameter-preserving vector fields
A/I) spans a distribution of constant rank, for both of these conditions are then equiv-
alent to some vectors, being pointwise in some vector spaces. If the distribution
spanned by the module A/[ does not have constant rank, this is usually false, even if
Ad is finitely generated, as shown by the following example. Let/R and M both be

and fo be the C parameterized family of vector fields defined by

(eT) fo( , x) 0___

and let 34 be the module of parameterized families of vector fields generated by fo.
Consider the C parameterized family of vector fields f defined by

0
(28) f (p, x) P-x"
It does not belong to 34; i.e., there exists no (J function a such that f(p,x)
a(p, X)fo(p, x). However, for any p (even p 0), the vector field fp defined by fp(x)
f(p,x) belongs to the module 34p spanned by the vector field fo,p (fo,p(x) fo(p,x))
because there exists for any p a C function ap of x such that fp(X) ap(X) fO,p(X),

if #0.given by ap(X) 1 ifp 0 and ap(x) =_ - p

2.7. Notation. We use the following notation throughout this paper:
We denote parameterized families of vector fields on M by lower-case letters, and

by the corresponding upper-case letter the corresponding parameter-preserving vector
field on/R M according to (10).

The parameterized family of systems that we are studying is $ (f0, fl,..., f,);
see (1)-(2). We do not distinguish it from the corresponding parameter-preserving sys-
tem on lRtxM, and we write indifferently $ (fo, fl,..., fi) or $ (Fo, F1, Fro).

6 is the module of parameterized families of vector fields on M defined by

(29) Span{f1,..., fro},

and G is the module of parameter-preserving vector fields on t ]t.I defined by

(30) Span{ F1,..., Frn }.

Of course, the "parameterized family of distributions" associated with 6 maps (p, x)
into the vector subspace Range g(p, x) (image of the linear mapping g(p, x), spanned
by the vector f (p, x),..., fm (P, x)) of TxM. If the rank of g(p, x) is constant, Z
or z 6 is equivalent to z(p, x) Range g(p, x) for all (p, x).

If Z is a parameter-preserving vector field (resp., z is a parameterized family of
vector fields), Z G (resp., z ) means that there exists some (joc functions a a"
such that Z E..m= a F (resp., such that z E=I ak f).
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3. Pure feedback equivalence. In this section, we deal with equivalence of
the systems Sp via feedback transformations only. We establish both local and global
conditions.

As made precise by the following definitions, we say that the family of systems $
is pure feedback equivalent (FE) if a feedback transformation that depends smoothly
on the parameters transforms it into a "constant" family.

DEFINITION 3.1 (Constant). A family $ (fo, fl, f,) of systems is constant
on an open subset U of 1R x Mn if for all x, pl, and p such that (pl, x) and (p, x)
are in U, we have

(31) f(pl,x) fk(pg,x), k 0, 1,...,m.

DEFINITION 3.2 (FE). A family $ (fo, fl,..., fro) is FE (pure feedback equiv-
alent) on an open subset U of x M if there ezist two C maps a and/3

such that/3(p, x) is invertible for any (p, x) in U and tl_te fam_ily $ (fo, fl,..., f,)
defined by (with 9 (resp., [?) related to f... f, (resp., f... f,) according to (1)-(2))

(32)
(aa)

fo(P, x) fo(P, x) + 9(P, x) a(p, x),
(p, ) (p, x) ;(p, x)

is constant on U.
It is locally FE at (p, 2) if it is FE on a certain open neighborhood U of (p, 2) in
x M. It is globally FE if it is FE on ; x M.
Pure feedback equivalence may be completely characterized, as seen on the fol-

lowing theorems. A discussion and a comparison with other results is given below.
PROPOSITION 3.3. Let $ {F0, F1 F,} be a pararneterized family of systems

on M and U be an open subset of . M of the form

(34) U C x V

where V is an open subset of M and C C ltzt is a product of open intervals. Then
the following three properties are equivalent:

1. S is FE on U.
2. OnU,

(35)

3. OnU,

(36) Of , k O, 1, m,
Opi i= 1,...,l.

THEOREM 3.4. A family $ (fo, fi,...,f,) is locally FE at (,) if and
only if conditions 2 or 3 hold for a certain neighborhood U of (p, ). A family $
(fo, fl, f,) is globally FE if and only if conditions 2 or 3 hold with U x ]II.
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Theorem 3.4 is a straightforward corollary of Proposition 3.3. Proposition 3.3 is
proved further.

Note that we are able to obtain a global result, which would be false if we were
considering two a priori completely independent systems instead of a continuous faro-
ily. Actually, we give in [7] an example of two systems with the same control module
and a zero drift vector field such that no global feedback transformation can transform
one into the other.

Note also that it was proved in [11 for the case of a constant rank control dis-
tribution and in [3] for the general case that two systems (without parameters) are
locally pure feedback equivalent if and only if the module spanned by the control
vector fields is the same for the two systems and the difference between the drift
vector fields of the two systems belongs to this module. From the lemma given in the

o G } {F1 F,} condition 2 ofappendix, applied to the case X , {G1,...,
the above proposition implies existence of an rn x m invertible matrix transforming
fi(p,c),..., f,,(p,a) into f(q,z),..., frn(q,z) for any p and q, this Inatrix depending
smoothly on z, p, and q; this implies that the module of vector fields generated by the
control vector fields fl(p, .),..., )’(p, .) of the system 8.p does not depend on p and
that for two different p, the difference between the two drift vector fields f0(P, .) be-
longs to this module and hence implies the necessary and sufficient condition quoted
above for any two systems obtained for different values of the parameters to be pure
feedback equivalent. However, the converse is not true: on one hand, condition 2 is
stronger since it implies smooth dependence on the parameters of the matrix quoted
above; on the other hand, FE is stronger than any two systems in the family that are

pure feedback equivalent to one another, as seen on the following example.
Consider the family of systems in/R that depends on one parameter ( 2I

ZR) and is defined by

-t- p2
(37) fo(p,x) e- --Tz-, fi(p,x) e-

i.e., the system cp is

Note that, despite the vanishing denominators, f0 and f are CO on IR’). All these
systems are feedback equivalent to one another. The transformation that turns Sv
into $0 is u v + 1 e-p/ (i.e., a e-1/ and 3 1) if p :/= 0 and u v (i.e.,
c 0 and 1) if p 0. However, it is impossible to define c as a continuous
function of (p, z) since the one given here is the only solution at all points where z - 0
and cannot be prolonged at (0, 0). The family is therefore not FE in our sense, and
one may verify that condition (35), for example, is not met.

Proof of Proposition 3.3. Points 2 and 3 are equivalent, as an obvious consequence
of (13) and the facts delineated in (23)-(26).

Point 1 implies 3 because, on one hand, (33) may be written

(39) (p,x) EJl,k(p, 3;") j(p,), 1,... ,T/t,

j=l

where the /3J,’s are the coefficients of/3(p,x)-, and the fact that g is constant

implies that 0_&. 0, so taking the derivative of both members in (39) with respectOp
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to p gives (36) for k 1,..., m; on the other hand, (32) may be rewritten, with
an obvious function of a and the invertible/3:

(40) fo(p,x) fo(p,x) + EJ(p,x) fj(p,x),
j=l

which implies (36) for k 0 by taking the derivative of both members in (39) with
respect to p.

Let us prove that 2 implies 1 to conclude this proof. By applying the lemma given
in the appendix to the case where7) is the Gk ’s are the Fk ’s, Fis F0 X is o

Op.

and X is (p, z). We get, from (35), that there exists some C functions , such that

(41)

(42)

i=1

i=1

which means

(43)

(44)

f(P,. ,Pi ti,pi+,. ,pt, x) (p,x, ti)fj(p,x),
i--1

i=1

and the lemma given in the appendix says, in addition, that the matrix

(45) Ci(p,x, ti)

1 0 0

Clo,i(P,X,t) Cl,i(P,X, t) Crn,il (p,x,t)

c" (p,x,t) c (p,x t) (p,x,t)O,i 1,i Cm,i

is invertible for any (p, x, t) (to be precise, the lemma states that the matrix obtained
by removing the first line and first column in Ci(p,x, t) is invertible). Let us define
the invertible x matrix 3(p, x) and the/-column vector c(p, x) by

(46) (p, x) /(p, x) Bi (p, x) B2(p, x) Bz(p, x)

where

(47) B.i(pi,...,p,p+i,...,pt,x) C(pi,...,p,O,...,O,x,pi).

Using relation (43) for 1,..., 1, one gets

fo(O,...,O,x) fo(p,x) + Ei=I Jo(P,x)fj(p,x),(48)
f(0,..., 0, x) E=I k/3j(p,x)fj(p,x) k 1 ...,m,

which implies that the family $, defined by (32)-(33), is constant because f(p,x)
fk(0, x). Note that, since C is a product of intervals, this construction does define
and/3 overU=CxV.
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4. Feedback and diffeomorphism equivalence.

4.1. Definition. Feedback and diffeornorphism equivalence, for a parameterized
family of systems, means that the systems of the family are equivalent to each other
via feedback and diffeomorphism, where both the feedback transformations and the
diffeomorphisms are smooth functions of both the points and the parmneters.

DEFINITION 4.1 (FDE). A family $ (fo, f,,..., f,) is locally FDE (feedback
and diffeomorphism equivalent) at (,2) if and only if there exists a neighborhood
U of (),2) and a family of diffeomorphisms , defined on U, such that the family
$ (fo, fl,..., fi) defined, in a neighborhood of (, (p, 2)), by

(49) f v),f

is locally FE at (, p(,)).
It is globally FDE if and only if there exists a amily f diffeomorphisms 2 defined

all over x M’ such that the ,family g (fo, f,..., f) defined on IR x M" by
(49) is globally FE.

Tiffs exactly means that there exist some o, c, /3 and fo, ( (or fo,..., f,) such
that if y qo(p,x) and u a(p,x) +/3(p,x)v, (1) reads

=/(v) + O(v),.

4.2. Necessary and sufficient conditions for FDE. The two following theo-
rems give some necessary and sufficient conditions for a family of systems to be FDE,
locally or globally. Each of them give two equivalent necessary and sufficient condi-
tions, labeled 2 and 3. These conditions are given in terms of the existence of some
vector fields that satisfy some relations. Their existence is necessary, and when they
exist p may be computed explicitly from them. The difference between conditions
2 and 3 is that 3 asks for vector fields Y,..., Yt to satisfy some decoupled relations
(each Y has to satisfy a set of relations not involving any other Yj), whereas in 2 the
vector fields Z,..., Zt have to satisfy some individual relations plus commutation
relations involving all of them. Condition 3 is much more practical a tool than 2 to
check FDE. Actually the practical content of the theorems is 1 e==> 3.

These vector fields can be interpreted as elements of the "Lie Algebra" of the
infinite-dimensional "Lie group" of diffeomorphisms of M and as a submanifold
of this infinite dimensional Lie group, parameterized by p (p,,...,pz), i.e., for
instance, a curve in the case of one parameter.

THEOREM 4.2. Let $ (Fo, F, Fro) be a parameterized .family of systems.
Local FDE. The following three propositions are equivalent:

1. $ is locally FDE at (1O, 2) (resp., is globally FDE).
2. There exist some C vector fields Z,,..., Zz, defined on a certain neighbor-

hood of (, 2), such that, on their domain of definition,

(52)

(51) Zi is parameter preserving, 1,... ,1,

+

(53) + Zi, + Zj =0, i,j 1,...,1.

i=l,...,/, k=0,1,...,m,
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3. There exist some C vector fields Y1,..., Y, defined on a certain neighbor-
hood of (/, 2), such that, on their domain of definition,

(54) Yi is parameter preserving, i- 1,..., l,

(55) p-p +Y F , i= 1,...,/, k=O, 1,...,m.

Moreover, if these conditions are satisfied, an explicit expression of on a neighbor-
hood of (i,2) is

() (, x) . (-()),
where 7r2 is defined by (3) and by

(57) (tl

i being the flow of the vector field

(s)

(9)

0(, x) _= (;, x),
0 0
o- [(p’ x)] b- + ((p, x)).

Global FDE. If one adds,, in 2 and 3, the condition that the vector fields p +
and o + Y be defined all over Mn and complete, then the result holds globally;
i.e., 1 can be replaced by "$ is globally FDE" and may then be computed according
to (56) all over 11 M, choosing any in .

Proof of Theorem 4.2. We write the proof for the global result; the proof of
the local result is similar, replacing t z hi with some neighborhood of (, 2) and
omitting the parts concerned with the completeness of o + Z or being defined
everywhere.
1 2. Let be the parameter-preserving diffeomorphism on t M associated
with the family of diffeomorphisms (see (15)). We have, from (49) and (21),

(0) F ,F.

Since S is FE, we have, from Theorem 3.4,

, i=l,...,1, =0,1,...,m.

Applying (,)- to this relation between vector fields, i.e., writing its inverse image
by , one gets

(62) [( -1 0
,F 6, i=,...,.

Therefore, if we define the Zi’s by

0
--+ z (,)-(63) Op Opt’

(52) is obviously satisfied. (53) is also satisfied because

(64) + Zi, + Zj =(,)-1 Opt’ Opy
=0;
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(51) is also satisfied, i.e., the p-component of Z; defined by (63) is zero, because, from
(16),

Ox (P, X)-i-pipi (p, x)

If 7) (and therefore ) is defined all over E x M, (63) defines the Z’s all over
z x Mn, and, for any i, the vector field + Zi is complete because it is the

diffeomorphic image of the complete vector field o
Opt

2 3. The Y’s defined by Y Zi obviously work.
3 1. Without loss of generality, we suppose, in this part of the prvof, that p is

0 (replace p with p- ).
Let us define 7) by (56). This does define 7) over/R x M if the Y/’s are defined

on/R x _,I and are complete. If the Y/’s are only defined on a neighborhood of
or are not complete, this defines on a neighborhood of

We now have to prove that the family S given by (60), where is the parameter-
preserving diffeomorphism defined from 7) according to (15), is FE on Jz x M" (on a
neighborhood of (/7, ) for the local case). From Theorem 3.4, it is (locally or globally)
FE if and only if, on a neighborhood of (/3, ) or on/t 5,in, [o’@, O.F] e . or,
equivalently,

(66) [((I) -1 0
i=l,...,1, k=0,1,...,m.

Only (66) remains to be proved. Defining 7) according to (56) is equivalent to
defining by (remember that we suppose in this proof that/5- 0)

(67)

From (57), considering the fact that the p-component of -P(p,x) is 0 and defining
for any 1,..., and any t the translation =t to be the flow at time t of the

0vector field

(68) _t (p,..., pt, x) (p p + t,..., pz,

(67) may be rewritten as

(69) ,(pi,..., p, X) "F’; 0’’" 0 "Z’ 0 ’-Pl 0’’" 0 Pl (Pl PlY. X),

which implies

(70) (--l(p,X) )t 0...0 Pl 0 TFp

"’ (o, x)o...o

0’’" 0 T?pl (Pl,’’’,pl,X)

Therefore,

(7)
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which reads

(72)
((I))--1 Op

so that (66) may be rewritten as

p.+, / O \

,i+1 *’"* *’"* k=O, 1,...,m.(a) + -+

But a classical expression for the Lie bracket is

0

_
] d

_
.... i+ ,F,i+1 ,F * -.+1

t=0

and from (55) and the lemma given in the appendix,

,i+ ." .F6, k=l ,m,

O-t -P+ -P.F0 6(75) F0- ,+ ,.
-+ -’ 6-6i+1

which proves that (73), and therefore (66), is true.

4.3. How to use these necessary and sufficient conditions. Given a family
of systems defined by certain Fo, F,..., Fm, the previous theorems tell us that the
systems of the Nmily are feedback and diffeomorphism equivalent (i.e., the family is

FDE) if and only if one may find some vector fields Y,..., satisfying (54) and (55)
and give a way to build the diffeomorphisms from these vector fields. The interesting
question then is: how to determine whether these vector fields exist and how actually
to compute them. We will not give a general answer to this question but take a look
at the form of the equations for Y,..., H.

Locally, let us use a system of coordinates x, x on M (then p,...,p,
x,... ,x is a system of coordinates on x M). (54) means that the ’s have no
component on the coordinate vector fields o o so we may writeOpi

() (p,x) (,) +... + (,)Ox
We may now translate condition (55) into some equations that involve the functions

b. Suppose that 6 has constant rank m’ (m’ m), and let V,,+,...,
independent differential forms of the form

n(77) ’y(p,x) cj(p,x) dx +... + cj (p,x) dx

vanishing on so that the equation of 6 is dp dp ,+ n 0.
(55) may then be written, for each i, 1 l, and all k, 0 k m, as

dpj, + , F =0, j 1,... ,/,

j, +, =0, j=m’ + 1,...,n.
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The first part of (78) is always satisfied if Y has no p-component (see (76)), and the
second part may be rewritten as

This may be written as l(n- m’)(m + 1) equations in the b’s. The first term in
the left-hand side depends linearly on the b’s and their first partial derivatives, the
two other terms in the left-hand side depend linearly on the the b’s only, and tim

right-hand side does not depend on the b.’s at all. Therefore (79) gives, for each
i= 1,..., l, a set of (n- m’)(m + 1) linear partial differential equations in b.,..., b,
whose satisfaction is equivalent to the Y given by (76) satisfying (5). Note that if

does not have constant rank, it is usually not possible to find a finite number of
differential forms describing and, therefore, to translate (55) into a finite number
of equations in the coordinates of the vector fields Y.

The obtained set of PDEs may provide a practical way of checking whether or
not a given family is FDE, and, if a solution of these PDEs is available; building p
from this solution is an systematic process according to (,58)-(59).

We understand here the superiority of Theorem 4.2 over a theorem that would
only contain the set of conditions labeled 2. Looking for Z,..., Z meeting 2, i.e.,
(g 1), (52), and (53), would mean, if we define Zi, instead of Y, by (76), that the

b have to satisfy not only the set of linear PDEs (79), which may be decomposed
into decoupled systems each involving b, b for a different value of i, but also
the commutation relation (53), which can be translated into a set of PDEs that are
nonlinear and involve all the different b’s (actually each involves two different i’s).

In this paper, we go no further in the characterization of DE, i.e., we make no
attempt to characterize the cases where the above-described set of partial differential
equations admit some solutions. However, in the following sections, we will specialize
the notion of feedback and diffeomorphism equivalence by restricting the p-dependence
of on the parameter p. This will yield some conditions similar to those given
here but with some restrictions on the vector fields Zi or Y/, and these additional
conditions are such that the above-described set of partial differential equations is
transformed into a set of algebraic equations. This will allow us to give some more
explicit characterizations than for the present case of general FDE.

5. Feedback and diffeomorphism equivalence with matching conditions.

5.1. Definitions: FDEM1 and FDEM2. Let us define two properties that
are more restrictive than FDE. See 5.2 for comments and interpretations.

DEFINiTiON 5.1 (FDEM1). A family $ (fo, f,...,f,) is locally FDEM1
(feedback and diffeomorphism equivalent with matching conditions of the first kind) at
(,) (resp., globally FDEM1) if and only if it is locally FDE at (,) (resp., globally
FDE), and has the property that there exists a smooth map v

(p,$,x) v(,;),) e ’
defined ]br (p, [9, x) in 1R 1R M .such that (p x) E U (resp., for any (p, [9, x) in: 1,In) satisfying

(80) o (’ )(P’ x), (, , ) + (p, x) 0
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at any point where both sides arc defined.
DEFINITION 5.2 (FDEM2). A family $ (fo, fl,..., fi) is locally FDEM2

(feedback and diffeomorphism equivalent with matching conditions of the second kind)
at (, 2) (resp., globally FDEM2) if and only if it is locally FDE at (, 2) (resp., globally
FDE), and has the property that there exists a smooth ’map v2:

defined for (p,q,{9, x) in t t 1 M such that (p,x) U and (q,x) U
(resp., any (p, q, [9, x) in t t l Mn) satisfying

O O(81) Ox
(p,x)9(q,x)v2(p,q,{o,x) + -p (p,x) 0

at any point where both sides are defined.
Remark 2. We have defined five properties for a parameterized family of vector

fields: a parameterized family of systems can be constant, pure feedback equivalent
(FE), feedback and diffeomorphism equivalent (FDE), or feedback and diffeomorphism
equivalent with one of the matching conditions (FDEM1 and FDEM2), and also it can
have none of these properties (a consequence of [11] is that most of the parameterized
families of systems have none of these properties). It is rather obvious that

(82) Constant FE FDEM2 FDEM1 FDE,

and actually all these implications are strict, although we will see that for some
particular classes of systems FDEM1 and FDEM2 are equivalent.

5.2. Some interpretations of the "matching conditions" in FDEM1 and
FDEM2. Note that FE does not refer to any p, but it can also be understood as
FDE with a independent of p. FDEM1 or FDEM2 allow p-dependence of , but they
restrict it.

These "matching conditions" are generalizations of those considered in [10], [5], [4]
in the following sense: the "strict matching assumption" made in [10] is equivalent to
FE plus one of the systems in the family being feedback linearizable and the "extended
matching assumption" in [5], [4] is equivalent to FDEM1 or FDEM2 plus one of the
systems in the family being feedback linearizable (from Theorem 5.11, FDEM1 and
FDEM2 are equivalent for feedback linearizable systems). In these cases, system (50)
can be taken a linear system.

The main motivation for these "matching conditions" comes from adaptive non-
linear control, i.e., for instance, the problem of stabilizing a system $ (p constant)
without the knowledge of p, i.e., with a controller that does not depend on p. Let
us very briefly outline the use of these conditions for adaptive nonlinear control. For
some precisions, the reader is referred to [10], [5], [4] and to [8], [9], [6]. Assume that
the family ($p) is globally FDE and that a feedback law v vST(Y) is known that
globally asymptotically stabilizes the origin in (50); then, for each p, the control law
Up(X) c(p,x)+ 13(p,x)vsT((p,x)) globally asymptotically stabilizes -(p,O)in
system Sp. In addition, if U(y) is a Lyapunov function for $ ]o(Y)+{7(Y)UST(Y), then
Vp(x) U((p, x)) decreases along the solutions of Sp in closed loop with u Up(X).
This is not a solution to the problem since the control law Up(X) depends on p, but
we are in the framework of the most current available solutions for nonlinear adaptive
stabilization, if we also make the assumption that f0 and 9 depend linearly on the
parameter p.
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Under these assumptions and if not only FDE, but FE, is met, V,(x) does not
depend on p. In that case (see [10], [9], [6], [8]), one may design a controller of the
form u u(x) with/ a suitable function of x and/5 such that W V(x)+ II- pll 2
decreases in the closed-loop system (whose state is (15, x)) obtained by controlling Sp
with this controller. This dynamic controller does not depend on p and therefore
provides a solution to the problem. If FE is not met, then V,(x) does depend on p in

general and the time derivative of V(x) depends explicitly on i5, making the previous
design method inefficient. However, FDEM1, if satisfied, provides a way (see [5], [4],
[8]) of cancelling this dependence by .adding vl(,,x) to the original control; this
would mean setting u uS(x) + vl (15,/5, x) and applying the previous design method
for ; this unfortunately provides i as a function of x,/5, and vl, i.e., of x, 15, and ,
which results in general in some unavoidable singularities when trying to define ) as
a function of (/5, z). a way to counteract this fact, if FDEM2 is met, is (see [8], [9],
[6]) to use a "bigger" controller, with state (i5, 0)" u u(x) + v(, O, , x) where the

v2-term is still designed to cancel the dependence on i of the time derivative of V(x);
/ may then be defined as a function of x and i5, only, and as a function of x, 15, and
v, i.e., of x, 15, and 0 (recall that is a function of x and i5).

Let us give another interpretation of FDEM1 and FDEM2 in terms of disturbance
rejection or model natching. Suppose that FDE is satisfied and, therefore, that
certain , a, and/ are defined; see (50).

The paragraph after the definition of FDE (50) allows one to understand FDE
as the possibility to render the input-output behavior v y with y (p, x) inde-
pendent of p for any constant p by performing a suitable change of input (feedback
transformation depending on x and p)" u a(p, y) + (p, y)v. Now suppose tha p is
time varying; i.e., consider the following time-varying system with state x and output

(V e M)"

(83) { 2y=(p(t),x).=fo(p(t), x) + g(p(t), x) u,

FDEM1 is a condition on , necessary and sufficient for the possibility, for any possible
time-dependence p(t), to design a change of control

(84) ?21 (p(t), $(t), x) + a(p(t), (p(t), x) + (p(t), (p(t), x) ?2

for (83) to "match" the time-invariant model (50). In fact, this model-matching
problem also amounts to the problem of rejecting the ineasured disturbance w in

c fo(P, x) / g(p, x) u,
(s5)

where (x,p) is the state and y is the output. By "rejecting the measured disturbance
w", we mean building a control u /(x, p, w, v), nonsingular with respect to v, such
that the behavior of the output is affected by v and not by w. FDEM2 is more
restrictive" the existence of v2 can be interpreted as the possibility to reject, for any
value of q (maybe time-varying), the disturbance w in the following system with inputs
u and u:, where only the input u is allowed, as a feedback, to depend on w:

5c fo(P, x) + g(p, x) 1 + (q, X) t2,

(86)
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Finally, a simple interpretation of FDEM1 or FDEM2 is (see Proposition 6.4)
that the falnily (1) is FE if and only if the following family is FDEM1 or FDEM2:

fo(p, + x)

5.3. Necessary and sufficient conditions for FDEM1. The following the-
orem gives some necessary and sufficient conditions for a family of systems to be
FDEM1. The comments given before Theorem 4.2 hold for it as well; in particular,
the conditions labeled 3 are simpler than the conditions labeled 2 (2 3 is obvious),
and the practical content of these theorems is 1 == 3. The abstract conditions given
here are translated into more explicit ones in 5.5, and some practically tractable
conditions are given in 5.6 and 5.7.

THEOREM 5.3. Let $ (F0, F1,..., F,) be a parameterized family of systems.
Local FDEM1. The following three propositions are equivalent:

1. S is locally FDEM1 at (, 2).
2. There exist some Ca vector fields Z, Zz, defined on a certain neighbor-

hood of (p, 2), such that, on their domain of definition,

(87) ZiE, i= 1,...,/

(88) ]-Tm.+Zi, F E6, i=1,...,/, k=O, 1,...,m,

(89) + Zi, pj + Zj =0, i,j= l,...,1.

3. There exist some C vector fields Y1,..., , defined on a certain neighbor-
hood of (/5, 2), such that, on their domain of definition,

(90) Y ,
+,F 6,

i= 1,...,/,

i=l,...,l, k=0,1 ,m,

i,j=l,...,1, ig=j.

Moreover, if these conditions are satisfied, may then be computed according to (56)
on a neighborhood of (p, 2).

oGlobal FDEM1. If one adds, in 2 and 3, the condition that the vector fields + Z.i
and o + be defined all over 1R x M and complete, then the result holds globally,
i.e., 1 can be replaced by "$ is globally FDEM1" and p may then be computed according
to (56) all over 1 x M", choosing any in :t.

Proof of Theorem 5.3. 1 2. As in the proof of Theorem 4.2, we define the vector
fields Z1,..., Z according to (63). The only property to be proved is that they belong
(where they are defined) to . This is true because, from (65), (80) may be rewritten,
with i5 (15,..., ibm) and v (p, ib, x) (vl (p, i5, x),..., v (p,/5, x)) as follows:

(93)
m

x)p p, x).
i=1 k=l

2 => 3. The Y,;’s defined by Y Z,: work. (89)implies (92) because

-[ + Z.i, Zj] is in {7 from (88) because Zj is in {.
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3 =, 1. (Note that a more intuitive proof is given in Remark 3 for the case when
the rank of some distributions are constant.) As in the proof of Theorem 4.2, we
define from the Yi’s according to (56) or, equivalently, according to (67). The
only additional property to prove, compared to Theorem 4.2, is the existence of the
smooth Vl satisfying (80).

Let us define the Z’s by (63) and note that, from (65), (80) is equivalent to (93).
Let 7-/be the module defined from { by

{0 0}(94) 7-/= { +Span
Opl’ Opt

Since 7-t is obviously finitely generated and (91)-(92) imply [o@ + Y/,7-/] C 7-/, the

lemma given in the appendix implies that, for any t G and at any point where
is defined,

(95) X e 7-t0,XeT-{, i-1,...,l.

Therefore (72) and (90) imply that

-1 0
(96) (I), PTP/ E 7-/, i= 1,...,1;

or, considering (63) and (65),

(97) Z E, i= 1,...,1.

k such thatThis is equivalent to the existence of smooth functions ai

m

(98) Zi E aFk.
k=l

Note that, from (65), (80) is equivalent to (93). One Vl meeting (80) is then given by

Remark 3. In the case where the ranks of both the distribution spanned by g
and the distribution spanned by the module defined by (131) are constant, it is
possible to give a simpler proof of 3 = 1 based only on some involutive distributions
and which is independent of the proof of Theorem 4.2. If we define the module/ by

(99) ]C { X 7-l / [X, F] , k O m and [p,;,Xl 7-l, -1. .1},

7-/being defined by (94), it is not difficult to show that the following three facts are
true. First, since it may be rewritten as

(100) 1C { X 7-l / X, 7-l C 7-/and IX, Fo] E 7-{},

/C is stable under Lie bracket. Second, (90) and (91) exactly mean that o
b-77 + Y isin

/C. Third, the set of vector fields that are in/C and have a zero p-component, i.e., the
kernel of the restriction of 1-I1 to tC (see (5)-(6)), is exactly defined by (131).
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The two last facts plus the fact that we assume here that has constant rank
imply that K has constant rank (1 + Rank) and, therefore, from the first fact,
spans an integrable distribution. Now the construction of according to (56) implies
that two points on a level submanifold of might be joined by a finite concatenation
of integral curves of the vector fields + Y, which, since these vector fields are in
U and /C is integrable, implies that the level submanifolds of are included in the
integral submanifolds of K. Since the tangent space to the level submanifolds of
is spanned by the vector fields -1 o this proves that j1 o belongs to K, which

proves both (because it implies (62)) that
which is FE, and (because it implies (96) or (97)) that qa satisfies (80).

5.4. Necessary and sufficient conditions for FDEM2. Theorem 5.6 gives
necessary and sufficient conditions for a family of systems to be locally or globally
FDEM2. Unfortunately, these conditions are not as good as those given for FDE or
FDEM1 in Theorems 4.2 and 5.3; i.e., we are not able to give a set of conditions
similar to those labeled 3 in those theorems. The conditions we give are siinilar to

those labeled 2 in those theorems; i.e., they contain some commutation relations that
make them hard to check in practice. Actually, we give a counterexample showing
that a condition like these labeled 3 in Theorems 4.2 and 5.3 would not be sufficient.
This is the motivation for Theorem 5.7 which gives two different sufficient conditions
for FDEM2 that do not involve any commutation relation; these conditions are not
necessary. The conditions given in the present section are explained in 5.5, and 5.7
and 5.8 present some cases where it is possible to give a simple characterization.

The conditions we are going to state require the definition of the following sub-
module of .

DEFINITION 5.4. For U an open subset of l x Mn of the .form

(101) U C x V

where V is an open subset of M and C c is a product of intervals, we define the
submodule Gn,u of the following way: a vector field Y is in Gn,u if and only if it

is in and, for any (p,x) in U and t,...,t such that - ...
U, we have

(o) ,. ,..., t,;,)F(;,x)
k--1

where %! is the flow at time t of the vector field
functions from the part of x C x M made of triplets (t, p, x) such that p + t is in
Cto.

We will write a,go instead of’M.
Remark 4. Using parameterized families of vector fields instead of parameter-

preserving vector fields, we may equivalently say that a vector field Y is in a,u if
and only if it is in and the associated pameterized family of vector fields is such
that there exists some functions b... b" of (p, q, x) such that, for any p, q, and
x such that both (p, x) and (q, x) are in U, we have

(103) y(q, x) (p, q, x) f (p, x) + + bm (p, q, x)fm (p, x).

The functions ,..., b’ may easily be deduced from b,..., b" in (102) since q stands
for p-(tl,...,tm).
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if the module n,u is finitely generated, then a simpler characterization can be
given. This is useful to actually compute {n,u.

PROPOSITION 5.5. If the largest submodule of that is invariant by the vector

fields o o on U is finitely generated, then it is equal to 6n,uOpl Opm

If the module spans a distribution of constant rank on 1R x Mn, which we
denote by as well, and if the distribution A defined on U by

(104) A(p, x) A (q’ x)
qEV

has constant rank on U, then the distribution spanned by n,u is exactly A.
Note that the intersection in (104) makes sense since the tangent space at the

point (q,x) to l x Mn is Tq x TxMn, which may be identified to t x TxM,
so that the different (q, x) may be considered as subspaces of the same vector space
1R x TxM’.

Proof of Proposition 5.5. The first point is a straightforward consequence of the
lemma given in the appendix, with as 7?, o

g, as X, and F 0. A given by (104)
is invariant by the vector fields o o and contains any subdistribution ofOpl Oprn
invariant by these vector fields; since it has constant rank, it uniquely defines a finitely
generated module that, from the first point, is exactly n,u El

Let us now state our necessary and sufficient conditions.
THEOaEM 5.6. Let $ (Fo, F1,..., F,) be a family of systems.
Local FDEM2. The two following propositions are equivalent:

1. $ is locally FDEM2 at (, ).
2. There exist some C vector fields Z1, Z, defined on a certain neighbor-

hood U of (, 2), such that, on their domain of definition,

(105) Zi gn,u

[0 ](106) + Zi Fk e G,

(107) + Zi, pj + Zj -0,

i= 1,...,1,

i= 1,...,l, k=0,1,...,m,

i,j 1 l.

Moreover, if these conditions are satisfied, p may then be computed according to (56),
with Y,i replaced by Z, on a neighborhood of (, 2).

0Global FDEM2. If one adds, in 2, the condition that the vector fields + Z.i be

defined all over x M and complete, and replaces (105) with

(108) Z,z ’glb 1,

then the result holds globally, i.e., 1 can be replaced by "$ is globally FDEM2" and g)

may then be computed according to (56), with replaced by Zi, all over K x M,
choosing any in .

Proof of Theorem 5.6. 1 2. The only thing that is not implied by Theorem 4.2
is that the Y’s in that theorem belong to under the present assumptions. This is
true from Definition 5.4 because, from (63) and (65), we may rewrite (81) as

(109)
m

E Yi(P, x)[9 E g(q’ x)v2,t(p, 9, q, x)
i=1 k=l
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where v2(p,{9, q,x) (v2,1(p,,q,x),... ,V2,m(p,{o,q,x)), ib (/1,... ,ibz), and yi is the
parameterized family of vector fields associated with the parameter-preserving vector
field Y.

2 = 1. We can use the proof of 3 1 in Theorem 4.2, replacing Y by Z:.
Relation (107) actually simplifies this proof considerably since it implies that the
flows ]1,..., commute. Therefore (67) and (57) imply that

i.e., (I)o o (I)- is the flow at time t of 0p, and therefore

(110) 0. / 0

+Z Op,i"

(66) is then a consequence of (110) and (106). Note that when, as it is the case
here, the vector fields from which we construct commute, then defining p by (56)
(substituting Zz to Y) means taking constant along the integral submanifolds of
{o o+ Z + Z }Op

We now need to prove the existence of v satisfying (81). This is a consequence
of Z being in . From Definition 5.4 and (103), if z,z is the parameterized family of
vector fields on M associated to Z, there exists some functions b such that

m

(111) zi(p,x) E bi (P’q’x) f(q,x),
k=l

so (81) is satisfied defining v by

v2

v (p, q, [9, x)
(v(p,q,9, x),...,v(p,q,{9, z)),
i=bi(p,q,

As noticed above (see also the discussion in .5.5), these theorems are not as con-
venient as those concerning FDE and FDEM1 since they do not give a condition free
of commutation relations. The next theorem gives two different sufficient conditions
for FDEM2, involving no commutation relation. The commutation relations are ac-
tually replaced by (114) or a certain module being a Lie algebra. The theorem is only
proved in the case where ,v is finitely generated.

THEOREM 5.7. Let $ (Fo, F1, Fm) be a parameterized family of systems.
Conditions 1 and 2 below are both sufficient for S to be locally FDEM2 at (, 2) (resp.,
globally FDEM2).

1. For a certain neighborhood U of (,2), the module G,u is finitely generated
and there exist some Co vector fields Y,..., Y, defined on U, such that, on U,

(112)

(113)

(114) p + Y, C

i-- 1,...,/,

i-- 1,...,/, k=0,1,...,m,

i= 1,...,/.

(resp. the same with U ft x M plus the vector fields _5p + y o
Op

complete).
are
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(115)

2. For a certain neighborhood U of (f, 2), the module

jv { x ,c Ix, ,v] }
is finitely generated and stable under Lie bracket, and there exist some C vector
fields Y1,..., Y, defined on U, satisfying (112) and (113) on U (rasp., the same with
U lt x 2tI, plus the vector fields O---nLYIO OplO +Y are complete).
Moreover, may still then be computed according to (56).

Proof of Theorem 5.7. Condition 1 is sufficient. This is very similar to the 3 =, 1
of the proof of Theorem 5.3. Replace G with Ga,U and 7-/with

{0 0}(116) 7-/n’U Gn’U + Span
0pl

The fact that Gn,u, and therefore 7-/n’U, are finitely generated plus condition (114)
still enable one to derive (95) and therefore (96) using (72) and (112). (97) becomes
Zi E Gn,u, and v2 may therefore be constructed as in the proof of Theorem 5.6; see

(III) and (5.4).
Condition 2 is sufficient. This is also similar to the part 3 =, 1 of the proof of

Theorem 5.3. After (94), consider

(117) A/l { X e 7-/n’U IX, {n,u] e G }.
The vector fields o + Yi are in A// from (112) and (113). Since 7U is stable under

the Lie bracket, 3d is stable under the Lie bracket too (use the fact that [o@, 0n’u] C

Gn’u). From the lemma given in the appendix, and since 3/I is finitely generated
(A// u Span{Kp"" Opt }), this implies (95) and (96) with 7/ replaced with

7/’U. This implies Zi 0n’U, which allows the same construction of v2 as in the
proof of Theorem 5.6; see (111) and (5.4). S

Example. The present example in /is proves that our Theorem 5.6 concerning
FDEM2 is false in general if we remove the commutation conditions (107) and that
the sufficient conditions given in Theorem 5.7 are not necessary.

Dimension 8 is almost minimal: from Theorem 5.13, we need G to have dimension
at least 4 and G to have dimension at least 6. We do not know if it is possible to find
a counterexample where the dimension is exactly 6; in the present case it is 7, so in
order for the system to be nontrivial, the state must have dimension at least 8.

Let us consider the family of systems in /Rs (M /Rs) depending on two
parameters (! 2), with seven inputs (m 7), defined by

(118)

(119)

0 0 0
Fo-O, oF1 =0-Xbxx3 x7 +

Fa -x +F=xbx +0x O

F4 Ox---’ F5 -(Pl + xT)(P2 + x8) x +
0 0

F6 (p + xs) _z-c-_ +

0

Oxa; 0
F -(Pl -F X7) _---- - _-E--"
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The equation of (7 is dpl dpg. co 0 where co is the differential form given by

co dxl + (pl + XT)dxg + (pg. + xs)dx3 + (p + x)(p + xs)dx4 + x5dx
(120) -x (p + xv) dx7 + x5 (p + xs) dxs + x7 (p + xz) (p + Xs) dxs.

We have, for any U

(121) a,u_ ,glob ,= Span { F, 2, F3, F4 }
because the right-hand side is invariant under 0 and 0 and no linear combination

of F Fa and F7 can have both its Lie brackets with 0 and with 0 in
We are looking for

such that o + , F] . This is equivalent to

(123) w, +E,Fa -0, i-1,2, k=l,...,7.

Here, we have

(124)

and

(125)

(p, + xT)(p2 + x8) a (p. + x8)a,
(/)1 + XT)(P2 -t-" X8)a + (Pl --t- XT)a31,
-(p + x)a al,
(pg. + x8)al + a31,
(p + s) (v +) (> +),

--1 --a21

It can be seen easily that (123)-(125) has only one solution for the a{’s"
a =0, a -1,
al=-l, a 0,
aa-0, aa p.+x8,
a-p + xr, a p, + zr

yielding, from (122), a unique solution of (123)"
0 0 0

(12a) - + (p + xr) Oz ozr’
(127)

0 0 O 0 0- (v + -8) =a. + * =a-- + *=-__ + ( + *s)
OZ8U:L"4
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These are the only solutions, and their Lie bracket is not zero:

(128)

--(D1 -" XT)(P2 - Xs) -- (P2 2r" X8)
(X2

0 0
+ (Pl + XT)

OX3 69X4"
The vector fields given by (126)-(127) satisfy the conditions required for the Zi

in Theorem 5.6--those for global FDEM2 since it is easy to check that they are
complete--except the commutation relation (107). Since they are the only solutions,
there exists no other vector field satisfying both these same relations and (107). The
family therefore is not (either locally or globally) FDEM2 because the conditions given
by Theorem 5.6 are necessary. This proves that condition (107) cannot be omitted
from Theorem 5.6 (see first paragraph of 5.4).

This example also allows us to see that the sufficient conditions given in Theorem
5.7 are not necessary by considering the family depending on one parameter only
that is obtained by fixing P2 0. It is (globally) FDEM2 because Y1 given by (126)
satisfies the conditions of Theorem 5.6 (there is no longer any commutation relation
to check because there is only one Y/). However, we may check that neither condition
1 nor condition 2 of Theorem 5.7 is satisfied.

Condition 1. Y1 given by (126) is the unique vector field satisfying (112) and (113),
and it does not satisfy the additional requirement (114) in condition 1 of Theorem

o o is not in5.7 since, for example, Fa is in 6n and [b-p + Y1, Fa] -(pl + xT) b_ + b_,_o
n from (119) and (121).

Condition 2. Since there is no longer any dependence on p., n is larger than it
was in (121): it is now spanned by F1, F, F3, F4, F5- xsFT, and F6. Tile vector
fields Y given by (126) and Y given by

v F xsF + (p + x) F

are in ,7v (which does not depend on U) since they are in n and their Lie brackets
with F1, F2, F3, F4, F5- xsFT, and F are in . However, since [Y1, Y{] F,
IF6 F1]- 0 and o is not in [Y1 Y1] is not in 7U so7U is not stable underOx
the Lie bracket.

5.5. How to use the necessary and sufficient conditions. Let us outline,
as we did in 4.3 for FDE, the way to check in practice whether FDEM1 or FDEM2
is satisfied or not.

Let us first consider the case of FDEM1. Given a family of systems defined
by certain F0, F,..., F,, Theorem 5.3 tells us that the systems of the family are

FDEM1 if and only if one may find some vector fields Y,..., Y satisfying (90), (91),
and (92). If we try to go through the same process as we did in 4.3, we may of course
define the Y’s according to (76) because (90) implies (54). Since (91) is similar to

(55), it may be translated into (79) if ; has constant rank. The new feature is that
(90) implies that the terms /r/j, Y) are all identically zero, so the first term in (79)
vanishes. Since this was the only term involving the derivatives, (79) is no longer a

set of PDEs but simply a set of linear algebraic equations in tile b’s. (90) and (92)
can also be translated into linear algebraic equations in the b{’s. It is then fairly easy
to give conditions under which this system of linear equations has some solutions, at
least if its rank is constant. Theorem 5.9 in 5.6 gives this condition, using a dual
characterization of existence of solutions for a linear system.
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The case of FDEM2 is not as simple. (106) can still be translated, if both and
n have constant rank, into some linear algebraic equations in the components of
Zi, but we have to add some nonlinear, coupled differential conditions in these same
components to account for the commutation relations (107). This does not allow such
explicit conditions as in the case of FDEM1. Sections 5.8 and 5.7 review some cases
in which explicit conditions may still be given because these nonlinear conditions are
consequences of the linear ones.

5.6. An explicit characterization of local FDEM1. Here, we translate the
conditions on each Y/, which lies in G, into some conditions on its coefiScients as a
linear combination of F1,..., Fro. As noticed in 5.5, these conditions do not involve
derivatives of these coefficients.

PROPOSITION 5.8. The family $ is locally FDEM1 if and only if there exists,
around (,2), some C functions a (i 1... l, s 1...m) such that

[ 0 ] k O, l,..., m,(129) -Pi’fk ai[Sk,Fs], i-1
s=l

(130) Eai , Fs E{}
s=l

Opj T j.

It is globally FDEM1 if and only if there ezists some C functions a (i 1... l,
s 1... m) defined on x Mn, satisfying (129) and (130) on tx M, and such
that the vector fields o ,

8+ Y= ai F8 are complete.

Proof. Use Theorem 5.3, and translate (90) into the fact that Y.i may be written
as E,= aF,. (91) reads (129) and (92) reads (130). The terms that would involve
some Lie derivatives of the functions a may be dropped because they are in . [

If both the distribution spanned by the module { and the distribution spanned
by the module of parameter-preserving vector fields on/i x Mn defined by

(131)C X O/[X,F] O, k=O, 1,...,m, and -pi,X E , i= l,...,1

have constant rank, we may translate (129) and (130) into some scalar equations and
give some conditions for existence of the solutions a.

THEOaEM 5.9. Let $ (Fo, F,...,F,) be a family with and of constant
rank around (, 2). S is locally FDEM1 at (, 2) if and only if the following property
holds on a certain neighborhood of (,2). Any set of m + 1 + differential forms of
degree 1 on x k/ fro, ft,... ,ft,, [,+,... ,ft,+z that all vanish on 7-{ (i.e.,
vanish on and have no dp-component)

(132) {fk,7-{} =0, k=O,l,...,m+l,

and satisfy, for any s 1,..., m,

(133) E<a}’ [F,F]> + E am+, ,Fs 0,
k=0 j=

also satisfy, for any 1,..., l,

(134) E ak, p,F -0.
k=0
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In the case 1 (scalar parameter p), f2,+1 can a priori be chosen zero.
Remark 5. Instead of using vector fields and differential forms on

this could be formulated with families of vector fields and differential forms on M.
Suppose that the parameterized families of distribution 6 and

= f /[f,f] , =O, 1,...,m, and ,i=l,...,1

are of constant rank around (, ). is locally DEM1 at (, ) if and only if, on a
certain neighborhood of (, ), any m + 1 + parameterized families of 1-forms o,,...,, +,...,+ that all vanish on and satisfy, for s 1,..., m,

(=0 w’ [fa’ f]) + ’= w+j Opj
0

also satisfy, for 1, l, =0(, )=0.
Proof of Theorem 5.9. Necessity is obvious from Proposition 5.8. Let us prove suf-

ficiency. (135) and (136) are equivalent to the vector fields [, Fa]- a[F,
and ms=lai[,so Fs] belonging to , because these vector fields cannot have a nonzero

p-component, so they are in G if and only if they are in . o, the annihilator of
(o is the set of 1-forms that vanish on all the F’s and have no dp component) has
constant rank, say n- m for a certain integer m. Let Q,,+I,..., be locally a
basis of o. (129) and (130) are equivalent to

q m’ + 1 n,

s= i= 1,...,1,

s=0, q= +l,...,n,(136) q 0
Fs aop i, j- ,..., , j i.

Let us fix i. (135)-(136) is a linear system in a,...,a. The condition of the
’s 12) that whenevertheorem states (the Ftk are linear combinations of

a linear combination of the left-hand sides of this system is identically zero (i.e.,
independently of a, a), the same linear combination of the right-hand sides is
also zero. This is a classical characterization of the existence of solutions for linear
systems.

In the case 1, there is no equation in (136), so that, in the linear combinations,
there will be no form corresponding to this equation.

5.7. Some cases in which FDEM1 and FDEM2 are equivalent. We now
consider the two particular cases when the control distributions are known either to
be integrable or to be independent of the prameter. is still defined by (131).

THEOREM 5 l0 Suppose that the module is invariant by o o (i.e. theOp"" Op
control module does not depend on the parameter). Let 1 be defined by

(137)

FDEM1 and FDEM2 are equivalent and are both locally equivalent to

(138) -p Fo ,e + Fo, IC ], i=1,...,/.



1196 J.-B. POMET AND I. A. K. KUPKA

THEOREM 5.11. Suppose that the module is stable under the Lie bracket. Then
FDEM1 and FDEM2 are equivalent, and they are both equivalent locally to

(140) -p Fo +[Fo,], i-I,...,1.

Remark 6. This theorem gives, as a particular case, the result stated in [5], [4],
saying that, if all the systems Sp are fully feedback linearizable and the dependence
on p is linear, then a suificient condition for the linearizing coordinates to satisfy a
condition similar to the one satisfies in FDEM1 is that 6 be independent of p (this
is (139)) and that

0fo(141)
c3pi

Ofowhich is (140) (linearity in p implies that is a vector field independent of p).
Proof of Theorem 5.10 If { is invariant by o o then, from the lemmaOpl;’’’ Opt;

given in the appendix, there exists an invertible matrix/(p,x) such that g(/,x)
g(p,x)(p,x). Then FDEM1 implies FDEM2 since (80) implies (81) with

v2(p, q, x, ) 3(q, x) 3(p, X) -1 V (p, X, ).

Since FDEM2 always implies FDEM1 (see Remark 2), this proves the equivalence
between FDEM1 and FDEM2 in this case (FDEMI=FDEM2 can be seen as a conse-
quence of Theorems 5.3 and 5.6 and the fact that since G is invariant by Opl Opt;
we have { G). Let us use Theorem 5.3 to prove that they are equivalent to (138).
Clearly (90) and (91) imply that is in/E (because [p,, F] e , k 1 m) and
then imply (138) (using (91) for k 0). Conversely, the fact that 6 is invariant by
o o implies that (92) and (91) for k 0 are satisfied by any in/C (138)Opl Opt

exactly means tile existence of a Y in K: satisfying (91) for k 0.

Proof of Theorem 5.11. If G is a Lie algebra, FDEM1 implies (139)-(140) since
0 0(90), (91) and [G, ] c obviously imply (139), i.e., invariance of

and, from Theorem 5.10, FDEM1 plus invariance of imply (138), which is equivalent,
since E 6, to (140).

If G is a Lie algebra, (139)-(140) imply FDEM2 from Theorem 5.10 because
(139) means that is invariant by 0 0 and, since K: (138) is equivalentOp Opt
to (ao).

FDEM2 implies FDEM1 in general (see (82)).
5.8. An explicit characterization of local FDEM2 in some particular

cases. To simplify our discussion, we suppose here that { spans a distribution of
constant rank; {a,u does not depend on the open set U, so that we can write simply
a; and the distribution spanned by this module {}a also has constant rank.

We will not be able to give an explicit necessary and sufficient condition for
FDElVI2 in general. This paragraph only gives a characterization in the case when
the parameter is one dimensional (1 1) and in the case when either the rank of tile
distribution a or the difference between this rank and the rank of { is small.
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If is 1, Theorem 5.6 contains no commutation relation, and we may therefore
write a condition for the set of linear algebraic equations defining the coefficients of

Z1 to have a solution.
THEOREM 5.12. Let $ (Fo, F1,...,Fm) be a family of systems dependin9

on one parameter only (i.e., 1). Suppose that , c, and cC ( is defined
in (131)) span some constant rank distributions around (,2). In particular, locally,
some vector fields G,..., G span

(142) {n Span { G,..., G }.

The family $ is locally FDEM2 at (, 2) if and only if the following property holds on
a certain neighborhood of (/5, 2)" any rn + 1 l-forms on x M fro, ftl,..., f, that
vanish on 7-t (i.e., vanish on and have no alp-component) and satisfy

(143) E(ftk, [Fk,G]> 0, s 1,...,r,
k=0

also satisfy

(144) E ft, ,F =0, i=1.
k=0

Proof of Theorem 5.12. This condition is equivalent to the existence of some C
functions a such that

(145) --p, k-0, 1,...,’m

(see the proof of Theorem 5.9), which is in turn equivalent to the conditions in The-
orem 5.6, since (107) is automatically satisfied when 1.

When > 1, no such theorem holds in general, since the commutation relations
required in Theorem 5.6 cannot be removed; see counterexample (118)-(119) in 5.4.
However, in some situations, as illustrated by the following theorem, these commuta-
tion conditions may be implied by the others.

THEOREM 5.13. Let $ (Fo, FI,..., F,) be a family of systems. Suppose that, c, , and C ( is defined in (131)) span some constant rank distributions
around (, 2). Suppose also that

either n is integrable,
or RankG <_ 3,
or Rank Ranka < 1.

Then one can remove the commutation relations in Theorem 5.6. As a consequence,
in these same cases, Theorem 5.12 is valid even for > 1.

Proof. The last line is a consequence of the first part because the conditions in
Theorem 5.12 are equivalent to the condition (105)-(106) (without the commutation
relation (107)) in Theorem 5.6. Let us prove the first part of the theorem. The
conditions of Theorem 5.6 obviously remain necessary if we remove (107). It remains
to prove that they remain sufficient in the cases quoted in the theorem.

By Theorem 5.7, it is enough to prove that the module flu defined by (115) is
stable under the Lie bracket. Let us denote by flu as well the distribution spanned
by the module flu. Since (105) and (106) imply that + Z, flu and



1198 J.-B. POMET AND I. A. K. KUPKA

contains exactly all the vector fields in ff with a zero p-component, we have 5rU
(Ngn)Span{ o o+ ZI,..., opt + Z } and therefore jv does not depend on U--we
shall write simply ffuand has constant rank + Rank n n. All we have to check
is that the distribution ff is involutive. This is the case in all but one of the cases
considered in the theorem:

If n itself is involutive, then ff is equal to n.
If n has rank 1, we are in the previous case.
If n has rank 2, then the rank of ff is either 0 or 1 or 2. In the two first cases, it is

obviously involutive and in the last one, it is involutive as well since then ff n, so
that [n, n] C , which implies [n, n] C n since [n, n] is invariant under the

o so’s and 6n is the largest subdistribution of invariant by the
If Gn has rank 3, then the rank of $r is either 0 or 1 or 2 or 3. We may conclude

as above if it is 0, 1, or 3 (if it is 3, ,7 6N). It cannot be 2 because if G1, G2, Ga
are three vector fields locally spanning Gn, then A1G + A.G2 + A3G3 is in if and
only if (1, , A3) is in the kernel of a certain number of skew symmetric matrices;
the rank of the corresponding system in ,1, A, A3 cannot be 1 because the ranks of
all these matrices are even.

In the last case (Rank6- Rank6n _< 1), 7 is not involutive in general. If
Rank6- Rank 6n 0 then 6 6n so 6 is invariant under the vector fields o and
one may conclude using Theorem 5.10. If Rank G- Rankn 1, then it is possible
to find, locally, some vector fields G,..., G, such that

(146)
Span {11,... am},

n Span {11, am--l},
5r Span {11,... (r}

where r < m- 1. Consider the module

(147)

It is obvious from the definitions that 5r C :7. We distinguish two cases depending
on whether this inclusion is strict or not"

If 71 7, then :7 is involutive" for j _< r and k < r, let us prove that [Gj,
is in 57. First of all it is in g because G is in ,7 and Gk is in g (see definition
of fl). Now, [p-.’ [Gj, G]] is in G because, from Jacobi identity, [K
[aj, [p, Gk]] + [Gk, [,0 Gj]] where [-p-p’ G] and[-p, Gj] are in a (Gk and Gj are

in G which is invariant under oKp.)" On the other hand, since [Gj, G] is in , there

exist some functions t,..., such that

m

(148) [Gj, Gk] E tG,
8--1

and therefore

(149)

m o G,] } (other-This implies that the coefficient , is identically zero because [--,
wise e) and all the other terms are in . This proves that [Gj, G] . We
have now to check that [[Gj, G],] c ; let Y be in , we have (Jacobi identity)

[[Gj,G], Y] [Gj, [G,Y]] [G, [Gj,Y]],
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which is in because [Gk, Y] and [Gj, Y] are in and Gj and Gk are in 5rl ft.
If - 1 we shall use the following fact: condition 2 in Theorem 5.7 is also sufficient

for FDEM2 if we replace the module flu with 41:

(i o)

The proof is simpler than the proof of 2 in Theorem 5.7, replacing 3/l with Ad 1. Here,
Ad is finitely generated because A (R) Span{ o o+ Y1 + Yt } where theOpt
vector fields Y/ are those satisfying (105) and (106), and it is stable under the Lie
bracket because the module

is naturally stable under the Lie bracket; to conclude the proof, we establish that
.A/J1 J2. Since the inclusion ff C ff is strict, there is a nonzero vector field Yo in
,7 that is not in ,7, i.e.,

Then, let X be in //2; since it is in 7-(, it may be written

x

and we have

X, Yo #i-p.i, Yo + [Oh, Yo] (Ly ,)G
= k=l k=l

where the left-hand side is in 7-/because X is in 3//2 and Yo is in 57 C H, and the only
term in the right-hand side that is not naturally in 7-/is v.[G., Yo]; from (152), this
implies than the coefficient . is zero and, from (153), that X is in Ad. We have
proved that A/12 c A/[; A/f1 c /12 is obvious from (150) and (151). [3

5.9. Explicit calculation of the transformations on an example. Here, we
continue to work out example (118)-(119) and calculate explicitly the transformations.
As seen previously, the family of systems described in (118)-(119) is not FDEM2. It
is, however, globally FDEM1 from Theorem 5.3 because the Y/’s computed in (126)-
(127) are in n and therefore satisfy (92). Let us compute the corresponding c and. The flows (1 and 2 of vector fields o o+Y and +Y2 are

so computing p according to (56), choosing/5 0, gives

X4 -+- pv.xT, x5 Pl (Pl + xT), x6 P2(P2 + x8), x7 q- Pl x8 -+- P2).
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This transforms the family $ into $ described by

1 =P2(5 + Pl7)tl (5 -+- Pl7)tt3 + P28t4

u7 pp2u + (6 + P2s)u2 pu3,

4 ( +p), ( Vl)1,

5 it4 plt2,

6 ua P2Ul

7 t2

tl

(with c (p, x)). 8 is FE, the feedback defined by the following c and/3, turning
it into a constant family:

/ 1 0 0 0 0 0 0
0 1 0 0 0 0 0
p2 0 1 0 0 0 0
0 p 0 1 0 0 0
pl p2 0 0 1 0 0

P7 PlP2 0 p 0 1 0

\ 0 -P2s -P 0 0 0 1

(157) a(p,) O; (p,)

A simple computation allows one to compute explicitly 0---1 0-- and ---1 o andOx Opl Ox Op2
to express them as a linear combination of F1... FT, i.e., , defined by (156), that
satisfies (80) with v (p,),x) given by

-1
(p + xs)

(158) v(p,p,x)

-(Pl + XT)l
-(p2 +

hence, FDEM1 is met.

6. The case of nonane systems. The previous sections are devoted only to
systems that are affine in the control u. We now consider more general systems. Being
pure feedback equivalent (FE) or feedback and diffeomorphism equivalence (FDE) is
quite meaningful for a parameterized family of nonaffine systems. We give some
generalizations of the main results on FE and FDE.

Let us consider the family E of systems parameterized by p t where the
system corresponding to a certain value of p is 2p described by

(159) 2 f(p,x, u).

Equivalence (FDE or FE) will have exactly the same meaning as for affine systems,
except we cannot restrict the feedback transformation to be affine in the control, and
the diffeomorphism acts on the "multi-vector field f" instead of acting separately on
the vector fields f0,..., f in the affine-in-the-control case.

DEFINITION 6.1. A family E of systems is constant on an open subset U of
x M if, for all x, p, and p: such that (p, x) and (p, x) are in U and any u in
we have

(160) f(pl, x, u) f(p2, x, u).
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A family E is FE (pure feedback equivalent) on an open subset U oft Mn

if there exists a C map

such that for any (p, x) the map u /(p, x, u) is a diffeomorphism of ftm and the
family E defined by

(161) f(p, x, v) f (p, x, "y(p, x, v)

is constant on U. E is locally FE at (p, 2) if it is FE on a certain open neighborhood
U of (/5, 2) in Mn. It is globally FE if it is FE on x Mn.

A family E is locally FDE (feedback and diffeomorphism equivalent) at (, 2)
if and only if there exists a neighborhood U of (/5, 2) and a map

such that for any (p, x) the map x H (p, x, u) is a diffeomorphism from U x t to
its image and the family , defined in (U x 1R) by

(162) f ,f,

is locally FE at (/5, (f, 2)). It is globally FDE if and only if . is defined all over
1R M and the family defined on :t j/fn by (162) is globally FE.

To a given (non-necessarily-affine) parameterized family of systems E on Mn with
m controls, we may associate a parameterized family of affine systems, just adding
an integrator to each control, so that the new controls appear obviously linearly.
Precisely, to E, we associate S A(E), where the system Sp is defined by

(163) k f(p,x,z),

Equivalently, the corresponding parameter-preserving family of systems on t Mn

’ is defined by

(164)
Fo(p, X) (0, f (p, X), 0),
FI 0 0

-z’ ,F,n

We have the following obvious properties as a consequence of the fact that .A(E)
is a particular family of systems (control vector fields independent of the parameter;
see also Theorem 5.10).

PROPOSITION 6.2. The family $ A(E) (for any family E) is constant
(locally/globally) if and only if it is FE (locally/globally). The family E is constant
(locally/globally) if and only if S A(E) is constant or FE (locally/globally). The
family ,3 A(E) (for any family E) is FDEM1 (locally/globally) if and only if it is
FDEM2 (locally/globally).

It has already been noticed, in [3] for example, ttmt the classification of general
control systems is equivalent to the classification of affine-in-the-control systems with
a control distribution of constant rank. This is the same for families of systems.
More precisely, we also have the following two properties, the first of which is the
"parametric" counterpart of the remark made in [3] and the second of which relates
the property FE for a nonaffine family E to the notion of feedback equivalence with



1202 J.-B. POMET AND I. A. K. KUPKA

matching that we have developed for aNne-in-the-control systems. The (elementary)
proof of these propositions is given further.

PROPOSITION 6.3. The family E is FDE (locally/globally) if and only if the family
oc A(E) is FDE (locally/globally).

PROPOSITION 6.4. The family E is FE (locally/globally) if and only if the family
$ .4(E) is FDEM1 or FDEM2 (locally/globally).

For the sake of ease of notation, we define F such that, for any
F(p,x,u) is the parameter-preserving vector field on t Mn (as intended in 1)
defined by F(p,x, u) (0, f(p,x, u)). Since for a fixed (p,x) F(p,x, it) stays in the
same tangent space the "derivative" OF can be defined in the same way as the
derivative with respect to parameters of a parameterized family of vector fields (see

OF2.4); is, for any fixed u, a parameter-preserving vector field on t Mn.
The following two theorems give some characterizations of FE and FDE for a

family of nonaffine systems. They are easy consequences of Theorems 4.2 and 5.3 and
the above propositions. The proof of Theorem 6.6 is omitted (use Theorem 4.2 with

E (X,E= )).
TttEOrtEM 6.5. The family of systems E is locally FE at (/5,2) if the following

relation is true for any u in 1R" and for (p,x) in a neighborhood of (/5,2) Iresp., if it
is true for any u in and any (p, x) in Mn)

(165) p/,F Span
0’""0u, i=l,...,1,

where Span { o-0- o,. } denotes the module over smooth fanctions of (p, z, u) 9en-
erated by OF 0" It is globally FE if relation (165) is true everywhere and if it

0.1 cgu,m
is possible to chose the coefficients a a in the module such that the vector fields
0 0
ap + ai -077z + az are complete.

Proof of Theorem 6.5. From Proposition 6.4, all we have to prove is that the given
condition is necessary and sufficient for $ 4(E) to be locally/globally FDEM1. For
the family of systems 5’, the module is that generated by the vector fields .0 From
Theorem 5.3, a condition for $ to be FDEM1 is that there exists some functions ai
such that

[ 0 0 0 1 {0aizz(166) + +...+a0--m, Fk Span --""’Oz, Oz,,

where the Fk’s are those defined in (164). The relation for k 1,..., m are automat-
ically satisfied. The relation for k 0 is equivalent to the left-hand side having a zero

j,x-component; it is simple to prove that this is exactly equivalent to (165) (the a s
are the coefficients in the module Span{ 0o.,1,’", o,,. })" The completeness condition
for global FE is exactly that for global FDEM1 in Theorem 5.3.

THEOREM 6.6. The family of systems E is locally FDE at (/5, 2) if there exists
some parameter-preserving vector fields X X on a neighborhood of (, 2) in J x
2ll’, such that the following relation is true for any u in ’ and for (p,x) in a

neighborhood of (p, Yc):

(167) +Xi,F Span
0""’ 0u,

i=l,...,1.

It is 91oball FDE if the parameter-preservin9 vector fields X,..., X are defined all
over/R x M, (167) is tre for any in 1 and an (p, z) in x M, and it is
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possible to choose the coefficients ai,... a in the module such that the vector fields
0 c9 0
Op t- X + ai + a’( are complete.

Remarks. 1. Note that X does not depend on u: relation (167) has to be
satisfied for any u with the same X.

2. Of course, Theorem 4.2 is a consequence of Theorem 6.6 in the particular case
where the systems are affine in the control, i.e.,

f(p,x,u) fo(p,x) + Ulfl(p,x) +’" + mfm(p,x)

0F U) is F(p,x), and the fact that (167) is true for any usince in this case 85- (P, x,
implies it is true separately for all the Fk’s, which are independent of u. Therefore
(55) is satisfied. The completeness conditions do not involve the o parts of the
vector fields because it is always possible to choose the coefficients linear in z in the
affine case (see the lemma given in the appendix).

Proof of Proposition 6.4. If E is (locally/globally) FE and is the corresponding
family of feedback transformations, let us define by

(p, Z) (p, x, z) x ")/-l (p, x, z)

where y-1 means inverting /with respect to z only:

(169) --l(p, X, ")/(p, 2g, Z) (p, X, "--l(p,x,z) Z.

The family of diffeomorphisms transforms the family of systems $, described by
(163), into

(170) { f(P’’3’(oc’{))’
( ;C, ")/--l(p, x, z)), which is FE (locally/globally) from Theorem 3.4 since by
assumption f(p,C,.,/(p,,)) does not depend on p, and the module { is spanned by
o o because the matrix of the -zTJ-(p,x z)’s is invertible (for z 3,-l(p x,z)Ozj Oz Ozk

is a diffeomorphism). In addition, satisfies the additional property (80) required for
FDEM1, simply taking

Vl (p, x, z, ]}) /(p X,Z) C-1op
where/3(p,x z) is the inverse of the matrix whose kth colmnn is -1 (p,x z)

Conversely, if $ is (locally/globally) FDEM1, let be a family of diffeomorphisms,
transforming $ into the FE family $. Since the affine-in-the-control family $ is FE,
we have, from Theorem 3.4 and (164),

(171) 9, Span
Ozi Oz,

k l, m

which implies that the x component of does not depend on z. In addition, satisfies
the property (80), which implies

(172)
Ozk

E Span
6Zl OZm

k 1, m,
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i.e., that the x component of 99 does not depend on p either. Altogether, we have

q(p, X) (p, x, z) 1 (x), 2(P, x, z) ).

Actually, we may suppose that 1 (x) x:

(174) (, x, z) (x, :(, x, z)

because transforming it by the diffeomorphism (x, z) -+ (qol (x), z), independent of p,
does not change the fact that is FE. Let us then define - by "y(p, x, v) (p, x, v),
where o means inverting 9. with respect to v (or z) only. The family of feedback
transfbrmations -y transforms the system a that is constant because $ A(a) and
$ is FE. [3

Proof of Proposition 6.3. If E is (locally/globally) FDE, let b be the corresponding
family of diffeomorphisms transforming E into an FE family and -y be the family of
feedback transformations transforming this FE family into a constant family. Let us
define qo by

(v, x) (v, , z) ((v, *), -* ((, x), z) ),
where -y- means inverting with respect to z for any (p, x). This does transform $
into a family that is FE (if ({, () (p, x, z), does not depend on p, as a function
of p, {, .(, and is spanned by _rio o ).

OZl

Conversely, if $ is (locally/globally) DE and is the corresponding family of
feedback transformations, let us define 7 and 2 as the x and z components of .
Since the affine-in-the-control family E is FE, we have, from Theorem 3.4 and (164),

(176) . E Span
Oz 69Zm

k 1, m,

which implies that g)l does not depend on z"

(177) (p, x) (p, x, z) (1 (v, x), :(p, x, z) ).

It is clear that being a diffeomorphism implies that x -+ , (p, x) is a diffeomor-
phism for any p and z -+ 2(P, x, z) is a diffeomorphism for any (p, x). Let us define

and y by

This transforms E into a family E that is constant because
which is FE, and whose "2" part is therefore independent of p.

7. Conclusion. We have given some general conditions for the systems of a

smoothly parameterized family to be equivalent via state feedback and diffeomorphism
transformations, and the interest of the method used here is that it is constructive:
under these conditions, we actually compute the transformations.

Among others, the interest of the problem considered here is to allow, if it can be
solved, to control the systems of the family "in the same way": since all the systems
are equivalent to a single one, it is possible to design a controller for this system and
bring it back to the original systems of the family through the transformations.
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The case where it is possible to choose a family of diffeomorphisms meeting some
so-called "matching assumptions" has been studied in details. As mentioned above,
the motivation for this study comes from adaptive nonlinear control where these
conditions play an important role; they are a generalization of those introduced in the
case of feedback linearizable systems; see [5], [4]. It turns out that our conditions are
more explicit for feedback and diffeomorphism satisfying these matching conditions.
The geometric conditions given in [5], [4] are a particular case of these.

Of course, feedback and diffeomorphism equivalence plays a very important role
of its own in control theory. The point of view of parameterized families is rather
unusual, and it facilitates the rather natural derivation of some global results. This
has been developed in [7].

Appendix: A technical lemma. LEMMA. Let 7) be a finitely generated module
of C vector fields on a manifold .h/" and X and F be two C vector fields on
Let G1,..., G8 be any system of generators of T:

(179) Span {G1,...,

Also let Cx "J x U --, N" be any partial flow of X, i.e., a C mapping Cx, J an open
interval of containing O, and U an open subset of N’, such that (we will often write

Ctx (z) instead of Cx (t, z))"

4)x(O,z) z for all x E U,
Ox =Xox onJxU.
ot

Let 7Pv be the module of vector fields on U generated by the restrictions to U of the
vector fields belonging to D. Let Xu and Fv be the restrictions of X and F to U.
If we have

IXU,TpU]cTpU,
IXU FU 7)v,

then there exist C functions c, 1 <_ k <_ s, 1 <_ j <_ s, defined on the open .subset
(.9 [-Jtea ({t} x q(U)) of 1R x A/’, such that, for any (t, X) in (9,

(181)
@(,Gk(X)-c(x,t)Fj(X,) k= l,...,s,

i=1

,F () F() + 4(, t)a (:).
i=1

Moreover, the s x s matrix

(182) [4(,t)]l<_k<_s,l<_j<_s

is invertible for any (X, t) in (9.

Note that the converse of this lemma is obvious ((181) implies (180)) and that it

is known (180) implies that for any t qS),F and the :,Gk’s are in :D. The precision
here is the continuous dependence of the coefficients on t and also the fact that the
matrix [(X, t)] remains invertible.
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Proof. (180) implies that there exists some (J functions b., 1 _< j _< s, 0 _< k <_ s,
defined on U, such that

IX =

where G} stands for the restriction of Gj to U. Denote by Ft and Gk,t, 1 <_ k <_ s,
the vector fields O,F and O,F respectively, defined on the open subset O(t, U) of
Af. The mappings (t,x) -, Ft(X) and (t,x) - Gk,t(X) are C from (.9 to TAr, and by
the definition of the Lie bracket,

(184) OFt OG,t ,[XU G].Ot *[xU’ FU]; Ot

Hence, from (183), Ft and the Gk,t’s satisfy the linear differential system

(185)

and the initial condition F0 F, G,0 Gk. The system (185) has a unique solution
satisfying these initial conditions. Hence, to find parameterized vector fields Ft and
Gk,t, all we have to do is find a solution of (185) satisfying the initial conditions. To do
this, let us look for a solution of the form Ft F + E=I c,tGi, G,t -is_l ck.tGi,
where the c. are C functions defined on (9 to be computed such that

{ 1, xEU ifi=k, l<_k<_s,(186) c;(O,x)= O, xEU ifiTk ork-O

and c, C((t, U)) is the function x (t, U)- c(t,x). This "ansatz" satisfies
the initial conditions and satisfies (185) if

satisfy the linear differential system(187) will be satisfied if the functions Cj

(188)

with initial conditions (186), where
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This. linear system has a unique solution, defined for any t, and the matrix in the
right-hand side of (188), i.e. the matrix [c(x,t)]l<_k<_8,1<_j<_s, is always invertible.
We have constructed the functions satisfying the required conditions. [5
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NECESSARY CONDITIONS FOR BILEVEL DYNAMIC
OPTIMIZATION PROBLEMS*
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Abstract. In this paper we study the bilevel dynamic optimization problem, which is a hierarchy
of two optimization problems where the constraint region of the upper-level problem is determined
implicitly,by the solution to the lower-level problem and where the upper-level decision variable is a
vector while the lower-level decision variable is an admissible control function. To obtain optimality
conditions, we reformulate the bilevel dynamic optimization problem as a single-level optimal control
problem that involves the value function of the lower-level problem. A sensitivity analysis of the
lower-level problem with respect to the perturbation in the upper-level decision variable is given,
and the first-order necessary optimality conditions are derived by using nonsmooth analysis.

Key words, necessary conditions, bilevel dynamic optimization problems, sensitivity analysis,
nonsmooth analysis, value function
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1. Introduction. Let us consider a two-level hierarchical system where the higher
level (hereafter the "leader") and the lower level (hereafter the "follower") must find
vectors z E Z and control functions u(.), respectively, to minimize their individual
objective functions Jl(z, u) and J2(z, u). The leader is assumed first to select his
decision vector z E Z and the follower next to select his decision control function
u(.) /, where Z is a nonempty subset of Rn and 5/is the set of admissible controls.
Under these assumptions on the order of play, the game will proceed as follows. Given
any decision vector z Z chosen by the leader, the follower will select his decision
control function Uz(.) bl (depending on the decision vector z chosen by the leader)
to minimize his objective J2(z, uz). Assume that the game is cooperative, i.e., if the
follower’s problem has severM optimal controls for a given parameter z, then the fol-
lower allows the leader to choose which of them is actually used. Thus the leader
chooses his optimal decision vector z Z to minimize the leader’s objective J1 (z, uz).
In other words, given any decision vector z E Z chosen by the leader, the follower
faces the ordinary (single-level) optimal control problem involving a parameter z:

P(z) min J(z, ) a(t,z(t),z,(t))dt + (z(t)),

s.t. it(t) cp(t, x(t), z, u(t)) a.e.,

x(to) xo, x(tl) C1,

u(t) V(t) a.e.,

while the leader faces the bilevel dynamic optimization problem:

minJi(z, Uz) F(t, xz(t),Z, Uz(t))dt + f(x(tl))

over z e Z and all optimal pairs (Xz, Uz) of P2(z).

Received by the editors May 28, 1993; accepted for publication (in revised form) February 8,
1994. This research was supported by Natural Sciences and Engineering Research Council of Canada
grant WFA 0123160.

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia,
Canada V8W 3P4 (janeye(C)sol. uvic. ca).
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The bilevel dynamic optimization problmn has many applications in economics
and management science. For instance, the leader may be the government that sets
up the taxation policy z and the follower may be a company that seeks the optimal
policy ’Uz(t) in reaction to the government’s taxation policy.

The bilevel static problem where both leader’s and follower’s decisions are vec-
tors instead of control functions was first introduced by von Stackelberg [10] for an
economic model. The bilevel dynamic problem where both leader’s and follower’s de-
cisions are control functions was first considered by Chen and Cruz in [2]. The bilevel
dynamic optimization problem studied in this paper is a special case of the bilevel
dynamic problem as in Zhang [13]. Several names for bilevel (static or dynamic)
optimization problems have been used in the literature, such as Stackelberg game,
principal-agent problem, bilevel programming problem, and two-level hierarchical op-
timization problem. Most of the bilevel (static or dynamic) problems are attacked by
reducing the lower-level problem through first-order necessary conditions (cf. Bard
and Falk [1] and Zhang [13], [14] for the bilevel static problem and Zhang [13] for the
bilevel dynamic problem). The reduction is equivalent if and only if the lower-level
problem satisfies certain convexity assumptions since in this case the first-order nec-
essary condition is also sufficient. Apart from the strong convexity assumption, the
resulting optimality conditions of the above approach involve second-order (general-
ized in nonsmooth case [13]) derivatives and a larger system since the reduced problem
minimizes over the set of original decision variables as well as the set of multipliers of
the lower-level problem.

The purpose of this paper is to provide first-order necessary conditions for problem
P1 under very general assumptions (in particular, without convexity assumptions on
the lower-level problem).

Define the value function of the lower-level optimal control problem as an extended-
valued function V" Z -- R defined by

fttd G(t,z(t),z,u(t))dt + g(z(tl)) ic(t) ck(t,z(t),z,u(t)) a.e.

V(z) "-inf .u(t) E U(t) a.e.

z(to) xo, x(t) c
where R RU {-oc} t2 { +oc} is the extended real line and inf 0 +oc by convention.
Our approach is to reformulate P1 as in the following single-level optimal control
problem"

P min Jl z, u) F(t,z(t),z(t), u(t))dt + f(z(tl)),

tto1

s.t. ic(t) 4(t, z(t), z(t), u(t)
(t) =0,

z(to) o, (t) c,
(t) u(t) .e.,

G(t,x(t),z(t),u(t))dt + g(x(t)) <_ V(z(t)).

The above problem is obviously equivalent to the original bilevel dynamic optimization
problem P and is a standard optimal control problem except that the endpoint
constraints involve the value function V of the lower-level optimal control problem.
In general V is not an explicit function of the problem data and is nonsmooth even
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in the case where all problem data are smooth functions. Recent developments in
nonsmooth analysis allow us to study the generalized derivatives of the value function
V and relate them to the multiplier sets for the lower-level optimal control problem,
hence deriving a necessary condition for optimality. This approach was first used
by Ye and Zhu [12] to derive first-order necessary conditions for the static bilevel
optimization problem. The following basic assumptions are in force throughout this

Z C n and C1 are closed.
V(t) [t0,tl] -+ ’ is a nonempty compact-valued set-valued map. The
graph of U(t) (i.e., the set {(s,r):s E [to,t],r U(s)}), denoted by GrU, is
xB measurable, where xB denotes the a-algebra of subsets of [to, t] x .m

generated by product sets M x N where M is a Lebesgue measurable subset
of [to, t] and N is a Borel subset of ’m.

(A3) There exists an integrable function k defined on [t0,t] such that for each
(t, u) GrU, the functions (t,.,., u), F(t,.,., u), G(t,.,., u) are locally Lip-
schitz of rank k(t). For each (x,z) d x ’, the functions (.,x,z,.)
[t0,tl] x "-+ IRd, F(.,x,z,.): [t0,t] x -+ /, G(.,x,z,.): [t0,t] x
/R --+ are x B measurable.

(A4) The functions f, g:lRd are locally Lipschitz continuous.
(A5) For any z Z, P2(z) has an admissible pair (whose definition is given below).

A control function is a (Lebesgue) measurable selection u(.) for U(.), that is, a measur-
able function satisfying u(t) U(t) a.e. t E [to, t]. An arc is an absolutely continuous
function. An admissible pair for P2(z) is a pair of functions (x(.), u(.)) on [to, t] of
which u(.) is a control function and x(.) [t0,t] -+ d is an arc that satisfies the
differential equation 2(t) (t, x(t), z, u(t)) a.e., together with the initial condition
x(to) xo and the endpoint constraint x(tl) C1. The first and the second corn-
ponents of an admissible pair are called an admissible trajectory and an admissible
control, respectively. A solution to problem P(z) is an admissible pair that minimizes
the value of the cost functional J(z, u) over all admissible pairs. An admissible strat-
egy for P includes a vector z Z and an optimal control Uz for P(z). The strategy
(z, Uz) is optimal for the bilevel dynamic optimization problem P if (z, Uz) minimizes
the value of the cost functional J (z, Uz) among all admissible strategies for P.

A plan of the paper is as follows. In 2, we give background material on nonsmooth
analysis that will be referred to in the following sections. In 3, we study generalized
differentiability of the value function V(z). The necessary condition for optimality
is given in 4. In 5, we consider an extension to the bilevel dynamic optimization
problem defined in 1 to allow opportunity costs; a fishery regulation problem is used
to demonstrate applications of the necessary condition for optimality derived.

paper:
(AI)
(A2)

2. Nonsmooth analysis background. In this section we shall give a concise
review of the material on nonsmooth analysis that will be required.

Let C be a nonempty closed set in . A vector n is a proximal normal
to C at point 2 C if for t > 0 sufficiently small, the unique point of C nearest to
2 + t (in the Euclidean norm) is 2. It is a limiting proximal normal if there exist
points x C,x -+ 2, and proximal normals to C at x, such that --+ . Let
the limiting proximal normal cone to C at 2 be the set

c/2) {’ is a limiting proximal normal to C at 2}
and the Clarke normal cone to C at 2 to be the set

Nc() clcoc().
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Now consider a lower semicontinuous function n )i U {+oc} and a point
E n where is finite. A vector E is called a prvximal subgradient of 4)(’) at
provided that there exist M > 0, 5 > 0 such that

( ’- S.) _< (") ,() + MII" 11, ’ +,
where (a, b) denotes the inner product of vectors a and b. The set of all proximal
subgradients of 4(.) at 2 is denoted 0(2). The limiting subgradient of 0 at 2, is the
set

(2,)" {lim O’OGOr(Xt) xl-+2’dp(xtc)--4)(c)}t-oo

The singular limiting subgradient of 0 at 2, is the set

/)oo(2,):=(1im tk’k0.(x),xk2,,0(x)0(2),t 0}.
The limiting subgradient is a smaller object than the Clarke generalized gradi-

ent. In fact, if is Lipschitz continuous near x, we have O(x) coc5(x), where
0(p and coA denote the Clarke generalized gradient of 0 and the convex hull of the
set A, respectively. For the definition and the precise relation between the limiting
subgradient and the Clarke generalized gradient, the reader is referred to Clarke [5]
and Rockafellar [9].

The following proposition summarizes the prerequisites regarding limiting sub-
gradients and limiting proximal normal cones.

PROPOSITION 2.1. (a) If C is a nonempty closed convex set, the limiting proximal
normal cone to C coincides with the normal cone in the sense of convex analysis, i.e.,
one has ( 2c(2) if and only if

(,x-2) <_O VzC.

(b) The function O(’) is Lipschitz near z .if and only if cSqS(z) {0}.
(c) /f c(x) 0, then

()(x) () w 0.

(d) (Clarke [5, Prop. 1.5]) Let c and’ /R ---+ EU{+oo} be lower semicontinuous

functions finite at x, with c(x) (-c(x)) {0}. Then we have

( + )(x) C () +
(e) Let c(x) be the indicator function of the set C. Then

c(x) bc(x) Ô c(x).

^(f) Let S1 and S be closed subets of " and let 2. S S.
(-Ns, ()) {0}, then we have

-s,s (’) c -s, () +s().
(g) (chain rule) Let (x):= f(F(x)) where F: n ._ j is Lipschitz on some

neighbourhood of , while f lR 1R U {+oo} is lower semicontinuous with F(.:) in

domf := {y: f(y) /oo}. Then if
0 d c0((F)(2) V nonzero vectors

we have

c(2,) C U{o6((F)(2) ( e
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3. Differentiability of the value function. To discuss generalized differen-
tiability of the value function V(z), we will refer to the following assumptions:

(16) For some a > 0,/ >_ 0, the function ((t, ., z, u), G(t, .,z, u)) satisfies the
following growth condition: for all z E Z, (t, u) E GrU, one has

I((t,x,z,),(t,x,z,))l <_ lxl + .
(A6) The functions 4) and G are continuously differentiable in x and z and lower

semicontinuous in u. There exists an integrable function k(t) such that

I1 + IVxl + lal + Ival _< (t).

(A7) For any (t,x,z) [to, tl] x d x /in, the set

{((t,x,z,),a(t,,z,)) e u(t)}

is convex.
(A7)’ For any (t,x, z) [to, tl] x d x n, the set

{((t, x, z, ), a(t, x, z, ) + ) e u(t), >_ 0}

is convex.
The Hamiltonian for P2(z) is the function defined by

H(t,x,z,p;) up{p.. (t,x,z,) a(t,x,z,) e U(t)}.

An index A multiplier corresponding to an admissible trajectory x for P.(z) is an arc
(p., q) such that

(-l(t),-O(t), ic(t)) e O(x,z,p2)H.(t, x(t), z, p(t); ,) a.e.

-p2(tl) /9(X(tl)) + cl (x(t)),
q(tl) =0.

The collection of all such arcs is the set MX(x), the index A multiplier set correspond-
ing to x. Let Y be the set of all optimal trajectories x to problem Pe(z). Let

Ma(Y) U Mx(x)"
xEY

For any index A multiplier (P2, q) e MX(x), we define Q(p, q) -q(to). The nota-
tion QMX(x) designates the set of all possible values of -q(to) obtained in this way,
and Q(MX(Y)) denotes UxeyQ(MX(x)). The following result relates the differential
properities of V to he arcs q in the nmltiplier sets introduced above.

THEOaEM 3.1. In addition to assumptions (A1)-(A5), suppose either (A6)-(A7)
or (16)’-(17)’ hold. If QM(Y) {0}, then V is Lipschitz continuous near z and
one has

9V(z) c QM(Y).

Theorem 3.1 under assumptions (A6)-(A7) can be obtained by reducing the orig-
inal optimal control problem to an differential inclusion problem and applying the
sensitivity result in Clarke and Loewen [6, Thm. 3.3]. Before proving Theorem 3.1
under assumptions (A1)-(A5) and (A6)’-(17)’, we first give the following result.
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LEMMA 3.2. Let ai be a sequence converging to a, and let (xi, ui) be an admissible
pair for P2(a). Then there exists a subsequence of {xi} converging uniformly to an
arc x and a control u with (x, u) being an admissible pair for P2(a) such that

J2(x, it) < lira inf J2(xi, ui).

The proof can be reduced to an application of [4, Thm. 3.1.7] by studying the
differential inclusion

((t), )(t), (t)) e r(t, x(t), (t), (t))

where y E ff and the convex multifunction F is defined via

The essential fact in the reduction is Filippov’s lemma: (x, y, a) satisfies the above
differential inclusion iff there is a control u for x such that (x, u) is an admissible pair
for P(c) and y satisfies

G(t, , , ) _< ,) _< (t)+ .
We now turn to the proof of the theoren. By (A5), P.(z) has an admissible pair.

So V(z) is finite. Ie follows from Lemma 3.2 that V is lower-semicontinuous.
Step 1. Let a Z be a point near z. Let E OV(c), and let (z, u) be a solution

of P2 (a) that exists by virtue of Lemma 3.2. Then by definition for some M > 0 and
for all c’ near a we have

v(’)- (, ’} + MI’-l _> v()- (, )

a(t, x(t), c, u(t))dt + g(z(t)) ((.,

Let (x’, u’) be an admissible pair for P.2(c’). Then

’ (t) )dt <, ’> 1’G(t,z’(t),a’, + g(Z(tl)) -t-

>_ a(t, (t), , (t))dt + (Z(tl)) (.,

Hence (x, a, u) is a solution of the following optimal control problem:

min G(t,z’(t),a’(t),u’(t))dt + g(x’(tl)) {{, a’(t0)},

.t. ’(t) (t, ’(t), ’(t), ’(t)) ..,
’(t) =o,

’(to)- o, x’(t) C,
u’(t) U(t) a.e.

In the proof of Theorem 5.2.1 of Clarke [4], if we replace the the Clarke generalized
gradient 5) by the limiting subgradient c5 in the transversality conditions, the argument
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goes through without modification (cf. Clarke [5]). It follows that there exist a scalar
h >_ 0 and arcs P2, q such that

(3) a.e.,

where c) denotes the Clarke generalized gradient, [[. I1 denotes the supremum norm,
and - denotes the transpose.

By Clarke [4, Thm. 2.8.2], since and G are continuously differentiable in (x, z),
C)(x,,p2)H2(t,x,c,p2; ,k) is the convex hull of all points of the form

[Vx(t, x, , )-p,.-aVxC(t, x, , ), vO(t, , ,)-p,.-avc(t, , , ), (t, , , )],

where u in U(t) is any point at which the maximum defining H(t,x,c,p;h) is
achieved. Hence (1), (2), and (3)imply that

(-l.(t), -4(t), ic(t)) e O(x,,p.)H2(t, x(t), c, p2(t); A) a.eo

Step 2. For any E V(z), by definition, lim.i_, i where .i OV(c,z),
ci ---, z, and V(ci) ---, V(z). By Step 1, for each i, there exists an arc (P,q.i), a
scalar hi, and an arc xi that solves P.(ci) such that

Since M(Y) {0}, we must indeed have hi 1 for sufficiently large and Ip(0)l
bounded (cf., Clarke and Loewen [6, p. 253]). Passing to a uniformly convergent
subsequence of {(p, qi,zi)} by Lemma 3.2 and Clarke [4, Thm. 3.1.7] leads to an

optimal trajectory x for P,.(z) and an arc (p, q) such that

That is, (p2, q) e QMI(Y).
Similarly to Ye [ii], one can show bV(z) c QM(Y) using results from Step 2.

The Lipschitz continuity of V near z then follows by virtue of assumption M(Y)
{0} and (b) of Proposition 2.1. The proof of Theorem 3.1 is now complete.
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4. Necessary conditions for optimality. Define the pseudo-Hamiltonian for
problem (P1) as

H (t, x, z,; , ) p. (t, ’, z, ) a(t, , z, ) (t, , z, ),

for t E [t0,tl], x Pl E Kid,zEZ, A,r.
TttEOREM 4.1. Assume assumptions (A1)-(A4) hold. Let (z, u(t)) be an optimal

strategy of the bilevel dynamic optimization problem P1 and x(t) the corresponding
trajectory. Assume that the value function for the lower-level problem V is locally
Lipschitz continuous. Then there exist A >_ O, r > 0 and arcs pl,’q such that:

(5)

()
(7)
(S)

-( (t), g(t)) e O(,z)H (t, z(t), , p (t), (t); , ) a..,

max Hi (t, x(t), z, Pl (t), u; A, r) Hi (t, x(t), z, Pl (t), u(t); A, r)
,,u(t)

(to) O,

-pl(tl) e A6f(x(tl)) + r6g(x(tl)) + cl (z(tl)),
(t) e OV(z),
I1 I1 + I111 + + > o.

The following result, which is a limiting subgradient version of Corollary 1 of
Theorem 2.4.7 in Clarke [4], will be useful in proving Theorem 4.1. We should prove
it by using a chain rule.

LEMMA 4.2. Let C {x (x) _< 0}, where ’ ---, is Lipschitz continuous

on some neighborhood of 2 C. Suppose that 0

_
p(2) Then

(9) ()
r>O

Pro@ If 2 is in the interior of C, then c(2) {0) and the above relation is
trivially satisfied. Suppose 2 is in the boundary of C. By virtue of (a), (c), and (e)
of Proposition 2.1, 0 c(2) implies

0 cSr(g’) Y nonzero scalars r E + o5_ ((2)) z_ ((2)).

Since c(2)

_
((2)). by the chain rule ((g) of Proposition 2.1) we have

(10) 6qc(g’) C U{6(r!h)(2) r e 5e_ ((2))},

which is the relation (9) thanks to Proposition 2.1(e). U
The proof of the following result is straightforward.
LEMMA 4.3. Let F(z,y,z)" a x/R" x N’ U {+oc} be a lower semicon-

tinuous function and (, f, 2) domF, Suppose F(z, , z) F1 (z) + F(y) + Fa(z).
Then

F(, ,) c oF(.) oF() c0Fa(e).

Proof of Theorem 4.1. We pose the optimal control problem P1 equivalently as
the problem

P1 min F(t,z(t),z(t),u(t))dt + I(x(t))
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s.t. 2(t) (t, x(t), z(t), u(t)) a.e.,

$(t) C(t,x(t),z(t),u(t)) a.e.,

(t) =0,

u(t) E U(t) a.e.,

(,,)(to) {o} {o} ,
(x,,z)(t) e s := {(x,, z): (x) + V(z) < o, c}.

The problem above is exactly in the form described in 5.2.1 of Clarke [4].
pseudo-Hamiltonian is the function

The

H(t, x, y, z, Pl, P2, r, u, ) pl. (t, x, z, u) + p2G(t, x, z, u) AF(t, x, z, u),

for t [to, tl],x, pl d,y, p2,?,A ,z Z. Applying Theorem 5.2.1 of Clarke [4]
with the generalized gradient replaced by tim limiting subgradient in the transversality
conditions leads to the existence of a scalar >_ 0 and an arc (Pl, p2, r]) such that

(11) -(161 (t), 2(t),/(t)) O(x,y,z)H(t, x(t), y(t), z(t), pl (t), p2(t), r](t), u(t), A)
max H(t, x(t), y(t), z(t), p (t), p2(t), r(t), u, A)
uu(t)

(12) H(t,x(t),y(t),z(t),p(t),p2(t),(t),u(t),A) a.e.,

(13) (pl (to), p2(to), r(to)) ]{xo} {o} (x(to), y(to), z(to)),
(14) -(p(tl),p2(t),(tl)) e A](x(tl),y(t),z(tl)) + s(x(tl),y(t),z(t)),
() I1!1 + IIll + Ii11 + > o,
where ](x, y, z) f (x).

Let/’(x, y, z) g(x) + y- V(z). Then by Lemma 4.3, one has

(6) (x,.,z) (x) {} (-V(z)).
Therefore 0 oh/(x, y, z).

Let $1 {(x,y,z)’g(x)+y-V(z) <_ 0} andS2"= C1 /R. ByLemma
4.2 and inclusion (16), one has

s (x, , z) c U a(x, , z)
r>0

c U [() {) (-V)(z)].
r)0

Since s.(x,y,z) q2c (x) + (y) + q2(z), by Lemma 4.3 and (e) of Proposition
2.1 one has

(x, , z) c (x) x {0} {0} V(x, y, z) C x/R x/R.

It follows that the second component of any triple in the set -]s. (x, y, z) is 0. The
only vectors in/s (x, y, z) that share this property are among those for which r 0
in the estimate above. Thus,/s (x, y, z) Ffl (-Ns. (x, y, z)) {0} and Proposition 2.1

(f) gives

s(x(t),y(t),z(t)) C 1% (x(t),y(tl),z(t)) + _s,(x(t),y(t),z(t))
c U [8(x(t)) {} (-V)(z)]

r_>0

+c(z(t)) {o} {o}.
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By Lemma 4.3, one has

f(x(t),y(t),z(t)) C Df(x(t)) {0} x (0}.

Hence from (14), one has

from which the transversality conditions (6) and (7) follow and one has p2(tl) -r,
where r k 0. Since H is independent of y, (11) implies that i62(t) 0 and

(17) (1 (t), ?)(t)) e O(x,z)H(t, x(t), y(t), z(t), Pl (t), p2 (t), r(t), u(t); A)

Hence P2 -r, where r >_ 0; and (4), (5), and (8) follow from (17), (12), and (15),
respectively. From (13), one has r(t0) 0. The proof of the theorem is thus complete.

Combining Theorem 4.1 and Theorem 3.1, one has the following necessary con-
ditions for optimality for the general bilevel dynamic optimization problem.

TttEOREM 4.4. In addition to assumptions (A1)-(A5), suppose either assump-
tions (A6)-(AT) or (A6)’-(AT)’ ]told. Let (z, u) be an optimal strategy of the bilevel
dynamic optimization problem P1 and x(t) the corresponding trajectory. Suppose that
QM(Y) {0}. Then there exist scalars A k O,r k O, integers I, J, Aij k O,

-iI=l Ej=IJ A,ij 1, optimal trajectories x,i(t) of the lower-level problem P.(z), and

arcs p 1, P2, q3 such that

(IS) -(ifll(t),)(t)) e O(x,z)Hl(t,x(t),z,pl(t),u(t);A,r) a.e.,

max H1 (t, x(t), z, pl (t), u; A, r) H1 (t, x(t), z, pl (t), u(t); A, r)
ev(t)

 (to) o,
pl(t) e Af(x(t)) + rg(x(t)) +c (x(t)),

(t0);
ij

(19) (-$;Y (t), -O* (t), 2i(t)) O(x,,p)H(t,x(t),z,p2 (t); 1) a.e.,

qiJ (tl) O,

llp + + + > o.

Remark 4.1. A sufficient condition for QM(Y) {0} to hold is C //d.
Indeed, in this case, the index 0 multiplier set consists of all arcs (p., q) such that

(20) (-152 (t),-0(t), (t)) e O(x,z,p)H2(t, x(t), z, p.(t); 0) a.e.
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(21) p2(tl)
(22) q(tl) 0.

Due to the Lipschitz continuity of in (x, z), by virtue of Theorem 2.8.2 of Clarke
[4], (20)implies that

[[2(t)lt <_ (t)[Ip2(t)ll.

By Gronwall’s Lemma, he above inequality implies tha p is either identically 0 or
nonvanishing on [0, ]. Therefore (21) implies ha p 0. Hence 0(t) 0 by virtue
of (20). But q satisfies (22), therefore q 0. That is QM(Y) {0}.

Another sufficient condition for M(Y) {0} to hold is that (t,x,z,u) be
independent of z since in this case q(t) O.

Remark 4.2. By Clarke [4, Thm. 2.8.2], O(x,,p)H2(t, x, , p; 1) is the convex lmll
of all points of the form

[Vx(t, x, , )Vp VxC(t, x, , u), v(t, x, , )Vp vc(t, , , ), (t, , , )],

where u in U() is any point at which the maximum defining H2(t, x, a, p;1) is
achieved. Therefore if in addition to assumptions (A1)-(A5) and (A6)’-(A7)’, we
assume the set

{(v(,x,,)vw-vc(,x,,),v(,x,,)Vp-Vc(,x,,) , u()}

is convex for any ,x, z,p, then the inclusion (19) becomes the following equations"

ij
-P2 () V(t,z(t),z,u())TP() --VxG(t,x(t),z,u(t)) a.e.,

-O(t) Vz(,x(),z,,,(t))vp(t) VC(,x(),z,()) ,,e.,
, {p(). (, x(), z, ) C(t,x(),z, )}
u6u()

(). v(,x,,(.) z,(t))-c(t,x() z ()) ..
(t) (t, x,(t), z, ()) ,..,

where u,z() is an optimal control function associated with trajectory x(t).
5. Extensions and an example. There are many situations where an oppor-

tunity cost exists for the follower. That is, the follower will participate only if his
optimal cost is less than or equal to the opportunity cost L 0 that he may receive
from somewhere else. In this case, the leader faces the following bilevel optimization
problem"

P min J(z,) F(t,z(t),z(t),(t))dt + f(z(t)),

s.t. (t) (t,z(t),z(t), u(t)) a.e.,

(t =o,

g(z),
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The technique described in the previous section can be applied to this more general
problem in exactly the same way, and one obtains the following necessary conditions
for optimality.

THEOREM 5.1. Assume that in addition to (A1)-(A5), either assumptions (A6)-
(AT) or (A6)’-(AT)’ ho d. Let (z, u) be’an optimal strategy of the bilevel dynamic opti-
mization problem -ill and x(t) the corresponding trajectory. Suppose that QM(Y)
{0}. Then there ezist scalars ) >_ O,r .>_ 0,0 <_ / <_ r, integers I,J, ;ij >_ O,

E1 EJ ij 1 optimal trajectories x(t) of the lower-level problern P.(z) andi=l j=l

arcs Pl, r, p3, q3 such that

Tile following example is a simplified and finite horizon version of a fishery regu-
lation problem first formulated and solved by Clarke and Munro using principal and
agent analysis (see Clarke and Munro [7] and [8] for details).

Ezample. It has now been generally agreed that the fishery resources within the
200-mile zones are the property of tile adjacent coastal states. For those coastal states
opting to permit a distant water presence in their 200-mile zones, one of the problems
they face is devising optimum terms and conditions of access to the Coastal State
Exclusive Economic Zones to be imposed upon the distant water fleets.

Assume that the fish population follows the dynamic system

ic(t) F(x(t)) qE(t)x(t),

where z(t) is the fish population at time t; F(z) is the rate of natural growth; and
qE(t)z(t) is the rate of catch at time t, where E(t) is the fishing effort at time t and
q is a positive constant. We assume that F(z) is a twice continuously differentiable
function satisfying F(z) > 0 for 0 < x < 2, F(0) F(2) 0 and F"(z) < 0 for all
z > 0, where 2 denotes the carrying capacity of the resource. It is also assumed that

0 <_ E(t) <_ Emax,

where Emx is an arbitary upper bound on E(t). Suppose that the coastal state
imposes the condition that at the terminal time T, the fish population cannot be less
than 2 > 0.

Suppose that the coastal states as a leader impose a unit tax n on catch qE(t)z(t)
and a unit tax m on effort E(t). Then the distant water fleet would receive the profit
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in time period [0,

-5t[(p0 n)qx(t) (co + m)]E(t)dt

if he decided to use the fishing effort E(.) where P0 and co are the unit price on catch
and unit cost on effort, respectively, 5 > 0 is the discount rate, and z(.) is the fish
population corresponding to the fishing effort E(.). Hence for the given unit tax on
catch and effort n and m, the distan.t water fleet as a follower faces the following
optimal control problem:

max e-et[(p0 n)qx(t) (co + m)]E(t)dt,

s.t. 2(t) F(x(t)) qE(t)x(t),
X(0) X0, x(T1) >_ ,

/(t) e [0, Emax].

The optimal control problem P2(n, m) is linear. The necessary condition for (x, E)
to solve P2(n, m) is the existence of an arc p2 such that

(23)

(24)

-ig2(t) p2(t)[F’(x(t)) qE(t)] + e-St(po n)qE(t),
max {p(t)[F(x(t)) qEz(t)] + e-t[(po n)qx(t) (co + m)]E}

E6[O,E

p(t)[F(x(t)) qE(t)x(t)] + e-5t[(po n)qx(t) (co + m)]E(t),
p2(T) > O.

Since E(t) has to maximize the Hamiltonian (see (24)), E(t) must be either the
singular control or else E(t) 0 or /max. The singular control arises when the
coefficient of E in the Hamiltonian is zero, implying that

(25) P() e-5t [(p n) c +m]qx
+

qx
co + m dx ]
qx2 dt J

From the adjoint equation (23), one has

(27)

where (25) is used for p2. When the two expressions for id.(t), (26) and (27), are

equated, the control variable E cancels out and the following equation emerges:

F(x)(co + m)/qx2

(2s) +
Po n- (co + m)/qx

For fixed (n, m), this equation gives a unique solution z, that is the optimal biomass
and the optimal trajectory is the one that takes the most rapid path to the optimal
biomass z, (cf. Clark [3]).
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Let V(n, m) be the optimal value of the above problem. The distant water fleet
will participate only when V(n, m) >_ L, the alternative remuneration from some other
coastal state.

The coastal state as a leader now faces the following bilevel dynamic optimization
problem:

T1

P1 max e-St(nqx(t) + m)E(t)dt,

s.t. 2(t) F(x(t)) qE(t)x(t),
x(0) x0, x(T1) _> ,
E(t) e [0, Emx] ..,

V(, m) <_ e-et[(p0 n)qz(t) -(co + m)]E(t)dt,

V(n,’rn) > L.

It is easy to show that all the conditions of Theorem 5.1 are satisfied. Notice that
the lower-level problem P(n, ’rn) has a unique solution. By Theorem 5.1 and Remark
3.2, if (n, re, x, E) is an optimal solution to P1, then there exist arcs Pl,P2,
and scalars A > 0, r > 0, 0 < / < r such that

(29) -i61 pl[F’(x) qE) + e-St[r(po n) + ,nlqE,

r (r- 1)e-tqxE,
# (r 1)e-tE,
max {Pl (t)[E(x(t)) qEx(t)] + e-t[r[(po n)qx(t) (co + m)]

EE[O,E

+(q(t) +
p (t)[F(x(t)) qE(t)x(t)] + e-t[r[(po n)qx(t) (Co + m)]

(30)

(3)

(32)

(33)

(34)

+A(nqx(t) + m)]E(t),

Take 1. As in the proof of (28), from (29) and (30) we can show that the steady
state (n, m, z,) for problem P1 is a solution of the following equation:

(35) F(.)((o + -) ,)/qxF’(x,)+ =,
(po n) + n- ((o + ,) ,)/qx.

(v,, v)(o) (o, o),
p(T) >_ o,
(7"]1,7"]2) (T1)
--]J2 p2[F’(x) qE] + e-St(po n)qE,

e-StqxE,
e-StE,

max {p.(t)[F(x(t)) qEx(t)] + e-st[(po n)qx(t) (co + m)]E}
Ee[O,E

pz(t)[F(x(t) qE(t)x(t)] + e-et[(po n)qx(t) (Co + m)]E(t),
(q, q)(o) (o, o),
p2(T1) > O,
Ilpx I1 / I111 / , / r > 0.
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and the optimal trajectory for P1 is the one that takes the most rapid path to the
optimal biomass (n, m, x,). Since (n, m, x, E) is an optimal solution of P1, (x, E)
must be the optimal solution of the lower-level problem P.(n, m). Therefore x, must
be the optimal biomass associated with (n, m) defined by (28). Combining equations
(28) and (35), one has

where p is some constant to be determined. It is obvious that the optimal tax (n, m)
must be such that V(n, rn) L. Let V0 be the net global returns from the fishery,
i.e.,

Then

-t(poqx(t) co)E(t)dt}
e-St[(1 p)poqx(t) (1 p)co]E(t)dt}
e-St[(po n)qx(t) (Co + m)]E(t)dt}

(36) V(n, m)- L,

from which it follows that p (V0 L)/Vo. (36) also indicates that E(t) will maximize
the global net returns from the fishery. Hence the above necessary condition for
optimality is indeed satisfied by ) 1, r 1, / 0, n PPo, m -pco, and the
corresponding fishing effort E(t) since equations (29), (30), and (31) are necessary for
E(t) to maximize the net global returns from the fishery; (32), (33), and (34) are the
necessary optimality conditions for the lower-level problem; and the rest of equations
are easily seen to hold. The results agree with the work of Clarke and Munro [7].

Acknowledgments. The author would like to thank Philip Loewen for many
helpful suggestions that led to improvements in the results of this paper and two
anonymous referees for comments that led to the improvements in the style of the
presentation in this version.
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USING PERSISTENT EXCITATION WITH FIXED ENERGY TO
STABILIZE ADAPTIVE CONTROLLERS AND OBTAIN HARD
BOUNDS FOR THE PARAMETER ESTIMATION ERROR*

MILOJE S. RADENKOVICI AND B. ERIK YDSTIEt

Abstract. Two important instability problems in certainty equivalence adaptive control are
solved by external excitation. The first instability is parameter drift along an unstable manifold
when the excitation level is not high enough. The second instability is numerical and due to a
division with zero in the adaptive law. Global methods based on excitation have been developed to
solve this problem, but the energy of the excitation has been tuned on-line. The main contribution
of the current paper is in showing that the estimator is stabilized when we apply excitation with

fixed and finite energy. The level of excitation should be sufficiently high relative to the magnitudes
of the external disturbances and the unmodeled dynamics. The approach can be generalized to more
complex adaptive laws. This, together with the fact that we obtain hard bounds for the parameter
estimation error, opens up for the possibility of designing robust controllers that are adaptive.

Key words, adaptive control, self-tuning regulator, stability, robustness, learning, excitation

AMS subject classifications. 93A, 93D, 93E

1. Introduction. In this paper we present the global stability analysis of a di-
rect adaptive control system for which a persistent excitation condition is satisfied.
By global we mean that the results are valid for all initial conditions. In this way
the analysis complements averaging methods which are initial-condition dependent.
Averaging has been applied for the local analysis of adaptive systems with consider-
able success, and sufficient as well as necessary conditions for the stability of integral
manifolds have been obtained by exploiting hyperbolicity [2], [12], [14]. The degree
of locality of these results has not been determined. But it is an important problem
worth investigating since averaging can give tight results. It comes as a surprise to
the authors of this paper that averaging in adaptive control can have global validity
when the singularities that may arise in the control design equations are avoided.

It was recognized early that the parameter estimates in certainty-equivalent adap-
tive control may drift, become unbounded, or cross through regions where the control
law calculation is ill conditioned. The reason for this rather disappointing behaviour
is that the adaptive controller does not destabilize in such a way that excitation is gen-
erated. In the ideal case the parameters cannot diverge [4]. However, self-stabilization
of the estimator does not take place, and in the nonideal case small-amplitude, chaotic
bursts as well as large transients and numerical instabilities may be observed [3], [15].
The drift problems can be solved by using artificial parameter bounding. In the case
of leakage [6] and parameter projection [7] the parameters are constrained to belong
to compact sets and additional measures are taken to ensure that the control law
calculations are well behaved. Unfortunately, while boundedness of the input/output
signals can be established, these methods do not ensure that the parameter estimator
is stabilized and large bursts are possible. A number of methods for solving the singu-
larity problem have been proposed. These include the adaptive excitation approach
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[1], parameter projection [7] approaches where the high-frequency gain is modified [5],
and a recent method where the controller gains are switched to maintain a certain
detectability property [8].

It is possible to solve the drift and singularity problems by ensuring that the es-
timator equations remain stable. The estimated parameters are then close to optimal
and singularities and drift are avoided. The sufficient and necessary condition for
such stabilization to take place is that the regression vector is persistently excited
[14]. Since excitation is not automatically generated within the adaptive loop, the
only possibility that remains is to generate the excitation externally. In this paper we
do this by manipulating the reference signal using fixed and finite energy over a range
of selected frequencies. Once excitation is generated this leads not only to stabiliza-
tion of the adaptive loop but also to good conditions for the estimator. The parameter
drift is arrested, and small parameter errors can be guaranteed. Reasonable system
conditions can then be imposed to ensure that singularity problems in the solution of
the Bezout identities do not arise, and methods can be developed to start and stop
the estimator. Thus we do not only solve the problem of adaptive stabilization, we

also solve the problem of identifying parameters in an uncertain environment. The
latter problem has attracted considerable attention in the recent literature. See for
example the recent IEEE T-AC special issue on identification. However, we believe
that results developed in this paper are among the first that can be applied for the
identification of an open-loop unstable plant.

We analyze a simple one step-step-ahead predictive controller with gradient esti-
mator. Two types of data normalization are used in the analysis. In one instance we
use the exponentially weighted normalization [11] to show robustness of adaptive con-
trol with respect to unmodeled dynamics and bounded noise. This approach requires
knowledge of an upper bound for the largest time constant for the closed-loop system
with an ideal controller. In order to relax this assumption we also analyse a second
type of normalization sequence that does not require this type of a priori information.
The idea here is to use the largest regressor up to time t to normalize the signals.

The results of the paper can be generalized to continuous time. Thus tile projec-
tion used in [9] can be replaced with finite energy excitation of the reference.

2. Notation and terminology. For a function z T R+, we define the
following semi-norm

[ix(t)lla {
_

,t_.Jx(j)2 0<I<i.

Here T is the set of positive integers, while R+ is tile set of nonnegative real numbers.
When IIx(t)lla is bounded for all t >_ 0, x is said to be in l.
H will denote the space of transfer functions T(z), which are analytic and

bounded outside and on the unit circle in the z-plane. Sa is the operator defined by

SaT(z)=T(A1/2z).

H is the space of transfer functions T(z) such that SaT(z) E Hoo. In other words,
T(z) H, if T(z) is analytic and bounded outside and on the circle Izl- /2 in
the z-plane. For T(z) Hoo, the Hoo norm is defined by

IlT(z)lloo max lT(z)l.
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Likewise, the norm of the H space is defined by

IIT(z)ll )’ IIS)’T(z)II max

This norm is induced by the l norm of the input and output signals of T(z).
When performing majorizations in order to account for initial conditions, we use

nonnegative functions

i (t) ci/, 0 <_ ci < oo, 0 </3i < 1.

When confusion cannot arise, we drop the subscripts.

3. Deterministic adaptive control and major assumptions. Let us con-
sider the following discrete-time single-input single-output (SIS0) system with un-
modeled dynamics

(1) A(q-1)y(t + 1) B(q-1)[1 + Al(q-1)]u(t) + A(q-1)A2(q-)u(t) + w(t + 1)

where {y(t)}, {(t)}, and {w(t)} are output, input, and disturbance sequences, re-
spectively, while q-1 represents the unit delay operator. The polynomials A(q-) and
B(q-1) describe the nominal system model, which may be taken as being "centered"
[16], and can be written as

A(q-1) 1 + aq-1 +... + anAq-hA

B(q-1) bo +"" + bnBq-nB, with b0 0.

In equation (1), Ai(q-1) for 1, 2 denote multiplicative and additive system per-
turbations. The transfer functions Ai(q-1) for 1,2 are causal and Al(q-1) is
stable.

The aim is to stabilize simultanously the input-output behaviour of the system
(1) and estimate the parameters of the nominal model to a given precision. This is
the problem of identification of open-loop unstable systems.

The nominal model is assumed to be stably invertible, the model mismatch small,
the external perturbations bounded, and the reference signal excited with sufficient
energy in a selected range of frequencies. In order to develop the theory we will apply
direct adaptive control to minimize the criterion

J [y(t) y* (t)]

where y* (t) is the given reference signal.
To define the adaptive law it is convenient to write system (1) in the form

(2) y(t + 1) O’o(t +

where

0o (-a, -a2, -ana bo, bl, bnB

is the vector of parameters that need to be estimated,

(t)’ (y(t), y(t 1),...,y(t- nA + 1),u(t),u(t 1),...,u(t riB))
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is the regression vector, and finally, the modeling error is defined so that

(3) "(t) Ao(q-1)u(t)+ w(t + 1)

with

Zo(q-) B(q-)A(q-) + A(q-)A2(q-1).

From equation (2) it is obvious that when /(t) 0, the control law

(4) Solve for u(t): 0(t) * (t + ) 0

is optimal. Internal stability is ensured by the stable invertibility of B(q-).
In certainty-equivalent adaptive control the parameter vector 00 is replaced by an

estimate

O(t) (--1 (t),--a2(t),...,--nA (t), )0 (t), ?1 (t),..., ?nB (t)).

The following algorithm is used for estimating the unknown parameter 0o.

(5) O(t + 1) O(t) + (-(t)e(t)
where

(6) (t) v(t)- v* (t)

is the tracking error. The algorithm gain sequence may be given by

r(t) ro + ned(t) 2, with 0 < r0 < oc

and

(7) no(t) 2 Ano(t- 1) 2 + IIO(t)ll

where A is a tunable parameter chosen so that 0 < A < 1. Note that this gain sequence
is similar to that proposed in [11]. In [16] the gain sequence is defined with 0 so
that

(t) 0 + II(t)ll.
In the current paper we also analyse an algorithm with gain sequence chosen so that

(8) r(t) ro + max [[0(-)ll 2.
l<T<t

This normalization sequence does not involve the parameter A as is the case with n,
defined by equation (7). On the other hand, r(t) defined by equation (8) satisfies the
same property as the sequence given by (7), namely r(t) >_ hr(t-1). As a consequence
of this we should expect that the two algorithms behave in a similar fashion as long as

qS(t) remains uniformly bounded. The main results concerning normalization sequence
(7) are given in Theorem 5.1. The results concerning normalization sequence (8) are

given in Theorem 5.2. The analysis for the normalization sequence (7) with A 0
can be carried out using the approach developed in [16] for the discrete-time case and
in [9] for the continuous-time case.
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Equation (4) is ill defined when the estimate of b0 is equal to zero and measures
need to be taken to prevent large transients and instability of the algorithm. One
approach, which is the one we follow here, is to depart from certainty equivalence on
the event A(t) I{igo(t)l<l}, where I{.} is the indicator function and 1 is specified
below, and implement the law

(9) Solve for u(t)" o(t)’(t) * (t + ) o

with

(0) 0c(t) (--al(t),-a2(t),... ,-anA(t),(t) -- D0(t),)l(t),...,DnB(t)).

Here

e(t) { 0 if ID0(t)[ (1 > 0,
elsign(0(t)) if ]D0(t)l < ex.

The sign function is defined so that sign(z) 1 if z _> 0 and sign(z) -1 otherwise.
The approach is similar to that used by Lozano-Leal, Collado, and Mondie [5] for
the analysis of robustness of model-reference adaptive control. Other approaches
include parameter projection [7] and controller switching [8]. These approaches give
boundedness even when the signals are not excited, provided that projection is used
to maintain finite parameters. But the modification then remains active and poor
transients may resu.lt. We show that with excitation we get

t=l

The modification applies a finite number of times, and the algorithm converges to a

certainty-equivalence algorithm.

Assumption A1 (Concerning the reference signal and the disturbances)" There
exist constants k,o and ky. so that for all t > 1"

Iw(t)l <_ k and

In order to motivate the second assumption we develop closed-loop expressions for
the adaptive system. From equations (2) and (9) it follows that

(11) e(t + 1) -z(t)+ (t)

where

(12) z(t) c(t)(t)

and the control parameter error satisfies

Oc(t) 0(t)-00.

From equations (9) and (12)we obtain

B(q-)u(t) + q(1 A(q-))y(t) y*(t + 1) z(t).
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Combining this with equations (6) and (11) gives

(13) B(q-1)u(t) A(q-1)(-z(t)+ y*(t + 1))+ (A(q-1) 1)y(t).

Substituting this into equation (3) gives the closed loop

A(q-1)A(q-1)
(z(t) y*(t + 1))(14) y(t) -B(q_l)_ Ao(q_l)(A(q_l)_ 1))

B(q-)
(t + 1).+ w

B(q-) Ao(q-1)(A(q-) 1))

The transfer function from the reference signal to the model error y(t) plays a signfi-
cant role in the stability analysis. It is assumed to be stable and have small gain. In
order to discuss this assumption and perform the analysis, define the following H
norms"

CAB A(z)
(z) CA A(z)- 1

(z)

Ao(z)A(z)
B(z)- Ao(z)(A(z)- 1)

S(z)
B(z) Ao(z)(A(z)- 1)

Assumption A2 (Concerning the nominal system and unmodeled dynamics)’
1. There exists a positive number 0 < 1 such that the zeros of B(z-1) and the

poles of the transfer functions

Zo(Z-)A(z-1)H(z-) B(z-) Zo(z-1)(A(z-) 1)

and

e(-)Hi(z-l) B(z-1) Ao(z-1)(A(z-1) 1)

are inside a circle with radius A0.
2. The transfer function H0(q-1) has small gain in the sense that the inequality

#-(1-#)C,- # 9.p(e) i C, -eiC(l + C,) > 0

with

C CA + CAC
is satisfied.

It is well known that the adaptive control algorithm described above may not
be stable when there is no excitation. The problem is due to the presence of an
unstable manifold along which the parameter estimates may drift to infinity. The
problem can be avoided by applying parameter projection or leakage. However, these
methods may give large transients and unrelenting bursting, unless the region into
which the parameters are projected is small or the leakage center is defined close to
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the optimal parameter values. An alternative method, which we explore here, is to
supply additional excitation. This approach has been shown to work well locally, and
using averaging theory, necessary and sufficient conditions for the stability of integral
manifolds have been established. The purpose of our analysis is to extend these results
to be valid globally. In order to do this we introduce the following assumption about
the level of excitation.

Define

A(q-1----)y*(t-F 1) A(q-l----)y*(t-nB-F 1))(15) *(t)’--(y*(t),...,y*((t--nA+l),
B(q_) B(q_l)

Assumption A3 (Persistent excitation): For all sufficiently large N

N

E AN-t*(t)*(t)’>-- 5I

where, for some 5,

(+ c(+ (c. + (1 + c), (1 a/ > 0

()
with

{ 16
(1 mx )( [( +c +lC + 1( +

with

v’C+C and N=( -a/ ( -a/
The constants and n are defined so that

n +C and n + C
i=1 =1

Comments.
1. Assumption A1 simply states that the reference and the disturbances should

be uniformly bounded.
2. It is not dicult to see that Assumption A2 can be written as

This relation is satisfied if

C<(18)

and

(9)

#E (E + 2eEe)}p(l)

1_#+ #- -c 1c lCC > o.

Relationship (19) will be satisfied if el is selected so that

(o) < mx ( )c’c
and the admissible unmodeled dynamics are then specified by inequality (18).
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3. Assumption A3 is more complicated and essentially means the tbllowing. The
intensities of the unmodeled dynamics C, the external disturbances, and the
design parameter el should be small compared with the level of excitation.
Moreover, y*(t) should have a spectral distribution function that is nonzero
at nA +nB + 1 points (or more), and the transfer function of the nominal
system model B(z)/A(z) should be irreducible. This condition is not stronger
than the similar conditions introduced in deterministic adaptive control and
coincides with those obtained from the application of the averaging analysis.

4. Since we do not know the magnitude of the disturbances, the intensity of the
unmodeled dynamics, and Hoo-norms CAB and CA, we cannot select el so
that relationship (20) holds. The immediate consequence of this is that it is
difficult to choose the right level of excitation, and we are still some way off
from the target of having a completely adaptive control algorithm. In the
following we assume that el and the level of excitation is chosen so that this
relationship holds true.

Constants whose values are unimportant and do not depend on C and C,w will
be denoted by Ci, 1,2, Constants whose values are unimportant but depend
on C and Cw will be denoted by Ci, 1, 2,

4. Technical results. The following three results are useful for future reference.
Lemma 4.1 simply states that all signals are bounded by the l norm of the error signal
z(t) plus constants. Lemma 4.2 states that when the 12 norm of z(t) is small, the
signal vector (t) is persistently exciting. Finally, Lemma 4.3 states that under similar
conditions the parameter error vector is small.

LEMMA 4.1. Let Assumptions A1 and A2 hold. Then
1. II(t)ll _< cllz(t)ll + hi(t) where

hi(t) c. +
( )/ + (t).

2. [[u(t)[Ix <_ Cllz(t)llx + h2(t) ’with

h.(t) Ckv, + CaC,k
( )/ + (t).

3. II(t)llx < c IIz(t)llx + ha(t) where

+ a(t),

C C1(-1/2(1 + C,) t- Cu) and C CC,,.(zk- + CA),

1/2

4. If there ezists finite to such that for all t >_ to,

r(t) max{Collz(t- 1)ll, k0 + g4(t)}
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with

Co=4 C1 1+ foC1 (I+C+C)

and

ko=4(r/2+Cl(
get

Proof. Statement 1 of the lemma follows from equation (14). By using (13) we

(21) II(t)ll <_ ca.(llz(t)ll + II*(t + )11) + call(t)ll + (t).

After substituting from statement 1 we have statement 2. From the definition of the
regressor and equation (7) it follows that

(22) II(t)ll _< c (ll(t)llx + II(t)ll) + (t)

where C1 was defined under statement. 3. From equations (6) and (11) and statement
1 of the lemma we then get

(23)

Statement 3 of the lemma follows by using the last three relations and the fact that

From the control law (9) we get

Substituting this into (22) we get

C1
1 + foC1 (lly(t)llx + Ilu(t- 1)llx) + --]ly (t + 1)llx + (t).

1 1

It is now obvious from equations (23), (24), and (21) that II(t)llx can be bounded in
terms of IIz(t- 1)11 and we get

l + fC--- ) l + C + Cu) IIz(t- 1)11 + (1 -/)1/2

_t_C1 {l nt_ foe1 Cw(1JF CA)w C1 ky.
1 (1_ A)1/2 -t- (t).

e (1 )/

The result follows by the application of the definition of r(t).
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By using equations (6), (11), (12), and (13), the measurement vector can be
written in the form

(25) e(t) e* (t) + (t) + (t) + e(t)

where

*(t)’ (y*(t) .y*(t--na+ 1) A(q-1).+.Y*(t + 1).. B(q_l)A(q-l------) (t nB+ 1))’B(O=) *
-(w(t) w(t--nA + l)

A(q-1)-i A(q-1)--lw(t--nB+l))(t)’ B(q_l w(t+l),..., B(q_) _’

Cz(t)’= -z(t -1), -z(t nA), -B(q_) z(t), -B(q_) z

O ,[’(t- 1)... 9/(t- nA)
A(q-)- 1 A(q-) -1 J, ?(t),..., B(q_) /(t--nB)

while *(t), of course, is assumed to be persistently excited.
We are now ready to establish the following lemma.
LEMMA 4.2. Let Assumptions A1-A3 hold. Then, for Np sufficiently large on

every subsequence {Np} ’where

)2

the following holds:

/min E "N’-t(t)(t)’ > PO > O,
t=l

0 < p0 <<

Here ,min(’) denotes the minimal eigenvalue of the corresponding matrix.

Proof. From the decomposition in equation (25) we obtain

(26)
Np

.’- (’z(t)) <_ r() + (t)
t=l

where r is any vector satisfying Ilrll 1. Similarly, using statement 1 of Lemma 4.1
we obtain

N,

( C.r ky. + Cwkw )
2

(e) - (’,(t)) _< n cr(l) +
( a)/. + (t)

and

(28) E N,-t (r/,u(t) _< n.i._) + @(t).
t=l

Relationships (26)-(28)yield

Np

t=l

(9)

C,k,. + (1 + C)k))
2

( ,x)/ +(t)



1234 M.S. RADENKOVIC AND B. E. YDSTIE

where 01(t) is the component of the regressor that is not directly excited by the
reference, i.e.,

(t) (t) * (t) (t) + (t) +

It then follows that

1 9. 2(de(t)) >_ - (d*(t)) (v’(t))

From these inequalities and Assumption A3 we then get

t=l

Since (t) decays exponentially fast, it follows that for sufficiently large Np we have
(t) _< P0 and the lemma is proved. F1

We now have the following critical result.
LEMMA 4.3. Let Assumptions A1-A3 hold. Then on the subsequence {Np} where

(30) llz(N)ll Z"y(1) 2 + 6(Np)

we have

IIO(N + .)- Ooll <_ <So()+ .’,(G)

do() ( po)

where

(31) x [E.(e.1)(1 + #(1 + C) + elCu) + .. (c + c) + c,w( + c)]
with

(32) C C1E,),(1) nc-
C ky. -- 62kw

Proof. From equation (11) and statement 1 of Lemma 4.1 we derive

(33) II(t + )11, -< (1 + c,,,)llz(t)ll>, + ca,. +

Using equation (30) we obtain

(34) Ile(N,)l]
_

((1 + C.)E.(el)+ C.ky.+ C.u,k,, )(1 )1/2 + .(t).

Similarly from statement 3 of Lemma 4.1 we conclude that

(35) II(N,)ll,x _< C(R) + (t)
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where C4 was defined in equation (32). Note also, from equations (10) and (12), it
follows that

O(t + 1)’O(t) z(t) + e(t)u(t), (tl o(t) Oo.

This together with the estimation equation (5) then yields

O(t+ 1)’p(t) -1 A’O(t)p(t- 1) -1 + z(t)O(t) +e(t)u(t)O(t)’ + -O(t)p(t)- e(t+ 1)

(36)
where

(37) p(t)- ,p(t- 1) -1 --(;)((;)’, p(0) -1 poI, with P0 > 0.

It follows from (36)and (37)that

(N+l)’=x(1)pp(N)+(X-tz(t)O(t)’)p(N)t=I

Since

t=l t=l
r(t)

e(t + 1) p(N).

N

E "kN-t (t)p(t)-
r(t) e(t + 1)

t=l

N

_-(t)(t)(t)’
t=l

N

_,x-z(t)O(t)’
t=l

and

we obtain

(38)
From Lemma 4.2 we have for p sufficiently large on the subsequence {Np}

1
(39) IIp(N)II <

where 5 was defined under Assulnption A3. The lemma then follows by using in-
equalities (30), (34), (35), (38), and (39)together. S

Comments. E(el) is small when C and kw are small. It follows that during the
intervals where IIz(t)llx is of the order of E(e), excitation provided by the reference
signal neutralizes the effect of the unmodeled dynamics and the external disturbances
and prevents the parameter drift that otherwise causes instability of the estimator
and the eventual destabilization of the loop. An exact statement of this property is

given in Lemma 4.2.
The remaining question to answer is: "What happens when IIz(t)ll is not small?"
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5. Main results and mathematical formalization of self-stabilization.
Below we give the. stability result for parameter estimation and direct adaptive control
with persistent excitation.

THEOREM 5.1. Let Assumptions A1-A3 introduced in 3 hold, and assume that
the estimator is implemented with gain sequence (7) with/ko <_ < 1. Then there
exist nonnegative constants 5, C, kw, and el so that

1.

lim sup IlO(t) Ooll <_ d0(0) and lira sup I[0c(t) O(t)1]2 0

where do (0) is given by equation (31) with el O.

lim sup E )t-JlY(J + 1) y*(j + 1)l <_ ((1 + C,)ED + 1)2

3--1

where Ei is defined in Assumption A3 and

(1 + do(O))Co + ,p(O) do(O)ko exp
(1 + do(O)Co

where E(0) is given by Assumption A2, do(0) is given by equation (31), and
p (0) is given by Assumption A2 with e O.

lim sup [l(t)ll,x < CED + CdplJy. + Cdp2Jw
too (1 A)/2

where C4, 1, 2, are defined under statement 3 in Lemma 4.1.

Proof. We first determine a difference inequality that describes the behaviour of
the parameter estimation error. From the estimation algorithm (5) we obtain

(40) V(t + 1) <_ V(t)+ 2r-)O(t)’c)(t)e(t + 1)+ r-e(t + 1)

where V(t)= IlO(t)ll . From (11), the definition of the normalizing sequence, and the
above we then derive

z(t)

1
[2p(1 t)lz(t)/(t)l + tzy(t) + 2ple(t)u(t)l" Ix(t)+(41) +

We now show how global stability of the adaptive algorithm can be demonstrated by
considering the following comparison function [13]:

W(t + 1)
(42) S(t + 1) V(t + 1)+

(t)
where

(4a) (t + 1) - + ( )c +c + 1c,( + c)
j=l

2( ) z(j)(j)l- (j) 21e(t)(t)l. Iz(t)+ (t)
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It will become clear in the analysis that follows that stability of the sequence z(t)
follows trivially whenever W(t) <_ O. However, during these intervals the function S(t)
may increase, thus giving rise to the bursting of the sequence z(t). As a consequence
of this, the function W(t) becomes positive, forcing S(t) to converge, thus stabilizing
z(t). This mechanism does not rely on the use of external excitation; instead it is
required that the paraneters remain bounded and that singularities are avoided in
order to prevent finite escape and ensure bounded growth of signals. B

We now define subsequences k and 0.k, k >_ 1, as follows:

1 T1 < (7"1 < T2 < 0"2

so that

W(t + l) <_ O for t E Qk and W(t + l) > O for t E Tk

with the intervals Tk and Qk defined so that

Qk [-k, 0.), T [0.k,-k+l), k >_ 1.

If W(2) > 0 set T 0 and 0.1 1 and Q is defined for k >_ 2.
The proof is handled by considering three possible cases:
Case 1. For all finite k, we have -k < oc and ak < oc.
Case 2. There exists a finite k0 >_ 0, such that -0 < oc and 0"o +oo.
Case 3. There exists a finite kl k 1 so that 0"1 < oc and
In the first case W(t+ 1) changes sign infinitely often. The main idea in analyzing

this case is the following. During the time intervals Q the function 14/(t + 1) is

nonpositive and the stability of the adaptive system follows directly from the definition
of W(t+ 1). During the intervals when W(t+ 1) > 0 the function S(t) is nonincreasing
or strictly decreasing. It follows that such intervals only have a finite duration since

V(t) is nonnegative. This is essentially the argument used in [16] to show that the
normalization r(t) can be replaced by ]l(t)[I 2. A similar development can be used
here; however, in order to simplify the analysis we treat the case where the normalizing
signal r(t) is defined by equation (7) here and (8) under the heading of Theorem 5.2.

The two last cases are trivial since the sign of W(t+ 1) eventually does not change
and are analyzed at the end of the proof of this theorem.

Analysis of Case 1. Let us first consider the interval Qk. Since W(t + 1) < 0 for
t Qk, that we have from equation (43) and statement 1 of Lemma 4.1 that

( u )c+U )1 - + (1 # -C + lCu(1 + C.) Ilz(t)ll 2

2(1 )llz(t)lla(Cllz(t)llx / h(t)) / #(Cllz(t)ll / hi(t)) 2

+2elllu(t)llx((1 / c)liz(t)llx / hi(t))

where we used the fact that [e(t)[ _< el. By further manipulation it follows that we

can write

(pl(G1) -’ 2elC,.(1 + C))Iz(t)llX _< 2#(1 # +  C )llz(t)llxh (t)

-+- ffhl(t) 2 -t- 2e1(1 + C )ll (t)llxllz(t)llx + 2ellu(t)iixhl(t).
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Substituting statement 2 of Lemma 4.1 into this we have

pl(el)l]z(t)ll <_ 2]]z(t)ll[(1 # + #C + elCu)hl(t) q- el(1 q- C.)h2(t)]

+#hi(t) + 2elh(t)h2(t)

4 max{llz(t)llx(1 # + #C + eC)h(t) + e1(1 + C)h2(t));

l#h(t) + elhl(t)h2(t)}.2

From this we finally get, by applying simple inequalities,

(44) Ilz(t)ll E(el)2 + {(t), t Qk.

We can now apply Lemma 4.3 together with the definition of the intervals Q to
conclude that

(45)

We now analyze the intervals T ,k >_ 1, where W(t + 1) is positive. Using the
definition of W(t + 1) in equation (43) we obtain from equations (41), (42), and (43)
that

s(t + ) _< s(t)-/()z(t) t T,

where the definiton of p(el) is given in Assumption A2. After summing from t

cr + 1 to N < -+ we get

N

(46) S(N + 1) < S(a + 1)- #p(l) E z(t)2
(t)

t=cr +

From equation (43) it follows that

-2#(1 )lz(o-)(o)l- (o) + 21(o)(o)1, Iz(o-)+ (o)1 + w(o-).

Since"W(cr) <_ 0, we get, using equations (41) and (42), that

Using this in equation (46) we get

(47) S(N + 1)

_
V(a)-//91((1) E ’(t)

N E T.

From the definition of S(t) given by equation (42) and inequality (45) it then
follows that

(48)
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Inequalities (45) and (48) imply that there exists a finite k. such that

(49) ]l(t)ll 2 d0(1) "- P2

for t E [7k + 1, Tk+l] ,k >_ k2, or for all t _> -2 + 1. Here p is an arbitrarily small
constant. om this we may conclude that

(50) I0(t)l > Ib01 do(l) 1/2 1/2
-2 >0 fort+l.

From equation (31) it follows that d0(e) is small if C,k, and e are small relative
to 5. This in turn implies that the estimate of b0 stays close to its true value after
a transient period that can be no longer than + 1. After this we get e(t) 0 in
equation (10).

Equation (43) can now be written as

(51) W(t + 1):,E At- [(1- + (1- ,)C + C)z(j)2

j=l

wlmre

-2(1 #)lz(j)’(j) #,(j)2] + At-k2 r](7)

7"k

?(-2) #E Ak:-J[elCu(1 + C,)z(j) 2 21e(j)u(j)l Iz(j) +
j--1

Using inequality (44), which we write as

z()ll r() + (),
together with statements 1 and 2 of Lemma 4.1, this gives

(52) v() c < .
Similarly from equation (51) we get

() z(t)]] (o) + ()

for all t Q, k > k,k < , where we used the fact that e(.t) -0 for all t > 7.
Appplying Lemma 4.3 one more time with (53) we conclude that

(54) II(t+l)ll2d0(0)+(t), teQ, k>ke.

Following the same line of reasoning as that given in equations (46)-(47) and using
the fact that e(t) =’0 for all t k 7 + 1" we get immediately from equations (41), (42),
and (51) that

N

() ( + ) < v() ,(o)
z(t) e T > ,

with p(0) as defined under point 3 of Assumption A2. From (42), (54), and (55) it
follows that

(56) lim sup sup ]](t + 1)] do(0).
ktTk
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Statement 1 of Theorem 5.1 follows for the Case 1 scenario by combining (54) and
(56). It now remains to show boundedness of all signals. Since the parameters are
bounded, a number of different techniques can be applied. We follow the method
developed by [13]. First, from (55) and (56)we have

N

(7) (o) z(t)
t= (t) <-1’ N E T, k >_ k2

where

(5s) (t) (d0(0) + ())(t).

From (49) we conclude that statement 4 of Lemma 4.1 can be applied for all t _> -2 + 1
with

f 11o1{ +o(O) ’/: + /P2
Substituting the bound for r(t) given by statement 4 of Lemma 4.1 into equation (58)
then gives

(59) ?(t) _< max{(1

where

(60) g(t) (d0(0) + {(ak))(ko + {(t)).

Next we show that relationships (57) and (59) can be used together to establish
stability during the intervals Tk, k >_ ke. Specifically, on the one hand it follows
from equation (57) that we can relate the magnitude of z(t) for t E T to (t). On
the other hand, from inequality (59) it follows that (t) is of the order of g(t) or

(1 + do(O))Collz(t- 1)I1 A.
We now introduce a further partitioning of the intervals T. Let P,i T and

li,: T be defined so that

Poa < 11 < Plk <"" < lit < P < l(i+l)k <’",

so that for (t) defined by (59) the following inequality holds:

(61) fi(t) <, (1 + do(O))Col]z(t 1)1 for t Lik, >_ 1, k >_ kg.,

and

(62) (t) <9(t) fortDik,i_> 1, k_>k2

where the intervals Li and Di are defined so that

Li [p(i_ ), li and Di [lik, p,i ).

We have lik < %+ and pik < rk+ for >_ 1.

>_ g(a), then P0
If (1 + do(O))Collz( 1)ll < 9(cry), then P0k 0, lllc O’k

with intervals Lia: defined for >_ 2.
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If (l+do(O))Collz(t-1)ll { < 9(t) for all t G T define po 0,1i G, and pi
>_ 9(t) for all t G T set Po cr and 1, %+.

From (59) and (62) we now have

v(t)(63) IIz(t- 1)11 <- (1 + do(O))Co
fortDi,i>_ 1, k >_ k2

and relations (57), (59), and (62) imply that for t

(64) z(t)2< (t) < g(t)
#DI(O) #pl(O)"

Since IIz(t)ll, z(t) + Allz(t- 1)11, relations (60), (63), and (64) yield

A
(65) IIz(t)ll, <_

(1 + do(O))Co + 1)#Pl (0)
do(O)o + {(Crk),

We now consider the intervals Li T for > 1, k > k2. From (57) and (61) we
obtain

,v z(t). ( + do(0))(66) R= IIz(t-1)]l
<

t=p(i-l) #Pl (0)
Co, N Lv.

From this it follows that we have

(67) R,i
N

t=p(i-1)k

IIz(t)ll AIIz(- 1)11
IIz(t- 1)112

which gives

N

t=p(_ 1)t

A /ll(t)llt
llz(t- 1)11 JAIIz(t-1)ll2x

N

t=p(i-1)l JAIIztt-1)ll X
t=p(_)

(:tog(llz(t)ll)- log(AIIz(t- 1)11))

IIz(N)ll
(68) A]og

IIz(p(-) 1)11
/ A(N- p(_,)):og ),.

From equations (66) and (68) we get

(69) IIz(N)ll _< exp (l+/pl(0)do(0)Co)IIz(p(i-1)/- 1)l{, N L/.

Since P(i-1)k 1 D(i_l)k, we obtain using (65) for t G L, _> 2,

( A 1 ) (1+do(0))(70) Ilz(t)ll < do(O)ko (1 + do(O))Co #p-(O) exp fi7i-07 Co + ().
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We now evaluate IIz(t)ll2 for the intervals Llk,]c
inequalities /53) and (69) that

If P0 cry, we get from

(71) ]lz(t)ll2x _< E(0)2 exp (1,#pl (0)-- d(0)Co) -- (Ok).In the case Pok 0 and llk a, the intervals Li are defined for i >_ 2. In equation
(68), the case IIz(N)ll <_ IIz(p(-)- )11 is trivial and is covered by inequality (69).
Therefore, from (65), (70), and (71) it follows that

lim sup sup
k ex ETk

which together with (53) gives

(72) lim sup Ilz(t)ll, r
t--+ oo

with ED as given in Theorem 5.1. Statement 2 follows from the application of in-
equalities (33) and (72).

Analysis of Case 2. From the definition of this case it follows that relationship (44)
is valid for all t >_ Tk0. From this point on we apply Lemma 4.3, which demonstrates
that (49) is valid for all t >_ -ko. Using the same technique as in the demonstration
of (50), we conclude that there exists finite tl >_ -o such that this relation holds true
for all t _> tl. This implies that e(t) 0 in equation (10) for all t > tl. W(t + 1) then
is as in equation (51) with rl(m2) replaced by r(t). Since W(t + 1) < 0 for all t >_ t,
we obtain as in inequality (53) that

(73) IIz(t)ll,
_

E,(o) + (t), t > t.

By application of Lemma 4.3 we then must conclude

II0(t)ll <_ d0(0) + (t), t _> tl,

and we have proven statement I of the theorem for the Case 2 scenario.
Analysis of Case 3. There exists kl < oo so that cr < oo and -k1+1 oo, and

we conclude that W(t + 1) > 0 for all t >_ al and consequently from (47) we have

z(t) 
(t)

This follows since V(t) >_ O. Using statement 3 of Lemma 4.1 it is clear that there
exists a finite t2 > crk such that

(74) ]lz(t)ll o().

When we apply Lemma 4.3 together with this result we notice that

() II(t)ll
_
d0() + (t), t > t

for all t >_ t2. Similarly as in the previous analysis we conclude that there exists a
finite t3 > t2 such that e(t) 0 and ID0(t)l _> e for all t >_ t3. Setting e 0 in (75)
gives what is needed to conclude that statement 1 is in fact correct.
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Statements 2 and 3 of the theorem follow by application of equation (33) and (72)
or (73) or (74), while statement 3 follows by application of Lemma 4.1, and Theorem
5.1 is established.

We now give the main results for normalization sequence (8).
THEOREM 5.2. Let Assumptions A1-A3 hold, and assume that the algorithm

gain sequence is updated using equation (8). Then there exists 5, C, k.w, and el so
that

lim sup 110(t) 0oll 2 <_ do(0) and lira sup 1lOt(t) 0(t)ll o

where do(0) is given by equation (31) with el O.

limt_sup [y(t+ 1)-y*(t+ 1)12 <_ 1 + (1 A)I/2
E

where

ED1 max{E.r(0)9; do(O)Cr}

and C,. is a constant that decreases when C and k, decrease, while E(0) is

given by equation (17) with el O.
Proof. The proof follows the same line of reasoning as for Theorem 5.1. Let us

first consider the case when r < oc and a < for all finite k. Then it is not
difficult to see that starting from equation (33) up to equation (56), the analysis is
exactly the same and holds for the case when r(t) is defined by equation (8). This
is because all that is required up to this point is that r(t) >_ Ar(t- 1). Therefore
statement 1 of the theorem is valid.

Let us prove statement 2. First we show that maxl<<t Iz(r)l is bounded. From
inequalities (54) and (55) it follows that for sufficiently large k

(76) d0(0) + fll for all t E Tk

where 0 </31 << 1 is a small number. On the other hand, from (8) and statement 3
of Lemma 4.1 we have

1/2 C ky + C2kwC3 r0 -+- /2 + (1 ))1/2
0

Substituting (77) into equation (76) together with (53) gives

< [ (d0(0) 1/2 + l)r(t) /2 for all t E T,(78) [ (0) + (t) fo

and hence

(79) l(t)l _< (do(O)/+/l) C1 max
(1- /)1/2 l<’r<t

where

C1(77) r(t)l/9 <- (1 ,)1/2 l<r<tmax [z(r)] + Cb3
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Since fll can be made arbitrarily small, it follows from (31) with el 0 and the
definition of C4)l in Lemma 4.1 that there exists numbers 5, C, and kw such that

Cbl(80) (d0(0) 1/2 -- ill)(1 A)l/ < 1.

That is, if the level of excitation (5) is sufficiently large relative to C and kw, then
the parameter error d0(0) will be small and inequality (80) holds. From inequality
(79) it then follows that

(81) max Iz(r)l <_
l<-<t

(do(0) 1/2 -- 1)Cq53 -- ZT(0) + (;)
1 (do(O)Z/ + f11)Cq51/(X -/)1/2

By using equation (77) we then have

(s) r(t) <_ c <

Note that when C and k decrease then d0(0), Ca, E(0), and Ce decrease as well
with the consequence that Cr decreases.

From (55) and (82)we obtain

(83)
N

lim sup sup E z(t)2 < do(O)Cr.
k--,o NETk t=cr

Combining (53) with inequality (83) gives

(84) lim sup z(t)2 <_ E2Di
t---o

where ED is defined in Theorem 5.2.
inequality (84) it follows that

Froin (11), statement 1 of Lemma 4.1, and

lim sup e(t + 1) 2 < 1 q- ED +
t-,c \ (1 A)I/ {i- li

Thus the theorem is proved for the case when ak < ec and -k < oc for all finite k.
The cases when there exists a finite 0 so that -ko < ec and ako oc or there exists

kl so that -1+ oc and cry1 < oc are trivial, cl

Remarks.
1. The advantage of the normalization signal given by equation (8) over that

given by equation (7) is that it does not require a knowledge of the charac-
teristic time constant A0.

2. From Assumption A3 it follows that

lim 21-0, lim E,(0)=0 lim
C ,ko --*0 C. ,k --*0 C,k -*0

From the definition of d0(e) in equation (31), the definition of ED in state-
ment 2 of Theorem 5.1, and the analysis given above it then follows that

lim d0(0) 0, lira ED 0.
C. ,k. ---,0 C. ,k --,0
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Consequently from statements 1, 2 of Theorem 5.1

lira A- lY(J + Y* (J + 1)1
C,k.w---0

j--1

and

=0

lim 110(t) 0oll 0.
C ,k.w

Similar res.ults can be derived from the expressions in Theorem 5.2. This
implies that the tracking and parameter estimation errors are continuous
with respect to the unmodeled dynamics and the disturbances in tile sense
that when the unmodeled dynamics and tile external perturbations tend to
zero, tracking and parameter estimation errors also tend to zero. Without the
application of external excitation, the uniform convergence of the parameter
error cannot be expected.

3. When persistent excitation is applied, the self-stabilization works in the fol-
lowing manner. Whenever the estimator produces parameters that cause the
adaptive loop to become unstable, the controller stabilizes itself by produc-
ing excitation, which results in parameter tuning. This tuning is the result
of "self-stabilization" and takes place even when the external signals are not
excited. In fact, the analysis shows the adaptive control algorithm passes
through two phases characterized by the intervals Q and T, defined in
the proof of Theorem 5.1. In the intervals Q, the function W(t + 1) is non-

positive, which implies stability of the input and output signals. During these
intervals of time the parameter estimates may drift unless external excitation
is supplied. Furthermore, the analysis shows that the level of excitation needs
to be higher, in some sense, than the intensities of the disturbances and the
unmodeled dynamics. In this respect our result is equivalent to previous
results that have been obtained using averaging analysis.

4. From a practical point of view it makes sense to turn the excitation and
estimation algorithm off" after the parameters have settled and acceptable
performance has been achieved.

5. There exists a finite level of excitation and a finite time - so that the esti-

mate of the high frequency gain, D0(t), stays away from zero, i.e., ID0(t)l >_
for all t _> -. This implies that the modification introduced to avoid division
with small numbers is only used during a transient period. This observation
can be used to motivate the use of projection and persistent excitation to solve
singularity problems associated with the solution of Bezout-like equations as

well.
6. The results developed in this paper can be extended to indirect control and

estimation. In particular, the obtained results lead in a natural way to the
definiton of a robust controller based on the use of H-like design techniques.

7. The burstings can only have finite duration. An estimate of the longest
period of time a burst is tolerated by the adaptive control algorithm can be
calculated from equation (68).

6. Conclusions. In this paper we show that excitation with fixed and finite
energy can be used to stabilize the estimator in a direct adaptive control algorithm.
We show that the parameter estimates and the input/output signals remain bounded
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when the level of excitation is sufficiently high relative to the magnitude of the external
perturbations and the intensity of the unstructured unmodeled dynamics. We also
show that the parameter estimates "converge" close to their optimal values. In other
words, we show that it is possible to perform identification of open-loop unstable
systems and that we can bound the parameter estimation error. The results apply
to systems that have a stably invertible nominal model. It is quite straightforward
to generalize the results to a broader class of systems and to apply more complex
control laws. A few practical problems remain to be solved. First, it is not clear how
to develop algorithms to monitor performance and turn the estimation algorithm on
and off. Second, while we have been able to develop guidelines for choosing excitation
level through the definition of 5, these are not so easy to implement because of the
fact that bounds on certain system H norms have to be known in advance for us to
be able to implement the approach.
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IDENTIFICATION OF q(x) IN ut Au- qu FROM BOUNDARY
OBSERVATIONS*

SERGEI AVDONIN* AND TItOMAS I. SEIDMAN:

Abstract. We consider the problem of recovering the coefficient q(x) in the equation ut Au--
qu from boundary observations. Uniqueness of q based on knowledge of the Neumann Dirichlet
response operator is shown as an implication of (known) corresponding results concerning the inverse
problem for the corresponding hyperbolic equation wtt Aw- qw. This is then reduced to use of
the response to a single input with some consideration of computational approximation.

Key words, identification, parabolic, partial differential equation, uniqueness, approximation

_&MS subject classifications. 35R30, 35K99, 35C99

1. Introduction. We consider the problem of identifying the (unknown) coeffi-
cient q q(x) in the parabolic partial differential equation

(1.1)

assuming input/output access only at the boundary E ET := (0, T) x Off. More
precisely, we assume that we can specify the Neumann data for (1.1) with trivial
initial data

(1 2)
Ou
0-- f on Y]T

t=0
--0 on

and then observe the corresponding Dirichlet data,

(1.3) g := u

Formally, then, we have a linear input/output map (Neumann Dirichlet response
operator)

R1 Rl(T;q)’f g,

defined through (1.1), (1.2), and then the observation (1.3). Our principal result is
that R1 (for any T > 0) uniquely determines the coefficient function q(.) appearing
in (1.1), i.e., that

(1.5) q R (T, q) is injective on 04

when considered for q in some suitable set 04 of admissible functions.
We note that results like (1.5) are already available for the inverse problem for

the corresponding hyperbolic equation

(1.6) wtt Aw- qw on (0, T) x ft.
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Our approach exploiting the deep connection between (1.1) and (1.6) via transforms
with respect to t --is stimulated by D. Russell’s argument ([14]; see also [15]) showing
how to deduce exact null controllability of the heat equation for a bounded region
C ]pN from a corresponding wave equation result. We may restate our description

above to say that our primary result is the implication, under fairly general hypotheses,
of (1.5) from

q - R2(T, q) is injective on ,4,

where R2 is the corresponding Neumann Dirichlet response operator for (1.6). This
argument will be given in 2.

Parenthetically, we note that a quite different argument could alternatively obtain
parabolic identifiability from corresponding results to the extent that these would be
available for the elliptic rather than the hyperbolic case, i.e., deriving (1.5) from (cf.,
e.g., [11])

q H R0 (q) is injective on jI,

where R0(q) f H 9 is the Neumann Dirichlet operator for the elliptic equation

(1.9) Av + qv 0 on t, f(x) g := v

To see this, one applies (1.1) and (1.2) to f constant in t which gives u analytic in
t and, assuming q > 0, convergent to the steady-state solution ’v of (1.9) as t
This analyticity implies that R (T, q)f uniquely determines g(.) := Uloa not only on

[0, T] but for all t > 0; compare the approach of [16]. The limit as t --, oc is then
also uniquely determined so, for any such f f(z) and any T > 0, one sees that
R1 (T, q)f RI (T, ) iinplies R0(q)f R0(); compare [10].

Whereas it seems that the entire response operator R2 may be needed for identi-

fiabilit for (1.6), we will show in 3 that a single experiment, using a suitably chosen
input f, and observing the associated output

:= (T;

suffices to identify q in (1.1), i.e., that f, can be chosen so that F is injective on
ft.. Section 3 will also include some additional remarks on possible computational
implementation.

2. Principal results. We assume throughout that
with sufficiently smooth boundary 0 for the relevant trace theory to apply for the

Ouoperators B u u[o and C u -, bY and for the consideration of Neumann
conditions. We also assume that the unknown coefficient q is in L(Ft); there is
then no further loss of generality in assuming, as we shall do, that q :> 0 since a
substitution v := e-atu replaces q by q + a and f,g by e-’tf, e-’tg so q R(T,q)
will be injective if and only if q R (T, q + a) is injective.

Let A Aq be the elliptic operator A -A + q on 7-/ := L() with domain
:D :D(A) := {u E g2(t) Cu 0}. We note at this point the existence of an
orthonormal (with respect to T/) basis of eigenfunctions

(2.1) Aek

with 0 < A <_ A <: c since we have taken q > 0.
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We introduce the Green’s operator G defined by G H u with

(2.2) Au + qu 0 on , Cu p E X := L2(0).
We certainly have u e Hl(t) for arbitrary e X L2(0t), so noting [7], [8], and
the equivalence of HS([2) and T(A) for 2s, we have

(2.3) A1/vG A’ co_nt.
a if cgf/is, e.g., in C1/. Then the solution u of(with AvG A" -- for any 9 <

(2.4) /t+Au=0, Cu=f(t) withul =0
t--0

has the representation [3]

(2.5) u(t) [A1/2S(t s)][A/2G]f(s)ds,

where S(.) is the (analytic) semigroup on 7-/generated by -A so

{2.6) IIA’S(t)l _< Mt-.
From (1.3) and the form of (2.5), we then see that R is a convolution operator,

(2.7) [Rlf](t) 9(t) B(t) K(t- s)f(s) ds,

with the kernel K (.) K1 (’; q) given by

(2.8) K (t) { 0
BAS(t)G

where, noting (2.3), (2.6), and

(2.9) BA-" 7-/c--n-nt’ A’

we may write

for t _< 0,
fort>0,

(any /> 1/4),

with a < "Y < to see that IIK(.)II is integrable whence R1 is, e.g., a continuous
operator from $’T L((O,T) x OFt) to itself.

At this point it is convenient to shift to the Fourier representation for the semi-

group. Using (2.1) in (2.8) gives the series representation

(2.10) K, (t). E Ae-kt <eL, Gf}Be

for t > O. What we will actually need is the Laplace transform of this"

R() :=

(2.11)

fo
e-StK(t) dt

E1 e-ste-ktdt<ek, G}Bek

(e G>Bes+----7
k

BA(s+A)-G{ for s > 0.
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Note that the final form of this easily gives boundedness on A" of I1 (s) for s >_ 0,
so we have no difficulties justifying convergence for the series and our manipulations.
More precisely, we observe that everything certainly works well for the core of the
operator (specification for in a suitable dense set of nice functions), and then we
can extend by continuity, using the final form.

With boundary conditions and initial conditions, the wave equation (1.6) now
becomes

+Aw=0, Cw=f withw=0=batt=0,

and the response operator is the map

R2 R2(, q) f Bw,

with w defined by (2.12) for the time interval (0, T). It is well known that this R2 is
a bounded operator from, e.g., 9r L2((0,) x Oft) to itself.

We proceed directly to the separation-of-variables solution, again expanding with
respect to the orthonormal basis

w y(t)e, Gf- c2(t)e.
k k

One easily verifies from (2.12) that each y(.) is the solution of the ordinary differential
equation

) + ,y ,k(t) with y(0) 0 )(0)

whence, noting that the assumed positivity q > 0 gives/k > 0, one has

yt(t) # [sin #(t- s)]k(s)ds

Substituting, this gives the series representation

[R.f] (t) Bw(t) E #k[sin #k(t s)](e, Gf(s))Be ds,
k

so we see that R2 is a convolution operatorf K2 * f with the kernel K(.) given,
corresponding to (2.10), by the series

(2.14) K. (t)
k

Again, we need the Laplace transform of this:

(2.15)
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Again, we think of these manipulations as performed for nice , with the result then
extended by continuity, using the final form. Comparing (2.15) with (2.11) gives our

key identity:

(2.16) I2(s; q) I (s2; q) for s > 0.

Returning to (2.8), we observe that, since S(.) is an analytic semigroup, the oper-
ator function t -, K1 (t; q) is itself analytic in t (for complex t with positive real part).
It follows that specification of RI(T; q) implies specification of the kernel Kl(t; q)
for 0 < t < T and so, by analyticity, uniqueness of the determination of Kl(.; q) on

(0, oc). This means that the Laplace transform I1(.; q) is uniquely determined, as is
the Laplace transform I(.; q), by the identity (2.16). By the standard uniqueness
results for Laplace transforms, this means that K(t; q) is determined for t > 0, so
the convolution operator R.(2P; q) is uniquely determined for arbitrary 2 > 0. Ve
have thus proved the asserted implication in the following theorem.

THEOREM 2.1. Suppose it is known, for some bounded f in IR and a set.A of
bounded functions on ft, that (1.7) holds for some o Then (1.5) holds for arbitrary
T > O. (Equivalently, if q, jI with q

_ , then R1 (T, q) RI (T, ) for all T > 0.)
From [12] we have, restated in our notation, the following result.
THEOREM 2.2 (R-S). Let f be a bounded region in IR with C boundary
T (.) hod fo ,4 ().

Combining this with Theorem 2.1, we immediately obtain the desired identifia-
bility result for (1.1).

COROLLARY 2.3. Let be a bounded region in IR with C boundary Of. As-
sume it is known that the coefficient q in (1.1) is in .A- L(). Then q is uniqely
determined by R (T, q).

The observation that verification of our manipulations on a dense set is sufficient
could become more significant if we wished to consider variations on the operator. In
particular, if we wished to use Dirichlet data as input instead and then observe the
corresponding Neumann data (reversing the roles of B and C), then the regularity
results would not be as cooperative, and it is useful to observe that equality on a core

The argument also provides a partial converse to the implication. If one could independently
show uniqueness of the correspondence R1 (T; q) q (for some T and some class of q), then one

would necessarily have uniqueness for R.(.;q) q, with observation now needed on all of IR+
since analyticity in is unavailable for R. to obtain uniqueness from an interval without further
information.

2 We are indebted, for the reference to [12], to a referee of a previous version of this paper which
referred, instead, to a sequence of recent papers, [1], [2], [4]-[6] by M. Belishev and others, which
provide a reconstruction algorithm for q, justified under a control-theoretic hypothesis that the pair
[ft, q] is normal, i.e., 0.< < T. the set of approximately reachable states by boundary control on

(0, t) is all of T/t :-- {v E 7-t v(x) 0 if Ix 0f > t}. Using duality, a sumcient condition for this
normality is that 0f and q be analytic for applicability of the classic Holmgren-John uniqueness
theorem, although we note that this has quite recently been extended to the nonanalytic case by
Tataru [17] (see, also, related results by Robbiano [13] and by H6rmander [9]). In comparison with
[12], we observe that considerable regularity may be needed for normality in the reconstruction but
not for the (nonconstructive) injectivity of q R2(,q). On the other hand, using the results in

[17] one can obtain uniqueness results applying to observation on a part of the boundary, while the
results in, e.g., [6] consider more general wave equations

(2.17) (x) v. ((x)V) q,

where any two of the three coefficient functions p, #, and q are assumed to be known, with the third
coefficient to be recovered. The argument in 2 for our key identity (2.16) is valid also for these
settings, so one would obtain corresponding identifiability results for the parabolic case. We view
these as directions for future extensions of our present results.
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suffices. Alternatively, one could obtain continuity using other boundary operators B
and C by suitable adjustment of the spaces, perhaps admitting different A’in for f and
Vout for 9 so that one can then proceed exactly as we have done. For such possible
generalization, we also note that we do not need the full strength of the present self-
adjointness of A, giving orthonormality of the eigenfunctions in (2.1) but only, e.g.,

that Eae -, [Ela12] 1/2 is an equivalent norm.

3. Identification with a single input. Theorem 2.1 and its corollary require
complete knowledge of R1 in order to determine q. Interpreted directly, this would
mean that one would need knowledge of all possible input/output pairs If, g] cor-
responding to (1.1), (1.2), and (1.3), requiring an infinite number of input/output
experiments. Using the form of R given in (2.7) and (2.8), together with the regu-
larity associated with (1.1), we now wish to show that a single experiment, observing
the output g, for a single properly chosen input f,, will suffice to determine K(.)
and thus q.

Taking any total set (e.g., an orthonormal basis) {} for A’ Lg(Oft) and a
sequence of times 0 tl < t9. < T, we may set

(3.1) f,(t) E ck (0 < t < T)
tk<t

with, e.g., c 2- ensuring convergence in 9rT We set iZ (t,t+), i
(0, tk+l tk) for k 1,2,... so Z := [_Jk Zk [0, T) \ {tl,t,...}. Clearly, g, := Rlf,
will be continuous and piecewise analytic in t on Z with

(3.2) t* (t)
t<t

Although g, certainly depends on q, we note that no a priori information about q is
needed for this construction of f,.

From (3.2) one first notes that knowledge of 9, on iY just gives KI(.) on

by differentiation and therefore determines K(t) for all t > 0 by analyticity. Next,
Kl(t) from t, to obtain K (’)2knowing 9, on iZ’2 we may subtract the now-known

on i. whence, again by analyticity, K(t) would be known for all t > 0. Recursively,
we similarly obtain each K(.) on ik and so on IR+ for k 3, 4, Thus, a single
pair If,, 9,] constructed in this fashion will uniquely determine K (t)c for each k and
all t > 0 and hence will determine q.

The input function f, is here piecewise constant in t, but we note that replacing
f, as input by its time integral just produces the time integral of 9, as output and
thus also determines the original t), of (3.2). Iterating this idea, we can use an input
which is C" in t for arbitrary rn. We can get any desired spatial regularity by a
suitable choice of {(.)} as smooth functions on Oft.

THEOREM 3.1. Given f and any T > 0 one can select a suitable (smooth) func-
tion f, UT such t’hat the corresponding map F of (1.10) is injective when considered
on al C L (ft).

Fixing ft, T, and f, as above, the injectivity of F in Theorem 3.1 means that
(exact) observation of the output g, F(q) uniquely determines q. The obvious
next question is whether this determination can be realized computationally: We
would like an implementable procedure to recover q to any desired degree of accuracy,
provided we are able to compute to arbitrary accuracy and to produce the input and
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measure the output with arbitrary accuracy. This is far from obvious in view of the
ill-posedness of the problem for any reasonable topologies.

The argument for justification of any computational schema for the problem sets
this in the context of a sequence of increasingly accurate approximating problems and
then asserts the convergence of the computed approximants qj to the true coefficient
q. We begin by writing our a priori information about q in the form

q /C C C L

Our principal assumptions here are that E is a closed subset of L(f) and that

F K co__nt. for some suitable topology with respect to which we can assume
an increasingly accurate sequence of measurements gj g,. Standard techniques
of numerical analysis enable us to provide computational solutions for the defining
equations, giving a sequence of approximations Fj F. We assume here that this is
uniform convergence on 1 but note that the convergence need only be at q if, instead,
we would have uniform equicontinuity on h: of the Fj. The various approaches to ill-
posed problems now each provide some selection procedure: Given gj, Fj (with some
accuracy estimate), there is a way to select qj E K so that Fj(qj) , 9j, and we may
assume this is done in such a way as to have

(3.4) [F(q) gel -, 0 as k - .
If/C is compact, the generic argument is to obtain (for a subsequence) convergence

qj --, ] for some . We then have

r() , [r() r()] + [r() r()] + [r() ] + [

and since each term on the right goes to 0, we conclude that r(c]) g,. By our

uniqueness theorem, we must then have q. Finally, uniqueness of the limit
makes the subsequence extraction irrelevant so, as desired, one has convergence of the
sequence of computed approximants to the true solution (qj --+ q) in the sense of the
C topology.

As a variant of this, suppose one were to know a priori only that q E L(t) but
did not know any specific bound. We then propose the selection procedure: Choose

(3.5) Ilq liLy-<a) + Ilq IlL<a> min +j

subject to a constraint on the residual error

(3.6) IlI’(q) gll -< e}.
-+ 0, giving (3.4) but withWe make the assumptions that j ---+ 0 and also that j

large enough (in comparison to the error estimates for the computational map Fjj
and for the observation gj) that q itself is permitted to compete in the minimization,
i.e., that (3.6) is satisfied with qj q.

THEOREM 3.2. The computational procedure determined by (3.5) and (3.6) pro-
vides a sequence (qj) which converges strongly to the true q in LP(fi) for all finite
p.

Pro@ If we set
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then (3.5), with the admissibility of q in (3.6), gives

(3.7) lim sup[a +/3] <_ [a +/3].

Since this means {aj } is bounded, we must have, for a subsequence, weak convergence
in L2(ft), i.e., qj c. Further, convexity gives

(3.8) & <-liminf aj, II011L ( >--" liminf

The hypotheses, together with (3.6), ensure that

lim r qj lim r lim 9j g, := r(q).

Now let uj be the solution of

(3.9) ut Au qju, u, f., u 0
t=0

and observe that the uniform L bound on qj gives the standard (uniform) bound on

uj in L([0, T] Hl(ft)) and so also a uniform bound on/tj in L([0, T] --, H-l(f)).
Using the Aubin compactness theorem, we may extract a further subsequence to have

uj t in, say, L([0, TI -- HS(ft)) for any s < 1. From the weak formulation of
the problem, one easily sees that for qj , one has t satisfying the limit equation.
Since the boundary trace is closed when applied to solutions of (3.9) and we already
know that C’aj gj g,, it follows that I’(O) g., i.e., P(c)) F(q). Since (3.8)
gives 0 E L(Ft), Theorem 3.1 now gives c) q, and uniqueness of this limit means
that we may ignore the previous extractions of subsequences. Since this gives & a
and/ -/, it follows from (3.7) and (3.8) that aj -- a. This, together with the weak
convergence qj q, gives strong convergence qj ---, q in the Hilbert space L2(f). As
fi is bounded, this immediately gives Lp(ft) convergence for p <_ 2, and the presence
of an L(ft) bound also gives LP(ft) convergence for all p < ec. [3
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EXACT OBSERVABILITY OF THE TIME-VARYING HYPERBOLIC
EQUATION WITH FINITELY MANY MOVING INTERNAL

OBSERVATIONS*

A. YU. KHAPALOVt

Abstract. The problem of exact observability of the linear hyperbolic equation with time-
varying coefficients under finitely many internal observations is considered. The question with which
we are concerned in this paper is a sharp correspondence between the internal regularity of the
solutions and a type of observation required to provide LC(0, T; Rn+l)- or C([0, T[; Rn+l)-exact
observability with respect to the energy norm. Two types of observations are considered: pointwise
and spatially averaged, for which the existence of needed observation curves (continuous on [0, T[ for
n 1) and set-valued maps (continuous on [0, T[ with respect to Lebesgue measure) is established.
The techniques involved are related to the construction of suitable skeletons for these curves and
maps.

Key words, time-varying hyperbolic equation, exact observability, moving observation

AMS subject classifications. Primary, 35L20; Secondary, 93C20

1. Introduction and problem formulation. Let f be an open, bounded
domain in Rn with boundary cqf. We consider the following initial-boundary value
problem:
(i.i)

aij(x,t) -a,i(x,t)-a(x,t)y in Q=ax (0, T),
i,j=l i=1

y=0 in :E =Oft x (0, T),

Y It=0= yo, Yt It=0 yl.

We assume that the operator in the right-hand side of (1.1) is uniformly coercive"

i=1 i,j=l i=1

for ViER a.e. in Q,

aij(x,t) aji(x,t), i,j l,...,n, /21 const > 0, 2 const > 0.

The aim of this paper is to study the exact observability of (1.1) under finitely many
scalar observations (as it generally occurs in applications) with respect to the energy
space HE H(Ft) x L2(t), which is of physical importance. The basic assumptions
on the regularity of the solutions of the time-reversible problem (1.1) are

(1.2)
{Y, Yt} e C([0, T]; HE), dE1/2(y( ", t)) < E1/2(y( ., 0)) <_ c E1/2(y( ., t)), Vt [0, T],
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1994.
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where d(= d(T)), c(= c(T)) > 0 (e.g., d c-1) are given and /1/2(.) is the energy
norm,

(I

1/2

(o o)Ox I=

(Recall that, due to Poincar6’s inequality, E1/(y(.,t)) is equivalent to the standard
HE-norm.) The general structure of the observations of our further interest is derived
from (1.2):

(1.3) [0,r] t --+ z(:) ((t){Ty( -, t), yt(’, t)} E /n+l.

The question of primary concern in this paper is a sharp correspondence between
assumptions on the internal regularity of the solutions of (1.1), which may vary (e.g.,
in the context of pointwise observations) with the growth of the space dimension, and
a type of finite-dimensional operator (observation) in (1.3) that is required to provide
L(0, T; Rn+l) Or C([0, T[; Rn+l)-exact observability in a given space dimension.

DEFINITION 1.1. Given a normed space B and a linear manifold H C HE,
the system (1.1)-(1.3) is said to be B-exactly observable (this paper deals with B
L(O,T;R+1) or C([O,T[;R+I)) on H with respect to the energy norm (we omit
the latter in the text) if

(1.4) such that G{Vy, yt} IIt >- / E1/2(Y( ’, 0))

for any y that .satisfies (1.1)-(1.2) and such that {y(., 0), yt(’, 0)} E H.
Remark 1.1. This definition takes into account a situation typically arising in the

context of infinite-dimensional studies, namely that the domain of the observation
operator may not match the regularity of the solutions of the system considered
(while being, say, densely defined). Note that it treats the well-posedness of the
observation (1.3) as the enclosure of the output z in (1.3) into B when {y(., 0), Yt(’, 0)}
ranges all over H, while the continuity with respect to this pair in the energy norm
is not required. On the other hand, it is clear that (1.4) (if it holds) generates some
topology on H. The interrelation between Definition 1.1 and the dual issue of exact
controllability is briefly discussed at the end of the next section.

In the context of the time-invariant setting the problem of exact observability for
(1.1)-(1.3), being of traditional practical interest, has received considerable attention
in the literature. In particular, how the Hilbert Uniqueness Method can be linked
with the static pointwise sensor structure was discussed by Lions [13] (see also E1
Jai and others [3]) for the wave equation under the following observation: z(t)
y(, t), t [0, T], when B L2(O,T). For the same system the results of Triggiani
and Tataru [21], [22] on exact controllability imply that for n 2,3 L2(0, T)-exact
observability with respect to the energy norm is not possible. The techniques of the
above-mentioned papers include those of harmonic and nonharmonic analysis. The
L(0, T)-exact observability of the one-dimensional wave equation with static point
observation as in (2.1) (i.e., when 2(.) 2) was established for T > 2 x max{1-
x,x} by Ho [5], who used the multipliers techniques. In [8], by making use of the
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integral formula for the general solution of the wave equation, it is shown that the
infimum of the just-mentioned observation time can indeed be achieved. We stress
that the techniques used in all the above works are based heavily on the time-invariant
properties of the problems considered. In contrast to the time-invariant case, very
little is known about the general time-varying problem (1.1)-(1.3).

In the present paper we establish the existence of moving (this is natural for
the time-varying processes) (n / 1)-dimensional observations (1.3) of two types: the
point and the spatially averaged observations (2.1) and (2.6), which are able to ensure
the L(0, T; Rn+) or C([0, T[; Rn+)-exact observability of (1.1)-(1.3) on manifolds
that are sharply linked with the assumptions on the internal regularity of the equation
(1.1). The techniques employed are related to the construction of suitable skeletons
for observation curves and set-valued maps, associated with (2.1) and (2.6), and based
on a priori energy estimates (1.2). We remind the reader that (1.1) is not conservative.
This approach was applied to the wave equation (in an arbitrary space dimension) with
moving point observation in [6]-[8] under the assumption {Vy, Yt} e IV(J0, T] x )]
("-" stands for the closure). In this paper we show that the same approach is capable
of handling the linear time-varying hyperbolic equation (1.1) under rather general and,
in a certain sense, minimal assumptions on its regularity.

The paper is organized as follows. Section 2 states the main exact observability
results, Theorems 2.1, 2.2, 2.4, and 2.6, which are then proven in 3 and 5. Section 4
discusses auxiliary properties of the spatially averaged observations. In the appendix
we refine the result of Theorem 2.6.

2. Main results. We begin by the point observation

t), t)}, t e [0,
where 2(t) E a.e. in [0, T] (in fact, we can consider only internal curves; see
Remark 3.1), is a given function (curve) measurable with respect to Lebesgue measure.
In general, this observation is ill defined on the solutions of the system (1.1)-(1.2).

Assumption 2.1. H C HE C {{y(.,O),yt(.,O)} {Vy, Yt} e L(0, T; [C(f/)]+)}
is a linear manifold separable with respect to the following norm:

(2.)
{y(., 0), y(., 0)} I1-11 {y,y} IIC(IO,TI;) /ss up {Vy(.,t),yt(.,t)} I1[c(()],+1

tE[0,T]

Remark 2.1. The condition {Y, Yt} L(0, T; [C(t)]n+l) in the above is to
ensure the enclosure of the output in (2.1) into L(0, T; R+I) whereas separability
is due to the techniques applied in this paper (recall along these lines that L(Q)
is not separable). A number of requirements (beginning with those providing the
classical solutions) on the system (1.1) that imply Assumption 2.1 can be found in
the literature (see, e.g., [15], [17], [9]).

THEOREM 2.1 (point observation). Let H C HE satisfy Assumption 2.1 and
T > 0 be given. Then there exists a class of measurable curves 2(.), which make the
system (1.1)-(1.2), (2.1) L(O,T;Rn+)-exactly observable on H.

THEOREM 2.2 (the one-dimensional case). Let gt =]0, 1[, T > 0 be given and
Assumption 2.1 be fulfilled for H. Assume, in addition, that y H(Q) when
{y(.,0),yt(.,0)} H. Then the observation curves can be selected in Theorem 2.1
to be arbitrarily smooth on [0, T[ and to lie entirely in .

The condition

(2.3) ess sup a11t, alltt, ax, ax, alt, a, at

_
const, n 1

Q
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(where all the derivatives are understood in the generalized sense), given in Ladyzhen-
skaya [9, pp. 162, 164]., ensures the fulfillment of the assumptions of Theorem 2.2 with

(2.4) H (H2(gt)

COROLLARY 2.3. Let (2.3) be verified. Then Theorem 2.2 holds for H as in

(2.4).
Theorem 2.2 admits a straightforward extension to the following type of observa-

tions:

( meas-l{Sh(t)(c(t))} fs,(t)((t)) Yx(X,t) dx I(2.5) z(t) meas-{Su(t)(2(t))} fs,()((t)) yt(x,t) dx
t [0, T],

where Sh(2) {x x- 2 < h, x ]0, 1[} and meas{.} here and elsewhere stands for
Lebesgue measure.

THEOREM 2.4. Let =]0, 1[. Given T > O, there exist arbitrarily smooth
functions 2(t) , h(t) > O, t [0, T[, which make the system (1.1)-(1.2), (2.3),
(2.5) C([0, T[; R2)-exactly observable on H as in (2.4).

When the space dimension is higher than one we do not manage to extend Theo-
rem 2.4 to the general multidimensional case under the assumptions (1.2): this would
require, from our point of view, an additional pointwise regularity of the solutions
(e.g., as in Assumption 2.1; see Remark 3.3), Which in this paper in the context of
the spatially averaged observations seems to us redundant. Therefore, xve enlarge the
class of the spatially averaged observations (2.5) as follows:

f(t) v (x, t)yx (x, t)dx
1

t [0, T],
(x,t)yx(X,t)dx

(2.6) z(t) meas{(t)} f(t) v

where [0, T] 3 t (t) C is a given set-valued map from [0, T] into the set of all
measurable subsets of and {V}p=, are given measurable functions of a sign-type

0 (x, t)Vp

To avoid a misunderstanding, it is assumed here and everywhere below that if (t)
is of zero-measure at some t*, then G(t*) is the zero-operator. The last type of
observations may be considered a generalization of the concept of a moving point
observation to the case when a curve cannot be associated with a well-defined finite-
dimensional observation of interest. The map (.) then plays a "pure" role (compared
with (2.5)) of an observation curve. By virtue of (1.2), the observation (2.6) is well
defined for any t G [0, T] and all the outputs are bounded when {y(., 0), Vt(’, 0)} G Ha,
where

(2.7) Ha HE {{y(., O), yt(., O)} {Vy, yt }

DEFINITION 2.5. We shall say that a set-valued map [0, T] t F(t) C is

continuous with respect to Lebesgue measure at t t* if

meas{F(t*) A F(t* + At)} 0, At 0,

In the context of Lc(0, T; R2)-exact observability this result was announced in [6].
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where AAB stands for the symmetric difference AAB (A\B) U (B\A).
Remark 2.2. The continuity of f(t) at t t* in the sense of Definition 2.1

implies the continuity of the function f(t) meas{f(t)} at t t*. Moreover, if
meas{f(t*)} > 0, then all the outputs of (1.1)-(1.2), (2.6) are continuous at t t*.

THEOREM 2.6 (Spatially averaged observation). Let Ha and T > 0 be given.
Then there exists a class of set-valued maps (.) continuous with respect to Lebesgue
measure on [0, T[ and associated functions { o v c C([0, T[ n2Vp }p=l, ()) that make
the system (1.1)-(1.2), (2.6) C([O,T[;R+l)-eaactly observable on H-

We emphasize that the proof of this theorem, given in 5, is constructive (as well
as those of Theorems 2.1, 2.2, and 2.4) and does not involve the constraint (2.7),
which is to outline an a priori largest class of those solutions that are consistent with
C (or L) space for the (thus, a priori bounded) outputs. Once the set-valued map
and functions satisfying Theorem 2.6 are found (see (5.2), (5.3)), the set H in (2.7)
can be extended (due to (5.7)) to the following "a posteriori" largest set (see also 6):

(2.8) Hap HE{{y(’,O),yt(’,O)} z e C([O,T[;nn+l),
where z is due to (1.1), (1.2), (2.6)}.

COROLLARY 2.7. Let the observation (2.6) be defined by (5.2), (5.3) in 5. Then
the assertion of Theorem 2.6 holds for H Hp.

The  onowin  ss,m tio, en ure [9,

(Z.9) s,p a, co,st,
Q

where the derivatives are understood in the generalized sense.
COROLLARY 2.8. Let (2.9) be verified. Then Theorem 2.6 and Corollary 2.7

hold.
Note that Theorems 2.1, 2.2, 2.4, and 2.6 deal with observations that employ the

only curve or set-valued map. In the appendix we show that the usage of independent
maps for each of y,, p 1 n, yt can considerably improve the value of in (1.4)
obtained by Theorem 2.6; see (5.7) and (A.4).

Controllability. Let g GS, K: H B, where S(t){yo,Yl} {Vy(.,t),yt(.,t)},
t [0, T]. Then the B-exact observability property is equivalent, to the bounded in-
vertibility of the operator K on its range with respect to the energy norm (see Defi-
nition 1.1) and, hence, the mximal value of in (1.4) is equal to (]] g- [])-. A
direct (duality)method (see, e.g., [19], [2], [18], [12], [20], [10], [11] and the bibliogra-
phy therein) implies that if a linear manifold H is fundamental (dense) in H, then
B-exact observability is equivalent to exact controllability of the dual control system
in H L2() x [H()]’ with controls from B’, the dual of B. Otherwise, one has
exact controllability in H, the dual of H as a linear topological manifold in HE. A
detailed study of the issue of exact controllability of the wave equation in an arbitrary
space dimension under moving point control dual to (2.1) when B L(O,TR"+1)
or LZ(O,T;+) is given in [7].

3. Point observation.

Proof of Theorem 2.1. Step 1. Let YH be the set of all the solutions of (1.1)-(1.2)
such that {y(., 0), Yt(’)} e H. We show first how for any given y e YH one can find a
curve that ensures the estimate (1.4) for this particular solution.

Fix y and let > 0 be given. By virtue of Assumption 2.1, both Vy(x, t) and
yt(x, t) are of Carath!odory type and, hence, for any measurable function 2(t), t E
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[0, T], the observation (2.1) is well defined. Let r be an arbitrary subinterval of [0, T],
meas{r} > 0. Next we set
(3.1)

e- { (x’t) E r vy(x’t) [ +yt(x’t) >
(x,t)e
ess sup (’ VY(x’t) ’9. +Yt(x’t)) /3}.

Consider the set-valued map r* t --+ F(t) {z (z,t) E e}, where r*
dom F(t) {t {1 (x,t) e} }. By Assumption 2.1, the sets F(t) are
closed almost everywhere in r*. Applying the measurable selection theorem (see, e.g.,
[4], [1]) then yields the existence of a measurable function 2(t), t [0, rl .ch that

(3.2) 2(t) F(t) a.e. in r*.

Note next that by (1.2)

(3.3) c-9.E(y(., 0)) _< inf E(y(.,t))<_ meas
tEr*

<_ meas {ft} ess sup (I Vy(x,t) 19. +yt (x, t) ).
(x,t)r*

Combining (3.1)-(3.3) yields the following basic estimate:

(3.4) E*/(V(., 0)) <_ c meas*/{f} (11 {X7V((.),.), Vt((’), ")} I1(*;+) +)1/.

Step 2. Take any 5 > 0. Select next in YH a countable (this can be done by
Assumption 2.1) &net {/}=1 in YH as follows (see (2.2))’ for any y YH there is
an element / for which

(3.5a) u/((., t) (., t)) < , vt e [0, T],

ess sup {v(., t) V(., t), ,(., t) (., t)} IlIc()l+* "
Step 3. We proceed now with the construction of an observation curve that ensures

the estimate (1.4). Let {t}__ be an arbitrary strictly increasing sequence in ]0, T[.
The estimate (3.4) implies that for each k there is a curve {2(.)} such that
(3.6)
E1/9(yk( ., 0))_< c measl/9. {f} (ll {Vy(2 (.), .), y( (.), )} I1(t,/,;/)1 _jff_/) 1/2

Let 2(.) be an arbitrary measurable trajectory defined on [0, T] such that

(3.7) 2(t)-2(t), t]t,t+[, k-l,....

Step 4. Let us show that 2(.) satisfies the requirements of Theorem 2.1. Take any
YH and an element y Y5 for which (3.5) is verified. In particular,

E/(.v(., 0)) <_ E/(v(., 0)) + .
This and (3.6)-(3.7)imply

E/9.(I( ., 0)) <_ c measl/{ft} (11 {v((’), "), (w(.), .)} II(t,t,+,.+) + ,)*/’ + 5
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Now, by virtue of (3.5b), we arrive at

E1/2(y( ’, 0))

_
C meas1/2 {(’} (11 {Vy(:(.), .),yt((.), .) IIL(,t+;-+) /5+

In other words, we obtain the estimate (1.4) with /- (c measl/2{}(l+5+x/)+5) -1.
This completes the proof of Theorem 2.1.

Remark 3.1. In fact, the assertion of Theorem 2.1 holds true in the class of those
curves that lie entirely in the interior of t. Indeed, given , y, one can replace t in
the right-hand side of (3.1) by any strictly interior subdomain, which still preserves
nonemptiness of such a modified set e (= e(y,/)). The rest of the proof is much the
same as in the above.

Proof of Theorem 2.2. Let lima__, t T. Since y E H(Q), due to the embed-
ding theorem [15], [17], both yx(X, t) and yt(x, t) are continuous in x for almost all
t E [0, T] and in t for almost all x G [0, 1]. Therefore, one can obtain the required
assertion while avoiding use of the measurable selection theorem. Indeed, let y YH
be fixed. In Step 1 of the proof of Theorem 2.1 take any instant t, r* such that
yx(x,t,),yt(x,t,) C[0, 1]. Without loss of generality we can assume that F(t,) con-
tains a nontrivial interval. Then there is a point x, El0, 1[ such that (x,, t,) e (see
(3.1)) and yx(X,, t), yt(x,, t) C[0, T]. Using continuity of y in t, x, as was mentioned
in the above, one then comes to the conclusion that (3.4) is verified for any continuous
curve passing through x, at tiine t,, which is constant in some neighborhood of t,.
This allows us to compose 2(.) in (3.7) to be arbitrarily smooth on [0, T[. The rest of
the proof follows along Steps 2-4 in the proof of Theorem 2.1.

Remark 3.2. The proof of Theorem 2.1 deals with a net in the set YH. However,
by making use of the linearity of (1.1) and (2.1), this set can be replaced by its subset,
which consists of those solutions whose energy norms at t 0 are equal to 1 (this can
be applied to the proofs of Theorems 2.2, 2.4, and 2.6 as well). The estimate (3.8),
being then derived only for the latter, implies (1.4) with 7 (1 c measl/2{t}(5 +
x/) 5)(c meas/2{t})-. for ? and appropriately small.

Proof of Theorem 2.4. The scheme of the proof is as much the same as that of
Theorems 2.1 and 2.2.

Step 1. From the proofs of Theorem 2.1 (Step 1), Theorem 2.2, and Remark 2.2 it

immediately follows that, given * > 0 and an interval r C [0, T], for any solution y of
(1.1)-(1.2), (2.3)-(2.4) there exists a pair of (arbitrarily smooth) functions h(t) > O,
(t) e ]0, 1[, t e [0, T[, and a nontrivial interval r* C_ r such that

(3.9)
/ / /

2

meas-1 { Sh(t)((t))} yx(X, t)dx
S() ((t))

Step 2. Since (3.9) plays a role similar to the relations (3.1)-(3.2), we can establish
an estimate analogous to (3.4) for the observation (2.5) as well. Taking into account
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that

(3.5b) implies

meas-l{Sh(t)(2(t))} / I dx I,

sh(t)((t))

where G(.) stands for the observation operator in (2.5). Since the latter plays a crucial
role in the derivation of (3.8) along (3.6)-(3.7), by taking into account Remark 2.2
one can obtain the conclusion of Theorem 2.4 with respect to C([0, T[; R2)-exact
observability in a similar way, constructing (as in (3.7)) a needed set-valued map
[0, T] t Sh(t)(2(t)) to be continuous and of positive measure on [0, T[.

Remark 3.3. It is readily seen that the proof of Theorem 2.4 admits an extension
to the general multidimensional case under Assumption 2.1.

4. Generalized spatially averaged observation. We begin by studying the
properties of the observation (2.6).

Assumption 4.1. Let r be a given subinterval of [0, T]. A set-valued map [0, T]
t ---, gt(t) C t2 satisfies Assumption 4.1 on r if the set {(x,t) x e f(t), t e r} is
measurable with respect to Lebesgue measure on (0, T) and

(4.1) ess inf meas{(t)} > 0.
tEr

It is clear that if Ct(t) satisfies Assumption 4.1 on r, then all the outputs of the
system (1.1)-(1.2), (2.6) lie in L(r; Rn+l).

The following class of set-valued maps plays a crucial role in the proof of Theorem
2.6. Let y be an arbitrary solution of the system (1.1)-(1.2) and/3 > 0 be given. Set
(4.2)
r(y,t) {x E y(x,t)12 +yt(x,t) >meas-l{}E(y(’,t))-/2}, t E [0, T],

(4.3a) +0(, t) {x e (, t) , (, t) > 0}
rp_ (y, t) {x r(y, t) Y, (x, t) <0}, p-- 1,...,

(4.3b)
+ (, t) {x e (, t) (, t) > 0},

It is not hard to see that r(y, t) is of positive measure for any t [0, T]. Furthermore,
from (1.2) it follows that for any > 0

(4.4)
meas{x Vy(x,t / At)- Vy(x,t) l>_ } -. 0, when At --, 0, Vt [0, T],

(4.5) meas{x lyt(x,t+At)-yt(x,t) >- )--0, when At--0, Vt [0, T].

DEFINITION 4.1. We shall say that a set-valued map [0, T] t -- F(t) C f is
lower semicontinuous (see, e.g., [1] and the bibliography therein for various definitions
of continuity of set-valued maps) at t t* with respect to Lebesgue measure ifVa > 0

2 > 0 such that

(4.6) meas{F(t*) \ F(t* + At)} <_ 1, /At: /Xtl < z2.
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The relations (4.4), (4.5) and the fact that the inequality in (4.2) is strict imply
that r(y, t)satisfies (4.6) everywhere in [0, T]. Hence, the function f(t) meas{r(y, t)}
is lower semicontinuous on [0, T] and, therefore, reaches its minimum on [0, T] (compare
with (4.1)).

Remark 4.1. Let y be an arbitrary solution of the system (1.1)-(1.2). Then one
can deduce from (4.4)-(4.6) that for any sequence {Yi}l that converges to y in the
C([0, T]; HE)-norm the following estimate holds:

/
lim inf | min meas{r(yi,t)}| >_ min meas{r(y,t)} > 0.

Given ft(t) in (2.6), set for any t E [0, T]
o (x,t) -1 x e gt(t)},+(t) {x v(xt) x e (t)}, ,_(t)- {x v

gt+(t) {x vl(x, t) 1, x e f(t)}: f_(t) {x vl(x, t)---l, x f(t)}.

LEMMA 4.2. Let y be an arbitrary solution of the system (1.1)-(1.2) and > O,
t* [0, T] be given. Then any set-valued map ft(.) and functions {Vp)}=l, v in (2.6)
such that

(4.7) ft(t*) r(y t*), p0+(t,)= 0 (y,t*+/- ), ,(t*)=,(,t*) ,.. ,
ensure the estimate

(4.8)

E(y(.,O))<_c2(n+2)meas{ft} meas {f(t*)} ’v,p(x, )yxp(x, )dx
p--1

/2/meas-{(t*)} J vl(x’t*)yt(x’t*)dx + 13’2

Proof. (1.2) yields

((., o)) <_ z((., t*)).

Then, by (4.2)-(4.3),

(4.9) E/(y(.,O)) <_ c meas/Z{gt} ess inf (I Vy(x,t*) + yp(x,t*) +)/

<_ c measl/{f} essinf |} ilYx,(X,t*)I+lYt(X,t*)l+|.
xr(y,t* k’’-’p=l /

From (4.9) we immediately obtain the needed result.
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5. Proof of Theorem 2.6. We stress that the constraint (2.7) is not involved
in the further construction procedure.

Step 1. Let Y be the set of all the solutions of the system (1.1)-(1.2). Select an
arbitrary monotone sequence {5J}=1, 5j -- 0+, j - c. Specify next for each j an

arbitrary 6j-net Yh {Ykj}=l in Y uniformly with respect to the energy norm. In
other words, {Y5}_1 is dense in Y c C([0, T]; HE)" for any y E Y there exists
a sequence of elements Ykj such that

(5.1) /(v(.,t)- (.,t)) <_ , vt [0,T], j ,..., - (,j).

Step 2. Select / > 0. Take an arbitrary countable set of all distinct strictly
monotone sequences {t}k=l C]0 T[, j 1 with the only limit point t- T, that

is, limk_ t T, j 1 Let [0, T[9 t t(t) be an arbitrary set-valued map
of positive measure, continuous with respect to Lebesgue measure and such that (see
(.))

(5.2) (tJ) r(ykj, tJ), k, j 1,

Let {Vp}p=,n V be arbitrary functions of a sign-type from C([0, T[; L2()) such that
( (4.))

o (, t)+1, x E r+
o (yj,t) k j- 1 p= 1 ,n,(x, t{) -1 x rp_(5.3a) v

O, otherwise,

+1; zr_(yi,t),
(5.3b) vl(x’t)- I -1, x r(yj,t), k,j- l,...

0, otherwise.

Note that, due to Remark 2.2, all the outputs of (1.1)-(1.2), (2.6), (5.2)-(5.3) are
continuous on [0, T[. In the next two steps we show that the constructed observation
(2.6), (5.2)-(5.3) satisfies the requirements of Theorem 2.6.

Step 3. This step is to show that the net {ykj}k,C=l specified in Step 1 generates
via (2.6), (5.2)-(5.3) a certain "pointwise" net along the sequence {t}d= in the
set of all outputs, namely, in the sense of the relation (5.5a).

Take any y Y. Then, as was discussed in 4,

(5.4) min meas{r(y,t)} =r(y) > O.
t[0,T]

Observe that for any j 1..., k k(y,j) such that (5.1) is fulfilled the following
chain of estimates holds:

1 f" (z tJ)yx(X, tJ)dxmeas{(t.) } v
i / 0(x
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In a similar way one can derive an analogous estimate for Yr. From these estimates,
(5.2), (5.4/, and Remark 4.1 it follows that for any given y E Y, a > 0 there exists an
element Ykj such that simultaneously the following two estimates hold (compare with
Assumption 2.1):

(5.5a)

where G(.) stands for the observation operator in (2.6) under (5.2)-(5.3).
Step 4. Fix any y E Y. Let {ai}l be an arbitrary sequence of positive numbers

converging to zero and {ykj.,}= be an associated sequence of solutions of (1.1)--(1.2)
such that (5.5) is fulfilled for ai, i= 1, Then (5.5b) and Lemma 4.2 imply

E1/2(y(.,0)) <_ F_,l/2(ykj,(.,O)) nu o <_ c measl/2{ft} v/n / 2

j 1/2(3+ G(tJ,){.y.,j.,(.,tJ),yk,,jt(.,t.,)} [[,,+) + a, i= 1,....

Combining (5.6) and (5.5a) yields

1/2 ((’, 0))
< c measl/2{} n + 2 (+ G(t{){y(. t +

and, further, with

(5.7)

E/2(Y("O)) cmeas/2{a}n+ 2 <B+te[o,T[sup G(t){Vy(.,t),yt(.,t)}

which under (2.7)or (2.8)implies (1.4)with 7 (c meas/{} fin + 2 ( + 1)) -.
This completes the proof of Theorem 2.6 (and Corollary 2.7).

Remark 5.1.
(i) Note that the estimate (5.7) formally holds for any solution of (1.1)-(1.2), that

is, even if the condition (2.7) (or (2.8)) is not verified.
(ii) In order to obtain exact observability in a prescribed subspace spanned by a

finite number of solutions of (1.1)-(1.2) (as it may occur in applications), it suces
to specify a finite skeleton of type (5.2)-(5.3).

(iii) For the construction of suitable 5-nets in Step 1 one can use the Galerkin
scheme (see also Remark 3.2).

(iv) The observation map defined by (5.2) becomes lower semicontinuous on [0, T)
if at t T it is of zero-measure.

6. Concluding remarks. The problem of exact observability under finitely
many moving internal observations was discussed for the linear time-varying hyper-
bolic equation. Two types of observations linked sharply with the internal regularity
of the solutions were considered, and the existence of observation curves and set-
valued maps required for L(0, T; Rn+l)- or C([0 T[; Rn+)-exact observability was
established. The approach that was applied is related to the construction of suitable
skeletons for the observations and deals with establishing a certain countable net in
the pair of linear manifolds of the solutions and their associated outputs in the topol-
ogy that is consistent with the well-posedness of the observations. It was shown that
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this can be achieved either a priori, when a given internal regularity implies the exis-
tence of a required net for any admissible observation operator (Assumption 2.1 and
Theorems 2.1, 2.2, and 2.4, Corollary 2.3) or a posteriori, when, in order to ensure the
existence of a suitable net in the set of the outputs, a particular observation operator
has to be constructed (Theorem 2.6, Corollaries 2.7 and 2.8, and Theorem A.1).

Appendix A. Observe that the constant obtained in Theorem 2.6 (see (5.7))
is considerably "worse" than that in Theorem 2.1; see (3.8). We show now that one
can improve the estimate (5.7), namely, get rid of the multiplier v/;h + 2 if instead of
(2.6) the following observation is employed:

meas{fo(t) ffo(t) vOI(x, t) Yxl (X, t)dx

(A.1) z(t)
meas{-lOn(t)} fao(t)v(x, t) yx,(X,t)dx

t E [0, T],

n 1 }=1 v are definedwhere the set-valued maps {ftp(.)}p=l, (.) and functions {vp
as in (2.6).

Let y be an arbitrary solution of the system (1.1)-(1.2) and > 0 be given. Set
for Vt E [0, T]:
(A.2a)
0(, t)= { e 1 i(, t)Irp > meas-1 {ft} Yxp (’, t) [[-(n) }, p 1 n,

(A.2b)

Let the sets rp+ (y, t), p 1,..., r:(y, t) be defined as in (4.3) with accordingly
rp (y, t) and r (y, t) substituted for r(y, t).

THEOREM A.1. Let yet and {t}=l, j 1,..., be defined as in Steps 1-2 in 5
and [0, T[ t -- ftp(t) (p 1,,..., n), f(t) be arbitrary set-valued maps of positive
measure, continuous with respect to Lebesgue measure and such that (due to (A.2)):

(A.3) fp(t) j rp(yk, tJk), p-- 1, ,n, fi(tJ) r(yy,tJ), k,j 1,

Let o n{,},-1, a,-it-a ftio of a i-to C([0, T[; L(n)) ati4i
(5.) d (A.). T fo a otio of t wt, (.1)-(.), (A.)-(A.3) t
following estimate is verified:
(A.4)

E1/2(Y(" O)) <-- c measl/2{t2} (v/n + l/ + supt[o,T[
where G(.) is due to (A.1)-(A.3).

Proof. The proof of this theorem follows the lines of 4 and 5 with only one

exception. Namely, the estimate (4.8) is replaced by
(A.5)

2

E(y(., 0)) <_ c2 meas{f} meas- {tip(t*)} (z,t*)yx,,(z,t*)dzIVp
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+ (n + 1)/3:/
Indeed, instead of the chain (4.9) we have now

0)) _<

p=l xErp(y’t*

1/2

Y, (x, t*) + ess inf lYt(X, t*)l + (n + 1)/32]
xEr(y,t

from which we immediately obtain (A.5) and, eventually, the assertion of Theorem
A.1. S
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RENDEZVOUS SEARCH ON THE LINE WITH DISTINGUISHABLE
PLAYERS*

STEVE ALPERNt AND SHMUEL GALt

Abstract. Two players are placed on the real line at a distance d with a distribution F known
to both. Neither knows the direction of the other, nor do they have a common notion of a positive
direction on the line. We seek the least expected rendezvous time R R (F) in which they can meet,
given maximum speeds of one. We consider the cases where F is a bounded, point, discrete, or finite
mean distribution. We obtain upper bounds or exact values for R and in one case an optimality
condition for search strategies. A connection with Beck’s linear search problem is established.

Key words, rendezvous, search

AMS subject classifications. 90B40, 90D05

1. Introduction. We consider the problem faced by two players placed ran-
domly on the real line, who can move at unit speed and wish to meet as soon as
possible. They know the probability distribution of the distance between them, but
neither knows the direction of the other. They are pointed in a random direction
when placed, so they have no common notion of a positive direction on the line. We
consider what we call the case of distinguishable players, which means that we al-
low them to use different strategies. The interpretation is that they have previously
agreed which of the two roles each will take prior to the start of play. This corre-
sponds to the asymmetric rendezvous problem which was defined for general spaces in
a recent paper [1] by the first author. (That paper deals mainly with the symmetric
rendezvous problem, where the players must adopt a common mixed strategy.)

The strategy space for both players is the set of speed one paths

P {p" / , p (0) 0, IP (s) p (t)l Is tl }.

A player placed at a point x who chooses strategy p will have the time paths x +
p (t) equiprobably, depending on which way he is initially pointed. Without loss of
generality we may fix a coordinate system where player I starts at the point 0 and
player II starts equiprobably at :t:d, where the initial distance d between the players
is drawn from the known cumulative probability distribution F. We assume that they
meet in the first moment they occupy the same point. (Similar results can be obtained
if the time of meeting is the first moment when their distance is smaller than some

detection distance r, where r is small.) If I chooses g E P and II chooses h E P, then
the expected meeting time T is given by

(1) T-T(g,h)- E min{t" g(t) id + j h (t) } dF (d)

The integrand in the fortnula above represents the expected meeting time given that
the initial distance is d, considering the uncertainty about whether II is placed to the
right (i 1) and whether II is pointed to the right (j 1). For this problem we seek

Received by the editors December 15, 1993" accepted for publication (in revised form) March
17, 1994.

Mathematics Department, London School of Economics, London WC2A 2AE, England.
Statistics Department, University of Haifa, Haifa, Israel.
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the asymmetric rendezvous value

(2) R=R(F)= min T(g,h)
g,hP

or bounds on this value and, if possible, the strategies for which the minimum is
achieved. This strategy pair can be considered to be a Nash equilibrium of a game
where the players have identical interests, although we tend to see rendezvous as a
team problem rather than a game. In the symmetric version of rendezvous on the
line, considered in [1], it was shown why mixed strategies were required to achieve the
symmetric rendezvous value Rs. However, in the asymmetric version considered here
it is clear that the minimum is achieved for pure strategies.

The paper is organized as follows. In 2 we consider bounded distributions F and
obtain an upper bound R(F) <_ 9D/8 + #/2 in terms of the mean # and maximum
D of F. This compares favorably with the bound Rs (F) _< 2D + #/2 obtained for
the symmetric rendezvous value in [1]. In 3 we consider the case where F is a point
distribution; that is, where the initial distance d between the players is known. In
this case we show that R 13d/8, which in fact agrees with the general upper bound
obtained in the previous section. In 4 we consider discrete distributions F, where
the initial distance between the players can take only countably many values. In this
case we obtain a simple optimality condition. In the case of a finite distribution, this
condition reduces the search for the optimal strategy pair to a finite problem. Finally,
in 5 we consider the relation between our problem and the celebrated linear search
problem introduced by Bellman [3] and extensively studied by Anatole Beck (whose
latest is [2]) and others (including the second author [4]). We compare the rendezvous
problem to the problem faced by a single searcher starting at 0 who wants to minimize
the expected time L L (F) taken to find an object at distance d with distribution
F, which is located equiprobably in either direction. We show that L/2 <_ R <_ L, for
any distibution F.

2. Bounded distributions. In this section we assume that the initial distance
between the players is bounded above by some least number D for which F (D) 1.
For such distributions there is a simple strategy pair (t, ) (depending on D) which
guarantees rendezvous for all distributions with F (D) 1 and gives a uniform upper

bound for all such F in terms of D and the mean # foD x dF (x). As we shall see
in the next section, this bound is sometimes equal to the rendezvous value R.

The strategies referred to above are defined by the formulae

t if 0 <_ t <_ D/2,
(t)= { t if0_<t_<D, h(t)= D-t ifD/2_t<_2D,2D-t ifD_<t_<3D, t-3D if2D_<t_<3D.

The graphs of (t) and the four paths +d + h It) are drawn in Fig. 1 for d 2D/3.
It is now easy to establish the following.

THEOREM 2.1. Let F be any distribution with mean # and mazimum D (that is,
F (D)= 1). Then the rendezvous value R R (F) satisfies R <_ 14# + 9D)/8.

Proof. It is straightforward to verify, from Fig. 1 or the definitions of and
that the meeting times forming the integrand of 1 are given by

d/2 if/=l,j=-l,

min{t’0(t)=id+j]z(t)}- (D+d)/2 ifi=l,j= 1,
D + (D + d)/2 if -1, j -1;
2D+(D-t-d)/2 ifi----1, j- 1.
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d

d/2D/2 L D D+L2D 2D+L3D

Time Axis
FIG. 1. Graphs of 1, =]=d =1= , and their intersections.

L=(D+d)/2

It then follows from (1) that the expected meeting time is given by

’ )+ 2 + D+ 2 + 2D+
2

(4x+9D) dF(x)=- 4 xdF(x)+9D

4# + 9D
8

The theorem then follows from the definition of the rendezvous value R.
The strategy pair (t),/t) seems to be effective when #/D is close to one (indeed it

is optimal at one; see Theorem 3.2). However, when #/D < 1/4, the better estimate of
R <_ # + D is obtained by having one player stationary and the other searching D in
one direction and then 2D in the other. Actually we can obtain a better bound than

# + D as shown in the next theorem.
3THEOREM 2.1’ R _< # + D.

Proof. Assume that player I uses t) and that player II rests until time D and
then uses ] (for t >_ D). If the initial distance is x, then the meeting time will be

and 2D + (D + x)/2 withD + (D + x)/2 with probabilityx with probability ,
This gives an expected meeting time of 3x/4 + D. To compute T weprobability .

integrate with respect to the initial distance x, giving T 3#/4 + D
Note that the bound given in Theorem 2.1’ is better than the bound given in

(For the uniform distribution these two strategyTheorem 2.1 if and only if #/D < -.
pairs yield the same expected meeting time T .)

3. Point distributions (d known). We now consider a special case of ren-
dezvous on the line, where the players know the distance d to the other player but not
the direction. We consider, as before, that player I starts at 0 and follows the path
g (t). However, we now take the view that there are four agents of player II, following
the linked paths +d + h (t). The time T is now simply the average of the times t
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t2 <_ t3 <_ t4 taken by I to meet the four agents of II. To obtain a lower bound on
T (g, h) for all 9 and h in P, we derive lower bounds on the numbers ti (9, h,).

LEMMA 3.1. If the initial distance between the players is d, then for all 9, h P
we have that

>_
t2 k d,
t3 >_ 2d,
t4 >_ 3d,

and 8o 1 2 Z (g, h) (tl 2r- t2 -- t3 -J- t4)/d (d/2 -- d 2w 2d nt- 3d)/4 13d/8.
Proof. Fix arbitrary strategies 9, h P, and label the four agent II paths +/-d +/- h

as Li (t), indexed so that the meeting times t.i defined by min {t’g (t)- L (t)} are
nondecreasing. By symmetry considerations we may assume that L1 d- h. The
lower bound on t is obvious, the relevant estimate being

Ll(t)-g(t) >d-(g(t)-h(t))_>d-2t,

which is positive for t <_ d/2. The remainder of the proof splits into two cases
depending on whether or not L1 (0)- L2 (0).

First suppose that the condition is true; that is, L d + h. Since in this case we
have L (tl) d+h (tl) d+(d 9 (t)) 2d-9 (tl) and Lg. (%.) d+h (t2) 9 (t),
we have

(3) 2d-g(tl)-g(t2) h(tl)-h(t2) <_ t2-tl.

Solving for t2 and using the fact that ti > g (t), we have t2 >_ d because

(4) t2 >_ 2d g (t2) -t- (tl g (tl)) > 2d g (t2).

We now consider how long after time t the path g (t) can intersect the nearer of
the two agent paths which started at -d; that is, L3 -d- h. (The estimates for
the case La -d + h are higher and will not be given here.) Assuming that the
intersection takes place at a point g (t3) < 0 (otherwise both t3 and t4 will be larger
than the estimates given here), we have that t3- t2 >_ g (t) g (t), or

t3 >_ t + g (t2)-g (ta) >_ 2d-g (t3) _> 2d,

using the result that t2 -t- g (t2) _> 2d from (4). The last estimate required for this
case is for the time t4 of the meeting of 9 (t) with the last remaining player II agent,
L4 -d + h. To this end observe that

t4 t3

_
ig (t3) L4 (t3)l/2 -h (t3) d -- g (t3), so

t4 >_d+(ta+g(ta)) >_d+2d=3d, by (5).

We now consider the remaining case where L (0) - L2 (0). With our choice of
L d h, this means that L2 -d +/- h. To obtain the required estimate on t2,
consider the speed one path f (t) which equals L until t and then follows 9 until
t. Since If (0) L2 (0) 2d, and f (t.) Lg.(t), we have t >_ d. Since both f and
L. can reach 9 (t2) in time t, we have

(6) >_ d +
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VVe first restrict ourselves to the case where L2 -d + h, as the alternative leads to
larger estimates. Since g (t2) L2 (t2) -d+h (t2), we have h (t2) g (t2)+d. Hence,
regardless of the indexing, we have IL3 (t2)l IL4 (t2)l 2d+lg (t2)l, g (t2) is between
L3 (t2) and L4 (t2), and the latter two paths must move in opposite directions. Hence
by symmetry we may assume without loss of generality that g (t2) >_ 0 and that
L3 d+h. Since L3 (%)-g (t2) 2d and L3 (t3)-g (t3) 0, it follows that t3- t2 >_ d,
and hence t3 k 2d. The final agent is L4 -d-h. Thus L3 (t2)-L4 (t2) 4d+2g (t2).
The path which follows L3 from time t2 to time ;3 and then follows g until time t4 is
a continuous path with speed bounded by one which goes from L3 to L4. Hence we
have t4-- t2

_
71 [4d + 2g (t2)] so that t4 >_ t2 + 2d >_ 3d by (6).

THEOREM 3.2. If the distance d between the players is known, then the rendezvous
value is given by R 13d/8.

Proof. By Lemma 3.1, 13d/8 is a lower bound for R, and since # D d in this
case it is also an upper bound by Theorem 2.1.

4. Discrete distributions. We now consider distributions supported on a count-
able set of points 0 <_ x <_ x2 _< where the probability that the initial distance
is xk is pk. For any strategy h of player II we may label the possible paths of II, the
paths of the form +x + h (t), as L, (t), m 1, 2, We call L, (t) the path of
the ruth agent of player II. Given a strategy g for player I such that T (g, h) < oe,
we may further assume that the player II paths are numbered so that player I first
meets L, (t) at location Y,m at time t,, where tl <_ t2 <_ It turns out that any
optimal strategy pair (g, h) must have a very specific and simple behaviour on each
of the time intervals [t,, t,+].

THEOREM 4.1. Suppose (g, h) is an optimal strategy pair. For m 1, 2,... we
have

ILm+l(tm) g (t,rn)l 2 ]tm+l tml and hence

1 1
Ym+l -g (m) J- -L.+ (tin).

In other words player I and agent m + 1 approach each other at speed one as soon as

agent m has been met.
Proof. Suppose the first condition of the theorem is not satisfied for some times

tm < tm+l. In this case ILm+(tra) g (tm)l < 2 It.+ t I. Then change g and h to
new strategies and h by modifying them only on the closed interval [tin, t,,+l] so that
I and Lm+l move at speed one to the midpoint g
.+l({.+), reaching it at time {.+1 t + IL.+(t.)-g(t.)l/2 < t.+, and
return to their original positions g(t.+) and L.+ (t.+) at time t,.+l. (This is

possible because, under the original strategy, at least one of the players reaches the
midpoint at time t >_ {,.+1.) We will then have that {, _< t for all n and that

tm+l < t.+l. It follows that

In the case where there is a finite distribution concentrated on K points, the
above condition reduces the search for an optimal strategy to a finite problem. Each
ordering of the 4K agents of player II leads to at most one possible optimal strategy
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pair, and hence one of these strategy pairs must be optimal. Of course one need
not check all (4K)! orderings because some (most) are impossible. For example, if
xi < xj, then I cannot meet any agent +xj :t: h (t) before the corresponding agent
(i.e., with the same choice of signs) :t:x + h (t). This means that agents with the
same pair of signs must be met in increasing values of xj. This reduces the number of
cases to be checked to (4K)!/K!4. This number can then be divided by 4 if we assume
without loss of generality that the first agent to be met is xl + h (t). Thus when K 1
only six cases need be checked, among which two cases are dominated and the group
of the other four can be split into two groups of (symmetric) equivalent cases (h (t)
replaced by -h (t) by the third and fourth agents). Thus we actually have to check
just two cases corresponding to the two optimal solutions. (Note that in Theorem
2.1 we actually have another solution with g (t) and h (t) interchanged.) Indeed this
provides an easy alternative proof of Lemma 3.1 concerning a known initial distance.

5. Relation to the linear search problem. The problem of this paper is
related to the following symmetric form of the linear search problem. A searcher with
speed one and initial position 0 seeks to find an object hidden at distance d drawn
from a distribution F and placed equiprobably at +d. The least expected time to find
the object is denoted by L L(F). It can easily be shown that by using a geometric
search pattern of, say, doubling the successive searches to the right and left, L is finite
if and only if F has a finite mean. A similar approach will also give the same result
for the rendezvous value R, but we prefer to einploy a comparison of R (F) and L(F).
Since L(F) has been extensively studied, our comparison immediately extends those
results to R(F).

To begin this analysis, we first consider a variant of the rendezvous problem
defined in the introduction. Instead of assuming that the players are placed on the
line facing in an equiprobable direction, we will assume both are placed facing in the
same direction. Alternatively, we are assuming that they have a common notion of a

positive direction on the line. In this case the expected meeting time corresponding
to a strategy pair g, h E P is given by

(7) T* T* (g, h) E min{t" g(t) id + h (t)} dF (d),
i=:t:l

and the corresponding rendezvous value is given by

(8) R* =R*(F)= min T*(9, h).
g,hP

LEMMA 5.1. I* L (F) /2, and the minimizing g, h 6 P of (8) satisfy g -h
and ig’l =- 1.

Pro@ First observe from (7) that T* depends only on the difference f g-
which belongs to the space 2P of functions with Lipschitz constant (maximum speed)
2, and f (0) 0. Any such function f has a derivative almost everywhere, and we

may define the total distance travelled by f up to time t by 0 (t) =__ f If’ (t)l dt <_ 2t.

Then the function f defined by the equation f (0 (t)/2) f(t) satisfies If’ (t) 2
almost everywhere and reaches every point on the line not later than f does. Thus
there is always a minimizing function f with If’ (t)l 2 which therefore must be the
difference of functions g and h as stated in the lemma. Furthermore we have from (8)
that

R*- min f 1 E rain {t" f(t) id} dF (d) L (F)/2.
fe2P Jo i=4-1
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THEOREM 5.2. For any distribution F, we have

L(F) /2 < R(F) <_ L(F).

Proof. In the version of rendezvous search where the players have a common
notion of direction, they could choose to ignore this information and thus play the
version of the game with no common direction. Thus R* < R, and hence L/2 < R
by the previous lemma. To obtain the right inequality, simply restrict the game to
strategy pairs where one the of players doesn’t move, so that the other player is faced
with the linear search problem,.

As an example, consider the point distribution where the distance between the
players is 1. Here we found that R . It is easily seen that in this case L
(1 + 3)/2 2, and the inequalities of the theorem are strict in that 1 < < 2.
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--(A2) each of the maps F’z, 0 < < d- 1, is globally Lipschitz with respect to x_
uniformly with respect to u and xi+l (denoting x__ (x,..., x";)) in (C).

Received by the editors October 15, 1994; accepted for publication November 18, 1994. SIAM J. Control
Optim., 32 (1994), pp. 975-994.

Institut Universitaire de France, Departement de Mathematiques, Institut National des Sciences Appliquees de
Rouen, Unite de Recherche Associee 1378 de Centre National de la Recherche Scientifique, B.P. 08, Place Emile
Blondel, 76131 Mont Saint-Aignan cedex, France.

Department of Mathematics, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 1A1, Canada.

1277



SIAM J. CONTROL AND OPTIMIZATION
Vol. 33, No. 5, pp. 1279-1311, September 1995

() 1995 Society for Industrial and Applied Mathematics
001

TOWARD A GEOMETRIC THEORY IN THE TIME-MINIMAL CONTROL OF
CHEMICAL BATCH REACTORS*
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Abstract. In this article we outline a geometric theory for the time-minimal control ofchemical batch reactors by
analyzing the equations from Pontryagin’s maximum principle applied to the optimal control problem. This theory is
used for computing the optimal feedback law for a batch reactor in which three species X, Y, Z are reacting according
to the scheme X Y Z and every reaction in the sequence obeys first-order kinetics. The control variable is
the derivative of the temperature in the reactor, and the terminal condition is a specified ratio of concentrations of
species X and Y.

Key words, time-optimal control, optimal synthesis, chemical systems

AMS subject classifications. 49B 10, 93C 10

1. Introduction. The choice of best temperature schedule in a batch reactor to maximize
the yield per year is one of the main problems in chemical engineering. Until now, in practise,
the reaction temperature is held constant over the duration of a batch and hence an optimal law
is computed among all the constant temperatures. Clearly, by varying the temperature of the
reactions we may improve the yield. Therefore, many researchers have recently concentrated
their efforts on the optimisation of chemical reactors; see for instance [6], 16]. Their studies
are mainly numerical and based on Pontryagin’s maximum principle (PMP) or the Hamilton-
Jacobi-Bellman equation (HJB). If PMP is used, the optimal law is computed as an open-loop
function. Moreover only the "classic" optimal control developed in the 1960s presented in [6]
is used. On the other hand, the HJB approach will not lead to an optimal control, even for a
small-dimensional state space, for reasons discussed in [16].

In this article, we outline a geometric theory for the time-minimal control of a chemical
reactor based on the analysis of the equations comingfrom the maximum principle. In order
to be implemented, the optimal law is computed as a feedback law (closed-loop function).
Our study is in the spirit of similar approaches developed by Sussmann and Tang [30] for
mechanical systems and uses recent results outlining a geometric theory of solutions of the
maximum principle and providing a methodology to analyze optimal control problems and
solving time-optimal control problems of reasonable complexity. It must be noted that this
methodology can be successfully applied to chemical systems because in many situations--
although the reaction scheme is, in general, complicatedmit can be reduced to afew reactions.
Among the numerous contributions to this theory, we shall make an intensive use of the results
from Schittler and Sussmann concerning the parametrizations of the boundary of the (small
time) accessibility set and their applications to the construction of the optimal syntheses [26]-
[28].

Indeed, this set plays the role of the unit ball in Riemaniann geometry, and its complexity
explains the difficulty of solving optimal control problems. Other useful tools in our problem
are the results concerning the classification of extremals by Kupka [18]. Moreover, the
technique established by Bonnard and Kupka in [2] allows us to obtain evaluations of the
accessibility set along a singular extremal and therefore to define the concept of conjugate
points and to obtain C-optimality conditions along such a trajectory. This technique will be
used to show the existence of conjugate points for even simple reaction schemes and hence
indicates the nontriviality of the control problem. Now, of course all the available tools are

Received by the editors December 9, 1992; accepted for publication (in revised form) March 1, 1994.
Universit6 de Bourgogne, Laboratoire de Topologie, B.P. 138, 21004 Dijon Cedex, France.
Shell Recherche S.A., 76530 Grand Couronne, France.
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not sufficient to solve our problem automatically. We have to develop the theory in different
directions. Moreover the specific geometry of our problem has to be taken into account. The
analysis developed in this article has been used to implement a feedback optimal law in a
5-liter reactor in the department of chemical engineering at Institut National des Sciences

Appliqudes Rouen; see [12], [23].
The main contributions of this article are the following. First, we have to develop the

theory in the following direction. In the batch reactor problem, the terminal condition in the
state space belongs to a hypersurface, which corresponds physically to a desired repartition
of the concentrations at the end of the batch. Therefore we initialize a generic classification
of the optimal feedback law for the time-optimal control problem for planar systems, when
the terminal set is a manifold of codimension one. This classification is similar to the one by
Sussmann for the fixed end-point problem [27], although the techniques to analyze the problem
are different. Then, using [2], we develop an algorithm to determine if a reference singular
extremal is optimal, for the fixed end-point problem, with respect to all trajectories contained
in a (C-small) neighborhood of the given trajectory. This algorithm is in fact a methodfor
computing the conjugate points along a singular trajectory, under generic conditions, without
any integration. It can be modified in order to deal with the optimal problem regardless of the
terminal condition (concept offocal point). Finally all these results are applied to solve the
time-optimal control problem for a scheme of two consecutive reactions.

This article is organized as follows. In 2, we give the mathematical model and describe
the optimal control problem. In 3, we briefly recall the maximum principle and some basic
properties of its solutions. In 4, we outline a classification of optimal feedback laws near the
terminal set. In 5, we give an algorithm to compute the conjugate points along a singular
trajectory under generic and codimension-one conditions. It is presented for a system in R
but can be straightforwardly extended to Rn. In 6, we patch together all these results to

compute the optimal feedback law for a batch reactor in which three species X, Y, Z are
reacting according to the scheme X --+ Y Z and every reaction is irreversible and of first
order, the target being a specified ratio of the concentrations of X and Y.

2. Mathematical model of a chemical batch reactor and description of the control
problem.

2.1. Batch reactor. Batch reactors are used for the production of many chemicals, e.g.,
polymers and fine chemicals. The reactants are initially loaded into the reactor, mixed well,
and allowed to react for a certain time. The ambient temperature is allowed to vary by a heat
exchanger designed around the reactor. We assume that the cooling fluid has a constant flow
rate. Its temperature is controlled with a regulator.

2.2. Mathematical model. The mathematical model for the process has to be divided
into two distinct parts. First, we have a model describing the chemical reactions in the reactor,
coming from experimental and physical laws of chemical kinetics [8]. Second, we have a
model describing the thermodynamic phenomena obtained from standard laws and models
coming from chemical thermodynamics 13] and heat exchanger models in chemical reaction
engineering [23].

2.2.1. Chemical kinetics. We briefly recall some standard results from chemical kinetics
(see [8] for more details).

Consider first a single chemical reaction (e.g., 2N0 + 2H2 N2 + 2H20):

nl n2

i=1 i=1
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where the R’s are called the reactants and the P’s are called the products. The coefficients
c,/3 are the stoichiometric coefficients given with the convention c > 0 and 3 < 0, and
since they are only defined up to a factor, one can set O/1 1. Let X be a species R or P,
with stoichiometric coefficient 7. Initially we have n(0) moles of constituent X and
moles at time . The molar extent of species Xi is given by

() (t)- (0),
and from the law of mass conservation all the (’s are equal to a same number ( called the
molar extent ofthe reaction. If more than one chemical reaction is possible and ( is the extent
of X due to the kth reaction and -y stoichiometric coefficient of the species X in the kth
reaction, the total change in the number of moles of species X because of p reactions is

p

Now we have to model the kinetics of the reactions. For that, consider a single reaction
between n species X with stoichiometric coefficient -y and assume that the reaction is at
constant volume V. The rate of evolution of species X is

dn

from the law of mass conservation we have

and its specific rate is

")/j V ")/ Vj

vi dnir=- V d d
niwhere ci -p- is the molar concentration of species Xi. Let r

The rate r is given at constant temperature by an empirical law of Gulberg and Waage,

(2.1) r--k
i--1

the reaction is said to be of the 5ith order with respect to species Xi, and the overall order is
m in__ (5. The numbers (5i are not generally related to the corresponding stoichiometric

coefficients q/i and have to be determined experimentally.
The coefficient k depends on the temperature T of the reaction and is given by a physical

law called Arrhenius’ law,

(2.2) k- Are-E/RT,

where the parameters A, and E, are the frequencyfactor and the activation energy, respec-
tively, of the reaction and R is the gas constant.

We can now model every reaction network occurring at constant volume. In this article we
consider the case where (n + 1) species X whose concentration is ci are reacting according
to the scheme

X1 X2 --+...--+ Xn.
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Fx6. 1. T temperature in the reactor, Te temperature of the fluid at the entrance of the exchanger, Ts
temperature ofthe fluid at the exit, Tv temperature of the inner shell.

Moreover, let us assume that in this network of consecutive and irreversible reactions every
k

reaction Xi Xi+l obeys first-order kinetics:

dci
dt

where from (2.1), ki Aie-Ei/RT. Since we have

n+l n+l

i--1 i--1

--n+if we introduce x e/z..,=l c(O) and v k, the reaction scheme is modelled by

dx
(2.3a) d--- K(v)x,

dv
(2.3b) d--- h(v)u,

wherex-t (x xn),u= dT h(v)= R
-d-T, v In2 (v/A), K is the matrix

K= kl 0
0 kn_l -k

and x, v satisfy the inequalities

0 < x Z xi <
i=l

0<v<A.

Moreover xn+ can be computed using the law of mass conservation.

2.2.2. Heat exchanges. To get a complete mathematical model ofthe process represented
by Fig. and in which the chemical reactions are at constant volume, we have to model the
heat exchanges. To analyze the optimal control problem and for reasons explained later, we
don’t need a mathematical model and indicate only the nature of the expected equations; see
[23] for a complete description.
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The equation describing the evolution of the temperature T in the reactor is of the form

(2.4)
dt f T,, T, -where T is the temperature of the shell containing the chemical species. This equation models

two different properties. First, in every chemical reaction, there is a heat transfer Q, which
can be positive (exothermic reaction) or negative (endothermic reaction). Hence the variation
of temperature depends on the variation of concentrations, which measures the number of
reactions. Second, the temperature T is modified by heat transfer with the inner shell of the
reactor and, hence depends on T,.

Now, there are relations describing the heat transfer between the inner shell whose tem-
perature is T and the temperature TI of the fluid in the jacket and the way of tuning the
temperature at the entrance Te, and the equations are of the form

(dT dTe dTf(2.5) g T,,
dt T’ dt TI’ dt

u -0,

where u(.) is the physical control. (The reactor is assumed to be isolated from the outside
world.)

2.3. The optimal control problem. The optimal control problem is the following. Given
the reaction scheme in the reactor and the desired product, maximize the production of the
reactor over a year. This objective can be clearly translated into a time-optimal control
problem as follows. Fix a desired product quantityfor a batch, and minimize the batch time.

Now, for the optimal control problem, it is reasonable to assume that the control is T or
d_T_T This means that for the optimal problems, equations (2.4) and (2.5) are not taken intodr"
account and the optimal law is computed for a given chemical reactions network and does
not depend on the transfer devices. Of course, to be implemented, the optimal law has to be
tracked with a regulator (like a proportional integral-derivative feedback) whose parameters
are determined using equations (2.4) and (2.5). (See [23] for such a study.) Moreover these
equations are imposing the bounds u_ and u+ (depending in general on the state variables)
such that u_ < dT < u+

dTThe choice of T or -- as the control variable depends on the ability of the regulator to
track the computed optimal law. If T can be chosen as the control variable, the bounds on T,
like 20C <_ T _< 90C, imposed since the shell of the reactor is in glass (this can also impose
constraints such as T T _< M) are then the bounds of the control variable and the optimal
control problem can seem to be better posed. However, it is not true, since the control system
is not linear with respect to the input and an admissible time-optimal law may not exist. (This
is due to the well-known relaxation phenomenon; see [5] or [19].)

Hence, in this article, we shall assume that dT- is the control variable. Moreover we shall
suppose that the bounds u_ and u+ such that u_ < dr < u+ are fixed. The bounds on the
state variable T, Zmin T _< Tma, will not be taken into account. (See [21] for a discussion
of this problem.)

The optimal control problem denoted by 7) is, then, as follows: Consider system (2.3), the
class of admissible controls/g being the set of all measurable functions u(.) dT

-3-i- (’) defined
on [0, t] and taking their values in the fixed interval [u_, u+], with u_ < 0 < u+. Let N
be an analytic manifold in the space of concentrations {x} and with codimension one, and let
rn0 (z0, v0) be an initial condition in the (physical) state space. Among all the solutions of
the system and starting from m0, find the ones such that the time duration of control to reach
the target is minimal. The manifold N is called the terminal manifold.
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For practical reasons the optimal law has to be computed for each initial state m0 to
provide an optimal feedback law m u* (m) (synthesis problem). The implementation of
this feedback law requires the reconstruction of the state using an observer. (In practise,
we have only a few observations.) The observation and the estimation problems will not be
studied in this article, although they are crucial in practise.

3. Pontryagin’s maximum principle and some geometric properties ofextremals. To
make this article self-contained we shall summarize in this section some geometric properties
of extremals which will be used extensively to analyze the optimal control problem.

3.1. Pontryagin’s maximum principle. Consider a system of the form

(3.1)
dt

(t) f(z(t), u(t)), z E Rn,

where f is an analytic mapping from R x R into R’ and the set of admissible controls b/is

the set of bounded measurable mappings u(.) defined on an interval [0, T] of R+ and taking
their values in a subset f of R. Let N be a regular analytic submanifold of R’. The PMP
tells us that if u*(t),t [0, t*], is an optimal control for the time-minimal control problem
with terminal manifold N, then there exists an adjoint vector p*(t) R\{0}, absolutely
continuous (a.c.), such that the following equations are satisfied almost everywhere (a.e.) on
[0, t’l:

dz* OH dp* OH
p* u*(3.2)

dt 0--- (z*, p*, u*),
dt Oz (z*, ),

(3.3) H(z*, p*, u*) MaxHfi(z*, p*, u),

where H(x, p, u) (p, f(z, u)), (,) being the standard inner product in R. Moreover

(3.4) the mapping t -+ Max Ha(z* (t), p*(t), u) is constant everywhere and positive.

The vector p* can be selected to satisfy the transversality condition.

(3.5) p* (t*) orthogonal to Tx. (t) N, where TxN is the tangent space to N at z.

The system (3.2) is called the Hamiltonian lift of (3.1), and H is the Hamiltonian. A
triple (z, p, u) solution of (3.2), (3.3), and (3.4) is called an extremal. (Sometimes we omit
p.) An extremal (z, p, u) such that H(z, p, u) 0 almost everywhere is called exceptional.
Assume now that f is a convex polyhedron. An extremal (z, p, u) is called regular if, for
almost every t, u(t) lies on the vertices of ft and (totally) singular if, for each t, u(t) lies in

o/ (x, ) 0.the interior of f; hence -Off P,

3.2. Singular extrernals. We briefly recall some concepts and results concerning the
singular extremals; see [1] and [2] for details.

By definition, a singular extremal (x, p, u) is a solution of (3.2), (3.3), and (3.4) contained
in the variety -b-;-H O, and from (3.3) ithas to satisfy the Legendre condition 02H/OU(x,p,u) _<
0. If for all t, this inequality is strict, it is called the strong Legendre condition. Then, by
the implicit function theorem, the singular control u can be computed locally as a mapping

OHit (x, p) -- it(x,p) by solving the equation 0. Consider now a single-input affine
analytic system

dx
(3.6) d--- X(x) + uY(x), x R, u [-1, +1],
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and let (;e, p, u) be a singular extremal. The associated Hamiltonian is H(:c, p, u) (p, X +
uY) Hence the equation o4 0 is equivalent to (p, Y(:c)) 0, and the singular controls
have to be computed as follows.

DEFINITION 3.1. The Lie bracket of two vector fields Z1, Z2 is computed with the con-
vention [Z,, Zz](:e) oz2 (:c)Z, (;c) oz,

--0-- (3)Zz(flg), and let ad ZI be the mapping defined
by ad Z(Z2) [Z1, Z2]. a point (:c,p) is called ordinary if IP, adZY(x)) 0, and let
0 be the set of nonordinary points, a singular extremal (:c,p, u) such that (:c(t),p()) E
Rzn\o is called of order 2. Let be the variety {(:c,p); (p, Y(:c)) 0), and let ’{(:c,p); (p, Y(x)) /P, IX, Y](c)) 0}. Let H be the restriction to ’\0 ofthe mapping

(3.7) (x, p) (P,
(P, ad2y(X) (;e))

PROPOSITION 3.2. The singular extremals (x, p, u) oforder 2 are defined by
(i) u(t)
(ii) (x, p) is a solution of

dx
(3.8)

and in order to be admissible they have to satisfy the constraint
(iii) (x,p)E {(x,p); lit(x,p)l <_ 1}.
DEFINITION 3.3. Let (x, p, u) be a singular extremal oforder 2 and h be the value oft --MaxuH(x, p, u). According to 3.1, it is called exceptional if h O. If h y! O, it is called

hyperbolic if (p(t), adZY(X)(x(t))) < 0 and elliptic if (p(t), adZY(X)(x(t))) > O.

3.3. Time-optimality problem. Let (x, p, u) be a singular extremal of order 2, defined
on [0, T]. Since the maximum principle is only a necessary condition for optimality, the main
problem when the solutions of PMP are analyzed is to determine their optimality. We make
the following assumptions.

Assumption 3.4. First, let us make the following assumptions"
(H0) t -, :c(t) is one to one. Then one may set u 0, and moreover, let us assume the

following:
(H1) Vt [0, T], the (n- 1) vectors (adkX(Y)(x(t));k 0,... ,n- 2} are linearly

independent.
(H2) V t [0, T], adZY(X)(x(t)) Span (adkX(Y)(x(t)); k 0,..., n 2}.
(H3) If n 2, X(x(t)) and Y(x(t)) are linearly independent Vt [0, T], and if n _>

3, X(:c(t)) Span {adX(Y)(zc(t)), k 0,..., n 3} Vt [0, T].
THEOREM 3.5. Let (:c, u) be a trajectory definedon [0, T] and satisfying (H0) (H3). Then

there exists a C-neighborhood U of such that is a time-minimizing (resp., maximizing)
trajectory with respect to all solutions of (3.6) contained in U and joining ;c(O) to :c(T) if
(.v, u) is a hyperbolic or exceptional (resp., elliptic) extremal and T < tlc, where tc is the

first conjugate time along c.
In [2], we give an algorithm to compute t. It is based on the evaluation of the ac-

cessibility set along the reference trajectory :c using a seminormalform for the action of the

feedback group. The computations of conjugate points in [2] require linear transformations
and integration of the vector field Y and the reference trajectory. A different algorithm with-
out integration will be described in 5. This theorem solves the time-optimality problem of
singular trajectories satisfying (H0)-(H3) when the terminal manifold is a point. It has to
be adapted to deal with the situation encountered with the control of batch reactors where the
terminal manifold is of codimension one.
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3.4. Connection between singular extremals in the affine and nonaffine case. For a
batch reactor, the system is affine if dr denoted J, is the control (T is then a state variable)---,
and nonaffine if the control is T. The object of this section is to relate singular extremals in
both cases.

Let us consider a general system of the form (3.1). This system can be interpreted as
an affine system with respect to a new control v if we set/ v, that is, if we introduce
an integrator. Let us study the converse transformation, in optimal control called Goh’s
transformation.

DEFINITION 3.6. Let us consider an affine single-input system of Rn, 5c X + uY, and
let us assume n _> 2. Take x0 E Rn such that Y(:e0) = 0. Hence there exists an open set U
containing :Co such that Yu o

--a-, are the coordinates ofR, and the restriction
of the system to U can be written as

e’

where z’ --t (:el,.. :e-l) and X X’O-y7+ X o-’ The system ’ X’(z’, z),
where z is the control variable and which is defined on an open set U ofR-, is called the
reduced system associated with system (X, Y). If H (p, X + uY) is the Hamiltonian of
the original system, we set H’(z’,p’,z) (p’,X’(z’,z)), where p’ (Pl,... ,P-l) is
the dual variable of z.

LEMMA 3.7. The pair (z, p) is the projection on the space { (z, p)} ofa solution (z, p, u)
of o oN oN O if and only if (z’ p’ zn) is a solution of’ OH’ ,

Op Ox Ou Op
OH’ OH’ O. Moreover the following relations are satisfied:Ox Ox

) OH’d OH
(p, [X,Y](x)) Ox I(x,,p,,x,)’(i) - I(x,p,)

0 d2 OH 02H’
(ii)

Ou dr20u (x,p,)
-{P’ adZY(X)(z))

Ozn2

For the proof of this result, see [2].
DEFINITION 3.8. Let (:e, p, u) be an singular extremal of(3.1). The condition

0 d2 OH
>0

Ou dt20u I(x,p,u)

is called the Legendre-Clebsch condition.
COROLLARY 3.9. The Legendre-Clebsch condition along a singular extremal is equiva-

lent to the Legendre condition along the corresponding extremalfor the reduced system.

3.5. Projected problems. According to the theory developed in ], symmetry properties
of a control system have to be coded by symmetry properties for the differential equation whose
solutions are singular trajectories. For batch reactors where every reaction is of first order,
this will imply a nice projection property.

3.5.1. Statement of the problem (every object is real analytic). Let M and M be two
manifolds, r be a submersion from M into M, and N (resp., N) be a regular submanifold of
M (resp., Mt) with N r-(N’). Consider now the system on M dXd__i f(x, u), u
and the associated time-optimal control problem with terminal manifold N, denoted 7). Let
us assume that for each fixed u , the vector field x f(x, u) can be 7r-projected and is
complete for each admissible control u(.). Hence, one may define the projected system on
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M dx f,dt (X U),U E it, where x’ 7r(x) and f’(x’ u) dTr(f(x, u)), dTr being the
differential of 7r, and the associated time-optimal control problem 79’ with terminal manifold
N’ is called the projection of problem 79.

Our aim is to compare both extremals and optimal trajectories. Let us denote by x(t, xo, u)
the solution of dz

-di f(x, u) starting at t 0 from x0 E M and by x’(t, Xo, u) the solution

of da-@ f’ (z’, u) starting at t 0 from z 7r(z0). We have the following lemma.
LEMMA 3.10. The trajectory z* (t, zo, u* defined on [0, t*] is a solution of7) ifand only

if z(t, Zo, u*) is a solution of79’.
Proof. By completeness, we have for each t z’(t,Zo, u) 7r(z(t, zo, u)), and by

definition N 7r-1 (N’).
LEMMA 3.11. Every extremal (z’, p’, u) defined on [0, T] of the projected problem 79’

can be lifted to an extremal (z, p, u) of the original problem 79. Moreover if (z’, p’) satisfies
the boundary conditions z’ (T) N’ and p’ (T) orthogonal to Tx, (7) N’ imposed by 79’, then
(z, p) can be selected to satisfy the boundary conditions imposed by 79.

Proof. The system dx
-gi f(z, u) can be written locally as

f’(z’ u) f"(z’ z"
dt dt

Hence every extremal (z’, p’, u) of’P’ can be lifted into (z, p, ) ((z’, z"), (p’, 0), u), where
:c" is any solution of the second equation. Clearly (z, p, u) is an extremal of 79, and we have
z’ (T) N’, p’ (T) orthogonal to TN’ v z(T) N and p(T) orthogonal to TN.

Conclusion 3.12. Not every extremal of 79 can be projected onto an extremal of 79’.
Hence, although 79’ is equivalent to 79, from Lemma 3.1 O, its analysis using PMP is simpler
because we havefewer extremals.

3.6. Regular extremals. Below, we shall briefly recall some useful results concerning
the behavior of regular extremals for a single-input affine system (3.6) with u [-1, + 1]
(which will be used extensively later). (See [18] for details.)

DEFINITION 3.13. Let (z, ), where z (z,p), be an extremal defined on [0, T]. A time
s E [0, T] is called a switching time ifs belongs to the closure ofthe set oft’s [0, T], where
z is not C. The set {z(s)}, z being any extremal, where s is a switching time, is called the
switching set. Observe that this set is a subset ofE {z (x,p); (p, Y(x)} 0}.

3.7. Classification of regular extremals. Let z (z, p) be a smooth solution of 2
OHo__y, P ---5-OH defined on [0, T], where H p, X + uY} and corresponding to the control

u(.). Let us introduce the switching function (b t (p(t), Y(x(t))} evaluated along z.
If u +1 (resp., -1), we set z z+ and (I) (I)+ (resp., z z- and (I) (I)-). By
differentiating (I) twice with respect to t we get

(t) (p(t), [X, Y](x(t))},
(3.9) ii(t)- (p(t), ad2X(Y)(x(t))- u(t)ad2y(X)(x(t))).

3.7.a. Normal switching points. Let zo (zo, Po) P, and let us assume that
Y(zo) 0 and zo 2\2’. (Recall that 2’ {(z,p); (p, Y(z)) (p, IX, Y](z)) 0}.)
The point zo is then called normal. The behavior of regular extremals near zo is given by Fig.
2, where 2+ (resp., N-) {(z,p); (p, Y(z)) > 0} (resp., < 0). From (3.9) we have the
following lemma.

LEMMA 3.14. Let to be the switching time given by z+ (to) z-(to) zo. Then we have

(3.10) +(to) -(to) (Po, IX, Y](xo)) (reflexion law).

Moreover, let z (z, p) be an extremal passing through zo; then we have
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FIG. 3.

(i) if (Po, IX, Y](xo)) < 0, then x
(ii) if (Po, IX, Y](xo)) > 0, then x r_r+,

where F+ (resp., F_) is an arc" solution ofthe system corresponding to u =_ (resp., u =_ -1)
and E+F_ represents the trajectory corresponding to the concatenation of u =_ + with
u -1; i.e., anarc E+ isfollowed by an arc E_.

3.7.b. The fold ease. Let zo (3:o, Po) E’, and let us assume that Y(xo) :/- 0 and
both A+ and A- are different from zero where

A+ --(Po, ad2X(y)(xo) ad2y(X)(xo))

Such a point is called afold, and the behavior of regular extremals near zo has been classified
in [18]. We have three distinct cases (Fig. 3), which are characterized by

a) /+,- >O(parabolic case),
b) ,k+ > 0 and )- < 0 (hyperbolic case),
c) ,+ < 0 and - > 0 (elliptic case), and from [2] and [18] we have the following

lemma.
LEMMA 3.15. The point zo is a switching point in the hyperbolic case and is not a

switching point in the elliptic case. If zo is an ordinary point, the singular dynamic feed-
back f given by (3.7) and evaluated at zo belongs to 1, + 1[ in the hyperbolic and ellip-
tic case, contrary to the parabolic case. Moreover the extremals near zo are of the forms
F+FsF_, F+FsF+, F+FF_, or F_F,F_, where F is a singular arc, in the hyperbolic
case, and F+F_F+ or F_F+F_ in the parabolic case; in the elliptic case the only extremal
passing through zo is , and the other extremals are oftheform 1-’+I_F+F (no uniform
bounds on the number ofswitchings). Moreover, let us assume that the singular extremal arc
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passing through zo satisfies assumptions (H0)-(H3). Then it is hyperbolic (hence fast) in
case b) and elliptic (hence slow) in case c).

Remark 3.16. The adjoint vector p has to be oriented in our terminology with the con-
vention (3.4) of the maximum principle (H _> 0).

4. Time-minimal synthesis for planar systems in the neighborhood of a terminal
manifold of codimension one.

4.1. Problem statement. Consider a system in R2 of the form

(4.1) /: X(v) + uY(v), lul <_ 1,

where X and Y are analytic vector fields, and let N be an analytic regular submanifold of R2

of codimension one. The set of admissible controls H is the set of measurable functions with
values in [-1, / 1]. We shall study the following local problem. Let v0 E N. Compute, in
a sufficiently small open neighborhood U of v0, the optimal synthesis for the time-minimal
control problem with terminal manifold N and system (4.1) restricted to U. This problem is
well posed because a standard theorem 19] proves the existence of an optimal solution. It
is similar to the problem studied by Sch/ttler and Sussmann in a series of articles (see, for
example, [26] and [27]) when the terminal manifold is reduced to a point. (This problem is
called the point-to-point problem.) The aim of this section is to give the tools to solve the
problem and to begin a classification of optimal syntheses in terms of relations between the
Taylor expansions of X, Y, and f at v0, where f is the mapping whose zero set is locally N.
A more complete classification is given in [4].

DEFINITION 4.1 AND NOTATION. Consider the system (4.1) written as (X, Y), and let us
denote by (x, y) the coordinates ofv R2. a coordinate system (U, v) such that the restriction

of Y to U is o- and will be called adapted. The optimal control problem is said to be fiat
if Y is tangent to N everywhere. A normal to N at v is denoted by n(v). We lift N by
using the transversality condition into/ {(v, p) g2 g2; v N, (p, w} 0’7’ w
TvN}. An extremal (v, p, u) defined on [T, 0], T < 0 that satisfies the boundary conditions
(v(0),p(0)) will be called a BC-extremal. We shall denote by If the projection on
the v-space of the set of switching points for BC-extremals. Let vo N, and let W be the
set of optimal switching points for the time-minimal control problem for (4.1) restricted to

a sufficiently small neighborhood of vo, with N the terminal manifold. By convention, any
piecewise analytic control is taken right-continuous. The optimal closed-loop function, if it

exists, is denoted by v -- u* (v). For the concepts of synthesis we follow [28]. A stratum of
the switching curve W is offirst kind ifthe optimal trajectories are tangent to the stratum and

of second kind if they are transverse. Following [24], the splitting line L is the set ofpoints
where the optimalfeedback is not unique. (It willform the cut locus.)

Let v R2, and let us denote by v(t, Vl, u) the trajectory of(4.1), when defined, asso-
ciated with u bl and starting from v at time t O. Let us denote by A+(v,, t), t > 0,
the set of points {v(t, vi, u);u H) accessible from v in time t, and let A-(v,t) be
the set of points V2 such that v is accessible from V2 in time t. The accessibility set is
A+ (vi) CJt>0A+ (v, t), and let A-(v) LJt>oA-(v, t). At vo, we shall denote by C(vo)
the convex set / V(o); I1 <_ In our analysis, we shall assume that Y(vo) 0
and C(vo) lies entirely in one halfspace limited by TvoN. IfX(vo) + Y(vo) or X(vo) Y(vo)
is tangent to N, we are in the exceptional case. In the nonexceptional case, near vo, n(v) will
be oriented toward the halfspace containing C(vo).

4.2. Generic ease. Let us assume that both X(vo) + Y(vo) are not tangent to N. Then
with our convention we have (n(v),X(v)) > 0 for Iv v0] small. Let (v,p, u) be a BC-
extremal defined on IT, 0]. Since we are in the nonexceptional case, one can set p(0)
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<n,Y>>O <n,Y><O

FIG. 4.

n

<n,[X, Y]><O <n,[X,Y]>>O

n(v(O)). Let us assume (n(vo), Y(vo)} 7(= 0. Then, by using the transversality condition, the
optimal synthesis, in a sufficiently small open neighborhood of v0, is given in Fig. 4, where

F+ (resp., F_) are arcs corresponding to u (resp., -1).

4.3. Generic flat case. As before, we assume that both X(vo) 4- Y(vo) are not tangent
to N. If (v, p, u) is a BC- extremal defined on IT, 0], one may set p(0) n(v(0)). Since
Y is tangent to N everywhere, we have (n(v), Y(v)) 0 for each v E N. Hence, the
transversality condition tells us nothing about the optimal synthesis. But since N lies in K
(i.e,, 0 is a switching time of (v, p)), then by Lemma 3.14, if (n(vo), [X, Y] (vo)) 0 the arcs

1-’+ (resp., I’_) hitting the target N are BC-extremals if and only if (n(vo), [X, Y](vo)) < 0
(resp., > 0), and the synthesis is seen in Fig. 5.

4.4. Generic switching point. If (n(vo), Y(vo)) 0, then 2Q intersects the set E
(p, Y) 0 at (vo, n(vo)). To analyze this singularity one needs some preliminary lemmas.

LEMMA 4.2. Let us assume (n(vo), [X, Y](vo)) 7 0. Then the arcs F+ and F_ arriving
at vo cannot be sets of input switching points.

Proof. For instance, let us assume that (v, p, u 1) is a BC-extremal on [T, 0], with

v(0) vo, and each point of v is an input switching point. Then, since (v(0), p(0)) is a
normal switching point, from Lemma 3.14, there exist extremals 1-" F_F+, where F+ are
any subarcs of v. If F is a BC-extremal at v0, the adjoint vector can be taken as p(0). Now,
since the image of v C K, we have (p(t), Y(v(t))) O, V t [T, 0]. Hence the arc v(.) is
singular, which is absurd.

LEMMA 4.3. Let F be an admissible trajectory arriving at vo and associated with a con-
stantcontrol uo. Letusset Z X+uoY and A(, P) k>O ((--1)k6k/k!) adkZ(p)(vo)
Z(vo). Then if F is optimal for each >_ 0 small and ea-ch vector field P of {X + uY;
lu[ < }, we must have (n,/(6, P)) <_ O, where n is the unit normal to N at vo, outwardly
oriented with respect to F.

Proof We use a technique from the proof of PMP and its refinements 19]. We construct
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along a reference trajectory, an approximation of the accessibility set. Since the terminal
manifold is of codimension one, this approximation need not be convex to decide about
optimality. The necessary condition of the lemma is obtained as follows.

Let F be a reference trajectory defined on [0, T] and with terminal point v0. If V is a vector
field, it is convenient to denote by {exp tV} the local one-parameter group generated by V.
In particular the arc F starting from vl at t 0 is given by exp tZ(Vl) and exp TZ(v) vo.

Now take 5, e > 0, sufficiently small and any vector field P of {X + bY; lul _< }, and
consider for 5 fixed the curve

a(e) (exp Z)(exp eP)(exp (T- )Z)(v1).

By construction a(0) vo, and a() lies in the accessibility set A+ (Vl, T). Now since
vo exp TZ(vl) we have

a(e) (exp Z)(exp P)(exp (- )Z)(vo),

and from the Baker-Campbell-Hausdorff formula we have

k adZ(P) Z + o() (v0).

Hence da/de=o A(, P). And clearly, if {n, A(, P)) > 0, the reference trajectory F is
not optimal.

Assumption 4.4. From now on we shall assume that (n(v0), Y(vo)) 0 and both
{n(vo),X(vo)) and (n(vo), [X,Y](vo)) are nonzero.

4.4.1. Method of analysis. To evaluate the switching curve and the splitting line near
v0, it is convenient to use the following model.

First, one may set v0 (0, 0), and as in [2], since X and Y are transverse at v0, one may
o (t, 0) is the trajectory corresponding to u 0. Henceassume locally that Y and t

(4.1) can be written

2 @ i=1 ai(x)Y
(4.2) +=i b(z)Y + u.

Moreover if we change y into -y and u into -u if necessary, we can assume that a
a(0) > 0, where a -(n(0), IX, Y](0)), n(0) (1,0) being the unit normal to N at
0. The terminal manifold is given locally by s (c(s), s), where c(s) ks2 + o(s2)
and k parametrizes the curvature of N in the adapted coordinate system. At 0, we choose
n(0) (1,0), and for v small, using the convention (n(v), X(v)) > 0, one can set n

d -2ks + o(s) Hence for s small we have that if k < 0,(n,n2),n 1, and n2 d
then n2 > 0 if s > 0 and n2 < 0 if s < 0 and conversely if k > 0. The Hamiltonian at a
point (v,n) of is H(v,n,u) (n,X(v) + bY(v)}, and for s small, its maximum over

ul is obtained as follows: If k < 0, s > 0, then n2 > 0 and u maximizing H is + 1.
Ifk < 0, s < 0, then u maximizing H is -1; the converse is true if k > 0. Hencewe
get the following important geometric behaviors. If k < O, the arcs F+ and F_ satising
the transversali conditions, the normal to N being oriented as n(v), can cut themselves,
contra to the case when k > 0 (Fig. 6).

The adjoint system associated with (4.1), with p (p, P2), is

+ +

i=l i=1
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u=O

k<O k>O

FIG. 6.

tandwhere a b are the derivatives with respect to x. Ifu is a piecewise analytic control, every
solution of (4.2) and (4.3) satisfying the boundary conditions can be evaluatedfor small t by
analyticity.

LEMMA 4.5. Near O, every optimal solution is of theform F+F_.
Proof. From Lemma 3.14, we know that every BC-extremal is of form F+F_ or F_F+.

In fact it follows from [27] that every optimal solution for the point-to- point optimal problem
is of this form.

Since X and Y are linearly independent near 0, to compare the times along the solutions
of the system we can introduce the one-form z defined by z(Y) 0 and z(X) 1. If

ox, dx A dy, and(X, X2) are the components of X, we have w (1/X,) dx and dw x Oy

by computing with (4.2), we see that the sign ofd near0 is the sign of a > 0. Let F, F+F_
and 1-’2 F_F+ be two arcs joining v to V2 near 0 with respective time duration t and
By using Stokes’ theorem we have

Jfv w-fv w-t-t2-fDdw,
where D is the closed domain limited by F V -P2. If the orientation is < 0 (resp., > 0),
since by dz > 0 on D we have ;2 > ;1 (resp., > t2). Therefore, optimal solutions for the
point-to-point problem are of the form P+F_. Clearly, every solution for the optimal problem
with N as terminal manifold has to be solution for the point to point problem.

LEMMA 4.6. The arc F arriving at 0 is not optimal.
Proof. By computing we have (n(0), IX, Y] (0)) -a < 0. Hence from Lemma 3.14

the arc F is not a BC-extremal.
LEMMA 4.7. Let us assume k : 0; then the switching points ofBC-extremals F+F_ form

an analytic curve K whose tangent space at 0 is R(-2k/a, + 2k/a).
Proof. We integrate (4.2) and (4.3) backward in time, with initial conditions given by

the boundary conditions v(0) E N and p(0) n(v(O)) (1,-2ks + o(s)). We get
p (t) + 0(s, t), pz(t) -2ks-at +o(s, t). The switching times w are given by solving
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F+ L 0

k>0 -a/4<k<0 k<-a/4

FIG. 8.

p2(t) 0, t <_ 0. We get w -2ks/a + o(s). If k < 0, we must have s < 0, and if k >
0, s > 0, and the BC-extremal F_ is switching at (z(w), y(w)) s(-2k/a, +2k/a)+o(s).
The lemma is then proved.

Clearly the optimal synthesis depends on the fact that a BC- extremal F+F_ is crossing
K or reflecting on K.

LEMMA 4.8. A BC-extremal F+F_ is crossing Ix2 if k > 0 or -a/4 < k < O, and it is

reflecting on K if k < -a/4.
Proof. At 0, the slope of the tangent to K is -1 a/2k, and F+ and F_ have (1,1)

and (-1, 1) as tangents. If k > 0, the slope of the tangent to K is less than -1. If k <
O,- a/2k > if and only if-a/4 < k. Hence the geometries are given in Fig. 7.

PROPOSITION 4.9. The optimal syntheses are given by Fig. 8. In the first two cases, the
switching curve W is an analytic curve which coincides with K, the slope of the tangent at 0
being -1 a/2k. In the third case, there exists a splitting line L which is an analytic curve
on which the optimalfeedback can be + l, the slope of its tangent at 0 being -a/4k.

Proof. In the first two cases, the situation is clear because from each point near 0, at the
left of the target N, there is only one BC-extremal F+F_. In the third case, the situation is
more complicated because more than one BC- extremal F+F_ is possible to reach the target.
More precisely, let F_ be the extremal arc arriving at 0 and A be the acute sector delimited
by K and F_. Clearly above K the optimal feedback law is u 1, and below F_ it has to
be 1. Let us define the splitting line L near 0 as follows. L is the set of v (z, /), v small,
z < 0, such that t >_ 0 such that both exp t(X zt: Y)(v) intersects N (see Fig. 9).

By construction, near 0, L is an analytic curve which is located in the sector A. Clearly,
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F+
L 0

above L the optimal feedback is / 1, and below it is 1.
In fact, everything can be evaluated by using (4.2) and (4.3). If k + a/4 < 0, it can

be shown that the arc 1-’_ is not optimal. Moreover, the slope of the tangent to L at 0 is

-a/4k El0, 1[.
From our analysis we deduce that b / ay, g) u is the local model of the behaviors,

and the linear approximation of/4 and L is given by the model.

4.5. Generic fold case. In this section, we shall analyze the situation encountered when
a singular extremal satisfying the transversality condition meets the terminal manifold N. In
fact, we shall only consider the hyperbolic situation. This situation is technically relevant
because the analysis is carried on using an evaluation of the accessibility set. A complete
analysis, which is lengthy, is given in [4].

Assumption 4.10. Let (p, v0) E N, and let us assume (p, Y(vo)) (p, [X, Y](vo)) 0
and (p, X(vo)) : O. Let S {v E R2; det (Y(v), IX, Y](v)) 0}. From 3.2, all singular
extremals are contained in S, the singular control being given by (3.7), and it is admissible
if (v) E [-1, + 1]. We shall assume that v0 is a regular point of S. Hence, since X and Y
are not collinear at v0, there exists a unique singular arc F which is a simple curve defined on
IT, 0], T < 0, with F(0) v0, which can be lifted into a unique extremal (, p, ), where
p satisfies p(0) P0, unit vector transverse to N, and oriented such that (Po, X(vo)) > O.
According to 3.7, (Po, v0) is a fold. Let us assume that this is an ordinary point. From 3.7,
if 2(v0) ]- 1, + 1[, it is parabolic, and if (v0) ]- 1, + 1[, it can be hyperbolic (hence fast)
or elliptic (hence slow). We shall analyze only the hyperbolic case.

4.5.1. Model. We choose an adapted coordinate system such that vo 0 and in which
the singular arc F is identified with t (t, 0). Hence system (4.1) can be written

(4.4) + a(x)y2 + Ox(y2),

-tlv=O / yX2(v) / u,

where a(0) (n, ad2y(X)(0)) 0, with n(0) (1,0) unit normal to N
Observe that if a(0) < 0 (resp., > 0), the singular arc is hyperbolic (resp., elliptic).

Let p (P,P2) be the adjoint variable with p(0) (1,-2ks + 0(s2)) orthogonal to N.
By computing with (4.4) and u e, e :i: we get

(4.5) p2(t) -2ks a(0)(g 2(0))t2 + kst +/g282 / 0(8, t) 2,

where k, k2 R are coefficients which are unimportant for our discussion. Hence, we get
the following lemma.
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LEMMA 4.11. In the hyperbolic case, any BC- regular extremal which meets N at a point
v O, small, has no switching if tc 7 O.

Now, let us evaluate the accessibility set near an hyperbolic singular trajectory.
PROPOSITION 4.12. Let (v,p, u) be a hyperbolic singular extremal defined on [0, T],

with given by (3.7) belonging to 1, +1[, satisfying the assumptions (H0)-(H3). Then
there exists a neighborhood U of v such that v is the time-optimal trajectory joining (0) to

v(T) among all solutions of (4.1). Moreover if U is sufficiently small, the accessibility set

A+u (v(0), T) near v(T) is a closed convex set with nonempty interior whose boundary is a
curve s H d(s) with d(O) v(T), d’(0) E RY(v(T)), C2 but not in general C3. Moreover
in every adapted coordinate system its curvature is zero.

Proof. From [2], since for a planar system a singular extremal satisfying (H0)-(H3) is
without conjugate points, v is time minimal among all solutions of + X / uY contained
in a sufficiently small neighborhood U and joining v(0) to v(T) with u E R. Hence it has
to be optimal if lu[ _< 1. Moreover from [2], [27], we can choose U such that every optimal
trajectory starting from v(0) is a singular arc I’8 followed by F+ or F_. Hence, near v(T),
the boundary of A+ (v(0), T) is parametrized by s d(s), where s > 0 and

d(s) (exp s(X + Y))(exp (T- s)2)(v(0)),
with 2 X + tY. Since v(T) exp T2 (v(0)), we get

d(s) (exp s(X + Y))(exp-s 2)(v(T)),
and by using the Baker-Campbell-Hausdorff formula we have

[ 82[X_+_ ]z, .j] / 0(82)] (v(T))d(s)=exp s(/l-)Y+
The curve d(s) can be evaluated by using Chen’s formula,

8nZ
exp sZ(v)- Z n! (id)(v),

n>0

for s sufficiently small, where Z is any vector field acting by Lie derivative on the mappings
oand id is the identify mapping. If Y -, we have Yn(id) 0, where n > 1, and since

along a singular trajectory Y and IX, Y] are collinear we get

d(s) v(T) + [s(l 2) + o(s)]Y(v(T)) + o(s2).
This proves the assertion.

Higher-order dimensional expansions would tell us the nature of it singularity. For in-
stance, if the system is given by b y2, ) u, and v(0) (0, 0), we get d(s)
(T -y es) with e + Hence the boundary is the graph of x T Ivlv

PROPOSITION 4.13. In the hyperbolic case, if k =/= 0, the optimal syntheses are given by
Fig. lO. Moreover, in the fiat case, the synthesis is given by the second case in Fig. 10.

Proof. Let us assume k 0. From Lemma 4.11, any BC-extremal which meets the target
N at a point v v0 has no switching point. To decide if the arc F8 is optimal, we use the
previous proposition. The system can be written as (4.4), and F8 identified with t --+ (t, 0).
Let v (-T, 0), T > 0, be a point of Fs. For U small, the boundary of the accessibility set

A+u(V, +T) has zero curvature; hence we have two situations (Fig. 11).
In the first situation, N meets the interior of the accessibility set; hence F8 is not time

optimal for our problem, contrary to the second situation or in the flat case. The syntheses
follow. The analysis in the flat case is similar.
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4.6. Generic exceptional case. Assumption 4.14 and Normalizations. Let v0 E N, and
one may assume v0 0. Suppose X + Y tangent to N at 0. Moreover assume Y and X Y
not tangent to N at 0. We can choose a coordinate system such that Y and N is identified
to the curve s H (0, s). Hence (4.1) can be written 5: X1 + u, ) X2, with X1 (0)

oxand X2(0) :/= 0. We can suppose X2(0) > 0. Moreover we assume -NS- (0) a 0, which
means that the contact of F+ with N at 0 is one.

PROPOSITION 4.15. Under the previous normalizations, the optimal synthesis is given by
Fig. 12.

Proof. First assume a > 0. The arc 1-’_ is a BC-extremal, n (1,0) being the associated
adjoint variable at 0. To prove that it is not optimal, we apply Lemma 4.3, the outward normal
to N with respect to I’_ being-n,Z X+Y, andP X-Y. We getA(5, P)
-2Y(0) + o(1). Hence, for small 5, (-n, A(5, P)) > 0. This proves the assertion. Indeed,
a simple computation shows the following. Assume that we are at distance c from N in the
domain z > 0. The time to reach the target N is of order x/ along F_ and of order c along
F_ because the contact of r’_ with N is one and F_ is transverse to N. In the domain z < 0,
the optimal control is u + 1, the value function being not continuous.

When a < 0, the analysis is similar, but the target N is not accessible from the points in
the sector z < 0 above I’_.

4.7. Generic flat exceptional case. The point v0 E N is identified toO, N to s H (0, s);
Y is assumed to be tangent to N, and X to be tangent to N at 0. Moreover we suppose Y,
X + Y not vanishing at 0 and IX, Y] not tangent to N at 0. System (4.1) can be written

ax + by + o(x, y), ) X2 --1-- u, where b -(n, IX, Y](0)) - 0, n (1,0) normal to
N. Clearly, one may assume a 0, b l, and + X2 (0) > 0.
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PROPOSITION 4.16. Under the previous normalizations, the optimal synthesis is given by
Fig. 13.

Proof. According to 3.7 z0 (0, r) E fi is a normal switching point and hence every
BC-extremal near z0 is of the form I+I

_
or I_I+. Since N is contained in/P, Y) 0, all

the switching points are concentrated on N. Hence, near 0, every optimal trajectory is of an
arc [’+ or F_. Then, the synthesis follows from Lemmas 3.14 and 4.3.

5. Conjugate and focal point along a singular extremal.

5.1. Introduction. Consider a control system X + uY in Rn, lut 1, and the
time-optimal control problem for the fixed end-point problem. Let 7 be an extremal defined
on [0, T]. One ofthe mainproblems is to compute thefirstpoint on "y where the extremal ceases
to be minimal. Such a point is called a cut point. In Riemannian geometry, a cut point can
be a conjugate point which corresponds to a singularity of the exponential mapping or a point
where two isolated minimizing extremals meet [15]. Hence, computing the cut locus splits
into two problems, The second problem is clearly global, but the computation of conjugate
points is local and accessible to the analysis when the correct topology has been identified (in
fact the Cl-topology). The key tool for this analysis is Jacobi’s equation. The behavior of the
solutions of this equation depends on an invariant called the sectional curvature.

In time-optimal control the situation is much more complicated. We have to deal with
regular and singular extremals, and the topology has to be chosen carefully. For regular
extremals the problem has been well studied by Sussmann [27]. The computation of conjugate
points along a singular extremal satisfying (H0)-(H3) is the object of [2]. The most interesting
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result is that computing a conjugate point can be done by using the equivalent of Jacobi’s
equation of the Riemannian case, although this equation is different if the reference extremal
is hyperbolic or exceptional. This difference is due to the fact that in the hyperbolic case, an
evaluation of the fixed-time accessibility set is sufficient to compute a conjugate point, contrary
to the exceptional case, where its dependence with respect to the time has to be studied.

The object of this section is to give a practical algorithm to compute conjugate andfocal
points along a singular extremal for the batch reactor problem. For this reason and for the
sake of simplicity, we consider only systems in R3, but our results can be extended to R by
using Hamiltonian formalism [21 ]. A connection with the concept of optimal synthesis also
is indicated, which is an attempt to unify the concept of conjugate point along a regular and a
singular extremal.

DEFINITION 5.1. Consider a control system gc X / uY, z E R, u R, and let "y
be a singular extremal defined on [0, T]. The point t ’y(tlc), tic [0, T[ is said to be the

first conjugate point to z "y(O) if, for each C-sufficiently small neighborhood U of’y, "y is
time optimalfor all solutions of the system restricted to U, with the same initial and terminal
conditions, on [0, t lc[ and no more time optimal on [0, t] if t > tic.

5.2. Notation. From now on, we consider a system of the form

(5.1) + X(v)+ uY(v),

where v (z, y, z) R3, X and Y being analytic vector fields. Let D =det (Y, IX, Y],
[Y, [X, Y]]), D’ det (Y, IX, Y], IX, IX, Y]]), and D" det (Y, IX, Y], X). Let us assume
that D is not identically 0, and let us denote by the vector field given on R3\{D 0} by
X-(D’/D)Y.

LEMMA 5.2. The singular trajectories satisfying (H0)-(H3) are contained inR \ {D 0}
and are the nonperiodic solutions of the analytic differential equation + (). The sets

D" O, DD" > O, and DD" < 0 are invariant setsfor the solutions of this equation. The
hyperbolic (resp., elliptic, exceptional) trajectories are the solutions contained in DD" > 0
(resp., DD" < O, D" 0).

Proof. The proof follows from the results of 3.2. A singular extremal has to satisfy the
constraints (p, Y(v)) (p, [X, Y](v)) 0, and the singular control is given by the dynamic
feedback t(v,p) defined by (3.7). Now, on D\{0}, Y and IX, Y] are linearly independent,

D’(v)and since p R\{0}, the feedback g is independent of p and is clearly g(v) D()
From Definition 3.3, an exceptional singular trajectory corresponds to a zero energy level,

H 0. This property is invariant for the singular flow, and for trajectories in R\{D 0}
it projects onto the set D" 0 which contains the exceptional extremals. The lemma is then
proved.

5.3. First method of computing conjugate points.

5.3.1. Preliminaries. We briefly recall the method given in [2] to compute conjugate
points along a reference singular extremal satisfying (H0)-(H3) in the hyperbolic and excep-
tional cases. (In the elliptic case, the trajectory is time maximizing, and according to our
definition the conjugate point to "3,(0) is ’y(0) itself.) We use the fact that the optimality status
of ’y for (5.1) (no a priori bound is imposed on u) is left invariant under the action of the

feedback group [1 ]. Hence, applying to the system a well-defined change of coordinates and
a feedback law, we can transform the system near -y into the following systems.

In the exceptional case

0 0 0
(5.2) (1 + ’)z + u-- + a(t)b,2zz + R(v),
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where a > 0 on [0, T], and in the hyperbolic case

0 0 0
L(t, y, z)--x + Zy + U-z + R(v),

where L is the quadratic form a(t)z2 / 2b(t)yz / c(t)z2 and a < 0 on [0, T]. In both cases
the reference trajectory 3‘ is identified to t (t, 0, 0) and corresponds to the zero control.
The remaining terms R are given in [2] and can be neglected to analyze the optimality of

3‘ with respect to all C-neighboring trajectories, and R will be supposed to be zero. The
corresponding systems are called models.

Now, observe that for the models the input-state mapping u(.) v(t, vo, u), where
v(t, vo, u) is the solution associated with u such that v(O) vo, can be explicitly computed,
and the optimality of 3’ is analyzed as follows.

Fact 5.3. By definition, 3’: t (t, 0, 0) is time optimal on [0, T] if V t El0, T[, (t, 0, 0)
is not accessible from (0,0,0) in a time t < t.

Hence, let v(t) (t, 0, 0) + 99(t), with 99 (99, 992,993), be a solution of one of the
models (5.2) or (5.3); then 99 is a solution of

(5.2)’ b 992, @2 , @3 a(t)99
or

(5.3)’ @, L(t, 992,993), (2 993, 03 u.

Fact 5.4. In the exceptional case, 3’ t (t, 0, 0) is time optimal. Indeed, let 0 < t < t,

and if v(t’) (t, O, 0), v being the solution of (5.2), we get 993(t’) fo a(s)cp(s) ds O.
Since a > 0, this implies 992 0 on [0,

Fact 5.5. In the hyperbolic case, the condition v(t’) (t, 0, 0) implies 992(t’) 993(t’)
0, and clearly 3’ is time optimal on [0, T] if and only if the functional

(5.4) J(t) (a(s)9923 + 2b(s)992g)3 + c(s)9922)ds

satisfies J(t) <_ 0Vt El0, T] when evaluated on the set of curves 992,993 solutions of the
equations b2 993, b3 u with boundary conditions 992(0) p3(0) 992(t) 993(t) 0.

Now, from [2], since u R, the variable 993 can be taken as the control (see the concept
of reduced system introduced in Definition 3.6), and we have to study the sign of J on the set
C of nontrivial smooth curves 992, with @2 993 (control) and satisfying boundary conditions
992(0) 992(/;) 0. (The constraints on 993 have been relaxed.)

5.3.2. Notation. Let tic be the first time 0 < t _< T such that the maximum of J(t) on
C is zero.

According to classical calculus of variations we have the following lemma (see [9]).
LEMMA 5.6. If t < tc, then J(t) < 0 on C, and if t > tic, then J(t) takes positive and

negative values.
In other words, tic is the time t such that 3’ is time optimal on [0, t] if t < tic and no

more optimal if t > tic. Hence 3’(tic) is the conjugate point to 3’(0). Now, from [9], the
computation of tc is straightforward.

LEMMA 5.7. The time tc is the first time t such that there exists a nontrivial solution 992
for Euler-Lagrange equation

d (OL) OL
=0, with992(O)=992(t)=O(5.5) d- 0
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and

L(t, 2, @2) a(t)22 + 2b(t)g2qb2 q- c(t)g22

Conclusion 5.8. Consider system (5.1), u E R, and let -y be a singular trajectory satisfying
(H0)-(H3). Then we have the following:

(i) If-y is elliptic, then -y is not time optimal. (In fact, it corresponds to a slow displacement
direction.)

(ii) If -y is exceptional, then -y is time minimal with respect to all solutions of (5.1)
contained in a sufficiently small C-neighborhood of

(iii) If -y is hyperbolic, then -y is time optimal with respect to all solutions contained
in a sufficiently small C-neighborhood of -y until the first conjugate point. This point can
be computed by integrating the linear differential equation (5.5), which is Jacobi’s equation
associated with 7. This equation can be found by constructing the model. From [2], this
construction requires two nonlinear operations: the integrations of the reference trajectory,

owhich has to be identified to t - (t, 0, 0), and of the vector field Y, identified to 7"

5.4. Conjugate points and the synthesis problem: Intrinsic computation. In the clas-
sical calculus of variations, the concept ofconjugate point is deeply connected with the concept
of extremal field (see [9]). This was used in [22] to define a concept of conjugate point along
a reference hyperbolic trajectory in the time-optimal control problem. We briefly recall these
results and their connection with our previous analysis.

5.4.1. Preliminaries. Consider a control system in R3, i X + uY, where lul _< M
and 0 < M _< +. (Our analysis can be straightforwardly extended to the n-dimensional
case.) Recall that X (D’D)Y is the vector field whose nonperiodic trajectories are
(H0)-(H3) singular extremals. Let , be such a reference trajectory defined on [0, T] and
corresponding to a control taking its values in M, +M[, and let us assume that "7 is
hyperbolic. Let V(t), t E [0, T] be the solution of the variational equation

(5.6)

with V(0) Y(,(0)).
Lete, e’ +landgbethemapping(t,tz, t3,e,e’) exp t3(X+e’MY).exp ;2 .exp

t(X + eMY)(’y(O)), and let.T be its image fort2 [0, T] and tl, t3 _> 0, sufficiently small.
If det (V(-y(t)), Y(-y(t)), o6(-y(t)) is never vanishing on ]0, T], then br is a field about the arc -y
in the following sense. There exists a C-neighborhood of 7, U, such that every point of U is
the image of only one (tl, t2, t3, e, e’). IfM < +, Moyer proved in [22] that .T" is an optimal
field, i.e., every arc of the field is time optimal with respect to C-neighboring trajectories,
and from [2] this result is still valid if M +cxa. In other words, we have constructed the
time-optimal synthesis in a neighborhood of the reference trajectory.

Let us denote by tc the first 0 < t < T such that det ((V(’),(t)), Y(’y(t)), (-y(t)))
vanishes. Next, we compare tic with tiC defined in (5.5).

LEMMA 5.9. We have thefollowing:
(i) V(t) Span {Y(7(t)), IX, Y](())},
(ii) det (V(t), Y(7(t)), (7(t))) O fort ]0, T] ifand only if v(t) and Y(7(t)) are

collinear.

Proof. By construction, V(t) is the derivative at e 0 of the curve e -+ exp t. exp
eY(7(0)) which can be written as e --+ exp t. exp eY. exp-t(T(t)). Now, from the ad-
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formula, we have for small

V(t)- Z(-1)n.adn (Y)(’y(t)),

and since ",/is a singular arc and X, IX, Y] are linearly independent, we have

Span {ad (Y); n > 0}l. Span {Y, [, Y]}l’r"

Hence, since Span {Y, [, Y]}l’r Span {Y, IX, Y]}l’r, we get V(t) E Span {Y("/(t)),
IX, Y] (’,/(t)) } for small t and everywhere by analycity. This proves (i). Now, in the hyperbolic
case det (Y, IX, Y], X) never vanishes along ",/, and then (i) implies (ii).

LEMMA 5.10. tic ttlc.
Proof. To compute t{c, one may assume system (5.1) written in the normal form of [2]"

0 0
X (1 -1- tl)-&-- -t- (z -t- (2) Oy’

0
Y=

where Qi E (R[z])[y, z] and 5Q in y, z >_ 2, 7 being identified to t -+ (t, 0, 0) and corre-
sponding to the zero-control. By computing we get

[X, Y]
OQ O ( OQ2 ) O
Oz Ox + Oy’
02Q1 0 0202 0

[Y, [X, Y]] Oz2 Oz Oz2 Oy’
0 0IX, IX, +

oy

where

2Q1 2Q1
(z -+-Q2)OxOz (1 + Q,) OyOz

0212 0202
OxOz + Q OvOz

z + Q2

Then

OqQ10q2(2 (lq_ 00@Z2) 02Q
D det (Y, [X, Y], [Y, IX, Y]]) Oz 02;2 OZ2

Q Ol2)D’ det (Y, IX, Y], IX, IX, Y]]) X + -0-7-z X20z

Since 3’ t (t, 0, 0), to compute the variational equation of X +Y, -D’/D
along 7, we need only consider the terms in D and D’ which are at most linear in y and z. If
we set Q1 a(x)z2 q- 2b(x)yz + c(x)z2 -t-- Ox(y, Z)2 and Q2 O,(x)z2 q- 2)(x)yz + (x)z2 -1--

Oox(y, z) 2 the relevant terms in are given by

cy a’z b’y
I-a(1 + 2gz + 2bz) + gz(2az + 2bz)]
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Observe that since the numerator is without a constant term, we can take 0,
i.e., one can assume Q2 0, and we have only to compute the Jacobian matrix of b
a-(cy a’z b’y). Hence we have

O =0, 0_ c-b’ 0_ a’
Ox Oy a Oz a

and the variational equation along -y is

(5.7) x-0, (y=Sz, z c sy Sz
a a

On the other hand, the Euler-Lagrange equation corresponding to L(t, @2, @2) a(t)@22 nt-
2b(t)pzb2 + c(t) is

a @2 -+- (b c)2 -- z @2 0,

which is equivalent to the two last equations of (5.7). Therefore V(t) is collinear to Y(-y(t)) at
time t’c if and only if there exists a nontrivial solution 2 of (5.8), with g2 (0) pz(tc) 0.
Hence, we have proved tic t’l .

5.4.2. Curvature. Consider the system

a a

It can be written as the second-order differential equation

Every equation of the form

can be transformed into

-c/ + +v 0.
a a

"y + Ay + B Sy 0

+KY=0

if we set 5y CY, where C exp f- ds and K is given by

K (: + A’ + BC.

a B= /’- anda<0, wegetC= 1/.Computing with A g, -7-,
The mapping K defined on D"D > 0 corresponds to the concept of curvature in Rie-

mannian geometry.

5.4.3. Geometric interpretation. First, let us assume that system (5.1) coincides with
the model

0 0 0
L t, y, z -x + Z-y + u 0-7

and the associated reduced system defined in Definition 3.6 is then

(5.9) 2 + L(t, y, z), ) z,
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lc lc

x /..__ x

(i) (ii)

where z is the control variable. By definition of tc, there exists a curve z3 such that

(0) 1, if(0) 3(tc) 0, t(t) - 0 on ]0, t[, and f.c L(t, fl, fl) dt 0. Hence
the corresponding solution starting from (0, 0) satisfies (tl) tl, and (Y, ) intersects
(]0, t], 0) only at (tc, 0).

Let e E R and be the solutions of (5.9) starting from 0 and corresponding to the controls
z e3. From our previous analysis the family of curves (,) intersects (]0, tc], 0) only
at (tl, 0) (see Fig. 14(i)), and as in [9] one can show that for the reduced system associated
with (5.1), (tc, 0) is the limiting point of the intersections of the projection of the extremals
on the reduced space with the projection of the reference extremal "7 (Y can be identified to
__.o and , to t (t, 0, 0) the reduced space being the (z )-space); see Fig. 14(ii)

5.5. Focal points. When we deal with optimal control problems where the terminal
manifold is not necessarily a point, the concept of conjugate point has to be generalized to the
concept of a focal point. To make the application to the batch reactor problem, throughout
this section we shall assume that the terminal manifold N is of codimension one and that we
are in the fiat case, Y tangent everywhere to N.

5.5.1. Generalities. We consider system (5.1) in R3, with [u < 1. The terminal mani-
fold N is assumed to be a regular submanifold ofcodimension one, its tangent space being given
by Span {Y, W}, where W is a vector field. Let 7 be a reference singular (H0)-(H3)-extremal,
hyperbolic, defined on IT, 0], T < 0, and corresponding to an admissible control taking its
values in 1, + [. Let us assume that 7(0) E N and 7 satisfies the transversality condition,
which can be expressed as follows: 7(0) L {v N; det (Y, W, [X, Y])(v) 0}.

We will assume that L is a simple curve. Now, to define the concept ofafocal point along
"7, we must know the time-optimal synthesisfunction near "7(0). Hence, we shall assume that

’7 is time optimal on It, 0] for the optimal problem with terminal condition on N for t small
and the optimal synthesis given in a neighborhood of 7(0) by Fig. 15; i.e., the surface formed
by the singular arcs arriving at L divides the space into two domains, one in which the optimal
feedback is / 1, and one in which it is -1, the optimal feedback in the surface being the
singular control . (For a method characterizing such a synthesis, simply see 4.)

DEFINITION 5.11. Let V (t) be the solution ofthe variational equation

o#
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FIG. 15.

n’(V (tlf)))

n’(V)

FIG. 16.

with V’(O) Z unit tangent vector to L at 7(0). The point 7(tf with T <_ tlf < 0
will be called the rst) focal point about 7 if t f is the first time t < 0 such that det

(V’(t), Y(o’(t)), ("),(t))) 0.
LEMMA 5.12. V() Span {(’()), IX,
Proof. The vector Z can be written )Y((0)) + ,2[g, Y] (’),(0)), with ,, A2 R. By

definition

[exp t,’. exp Z(7(0))],

and from the ad-formula, the second member of the previous equation belongs to Span
{adk(Y)(7(t)); k E N}. This space coincides with Span {Y(7(t)), IX, Y](/(t))}.

5.5.2. Geometric interpretation. Let Y , and let us consider the reduced system.
If 7r’ is the projection (e, /, z) (;e, /), since Y is tangent to the terminal manifold we have
the interpretation for the concept of focal points in terms of the behaviors of the projected
singular extremals in Fig. 16.

6. Application to the time-optimal control for batch reactors. Now we will compute
the optimal synthesis for the problem 79 defined in 2 for a sequence of two reactions X
Y Z and where the terminal condition belongs to N {(:e, /); //:e k}, k being given,
where :e and /are the respective (normalized) concentrations of species X and Y. System
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(2.3) can be written

dx dy dv
h(v)u,(6.1)

dt
-vx,

dt
vx- vy,

dt
Rwherev- de-E’/RT 0 < v < d h(v) vlnz(v/d) - E2/E Z- A2/A

and w (x,y,v) P, the physical space defined by 0 < x _< l, y >_ 0, x + y <_ l, 0 <
v < A1, and y/x < k.

(i.1. Computations. The first step in our analysis is to compute the singular extremals.
Using 3.2, we get the following lemma.

LEMMA 6.1. The singular extremals of order 2 for system (2.3), written as ((x, v),
(p, /), U) R X R x R x R x R, are the solutions of

dx dp dv

(6.2) dt dt dt

0,

contained in E’ {(x,p);pM’(v)x 0}. (Here p is a row vector, M’ and M" are the first
and second derivative ofM with respect to v, and [M, M] MM MM.)

PROPOSITION 6.2. Consider system (6.1). Ifc : 1, all the singular extremals w(.) in the
physical space p are hyperbolic and the solutions of

dx dy dv
h(v)t(6.3)

dt
-vx, d---( vx -/3vy,

dt

)2X
restricted to P, where the singular control is t

h(v) 
Proof For a system in R, is given by -D/D and the hyperbolic trajectories are

contained in DD" > 0, where D, D, and D" are defined in 5.2. By computing in our case,
we get D h4c(c 1)v-Zxy, D’ h/3(c 1)vx, and/9" h2vxy( 1). This
proves the proposition.

6.2. Projected system. System (5.3) is left invariant by the transformations (x, y, v) ---+

(,x, ,y, v), A R\{0}. Hence it can be projected onto P’ R, where p1 one-dimensional
projective space. More precisely, since x never vanishes in the physical space, in the coordi-
nates (x, z y/x, v) it becomes

dx dz dv
h(v)u.(6.4)

dt
-vx,

dt
v flvz + vz,

dt

The system

dz dv
h(v)u(6.5)

dt
v -/3vz + vz, d---

is called the projected system.
Now, we can project differential equation (6.3) onto

(6.6)
dz dv v2

v --/vCz -t- vz,
dt dt cz

But from 3.5, not every solution of this equation corresponds to a singular extremal of the
projected system. Indeed, let (X, Y) be a system on R. The singular extremals are contained
in the set

S {x; det (Y(x), IX, Y](x)) 0},
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the singular control being given by g. By computing for the planar system (6.5) we get the
following lemma.

LEMMA 6.3. The singular extremals for system (6.5) are contained in 5’ {(z, v);
z(cvc-1 }, and the singular control is given by -(v2/h(v)ctz). The differential
equation describing the evolution on a singular arc is

(6.7)
dv V2

dt c
(1 c/v l)

6.3. Conjugate points. From now on we shall assume c > 1, which is the physical
interesting situation. All the singular trajectories satisfy (H0)-(H3) and are hyperbolic, and
we have to compute the first conjugate point along a reference singular trajectory 7, using the
algorithm in 5.4. The variational equation associated with (6.3) is

(6.8)

where (z,v) + z(1 c/3v"-l) and 0 is the set S. Let Q S x R and

To compute the conjugate points, we must integrate (6.8) with the initial condition x(0)
6z(0) 0 and v(0) 1. We have to distinguish two cases.

LEMMA 6.4. A singular trajectory in P N Q is without conjugate points.

Proof. We integrate (6.8) with the initial condition (0,0,1) and 0. Hence we have

(Sz 0, o/0 2v
5v exp ds,

and clearly 5x(t) < 0 for all t > 0. Therefore the condition 5x(tlc) 0 cannot be satisfied.

6.3.1. Singular trajectories not contained in P f3 Q. Let us write (6.3) as X+Y,
and let us denote by :r the projection (x, z, v) (z, v), X and Y being the vector fields
dyr(X) and d:r(Y), respectively. Let 7 be a singular trajectory in P\ Q and V(t) be the
solution of the variational equation along 7, with V(O) Y(7(O)). From Lemma 5.9, V(t)
can be written A (t)Y(7(t)) + Aa(t)[X Y](7(t)), and its projection on the space (z, v) is

dTr(V(t)) A,(t)Y(Tr(7(t)) + A2(t)[X, Y](Tr(7(t))).

Now, tc is the conjugate time if it is the first t such that ,k2(t) 0. Since on P\ Q, V(t)
is collinear to Y(7(t)) if and only if dTr(V(t)) is collinear to Y(7(t)), we have proved the
following lemma.

LEMMA 6.5. The time t, is the conjugate time ifand only if tic is the first t such that the
solution of

(6.9)
V2 2v
OzZ2 OzZ

passing through (0,1) at t 0 is such that 5z(t) O.
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r(Y (t lc))

/

/

/
T(y (0))

1/1- 1/1-
(0:[) 0 A

FIG. 17.

6.3.2. Computations. By setting J Sz/b(z, v)v, equation (6.9) can be written in the
canonical form J + (KoT)J O, where the curvature is

K (0 1)/v+l

From Sturm’s theorem [15], we must find L such that 0 < L < K to guarantee the
existence of a conjugate time on [0, 7r/v/]. Since along a singular trajectory 7 in P, z(t)
+oc when t +oc, such a lower bound L > 0 doesn’t exist in our case and we have to
use numerical simulations to compute conjugate points. If fli/(-,) < Al, they show the
existence of conjugate point for singular arcs such that 7(0) E {k < 0} (see Fig. 17).

6.4. Optimal synthesis.

6.4.1. Preliminaries. From 3.5, to solve problem 79 it is sufficient to solve the projected
problem 79’. minimize the time duration to reach the target N { (z, v); z k, k fixed} for
the solution of

dz dv V2

d v -/3vz + vz,
dt cz

where u E [u_, u+]. Moreover we shall assume u_ < 0 < u+, c > 1, A1 > /1/(1-), and
-vZ/h(v,)ok ]u_, u+[, where v, is defined as the v-coordinate ofP (v,, k) intersection
of S with N. (The other cases can be easily deduced from our analysis.)

6.4.2. Singular are. A singular trajectory belongs to the set S {(z, v); z(o#3v-1) }, and the singular control is defined by it -vz/h(v)oz and has to belong to [u_, u+]
to be admissible. By computing, we get it < 0 and o < 0. Moreover v decreases along
a singular arc and when v - A-, it -+ -oc. Since at Pl S V) N, it is admissible by
hypothesis we have Fig. 18, where P2 is the unique point such that it u_ and Fs denotes
the maximal admissible singular arc.
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P

FIG. 18.

V v

n (G)

FIG. 19.

6.4.3. Regular arcs. Now, we have to analyze the behaviors oftrajectories corresponding
to the constant control u u_ or u+. First, observe that h(v) > 0 if 0 < v < AI. Hence,
the sign of + is given by u_ or u+. Now, vanishes for z (/3v 1)-l, whose graph
is denoted by 7r(G). The singular points of the vector fields associated with u_ and u+
in 0 _< v _< A1 are the points of the line v 0 and the point P ((/3A-1 1),A1),
which belongs by assumption to z > 0. A straightforward analysis gives the phase portraits
in Fig. 19.

6.4.4. Switching function. One major problem in optimal control is estimating the num-
ber of switchings of an optimal control. In our case, it is possible by using the following
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analysis. The adjoint equations associated with the system, with p (p, p2), are

dpl dp2 dh()plv(o/3v- 1- z) p2
dv

Let (7, P, u) be a smooth extremal defined on [0, T], p being nonzero by assumption. The
switching function (I)(t) pz(t)h(v(t)) evaluated along this extremal satisfies, from (3.9),

4,(t) p,()[(-’ ) ],

(t) p,h(v)[/3v( 1) + u( 1)v-2zh(v)] +

The set (t) 0 plays an important role when the switching points are computed.
Observe that if p is nonzero, its projection on the state space is the curve S. We have the
following lemma.

LEMMA 6.6. Let us assume (0) ((T) O. Then the extremal 7 meets S for a

t r[.
Proof. By definition p never vanishes and p2(0) 0. Now, the sign of p is constant

on [0, T] and Pl never vanishes. Since (0) (T), then there exists t G]0, T[ such that
(t) 0. Since p never vanishes, at t we have z(cv- 1) 1.

LEMMA 6.7. Let us assume that (7, P, u) is such that u u+, p > 0 and ’(T) O.
Then (0) is nonzero.

Proof. Let g)(t) (t)/h(v(t)) evaluated along the given extremal. We have

b(t) Pl [v(o 1) + u+o(o 1)v-2zh(v)].
Hence, sign b sign Pl > 0 and is a strictly increasing function. Now since (7, P, u+)

is an extremal, if T is a switching time, from 3.6 we must have (T) _< 0. Hence (0) <
(T) < 0. Let us assume (I)(0) 0; then again we must have (0) >_ 0. This contradicts

< 0.

6.4.5. Synthesis. Now, we can show the optimal synthesis in Fig. 20.
First, observe that by 19, Thm. 4, p. 259], there exists an optimal controller in the family

of all measurable mappings with values in [u_, u+], provided that the system is restrained
to the compact set 0 < z _< k, 0 _< v _< A1, and the target is the compact set z k and
O<_v<_A.

To compute the synthesis we proceed as follows. First, we use the local classification in

4 to obtain the synthesis function near the target. We are in the fiat case. The two singularities
of the analysis are at P, where an optimal singular arc meets the target, and the point P3,
where both are F+ and F_ are tangent to the terminal manifold, the respective synthesis being
given by Propositions 4.13 and 4.15.

Now, from the analysis in 4, at the terminal point, the adjoint variable can be taken as
p (1,0). Since we are in the fiat case, all the points of N are virtual switching points. Hence
from Lemma 5.7 an extremal arc F+ hitting the target is not allowed to switch at the initial
point, and from Lemma 5.5 an extremal arc F_ hitting the target has to meet S to switch at the
initial time. The point P: (v:, ,) is the point on S such that an arc F_ is tangent to S, and
if v > v:, then < u_. This will cause the existence of optimal laws with two switchings,
one on the singular arc Fs and the other on a curve C. As in Lemma 4.2, one can show that
this curve cannot be an arc F_ and is in fact contained strictly in the acute domain limited by
S and the arc F_ passing through P:.

The optimal synthesis for the original problem 7) is obtained by adding the x-variable.
Observe that it is without a conjugate point, since a singular arc in R: is without a conjugate
point, and this is in accordance with the analysis of 5.3.
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NEUMANN BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER ORDINARY
DIFFERENTIAL EQUATIONS ACROSS RESONANCE*

WANG HUAIZHONG AND LI YONG

Abstract. There have been some applications of optimal control theory to boundary value problems for ordinary
differential equations. Among previous works, the best lengths of intervals on which the boundary value problem
admits a solution are estimated by Pontryagin’s maximum principle. Hence such approaches are local and the
presented conditions are actually not across points ofresonance as in the Lazer-Leach condition. Here we consider the
existence-uniqueness problem in a class of Neumann boundary value problems for second-order ordinary differential
equations probably across several points of resonance. By the optimal control theory method and a careful analysis,
we obtain some global optimality results about the existence and uniqueness of solutions for boundary value problems.

Key words, optimal control, Neumann boundary value problems, existence and uniqueness, across points of
resonance

AMS subject classifications. 34B, 49B, 49K

1. Introduction. As is well known, the Neumann condition is one of the basic boundary
conditions appearing in mathematical physics (for example, equilibrium problems concerning
beams, columns, or strings; fluid flow problems; and heat transfer problems). This kind of
boundary value problems (BVP) has the following standard form:

(p) y"+f(t,y,y’)-0, y’ (a) A, y’ (b) B,

where A, B R’, f [a, b] R R + R. The Neumann BVP (p) differs from a
corresponding initial value problem or Dirichlet boundary value problem in that a Lipschitz
condition for f does not guarantee the existence nor the uniqueness of solutions even for
the simple f f(t) unless f: f(s) ds B A. Furthermore, Green’s function of the
problem y" 0, y’(a) O, y’(b) 0 does not exist. This shows that one cannot utilize
Green’s function in reformulating (p) as an integral equation, unlike the Dirichlet boundary
value problem. Therefore, it is more difficult to find general conditions for existence and
uniqueness. Under suitable monotonicity conditions or nonresonance conditions, some nice
existence or uniqueness theorems or methods for (p) have been presented (see, for example,
1]-[9], 16]-[ 18], [23], [24], and [26]).

In this paper we are concerned with the following Neumann BVP:

(1.1) y" / f(t, y) O,

(1.2) y’(0)- A, y’(1) B,

where A, B R and f [0, 1] _R + R is continuous and satisfies some additional conditions.
In general, the set {n2

7I
-2} is called the set ofpoints of resonance for BVP (1.1) (1.2). If

we assume that f(t, y) is continuously differentiable with respect to y, then applying previous
works to BVP (1.1)-(1.2), the results that we can obtain are only the following:

(i) If there is an a > 0 such that

(f Of)-f;(t,y) -y > oe on [0, 1] R,

then BVP (1.1) (1.2) has a unique solution.
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(ii) If there are A, # > 0 such that

(1.3) N27r2<A<f(t,y)<#<(N+l)2rc2 on[0,1] R,

where N is some nonnegative integer, then BVP (1.1)- (1.2) has a unique solution.
The above condition (1.3) is the usual Lazer-Leach-type condition (see [17]). However,

if for some B > 71-2

(1.4) 0 <_ f(x,y) <_ B on, [0, 1] R,

then when does BVP (1.1) -(1.2) have a unique solution? The condition (1.4) is usually called
one crossing points of resonance.

In this paper, by the optimal control theory method, we prove two optimality results on
the existence and uniqueness of BVP (1.1)-(1.2). Our main result is the following theorem.

THEOREM A. Assume that the following conditions are fulfilled:

(i) f(t, y) and fy(t, y) are continuous on [0, 1] R.

(ii) For some t3 >_ 7r2,

o <_ L(t,y) <_ (t) <_ B on [0,

where/3 e L[0, l] and satisfies f fl(t) dt< 13c. Here c is the minimal positive root of the
equation

cos (x/-)- x/(1-x) sin

(iii) j;’ f(t, 0) dt 0 and

meas {t [0, 1], fy(t, x(t)) > 0} > 0,

for each x C([0, 1], R).
Then BVP (1.1)-(1.2) has a unique solution.
Here the optimality means that given B 2 z, there exists a u C([0, 1], R) with

O u(t) B for t[0,1], u(t)

such that the BVP

v" + (t)v 0, y’(0) y’(1) --0

has nontrivial solutions.
It should be pointed out that Mawhin, Ward, and Willem 19] have presented a sufficient

and necessary condition of solvability for the Neumann problem relative to semilinear elliptic
equations across resonance by means of the variational method.

Some interesting applications of the control theory method to several BVPs for ordinary
differential equations have been presented by the authors of [8], [111-[15], [20]-[22], and
[25]. However, all of these papers do not deal with the Neumann BVPs, and the conditions of
the theorems established in the papers are all nonresonant.

The plan of this paper is the following: 2 deals with an optimal control problem for
a linear BVR There, using Pontryagin’s maximum principle, we prove the existence of the
optimal control for the problem. In particular, we find an explicit expression of the optimal
control, which is vital to our discussion. Finally in 3, applying the results of2 and Schauder’s
fixed-point theorem, we give the proofs of Theorem A and some other results.
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2. Linear problem. Consider the following linear BVP:

(2.1) y" + u(t)y O, y’ (0) y’(1) 0,

where u L[0, 1] and satisfies 0 _< u(t) <_ 13, where 13 _> 7l"2.
Choose a suitable admissible set ft as follows"

{u G L[0, 1]’0 _< u(t) <_ 13, meas {t G [0, 1] u(t) > 0} > 0

and for u u(t), BVP (2.1) has nontrivial solutions}.

by
We are to seek a function u* ft such that u* (t) minimizes the functional J[u] defined

J[u] u(t) dt, u

that is,

(2.2) J[u*]- min J[u].

Thus the problem (2.1)-(2.2) is an optimal control problem.
We need the following lemmas.
LEMMA 1. Problem (2.1) (2.2) has a solution; that is, the optimal controlfunction exists.

Proof. Since u(t) 71-2 , ’) is not empty. Obviously,

/to --if J[u] [0, B].

Hence there exists a minimizing sequence {u, (t)} C ft such that

J[un] #o(n --
For each u un(t), BVP (2.1) has a solution yn(t) with

IlY[[- max lyn(t)[ + max ly(t)l
[o,,] [o,]

by the definition of Q. Then {y(t)} is uniformly essentially bounded on [0,1]. These
imply that {y(t)} and {y(t)} are uniformly bounded and equicontinuous on [0,1]. By the
Arzela-Ascoli theorem, passing to a subsequence if necessary, we may assume

y-yo, y’z0 (n

uniformly on [0,1] for suitable yo, z0 C([0, 1], R). Since {u} C n2[0, l] and is uniformly
bounded on [0,1 ], we may assume that u(t) is weakly convergent to u*
By the Hahn-Banach theorem, we see u* [0, B]. Consequently,

o(t) o(O) + o() d,

zo(t) zo(O) + I-u* (s)yo(s)] as

(2.3) y;(o) y;(1) o, lyoll 1.

for t [0, 1]. Obviously,
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These imply that yo(t) is a solution of BVP (2.1) for u u*(t). Note that for each n,

meas {t E [0, 1]: un(t) > 0} > 0.

Therefore, for each n, y(t) has a zero in [0,1], which shows that y0(t) has a zero in [0,1].
From this, (2.3), and the uniqueness for initial value problems it follows that

meas {t [0, 1]: u* (t) > 0} > 0.

To summarize, we have that u* E f, which completes the proof of the lemma.
LEMMA 2. Let U f. If the BVP

y" + Ul (t)y O, y’(0)--y’(1)--0

has a nontrivial solution y, (15) such thatfor some 151 (0, 1), Y’I (151) O, then there exists a

u2 ft such that the BVP

v" + o, v’(o)

has a nontrivial solution Y2 (15) with

(2.4)
ly(t)l > 0 on (0, 1)and

/01 /01u2(15) dt < Ul (t) dr.

Proof. Since ul f, we have

meas {t [0, 1]: u, (t) > O} > O.

Hence it is easy to prove that yl (15) has a zero 152 in (0,1). By the uniqueness of initial value
problems, we get Y’I (152) =/= 0. Note that 151 E (0, 1) and y (151) 0. Therefore, there exists

[a, b] c [0, 1] such that

O<b-a< 1, t2 (a,b), y’,(a)-y’l(b)=O,

and lY’l(t)l > 0 on (a, b).

Set t (b a)s + a. Then y2(8) Yl ((b a)s + a) is a nontrivial solution of the BVP

"’d2-- + (b- a)2u, ((b- a)s + a)y O,
ds2

y’(O) y’(1)=0.

Take u2(s) (b- a)sul ((b- a)s + a). Then

Lb Lu2(t) dt (b a) l (t) d15 < Ul (t)

which completes the proof.
By Lemma 2, we get the following lemma.
LEMMA 3. /f/* (15) is an optimal control ofproblem (2.1)- (2.2), thenfor * (t) eve

nontrivial solution * (t) ofBVP (2.1) satisfies

y*’(t) 7 0 on (0, 1).
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The main result of this section is the following.
THEOREM 1. Let B > rc2. Then the problem (2.1)-(2.2) has a unique optimal control

u* E f. In addition, u*(t) has the followingform:

I B, 0 < t < ,
B, a t 1,

here (B) is the minimal positive root ofthe equation

and

#0 J[u*] Bc(B).

Proof. By Lemmal, problem (2.1)-(2.2) has an optimal control u* E . Set yl

y, yl Y2, and u u*. Then (2.1) turns into the system

’, , - ,, (0) () 0.

According to Pontryagin’s maximum principle, the Hamilton function of the system reads as
follows:

H -u* + lY2 +
where/1 (t) and A2(t) satisfy

(2.6) A’I ?*,2,

(0) , (0) 0,

Hence u* (t) satisfies the following:

(2.7) u* (t)
O,
B,

+ (t)v, (t) > o,
+/\2(t)yl (t) < 0.

By (2.6), A2(t) and y(t) are solutions of BVP (2.1) for u u*. Therefore, they are linearly
dependent. Thus we can assume that for some constant c,

which implies

A2(t) cy,(t) on[0, 1],

l-t-/\2(t)yl(t)- 1+ cYl2(t)- 1+ cy2(t).

Since u* (t) is an optimal control, it follows from Lemma 3 that

(2.8) Yl (t) - 0 on (0, 1).

Hence y,(t) is increasing or decreasing on (0,1). Since u*(t) >_ 0 and y’l(0) y’l(1)
0, Yl (t) has a unique zero in (0,1). By (2.7), we get u* (t) 0 on a interval near the zero, and
consequently,

(2.9) yl (t) It + m
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on the interval satisfying u* (t) 0, where and rn are suitable constants. From

meas {t [0, 1]" u*(t) > 0} > 0,

the monotonicity of y (t), and (2.7), (2.9), it follows that there exist tl, 2 [0, 1] such that

B, 0<t<t,

t3, tz <t<_l.

Noting (2.9) and

we get

Hence

y (0) y/(1) 0,

0<tl <t2 < 1.

(2.10)
, cos

cos (v( t) ),

o<t<t,,

tz_<t_<l,

where ]1, 2, 1, and rn are suitable constants and kl, ]2 0. From the continuous differentia-
bility of yl (t) on [0,1] and (2.10), we have

(2.1 la)

(2.1 lb)

(2.1 lc)

(2.1 ld)

By (2.7), we see

which shows

See Fig. 1.
Thus,

that is,

(2.12)

Note

k cos (x/-t) lt + m,

-,,/-5 si (,/-5t,) ,
lt2 + m k2 cos (v/-(1 t2)),

l= k2x/- sin (V(1 t2)).

+ c[y, (t,)]2 + c[yl (t)] 2 O,

sgn (y (0))v,(t) -v,(t)

lt + rn -(lt2 + rn);

l(tl + t2) -+- 2m 0.

-(] + ,),
H(y,(t),yz(t),/l(t),Az(t),u*(t)) -el2

-( + ),

O<_t < t,
t < t <
t2<_t<_l,
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FIG. 1. Yl(0)>0.

by (2.6), (2.10), and

O<_t<_tl,
tl <t<t,
t<_t<_l.

By Pontryagin’s maximum principle,

H(y !/2, hi, ,2, const,

and hence kl2 k22. The monotonicity of Yl (t) and (2.10) yield kl --k2. Since y (t)
-y(t2), we have

cos (V/-tl) COS (V/-( t2)).

By the monotonicity of !/1 (t), the arguments v/-tl and v/-(1 t2) are smaller than . Thus
we get

(2.13) tl t2.

Thus, we need only to study (2.1 la), (2.1 lb), and (2.12) with unknown variables kl, l, and
m. Because kl :/: 0, the following equality holds certainly:

cos (V/-tl) -tl -1

sin (v@t,) 0

0 tl +t2 2

Simplifying it, we get

(2.14) (t2 tl sin (V/tl) 2 COS (X/tl).

Set t 1/2c. Then t2 t c. Hence, (2.14) turns into

(2.15) cos sin
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Since u*(t) is an optimal control, ct is the minimal positive root of (2.15). Furthermore,

o
(t) dt B(tl + (1 t2))

Bct=/to.

The proof of the theorem is complete.
LEMMA 4. Let t3 > rc2. Then ct(13) and 13ct(13) are strictly decreasing, where ct(13) is

the minimal positive root of (2.5).
Proof. By Theorem 1, for 13 > rr2, ct(B) is well defined and satisfies (2.15). Set

cos

Then if (2.15) holds,

Oct 4(1-ct)B cos v/-
-g(1 c)/3v@ sin v

OBOF 4vl sin (x/- -)ct gct(1 ct)cosl (x,/ -)

Iv/- o
x,/] ( ct)+ 77ct(1 ct)2 sin v

Hence,

d 4 + ct(1 ct)213
ct < O,
dB 2(1 ct)2B2

d

dB (13ct(13)) c(13 + B
d

c
dct

(13)=-
4 ct(1 ct)213

2(1 ct)2B

It suffices to prove 4 ct(1 ct)213 > 0. Note that

71"2: ct<l.

Therefore, by (2.15), we get

ct(1 -ct)B

tg g
>1,

This completes the proof.since 0 < _< g.
LEMMA 5. Bct (13) , 4 (as 13 -- oc).
Proof. Equation (2.15) yields

(2 16) tg v/ g(1

Since

13ct 7I
-2 for all B > 71-2
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we have

which implies (by (2.16))

Because

(e) 0 (e ),

tg x/--0 (B).

o2 o 7t2- () _< q- 0

multiplying (2.16) by 2x/ yields

tg (x/ ) 4

-V/- 1-a
2

(B ),

Letting B x in this equality, we get the desired conclusion.
As applications, we have the following theorems.
THEOREM 2. Let B > 7r2, and let b, f [0, 1] R be continuousfunctions such that

O <_ b(t) <_ B, b(t) O on[O, 1], b(t) dt < Ba(B),

where a(B) is the minimal positive root of(2.5). Thenfor each A, B E R, the BVP

(2.17) y" + b(t)y f(t), y’(0) A, y’(1)- B

has a unique solution.

Proof. By Theorem 1, it is obvious that the BVP

y" + b(t)y O, y’(O) O, y’(1) 0

has at most one solution. Since the equation is linear, the uniqueness implies the existence.
The proof is complete.

THEOREM 3. Let b L[0, 27r] such that

b(t) >_ O ohiO, l],

meas {t [0, 1] b(t) > O} > O,

and b(t) dt <_ 4.

Thenfor each f L[0, 1], the BVP (2.17) has a unique solution.

Proof. The proof follows from Theorem and Lemmas 4 and 5.
Remark 1. From Theorem 3 we can obtain the following conclusion.
If b > 0 on [0, 1], b(t) > 0 on a set of positive measure, and b L [0, 1], then in order

that there exist a nontrivial solution of the Neumann problem

y" + b(y)y 0 a.e., v’(0) v’()=0,
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it is necessary that

(2.18) b(t) dt > 4.

For the Dirichlet problem

y" + b(t) 0 a.e., y(O) y(1) O,

there is also the same conclusion, which is the classic Hartman-Wintner criterion [10].

3. Nonlinear equations. In this section, we shall give some applications of Theorems
2 and 3. First we prove Theorem A. Without loss of generality, let A B 0. We
first prove uniqueness. Let Yl (t) and y2(t) be any two solutions of BVP (1.1)-(1.2). Then
y y (t) y2(t) is a solution of the BVP

(3.1) Y" + fv (t, Y2 + Oy) dOy O,

v’(o) o.

From condition (ii) it follows that

0 <_ fv(t, Y2 + Oy) dO <_/3(t) <_ B on {0, 1],

meas {t E [0, 1]" fv(t, Y2 + Oy)dO > O} > O.

Hence by Theorem 2, y(t) 0 on [0, ].
Now we prove existence. Rewrite (1.1) as follows:

y" + b(t, y)y f(t, 0),

where b(t, y) fd fu(t, Oy) dO. Set

X {y e cl([0, 1],R) y’(0) y’(1) 0}

with the norm I1" defined by

max I(t)l + max I’(t)l for eachy e X.
[0,1] [O,1l

Define an operator T X ---, X by

Tx Yx,

where yx (t) is a solution of the BVP

(3.2) y" + b(t,x)y -f(t,O), y’(O) y’(1) O.

By virtue of Theorem 2, BVP (3.2) has a unique solution, and hence T is well defined on X.
We claim that there is M > 0 such that

IITxI[ M for allx X.
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In fact, if not, there would exist a sequence {xn (t) } C X such that Ilyx, --* oc (n oc).
Since

0 <_ b(t,x) <_ (t) on [0, 1],

passing to a subsequence if necessary, we may assume that b(t, xn) is weakly convergent to

b0 E L2[0, 1]. Because the set

S-{uEL2[0,1]’0<_u(t) <_(t) on[0,1]}

is bounded convex closed in L2[0, 1], by the Hahn-Banach theorem, we see bo E S. By (3.2)
and the Arzela-Ascoli theorem, passing a subsequence, we may assume that

Note that for each n,

(3.3)

y (t) Yn (0) + Yn (s) ds,

yn(t) b(s, xn)Yn(S)ds

in C([0, 1], R).

fIlyxnll
f(s,O)ds,

for all t E [0, 1]. Letting n oc in (3.3) by Lebesgue’s dominant convergence theorem, we
get

for all t [0, 1].

yo(t) yo(O)+ zo(s) ds,

zo(t) bo(s)yo(s) as

Note that Ily011 1. These show that yo(t) is a nontrivial solution of the BVP

y" + bo(t)y O, y’(O) --y’(1)

Since for each n

meas {t E [0, 1]" b(t,x) > O) > O,

]1 b(t, xn (t) )yxn (t) dt f (t, 0) dt 0 (by (iii)),

Yxn (t) has a zero in [0,1], and hence so does yo(t). This, combined with Ilyoll 1, implies
that

(3.4) meas{t E [0, 1]" bo(t) > 0} > 0,

but by (ii) and (3.4), the BVP

v" + v0(t)v o, y’(O) y’(1)=0

has only the zero solution, which contradicts Ily0ll 1. Hence the claim holds.
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Given any {xn ) c X such that xn Xo E X, by definition we know that

y + b(t, x)yx f(t, 0), v;.(o) v’.(1)=o,
and

y;’,, + b(t, z0)Yxo f (t, 0), y;o(O) y;o(1)=0.

Hence, setting w, Yxn Yo, we have

" b(t, )Yxo O,w, + b(t, xn)yx xo ’(o) ()-o.

Thus

(3.6) w + [b(t, x) b(t, xo)]Yx + b(t, xo)w 0 on [0, 1].

We claim that

(3.7) wn 0 in C’ ([0, 1], R).

if not, then there would be an m > 0 such that

Applying the Arzela-Ascoli theorem and passing to a subsequence if necessary, by the above
claim, we may assume that

(3.8) w wo(n -- oc) in X.

Note that

(3.9) w t- b(t xo) wn yx
=0 on[0,1]

and that

w wo w- wo wo(lloll- IIwnll)+
(3.10)

(n -- oc by (3.8)) in X.

From (3.9), (3.10) it follows that

This shows that 0(t) is a nontrivial solution of the BVP

(3.11) y" + b(t, xo)y O, y’(O) y’(1) O.

On the other hand, by Theorem 2, the BVP (3.11) has only a zero solution, which leads to a
contradiction. Hence, the claim is proved.
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From two claims and the Arzela-Ascoli theorem, it follows that T X X is completely
continuous and TX is bounded. According to Schauder’s fixed-point theorem, T has a fixed
point y(t) in X; that is, BVP (3.1)-(3.2) has a solution y(t). This completes the proof of the
theorem.

Remark 2. We can remove (iii) by assuming the following condition:
(iii)’ There exists /E L[0, 1] such that

O_</(t) <L(t,y) on[O, 1] R

and

meas{t E [0, 1]’/(t) > O} > O.

This is also available for the following theorem.
Using Theorem 3, we can prove the following theorem.
THEOREM B. Assume that f satisfies conditions (i) and (iii) and

o <_ L(t, <_ on [o, n,

where fl L’[0, 1] andsatisfies f /3(t) dt <_ 4. Then BVP (1.1)-(1.2) has a unique solution.
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EQUIVALENT CONDITIONS FOR THE SOLVABILITY OF THE
NONSTANDARD LQ-PROBLEM FOR PRITCHARD-SALAMON

SYSTEMS*

BERT VAN KEULEN

Abstract. Equivalent conditions are presented for the solvability of the infinite-horizon LQ-
problem with stability for a class of infinite-dimensional systems with unbounded input and output
operators. In particular, these equivalent conditions are given in terms of a Riccati equation and a
frequency domain inequality just as in the finite-dimensional case.

Key words, infinite-dimensional systems, linear quadratic control, unbounded input and output
operators, Pritchard-Salamon systems

AMS subject classifications. 93C25, 49J27

1. Introduction. The linear quadratic control problem (LQ-problem) has re-
ceived a lot of attention in the area of mathematical systems theory. Many interest-
ing system theoretical problems can be formulated in this framework, for instance,
questions arising in optimal control, identification theory, and robust stability the-
ory (Kalman-Yakubovich-Popov Lemma, Bounded Real Lemma and so on; see, e.g.,
the expository paper by Willems [22]). Moreover, the recent results in the area of
H-control owe much to the LQ-theory.

The first solutions for the .LQ-problem were obtained for the case that the cost
criterion is positive definite (sometimes called the standard case):

J(xo, u(.)) Ji
m

(llCz(t)ll + IIR/eu(t)ll) dt.

However, for many applications a more general formulation is needed. In [22], the LQ-
problen is treated for finite-dimensional systems in its most general form; that is, the
cost criterion is not necessarily positive definite. In particular, we refer to [22, Thm. 5],
which shows the equivalence of the solvability of the LQ-problem with stability to the
existence of a solution to a nonstandard Riccati equation and a frequency domain
inequality.

The system theoretical questions mentioned above are, of course, also interesting
for infinite-dimensional systems, and the corresponding LQ-problems can be formu-
lated in a similar way. In fact, much attention has been devoted to the standard
LQ-problem for infinite-dimensional systems. In [4], [1] (and references therein) the
case is treated where the input and output operators are bounded, and in [10], [15],
[11] (and references therein) the unbounded case is considered. The nonstandard
problem, however, has received less attention. In [25] the bounded input/output case
is treated assuming that the generator of the semigroup of the system is bounded,
and in [21] and [12], [13] this result is extended to unbounded generators. These au-
thors have obtained a complete generalization of the aforementioned result in [22] for
their classes of systems. It is the purpose of this paper to do the same for a class of
unbounded input/output systems (the Pritchard-Salamon class introduced in [15]).

Received by the editors April 13, 1992; accepted for publication (in revised form) February 22,
1994.

Mathematics Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands (bertvk(C)rug.n:[).
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We shall consider nonstandard cost functions of the form

J(xo, u(.)) (llClx(t)ll. IIC.x(t)ll" + (Lx(t), u(t)) + 1l12u(t)ll) dt,

where CtC2, and L are unbounded output operators that are "admissible" in the
sense of Pritchard and Salamon in [15]. In the paper [15] Pritchard and Salamon
present a general framework to model a large class of systems with unbounded control
and observation operators (it extends the class of bounded input/output sere/group
control systems). Their class of systems includes many delay systems: neutral sys-
tems with output delays [16] (see also 4) and retarded systems with delays in input
and output [15], [19]. Furthermore, the Pritchard-Salamon class includes a class of
parabolic PDE systems with unbounded control and observation [15] (see also 4).
In [15] it is shown that certain hyperbolic PDE systems also fall into the Pritchard-
Salamon framework, but generally these are only exponentially stabilizable if there
is some internal damping (in this paper exponential stabilizability will be a standing
assumption). In [2] it is shown that the Euler-Bernoulli beam with Kelvin-Voigt
damping (see also 4) fits into the Pritchard---Salamon class, but usually one does not
call this a hyperbolic system.

It should be noted that the standard LQ-problem can be treated for many PDE
systems that do not fit into the Pritchard-Salamon class (see [10], [11] and refer-
ences therein). However, usually one has to distinguish several cases (essentially the
parabolic and the hyperbolic cases). In the Pritchard--Salamon framework it is pos-
sible to treat delay systems and PDE systems at the same time, at the expense of
the allowed amount of input/output unboundedness for PDE systems. It can be
argued that the strength of the Pritchard-Salamon class lies in the fact that it con-
tains so many delay systems; a weak point is that not so many PDE systems fit
in. In any case, this paper contains the first generalization of the nonstandard .LQ-
problem to infinite-dimensional systerns with unbounded inputs and outputs; all the
above-mentioned examples can now be accommodated.

In 2 we give some preliminary results, soIne of which are known (stated with
references) and some of which are new. In particular, we refer to [3] where many
system theoretic results were obtained for the Pritchard-Salamon class, including
some that made this paper possible. After the introduction of the Pritchard-Salamon
class, some perturbation theory is given and we show how preliminary (unbounded)
feedbacks can be handled. Then we derive an interesting formula that shows how the
"unbounded part" of a Pritchard-Salamon system (i.e., unbounded with respect to the
larger state space) can be expressed as "something bounded." Section 2 is concluded
with some frequency domain results for Pritchard--Salamon systems and a quotation
of the main result in [13], which is the generalization of [22, Theorem 5] to the class
of infinite-dimensional systems with bounded input and output opera,tors. Our main
result, which is a generalization of this result to the Pritchard-Salamon class, is given
in 3. In the proof of the main result we apply some preliminary (unbounded) feedback
in order to take care of the "cross term" in the LQ-cost criterion. Furthermore, we
use the formula for the "unbounded part" given in 2 so that the .LQ-result for the
bounded input/output case in [13] can be used. Finally, in 4 we shall treat several
exainples of the theory presented in this paper and give some conclusions.

2. Preliminary results. We consider the same class of systems as in [15], [16],
[19], and [3]. Let W and V be real Hilbert spaces sa.tisfying

(2.1) W V,
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where by --, we mean that W C V and the canonical injection W V, x x is
continuous and W is dense in V. We consider C0-semigroups S(.) on V that restrict to
C0-semigroups on W (we note that the growth bounds of S(.) on W and V need not
be the same, as shown in [3]). The infinitesimal generators of S(-) on V and W will
be denoted by AV and AW, respectively. We note that AW is the part of Av in W
so that D(AW) {x E D(AV) C W AYx W} a.nd AWx AVx for all x D(AW)
(see [14, 4.5]). Using W V, it is not difficult to show that in fact

D(AW) D(AV).

Hilbert adjoints of linear operators are denoted by ,.
The following definition can be found in [15] and [3]. It was first stated in [15],

but we use the formulation of [3].
DEFINITION 2.1. Let U and Y be Hilbert spaces.

1. An operator B (U, V) is called an admissible input operator if there ezist
and a > 0 such that

(2.2) j0
tl

and

tl

S(tl s)Bu(s) ds e W

S(tl s)Bu(s) ds <_ cll’u,(.)ll L,(O,t;g
w

for all u(.) .L(O, tl; U).
2. An operator C ,(W, Y) is called an admissible output operator for S(.) ’if

there exist t > 0 and a > 0 such that

(2.4) IICS(’)XllL.(o,t;y) <_  llxll fo all x I/V.

3. Let B e (U, V) and C (W, Y) be admissible input and output operators,
respectively. The system E(S(.), B, C, D) given by

x(t) s(t)xo + fot S(t s)Bu(s) ds,

y(t) Cx(t) + Du(t),

where xo V,t >_ O, and u(.) LC(0, ; U) is called a Pritchard-Salamon system.
Remark 2.2. As is mentioned in [3], if the statements (2.3) and (2.4) hold for

some t and c, then they hold for any t > 0 and some c > 0, c depending on t.
If x0 W, then x(t) defined by (2.5) is continuous with respect to the topology

on W and the controllability map C fi’om L2(0, T; U) to W given by

S(T )Bu(T) d"

satisfies C e (L2(0, T; U), W).
Furthermore, (2.4) implies that the linear map from W to L2(0, T; Y), x

CS(.)x has a unique bounded extension from V to L(0, T; Y), which will be denoted
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by x CS(.)x for x E V. Hence, the ouput y(o) e L2(0,T;Y) in (2.5) should be
interpreted as

cs(.)xo + C S(. s)Bu(s) ds.

Finally, we note that if W V, then B :(U, V) and C e (W, Y) are automatically
admissible (this is the so-called "bounded input/output case").

In the following lemma we state some perturbation results that follow from [3].
In the last part of the lemma we shall use the additional assumption that

(2.6) D(Av) W.

Here D(AV) is the Hilbert space with the inner product given by

(2.7) (x,y)D(AV) := (x,y)y + (AVx, AYy)y.

Ve note that this assumption is not very restrictive, as explained in [15].
LEMMA 2.3. Let E(S(.),B, C,D) be a Pritchard-Salamon system of the form

(2.5), and let F (W, U) be an admissible output operator for this system. Then
there exists a unique Co-semigroup SBF(’) on V that restricts to a Co-semigroup on
W such that E(SBF(’), B, C, D) is a Pritchard-Salamon system and

(e.8) s. (t)x s(t)x + fo S(t- s)BFSBF(S)X ds for all x V.

Furthermore,

(2.9) s  (t)x s(t)x + fo SBF(t- s).BFS(s)x ds for all x e V

and

.D(AF) D(AV) with equivalent graph norms,

D(AF {x D(AV) N W) AFX W},

AFX AYx + BF((rI- AW)-l(aI- AY)x for all x D(AV),

where cr is any number with real part larger than the growth bounds of S(.) and
on W and V. If, in addition, assumption (2.6) is satisfied, there holds

AFX (Ay + BF)x for all x e .D(AV).

Proof. Almost all of the results in this lemma can be found in [3]. Here we
prove that the graph norms of D(AV) and D(AF are equivalent and we derive the
expressions for AvBF"

As explained in [3], we can apply the Laplace transform to (2.8) and (2.9) to
obtain for all x E V

(aI- AF)-"x (crI- AY)-lx + (aI- Av)--1BF(aI- AF)-x
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and

(cI AV)-lx (aI- AF)-lx (crI- AF)-’ BF(aI AW)-lx,

where a is any number with real part largerthan the growth bounds of S(-) and

SBF(’) on W and V. Defining TI I + BF(rI-AF)-I E (V) and T2 :=

I-BF(aI AW)- .(V), we can reformulate the above equations as (crI-AV)x
T1 (aI--AF)x and (aI-ABF)x T2(aI-AV)x, for all x D(Av) D(AVBF). Since
T1, T2 (V), it follows that the graph norms of D(AV) and D(Az are equivalent.
Manipulation of the last equation shows that AVFx AV’x + BF(aI AW)-l(erI-
AV)x for all z D(AV). Finally, we prove that if (2.6) is satisfied, it follows that for
all x D(AV)

(2.10) F(crI- AW)-t(aI AV)x Fz

(note that this expression is valid for x D(AW)). Since W V, we have D(AW)
D(AV); and because (2.10) is satisfied for all x D(AW), the result follows by taking
a sequence x, D(AW) converging to x in the topology of D(AV).

Remark 2.4. We note that if F (V,U), then F is an admissible output
operator. We call the pair (AV, B) exponentially stabilizable on V if there exists some
F (V, U) such that SBF(’) is exponentially stable on V (this corresponds with
the usual definition of exponential stabilizability on the Hilbert space V). Using the
perturbation results of Lemma 2.3 and [6, Cor. 1], it is not difficult to show (see [3])
that the following two conditions are equivalent:

1. there exists an admissible output operator F (W, U) such that SB& (.)
is exponentially stable on V;

2. (AV, B) is exponentially stabilizable on V.
Finally, we mention that if assumption (2.6) holds, condition (2.3) is implied by (2.2)

Using the perturbation results in Lemma 2.3, we can now make sense of a pre-
liminary feedback % Fx + v" in system (2.5), where F is an admissible output
operator. We note that if F is bounded (i.e., F (V, U)), this type of result can be
found in [14].

LEMMA 2.5. Let E(S(.),B,C,D) be a Pritchard-Salamon system of the form
(2.5), and let F (W, U) be an admissible output operator for this system.

1. Suppose that v(.) L(0, oc,; U), and define

(2.11) xF(t) := SBF(t)Xo + SBF(t- S)BV(S) ds

and

(2.1.2) u(t) FxF(t) + v(t).

Then u(.) e L(0, c; U) and x(t) given by

’0
(2.13) x(t) S(t)xo + S(t- s)Bu(s) ds

satisfies

(2.14) x(t) xF(t) for all t >_ 0 and Cx(t) Cx(t) for a.e. >_ 0o
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2. Suppose that u(.) E L2c(O, oc; U), and define x(.} by (2.13) and v(.) by

(2.15) v(t) "= -Fx(t) + u(t).

Then v(.) L2c(0, x); U) and xF(t) given by.(2.11) satisfies

(2.16) x(t) xg(t) for all >_ 0 and Cx(t) CxF(t) for a.e. t >_ O.

3. Let v(.) L2c(0, oc; U), and define xF(.) as in (2.11) and u(.) as in (2.12)
i.e., u(t)= FxF(t) + v(t). Then v(.) satisfies (2.15), i.e., v(t)=-Fx(t) + u(t).
Conversely, let u(.) L2c(0, oc; U) and define x(.) as in (2.13) and v(.) as in (2.15).
Then u(.) satisfies (2.12).

Proof. Proof of 1. The expression FXF(.) in u(.) FXF(’) + v(.) should be
interpreted as explained in Remark 2.2:

u(.) FSsF(’)xo + F SBF(" s)Bv(s) ds + v(.) LC(0, oe; U),

where we note that F is an admissible output operator for SBF(.) (see Lemm 2.3).
Substituting u(.) in (2.13) gives

z(t) S(t)zo + S(t- s)BFSBF(S)X ds + S(t- s)Bv(s) ds

(2.17) + S(t- s)BF
o
SsF(S- -)Bv(’) d- ds.

It follows from Lemma 2.3 that the two terms of xf(t) in (2.11) cn be reformulated
s

SF(t)zo S(t)zo + S(t- s)BFX(s)z ds

and

SsF(t s)Bv(s) ds S(t s)Bv(s) ds

+ S(t s a)BFSBF(a)Bv(s)dcr ds.

Comparing this with (2.17), we see that to prove that x(t) xF(t), we only have to
show that

]It s(t s)BF [oS SBF(S T)Bv(’) d’] ds

(2.18) S(t s cr)BFSf(a)Bv(s) der ds.
o

This means that we have to somehow "get F inside the integral" (the other operators
cause no problems, since they are bounded). It follows from [3] that if v(.) is a. step
function, we have

(2.19) F SBF(S )Bv(7) dv FSF(S -T)Bv()dT.
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Ve note that in [15] a similar result was proved under the extra, assumption that
(2.6) is satisfied. Using (2.19) and Fubini’s Theorem to interchange the integrals, it is
straightforward to show that (2.18) is satisfied if v(.) is a step function. The general
case can be obtained by introducing sequences, v.(.) on arbitrary intervals [0, T] that
converge to v(.) on these intervals in the L2(0, T; U)-norm. Of course the admissibility
of/3 and C should be used. We omit the details and refer to [15, Lem. 2.5] for a similar
result that was proved using somewhat different arguments.

Finally, we sketch the proof of the second part of (2.14). This seems to follow
trivially from the first part of (2.14). However, Cz(t) CzF(t) should be interpreted
in the sense of Remark 2.2, i.e., in the L-sense. It is easy to see that Cz(t) Cz(t)
holds if :co E W. The general result can be obtained by introducing a sequence
z0 E W converging to z0 as n oc and using the admissibility of B and C. We
omit the details.

Proof of 2. Again, using the interpretation of Remark 2.2, we have

F S(t- +

The rest of the proof of 2 is similar to the proof of 1 and, therefore, is deleted.
Proof of 3. This follows immediately froln 1 and 2. S
In the following lemma we give a Lyapunov type result for systems of the form

(2.5) where S(.) is exponentially stable on V. This result (which is also more or less
given in [5]) could be considered as a special case of the resul.ts in [15], but for reasons
of completeness we give a short proof.

LEMMa 2.6. Let S(.) be a Co-semigroup on W and V, and suppose that S(.) is
ezponentially stable on V. Suppose that assumption (2.6) holds. Let C (W, Y) be
an admissible output operator for S(.). Then the operator C’ defined on W by

C’z :--CS(.)z for z W

has a unique bounded eztension on V (denoted by the same symbol) such that

c c(v, L (O, Y)).

Furthermore, the nonnegative definite operator X (V) defined by

(2.22) X := (Coo)*Coo

satisfies

(AVx, Xy)v + (x, XAVy)v + (Cx, Cy)v 0

for all z, 9 D(AV)
Proof. It follows from [15, Rem. 3.5(i)], that there exists some c > 0 such that for

all :c W,

(2.24)

Therefore, CO E (V, L2(0, oc; Y)) (cf. also Remark 2.2).
Now let :c, D(Aw) and define the function

f(t) := (CS(t)x, CS(t)y}y.
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Then .f(.) is defined for all and it is differentiable; there holds

(.5) ](t) (CS(t)AWx, CS(t)). + (CS(t), CS(t)A’y)r.

For all z D(Aw) we have

CS(t)xlly IClllS(t)xl.

where we have used assumption (2.6). Furtherlnore, for all x D(AV)

because S(.) is exponentially stable on V and therefore also on D(A’) (see, e.g., [19]).
Therefore, we conclude that f(t) 0 s . Now integrating (2.25) from 0 to T
gives

f(T)- f(O)= ((CS(t)At"z (t)y) + (CS(t)z CS(t)Aty))dt

Since CS(.)x L(O, ; Y) for all x W (see (2.24)), we can take the limit as T
to obtain

(<CS(t)AWz, + (CS(t)z, -<Cz,CS(t)y} CS(t)Aty}) dt

Since x,y D(AW) were arbitrary, we can use (2.20) and the fact that AWx AVx
for all x D(A’) to conclude that for all x, y D(Aw)

(2.26) <CAVx, Cy}L(O,.y + {Cx,CAVy}L(O,;y) -<Cx, Cy>y.

Using the fact that D(Aw) D(Av) and the assumption that D(Av) W. ve
can extend (2.26) to all x,y D(Av) by choosing sequences x,,y D(AW) that
converge to x, y D(AV). Finally, it is clear then that X defined by (2.22) satisfies
(.3).

Ve are interested in L@problems with stability. We shall try to find controllers
that stabilize the state z(.) in (2.5) in the sense that (.) L2(0, ; V). In the next
lemma we shall show that, under certain conditions, in this case y(.) L(0, ; Y).
This is not obvious in the general case because the growth constant of S(.) on W
need not equal the growth constant on V (see [3]) and so we cannot conclude that
z(.) L(0, ; W) in general. One required condition is that the pair (AV,B) must
be exponentially stabilizable on V. In this case, it is easy to see that the set Udm
defined by

Vadm :: {(’) L2(0, ; U) such that x(.) given by

(2.5) satisfies x(.) E .L2(0, oc; V)}

is nonempty.
LEMMA 2.7. Let E(S(.), B, C,D) be a Pritchard-Salamon system of the form

(2.5), and suppose that (AV, B) is exponentially stabilizable on V. Furthermore, sup-
pose that assumption (2.6) is satisfied. For all u(.) Udm it follows that y(.) given
by (2.5) ’is in L2 (0, x; Y) and if xo 0 there holds

Ily()llc(0,.) <_ const(I}u(’)llc(0,;u) + }lx(’)}}r:(0,;v)).
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Proof. If C were an element of (V, Y), the fact that x(.) E L:(0, oc; V) would
immediately imply the lemma. However, we only know that C E (W, Y) is admissible
and so we have to do some work to establish the result.

Since (Ay B) is exponentially stabilizable on V, there exists an F E (V, U) such
that SBF(’) is stable on V. Furthermore, it follows from assumption (2.6) and Lemma
2.3 that D(AF - W. Using Lemma 2.6 it follows that there exists a nonnegative
definite XF (V) such that for all x, y D(AV) D(AF

(AFX, XFY)v + (x, XFAFY}V + (Cx, Cy)y O.

Because of (2.6), Lemma 2.3 implies that AF Av + BF on its domain and so the
above formula can be expressed as

{AVz, XFy)v + {z, XFAVy)v -(Cx, Cy)y

(2.28) ((XFBF + F*B*XF)x,y)v for all x,y D(Av) D(A.F ).

Now consider the system (2.5) and suppose that u(.) e Uadm. Let u, (.) e C (0, oe; U)
be such that u,(.) -* u(.) (in the L2-norm) and Xon D(AV) be such that x0..-- x0
(in the norm on V). Let Xn(’) be given by

Xn (t) S(t)Xon + S(t s)Bun (s) ds.

It follows from known results (see, e.g., [8, App. A.3, A.6]) that Xn(’) is continuously
differentiable, xn(t) D(Av) for all t 0,

(2.29) (t) AVxn (t) + Bu (t) for all t 0,

and for all T > 0

(2.30) [[x(.) x(’)[[L(O,T;V) 0 and [x(T) x(T)[[v 0 n .
Furthermore,

[ICS(’)(Xon XO)I[L(O,T;y

-t- C S(. s)B(Un(S) u(s)) ds
L2(O,T;Y)

Hence, the fact that B and C are both admissible implies that

IlCx (.)- 0

Now using (2.28) and (2.29), it is straightforward, to show that

d
d (Xn (t), XFXn (t))v -(Cxn (t), Cxn (t) )y

(2.32) ((XFBF + F*B*XF)Xn(t),xn(t)}v + 2(Bun(t),.XFxn(t)}v.
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Integrating (2.32) from 0 to T gives

T

<z,.(T),XFz,(T))v -(Zon, XFZo,.)V + ]lCz(t)ll dt

T

((-(XFBF + F*B*XF)x,(t),z(t))v + 2(Bu(t),XFz(t))v)dt.

Now we wish to take the limit as n oo. Since XF E ..(V);] (U, V), and
F (V,U), the only difficult part is the term (Cxn(t),Cx,,(t)}u, but this was
already dealt with in (2.31). So using (2.30)--(2.31) we obtain

(z(T), XFx(T))v @o, XFXO)V + fo
T

IICz(t)lly dt

((-(XFBF + F*B*XF)z(t),m(t))v + 2(Bu(t),XFz(t))v)dt.

Since XF is nonnegative definite, u(.) L2(0, oc; U), and x(.) L2(0, oc" V), the
last equation implies that Cx(.) L,.(O, oc;Y) and therefore y(.) E L(0, oc; Y).
Furthermore, we have that IIx(r)llg 0 s Z oc (see, e.g., [8]) and so, using the
fact that u(.) L(0, oc; U) and x(.) L2(0, oc; V), we may let T oc to obtain

Ilc(t)ll " dt @o Xfzo)vY

+ ((-(XFBF + F*B*Xs)z(t),z(t))v + 2(Bu(t),XFz(t))v)dt.

Finally, it is clear that if x0 0, then (2.27) follows from (2.33). S
Remark 2.8. The fact that y(.) L2(0, ec; Y) in Lemma 2.7 also follows from

very general results in [24]. However, the direct proof that is given here provides us
with formula (2.33), which will play an important role in our treatment of the LQ-
problem. In fact, it shows how we can transform the "unbounded part" with Cx(.)
into "something bounded."

In this paper we shall also be interested in frequency domain results. In the
following, the complexification of a real Hilbert space H is denoted by the sane
symbol.

Suppose that H is some Hilbert space, and let x(.) L(0, cx; H). The Fourier
transform of x(.) denoted by 2(.) is defined by

T

:(ico) 1.i.m. exp(-icot)x(t) dt,

where 1.i.m. stands for limit in (quadratic) mean. It is well known (Plancherel’s
Theorem; see, e.g., [18, 4.8]) that now the function determined by co 2(,ico) is an
element of Le (R, H) and

L..(0,c;H)- (1/27r)[[?(’)[[ L(R;H)’
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Furthermore, we define the Laplace transform 2(.) of x(.) by

2(s)- exp(-st)x(t)dt, Re(s) > 0,

and we recall that 2(s) converges to 2(ic) a.e. on the imaginary axis (see again [18]).
In the next two lemmas we calculate a frequency domain representation of a

Pritchard-Salamon system. If S(.) is exponentially stable on V, we find an expression
for its transfer function on C+ and prove that it is in H (C+). A particular difficulty
here is that S(.) need not be stable on W and that Cx(ia;) C:2(ia) is not immediate
because in general C (V, Y). Some of the arguments in the proofs that are given
here can also be found in [24].

LEMMA 2.9..Let E(S(.),B,C,D) be a Pritchard-Salamon system of the form
(2.5), and suppose that S(.) is ezponentially stable on V. Furthermore, suppose that
assumption (2.6) is satisfied.

Then G(s) defined by

(2.34) G(s) C(sI- Av)-’B + D
is well defined for all Re(s) > 0 and

(2.35) G(s) e H(C+,(U,Y)).

Furthermore, if u(.) E L,.(0, oc; U), then u(.) gadm; and if xo 0 there holds

(2.36) tj(s) G(s)t(s) for all s C+

and

(2.37) )(ice) G(ia)t(ia) for a.e. a e R.

Proof. First of all we show that G(s) is well defined for all s with Re(s) >_ 0 and
holomorphic on Re(s) >_ 0 w.r.t, the topology of (U, Y). Using the fact that S(.) is
exponentially stable on V, the resolvent identity for (sI- AV) -1 gives

(2.38) (sI AV)- (cI- Av)- + (a s)(cI AV)-(sI- AV)-for c, s e Re(s) > 0. We know that (sI- AV)- is holomorphic on Re(s) > 0 (w.r.t.
the topology of (V)) and that (cI- Av) -1 (V, W) for Re(a) > 0 (use the fact
that (hi- dr)- e (V,D(AV)) and D(AV) - W). Hence we can conclude from
(2.38) that (sI- AV)- (V, W) on Re(s) >_ 0 and (sI- dY)- is holomorphic on

Re(s) > 0 w..r.t, the topology of (V, W). Therefore, G(s) C(sI AV)- B + D is
well defined ((sI Av)-tB maps into W) and holomorphic on Re(s) _> 0 w.r.t, the
topology of (U, Y).

Next we show (2.35) and (2.36)" consider (2.5) with x0 0. Since S(.)is exponen-
tially stable on V, we know that for all u(.) L(0, oc; U) we have x(.) L_o(0, oc; V)
and

(2.39) <- const

(this is well known; see, e.g., [8]). Hence, it follows from Lemma 2.7 that there exists
some c > 0 such that for all u(.) L2(0, oo; U) there holds

(2.40) Ily(’)llc (0,o ;v> <- c
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so the map from u(.) E L(0, oc; U) to y(.) e L.(0, x:; Y) is linear and bounded. It is
easy to see that this map is also shift invariant and so it follows from a well-known
result (see, e.g., [7]) that there exists a (transfer) function (" C+ (U, Y) such
that

(2.41) /(s) (s)t(s) for all s C+

and

(2.42) d(.) z:(U, Y)).

The next step is to show that ((s) C(sI Av)-IB + D on C+. We know that for
Re(s) large enough there holds

(2.43) d(s) =C(sI-AV)-IB+D

(see, e.g., [3]). We have seen above that a(s) C(s_I- AV)- B + D is holomorphic
on C+ w.r.t, the topology of (U, Y). Since also G(s) is holomorphic on C+ w.r.t.
the topology of (U, Y), we conclude (2.35) and (2.36).

Finally we show (2.37). Because t(.) H(C+, U) and (.) H(C+,Y), it
follows from Fatou’s Theorem (see, e.g., [18, 4.6]) that for a.e. w R,

(2.44) lira Ila(iw + e) 0 and lim I1 )(i + e)  )(ia,)lly 0.
el0

(2.37) now follows from (2.36), (2.44), and the fact that a(s) is holomorphic on

Re(s) > 0 w.r.t, the topology on (U, Y). fl
Now we derive a frequency domain representation of (2.5), using Lemma 2.9.
LEMMA 2.10. Let E(S(.),B, C, D) be a Pritchard-.Salamon system of the form

(2.5), and suppose that (AV, B) is exponentially stabilizable on V. Furthermore, sup-
pose that assumption (2.6) is satisfied. If u(.) Uadm and zo O, then

(2.45) 2(ico) D(AV for a.e. a R,

(2.46) iw2(ioJ) Av(ia) + Bg(ia) for a.e. a e R,

and

(2.47) )(i) Cc(ia) + Dit(i,) for a.e. cz e R.

Proof. Since u(.) E gadm and (AV, B) is exponentially stabilizable on V, we can
use the perturbation results of Lemma 2.3 to infer that

x(t) SsF(t- s)B(u(s) Fx(s)) ds,

where F (V, U) is such that SBF(’) is exponentially stable on V.
We know that x(.) L2(0, oo; V) and

(2.48) "2(iw) (iwI- .AF)-IB(t(iw)- F2c(iw)) for a.e. w R

(see also Lemma 2.9). Now (2.45) and (2.46) follow from (2.48)and Lemma 2.3.
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In ’Lemma 2.7 we saw that y(.) e L2(0, oc; Y). We have y(t) Cx(t)+ .Du(t)
and so Lemma 2.9 tells us that

(2.49) /(iw) C(iwI AF)-B(5(icz) -.F&(iw)) + Dg(ia) for a.e. e R.

The combination of (2.48) and (2.49) gives (2.47). ]

The next lemma is a crucial result for the theory of optimal control. The result
follows immediately from [11, Thin. 1.1].

LEMMA 2.11..Let H be a real Hilbert space, let T E (H) be coercive, and let y
be an arbitrary element of H. Then there exists a unique x* H such that

(Tx, x} H + (x, y} H >_ (Tx*, x*} H + (x*, y) for all x H.

The last lemma of this section deals with the optimal control problem for infinite-
dimensional systems with bounded input and output operators. It is a complete
generalization of the finite-dimensional result in [22]. The lemma is proved in full
detail in [12], [13]. In the next section, we shall generalize this result to systems in
the Pritchard-Salamon class.

LEMMA 2.12. Let A be the infinitesimal generator of a semigroup S(.) on a real
Hilbert space H; let B (U, H), where U is another .Hilbert space; and suppose that
(A, B) is ezponentially stabilizable. Furthermore, let Q Q* (g), L (H, U),
and R R* (U), with R coercive. For all (x, u) H x U we define the quadratic
form
(2.51) -(x, u) := <Qx, x)H + 2(Lx, u>u + <Ru, u>u.
Consider the system

x(.t) s(t) o +
J0

S(t- s)Bu(s) ds, xo e H, >_ O.

Define

Uadm "= {t(’) e L2(O, ec; U) such that x(.) given by (2.52)

(2.53) satisfies x(.) e L.(0, co; H)}.

For all u(.) Uadm define the cost functional

(2.54) J(xo, u(.)) := ?(x(t), u(t)) dt.

Now the following are equivalent:
1. For all xo .H there exists a unique ii(.) L2(O, oc; U) such that

(2.55) inf g(xo,u(-)) min J(xo,u(.)) J(xo, (.)).
U(’)Uadm U(’)Uadm

2. There exists a selfadjoint X (H) such that .for all x, y D(A)

(Ax, Xy}H + (Xx, Ay) H

(2.56) -((B*X + L)*R-(B*X + .L)x,y)H + (Qx, y}H 0

and A- BR-(B*X + L) is the infinitesimal generator of an exponentially stable
semigroup.
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3. There exists an > 0 such that for all (w, x, u) E I D(A) U that satisfy
iwx Ax + Bu there holds

y(x  (llxlI

Furthermore, if one of these conditions holds, the minimizing ’5(.) in (2.55) can be
given in feedback form:

(.) -R-I(B*X + L)x(.),

and

inf J(xo, u(.)) J(xo, g(’)) (xo, XXo>H.(2.59)
’it(’) EVadm

Finally, if the X in 2 exists, it is unique.

3. Problem formulation and main result. The purpose of this section is to
find a generalization of Lemma 2.12 to the class of systems as presented in 2. So
let W and V be two Hilbert spaces that satisfy (2.1), and suppose that we have a
C0-semigroup S(.) on both spaces. Furthermore, let U, Y1, and Y2 be Hilbert spaces
(as before U will play the role of the input space, Y1 and Y2 will be output spaces).
Let B (U, V) be an admissible input operator and C (W, Y), C2 (W, Y2),
and L (W, U) be admissible output operators.

For all (x, u) W x U we define the quadratic form

(3.1) .(x,u) :-- <Clx, Clx>y <C2x, C2x>y2 + 2<Lx, u>u + (Ru, u>u,
where R R* (g) is coercive. In the quadratic form (Qx, x)H in (2.51), Q
could have been expressed as Q CC1 -CC2 for some C1 (H, Y) and C2
(H, Y) (use Q constI- (constI- Q) with const large enough). Therefore, (3.1)
represents an appropriate generalization of (2.51). It may not be the most general
quadratic criterion for Pritchard-Salamon systems, but it does contain the interesting
applications (see Remark 3.3).

’Our system is given by

(3.2) x(t) S(t)xo + S(t- s)Bu(s) ds,

where xo V and >_ O; and we assume that

(3.3) (Av, B) is exponentially stabilizable on V.

We define the class of admissible inputs a,s

Uadm {%(’)e L.(0, cx3; U) such that x(.) given by (3.2)

(3.4) satisfies x(.) E L2(0, cx; V)}.

From Lemma 2.7 it follows that for all u(.) e Uadm, the cost functional J(xo, u(.))
defined by

(3.5) J(x0, u(.)) := $-(x(t), u(t))dt
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is finite. Note that .P(x(t), u(t)) should not be interpreted pointwise but as explained
in Remark 2.2:

:((t) .(t))at IIc(.) "L2 (0,x;Y1) L2 (0,oo;Y2)

(3.6) + 2<Lx(.), u(.)} L2(0,;U) + <Ru(.), u(.)} L2(0,;U).

The following result is a complete generalization of Lemma 2.1.2.
THEOREM 3.1. Suppose that we have a Pritchard-Salamon system of the form

(3.2) that satisfies the assumptions (2.6) and (3.3). Furthermore, let be defined as
in (3.1). The following three conditions are equivalent:

1. For all xo 6. V the’re exists a unique (.) E L2(0, o; U) such that

(3.7) inf J(xo,u(.)) min J(xo,u(.)) J(xo,(.)).
"(’) eVadm tt(’)EUadm

2. There exists a selfadjoint X (V) such that for all x, y D(AV)

((Av BR-L)x, Xy}v + (Xx, (Av B/-lL)y}v

-(XBR-1B*Xx, y}v -(R-Lx, Ly}u

(3.8) + <Cx, c>. <C.x, c>z o

and Av BR-I(B*X + L) is the generator of a Co-semigroup, exponentially stable
O’ll V.

3. There exists an > 0 such that for all (w,x, u) D(AV) U that satisfy
iwx AVx + Bu there holds

(3.9) (=, ) > (llxll v + IIl u)-

Furthermore, ’if one of these conditions holds, the minimizing .t(.) in (3.7) can be
given in feedback form:

(3.10) t(.) -R-’(B*X + L)x(.),

and

(3.11) inf J(xo, u(.)) J(xo, ,(.)) <xo, Xxo>v.
.u,(.)Eu,

Finally, if the X in (3.8) exists, it is unique.
Remark 3.2. In [15] the authors assume the existence of a third Hilbert space

H such that W H V and S(.) is also a C0-semigroup on H. In applications
H is often the actual state-space so that B (U, V) and C E.(W, Y) are both
unbounded with respect to this state-space (see [15]). The role of H is not important
in the derivation of Theorem 3.1 because we consider the LQ-problem vith initial
conditions in V and with stability on V, just as in [15]. Identifying H with its dual
we can use H as a pivot space, in order to obtain a "strong form" of the Riccati
equation, also just as in [15]:
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Using H H’ as a pivot space we have D(Av) W .H V and V H -W’ (D(AV)) ’. We let V ---, V’ denote the canonical isometric isomorphism, and
the duality pairing of V is denoted by {., "}v,v,. Furthermore, we identify U U’,
Y1 Y{, and Y2 Y. Then X E (V) satisfies (3.8) if and only if 2 iX (V, V’)
satisfies the equation

{(A v BR--L)x, 2y}<,, + {x,2(A BR-1L)y}v,v

+ {Clx, Cty}yl -<C2x, C2y}y 0 for all x, y e .D(AV).

Equation (3.12) can in turn be reformulated as

Av- BR-L)’2 + 2(Av

fCBR-B’f( L’R-IL + CC C;C2) x 0

in (D(AV)) for all x e D(AV). Here (Av -.BPt-’1 L)’ _,(Vt, (D(AV))’) can be con-
sidered as the dual of the bounded linear operator (Av BR-t L) (D(AV), V), as
explained in_[15]. Of course, the other statements of the theorem can be reformulated
in terms of X in the obvious way.

Finally, we iaote that because of H V, V’ - H, and the fact that ) E (V, V’),
there holds X (H) and that for all x0 e H we have

inf J(xo,u(.)) (xo, Xxo}v <xo, f(Xo>v,y, (Xo, f(xo>H.
U(’)Uadm

Remark 3.3. The first results for the infinite-dimensional LQ-problem were ob-
tained for the case that L 0 and C2 0 assuming some exponential detectability
condition for C (see, e.g., [4], [1], [11] and references therein). It is not difficult to
show that if in our setting L 0 and C 0, then the frequency domain inequality
is implied by the assumption that there exists a G (Y, V) such that SGc (’) is
exponentially stable on V. In fact, if the system is finite dimensional, then the fre-
quency domain inequality is in this case equivalent to the statement that the poles
of A on the imaginary axis are detectable by C (this is, for instance, the case if
(z(A) C iR 0). Thus, the frequency domain inequality is much weaker than the
exponential detectability assumption. It is straightforward to show that if

(3.14) sup I](iwI- Av)-IlIz,(v <

then the frequency domain condition of item 3 is equivalent to the condition that for
all a R and all u E U

((iwl- Av)-Bu u) > (1 I1112U
for some e > 0. It follows that if L 0, C 0, R I, and S(.) is exponentially
stable on V, then Theorem 3.1 corresponds to the bounded real lemma (this was also
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considered in [17] for the Pritchard-Salamon class) and if C1 C2 0, R D + D*
it corresponds to the positive real lemma.

In the case that C2 0, R D2D12, and L D2C1 the frequency domain
inequality in (3.9) corresponds to the "invariant zeros condition" related to the
control problem with state-feedback in [8]. Theorem 3.1 can be used to extend the
results in [8] to the Pritchard-Salamon class (see [9]).

Remark 3.4. Theorem 3.1 is a considerable extension of existing results about
LQ-theory for systems in the Pritchard-Salamon class:

In [15] the authors consider the infinite horizon LQ-problem (without a priori
stability requirements on the state x(.)) for the special case that C9. 0 and L 0,
and they prove that the cost can be made finite for any initial condition if and only
if there exists a nonnegative solution

_
E (V, Vt) to the corresponding Riccati

equation (see Remark 3.2 and (3.8) with C9. L 0). The result in Theorem 3.1 is
different because we always assume that the control is such that x(.) E L2(0, ; V).
However, under some additional detectability assumption it is proved in [15] that their
optimal control given by g(.) -R-IB’Xx(.) is exponentially stabilizing on V. This
result corresponds to the equivalence between 1 and 2 in Theorem 3.1 with C2 0
and L=0.

In [17], the equivalence between 1, 2, and 3 is proved for the special case that
C1 0, L 0, and S(.) is exponentially stable on V and W.

Proof. We shall prove the implications 1 => 2, 2 => 3, and 3 1.
Proof of 1 => 2. We first assume that L 0 (later we remove this extra assump-

tion by applying some preliminary feedback). The idea is to use Lemma 2.7 and in
particular, formula (2.33), to transform the criterion (3.5) in such a way that the new
criterion can be treated using Lemma 2.12. Since (AV, B) is exponentially stabiliz-
able on V, there exists some F (V, U) such that SB,e(’) is exponentially stable
on V. Using Lemma 2.6 it follows that there exist nonnegative definite operators
X,Xg. (V) such that for all x, y D(AV) D(AVB)

<AVx, Xy>v + <x, XIAVy>v

(3.16) -(C1 x, Cly)yi {(XBF + F*B*X)x,y)v

x, X2y)v + (x, Xg.AVy)v

Since we assume that L O, we have

J(xo u(.))= IlCx(t)llg.gl IIC x(t)ll  + R1/2 u(t) dr.

Hence, we can use formula (2.33) in the proof of Lemma 2.7 to infer that

J(xo, u(.)) (xo, (X X2)xo)v

(((X2 X1)B +/-*B*(Xg. X))x(t),x(t))v
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(3.18)

Note that the integral term is as in Lemma 2.12 (formulas (2.51) and (2.54)), with Q
replaced by (X2 X1)BF+ F* B* (X2 X1) and L replaced by B* (X1 X2). Hence,
because of our assumption (1), we can apply this lemma on V and infer the existence
of a selfadjoint X3 E (V) such that for all x,y D(Ay

(A Vx, X3y}v + (X3x, Av

-{(X3 + XI -.X2)BR-B*(X3 + X X)x,y}v

(3.19) +/((X2 X1)BF + F*B*(X. X1))x,y}v 0

and AV BR-1B*(X3 + X X,) is the infinitesimal generator of an exponentially
stable semigroup on V. Combining (3.16), (3.17), and (3.19), with X .X3+X-X2,
we conclude that X (V) is selfadjoint and satisfies

(AVx, Xy)v + (Xx, AVy} (XBR-B*Xx, y}v

(3.20) "]- <Clx, Cly>y <C2x, C2y>y2 0

for all x,y D(AV) and AV BR-B*X is the generator of an exponentially stable
semigroup on V. We note that (3.20) is just (3.8) with L 0.

Next we show how to reduce the general case to the case where L 0. We remove
the "cross term" of the cost criterion by applying the preliminary feedback

(3.21) u(.) Fx(.)+ v(.),

where .F (W, U) is given by

(3.22) F -R-L.

To make this more precise we note that F given by (3.22) is an admissible output
operator because L is, and we define the transformed system

(3.23) XF(t) SBF(t)Xo "- SBF(t 8)B’V(8) d8

just as in Lenma 2.5. It follows from Lemma 2.3 that C1, C, and L are admissible
output operators for this transformed system as well. Furthermore, it follows from
Remark 2.4 that (AF, B) is exponentially stabilizable on V and Lemma 2.3 shows
that D(A,) V. Hence, the transformed system also satisfies the a priori as-
sumptions of Theorem 3.1. We define the class of admissible inputs for this system
&S

radm :-" {V(’) L(0, ; U) such that xF(’) given by (3.23)

(3.24) satisfies XF(.) L2(0, c; V)}.
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Using the perturbation results in Lemma 2.5, we see that if u(.) and v(,) are related
by (3.21) (or, more specifically, by (2.12) and (2.15)), we have x(.) XF(’), u(.)
FxF(’) + v(.), and v(.) -Fx(.)+ u(.). Hence, we conclude that u(.) E Vadm if and
only if v(.) E [-iadm. Next, for all v(.) Dadm, we define the transformed cost function

JF(xo, v(.)) := .F(xF(t), v(t)) dt,

where for x W and v U we have

v(x, v) .T’(x, Fx + v) (Cx, Cx)y (C2x, Cx)y.

+2<Lx, Fx + v>u + <R(Fx + v), (Fx + v)>u,

so because of F -R-1L, we have

(Cx, Cx)y (C2x, C2x)y (R-1/2Lx, R-1/2.Lx}u + (Rv, v)u.

Note that the transformed cost function has the same form as in (3.5), with L 0
and (C2x, C2x}y.,. replaced by (C2x, C2x}y. + (R-1/2 Lx R-1/2 Lx}v. Using Lemma 2.5
and the above, we have

J(zo, J (xo, v(.)).

Now 1 implies that there exists a unique (.) G L2(0, oc; U) such that

inf JF(xo, v(.)) min JF(xo, v(’)) JF(xo, (’)).
V(’) E -]adm V(’)e [adm

We have proved the implication 1 = 2 under the assumption that there is no "cross
term" (i.e., L 0), so we conclude from (3.25) that there exists a selfadjoint X .(V)
such that for all x, y D(AF D(AV), we have

(AVFx, Xy)v + (Xx, AFY}V -(XBR-1B*Xx, y)v

(3.26) + (Cx, Cxy)yt (Cx, C2y)y (R-1/2 Lx, R-1/2 Lx)v 0

and AF BR-1B*X is the generator of an exponentially stable semigroup on V.
Since AF Av -BR-1L, we have proved 2.
Proof of 2 = 3. Using 2, it is straightforward to show that for all (co, x, u)

R x .D(AV) x U that satisfy icox AVx + Bu there holds

(3.27)

Now since AV BR- (B*X+L) is the generator of an exponentially stable semigroup
on V, we see that for all (co, x, u) ]R x D(AV) x U that satisfy icox AVx + Bu
there holds

x (iwI AV + tR-I(B*X + L))-l/(u -t- I-(B*X + L)x)
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and so

IlZilv _< c II + -I(.B*X +. L)II v
for some cl > 0. Combination of (3.27) and (3.29) (using the fact that _R is coercive)
implies the existence of some el > 0 such that for all (w, z, u) R x D(AV) x U that
satisfy iwx AVx + .Bu,

(3.30) (z, ) > II,ll V

ForuCUandxG Wwehave

so that

(3.31)

u u + R-I(B*X + L)x- R-I(.B*X +.L)x

Since AV BR- (B*X + L) is the generator of an exponentially stable semigroup on
V and L is an admissible output operator, we conclude from (3.28) and Lemma 2.9,
formula (2.35), that for all (w,z,u) G R x D(AV) g that satisfy iwz AVz + Bu
there holds

(3.32) IlLxllu
for some c > 0. Since R-1B*X (K U), the combination of (3.3) and (3.3) gives

Ilulls
for some c3 > 0. We can combine this with (3.29) to obtain

(3.33) IIlls 54 II + --1 (B*X- L)xil U
for some c4 > 0.

Finally, (3.33), (3.27), and the fact that .R is coercive imply the existence of some
ee > 0 such that

(3.34) (x,) lull
Now 3 fonows from. (3.30) and (3.34).

Proof of 3 1. The idea is to apply Lemma 2.11 (a similar procedure is used in
[12] and [21] for the bounded case). Let x0 V be given. We define

:= (x(.), (.)) e L(0, ; V) x L(0, ; U)H such that

(3.35)

and

/o }?.t(’) e gadm and x(t) S(t)xo + S(t- s)Bu(s) ds

Ho := { (x(.), u(.)) L2(0, oc; V) x L2(0, c; U) such that
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(3.36) /oit(’) e Uadm and x(t) S(t- s)Bu(s) ds

It is straightforward to show that H0 is a closed subspace of L., (0, oc; V) x L2(0, oc; U)
and so Ho is a Hilbert space (with the obvious inner product determined by the inner
products of L2(0, oc; V) and L2(0, c; U)). Since (AV, B) is exponentially stabilizable
on V, there exists an F E (V, U) such that SBF(’) is exponentially stable on V. We
define

(xo(’), uo(’)) := (SBF(’)Xo, FSBF(’)Xo).

Using the perturbation results of Lemma 2.3, it is easy to see that (xo(.), Uo(-)) E H
and that H H0 + (x0(.), uo(.)) and we have

inf J(xo, u(.))
u(’)eVdm

inf .P(x(t) u(t)) dt
(x(.),u(.))eH

(3.37) inf (x(t) + xo(t) u(t) + uo(t)) dt.
(x(.),u(.))eHo

Now for (x(-), u(.)) Ho we have

+ xo(t), u(t) + uo(t)) dt5r(x(t)

(][Clx(t) + Clxo(t)ll 2 -IIC x(t)/ C xo(t)l[ 2

+ 2(L(x(t) + xo(t)), u(t) + uo(t))u + (R(u(t)+ uo(t)), it(t) + uo(t)}u)dt

+ C,

-2<C2x(.), C2xo(’)>L(O,cx;Y2) Jr- 2<Lx(.), zt0(.)>L_(o,oc;U
(3.38) +2(Lxo(.), u(.))L:(0,;U) + 2(Ru(.), u0(’))L:(0,;U) + C

for some c I. Next we infer that there exists a selfadjoint operator T (Ho) and
some element y H0 such that (3.38) can be reformulated as

(3.39) (x(t) + xo(t),u(t) +uo(t))dt (Tx, X}Ho + (x,y}Ho +c,

where x := (x(.), u(.)) e Ho. Indeed, it follows from Lemma 2.7 that for any admissi-
ble C e (W, Y) the map from H0 to L(0, ; Y) determined by (x(-), u(.)) Cx(.)
is linear and bounded. Since C, C2, and L are admissible output operators and R
is bounded, it is straightforward to conclude from (3.6) that we have a selfadjoint
operator T (Ho), such that for all x := (x(.), u(.)) Ho there holds

(3.40) (x(t), u(t)) <Tx, X>Ho.

Similarly, one can show that in (3.38),

2(Clx(.), ClXo(’)>L2(O,oc;Y) 2<C2x(.), C2Xo(’)}L2(O,c.o;y2)
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+ 2(Lx(.), U0(’)/L(0,,;U) + 2(Lx0(.), u(’))n2(0,.;U)

+ e<R(.),

is equal to (x, Y>Ho for some y E H0. Hence we have (3.39).
It follows from (3.37) and the above that

(3.41) inf J(xo,u(.)) inf (Tx, X)Ho + (x,y>go +c.
(’) Uadm X Ho

To apply Lemma 2.11, we still have to show that T in (3.40) is coercive (of course
using the frequency domain inequality of 3). Both components of (x(.), u(.)) E H0
are Fourier transformable, and it follows from Lemma 2.10 that (iw) D(AV) for
a.e. wNand

() A’()+ a(),
Cx() C()

for a.e. , for any admissible C (W, Y). Hence, for all x (x(.), u(.))E H0
we have

(Tx, x}go (x(t), u(t)) dt

:(() ())d
2r

(Plancherel’s Theorem, see [18, 4.8])

(ll(i)ll: :+ Ile(i)ll)d (using 3)

v + Ilu(t)llb) dt (again using Plancherel’s Theorem)

II(x(’) (’))11 "Ho llxlo,
This proves that T is coercive and so Lemma 2.11 implies 1.

Finally, it follows from Lemma 2.12 and the above that the optimal control
fi(.) is given by the state-feedback (.) -R-I(B*X + L)x(.) (cf. Lemma 2.3)
and that (3.11) is satisfied. The uniqueness of X also follows from that above and
Lemma 2.12.

4. Examples and conclusions. We have solved the nonstandard LQ-problem
with stability for the Pritchard-Salamon class. This represents a considerable ex-
tension of existing LQ-results for this class in [15] and [17]. As explained in the
introduction, many interesting system theoretical problems can be formulated in the
nonstandard LQ-framework, for instance, questions arising in optimal control, identi-
fication theory, and robust stability theory (see Willems [22]) and so Theorem 3.1 is an
important result. Also the solution to the Ha-control problem for Pritchard-Salamon
systems can be solved using Theorem 3.1. In particular, if C O, R D.D., and
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L D2C1 the frequency doinain inequality corresponds to the "invariant zeros
condition" in [9, Theorems 4.4, 5.4].

Upon the request of one reviewer we shall now discuss some examples of the
theory presented in this paper, in the sense that we shall consider some nonstandard
LQ-problens for systems in the Pritchard-Salamon class that are not covered by the
bounded theory in [12], [13], [21]. As pointed out in [15], [16] and the introduction,
the Pritchard-Salanon class contains many delay systems and several PDE systems.
Since the strength of the Pritchard--Salamon class lies in the fact that so many delay
systens fit in, we shall extensively treat a delay example, briefly discuss a parabolic
PDE example, and nake some comments about a flexible beam example.

4.1. Delay systems. The following neutral system with output delays is treated
in [15] (for more general delay systems in the Pritchard-Salamon class, like retarded
and neutral systems with delays in both the input and the output, we refer to [16],
[19]). Consider the system given by

(4.1)
(z(t)- Mz,) Lz, + (t),

y(t) Czt,

where z(t) R’; u(t) R’; y(t) RP; zt is the solution segment defined by

-h<_r_<0, h>0;

and/) R’ and L, M, ( are bounded linear functionals from C(-h, 0 ;R) into
R and Rp, respectively. Under some conditions (see [15, Exe. 4.1]), the system given
by (4.1) has a unique solution z(t); t _> -h, for every input u(.) LC(0, oc;IRm) and
every initial condition satisfying

lim(z(t) Mzt) r/0,
tt0

where x0 (r/0, 0) M2 R x L(-h, 0 R). Moreover, the evolution of the state

e

of the system can be described by

x(t) s(t) o + s(t-

where B Z:(IR", M) maps u ]R" into the pair Bu, (/), 0) and S(t) /2(Ah) is
the C0-semigroup generated by the operator A given by

(4.3)
D(A) {z (r/, 49) M O [’Vl’2, r/---((0)- M(},

(L,,

Here V’ denotes the Sobolev space Wl’2(-h, 0 ;R’n) of absolute continuous func-
tions in Lo.(-h, 0 "R’) whose derivative is in L(-h, 0 "R).

Now D(A) can be considered as a Hilbert space by choosing the inner product
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and it tbllows that S(.) restricts to a C0-semigroup on D(A).
The output y(t) Czt of the system may formally be described by

Cx(t) c (=(t)

where the output operator C is given by

(4.4) C" D(A) Rp, Cx=C(,O)=

Ve recall that by assumption C is a bounded linear map from C(-h, 0"R) to Rp

so that C (D(A),Rp) but in general C (M,Rp). Using the fact that S(.)
restricts to a C0-semigroup on D(A), a natural choice for W and V is W D(A) and
V M, because then C (W, Rp) and B (R, V) and we can choose U R
and Y Rp. We note that the operator A from D(A) C V to V should in fact be
denoted by Av and that. the generator of the restriction of S(.) to W D(Av) is
denoted by AW (cf. the beginning of 2). In [15] it is explained that now .B and
C are both admissible in the sense of Definition 2.1. so that the neutral functional
differential equation described above can indeed be modeled as a Pritchard-Salamon
system E(S(.), B, C, 0).

Below we shall consider a certain nonstandard LQ-problem for delay systems of
the above type, but first we shall discuss the two a priori assumptions of Theorem 3.1,
namely (2.6) and (3.a). First of all, we note that condition (2.6) is trivially satisfied
because of W D(AV). In order to deal with assumption (3.3), we assume in the
sequel that M’C(-h, 0; R) R has the particular form

(4.5) A_j(-hj)+ A-(7)e(r)d7 for
-hj=l

where 0 < hj h, A_j R’xn for j N, A_(.) Ll(-h, 0;Rx), and

IIA-NII < . Furtherlnore, we assume that

(4.6) sup ReA" det I A_exp(-Ahj) 0 < O.
j=l

It is explained in [15] that under the above two assumptions the pair (AV,B) is
exponentially stabilizable on V if and only if

(4.7) rank [A(A), B] n for all A C with Re(A) 0,

where A(a) A[I- M(exp(A.))]- .L(exp(A.)). Now suppose that we have two ad-
missible output operators that have the same forn as C:

(4.8) C D(Av) - Rp’, Cx C, (, )

(4.9) C D(A) - R, Cx C(r], 4)) 00.,

where O and ’ are bounded linear functionals from C(-h, 0; R) into R and R,
respectively. We introduce the nonstandard cost function

(410) J(xo, u(.)) := (x(t), u(t)) dr,
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where

(4.11) 9c(x, u) := <C, 2c., Clx>Rp, <C2x, C2x>Rp2 -t- <?.t, t>lRm.
The state of the system is given by (4.2), and the cost function can also be written as

J(xo u(.)) (lly(t) 2, II(t)ll + II(t)ll)dt,

where

Yl (t) Clx(t) and y2(t) C2x(t).

The following result is an immediate consequence of Theorem 3.1.
THEOREM 4.1. Let S(.),B, CI, and C2 be given as above (with M satisfying

(4.5) and (4.6)); and let J(x0, u(.)) be given by (4.10). Furthermore, suppose that the
stabilizability condition (4.7) is satisfied and define Uadm according to (3.4). Then the
following are equivalent.

1. For all Xo E V there exists a unique ft(.) L2(O, oc; U) such that

(4.12) inf J(zo, u(’)) min J(xo, u(.)) J(xo,
U(’) e Vadrr, u(’)eVadm

2. There exists a selfadjoint X (V) such that for all x, y D(AV)

(AVx, Xy)y + (Xx, AVy)v -(XBB*Xx, y)v

(4.13) -[- <Clx, Cly>Npl <C2x C2y>Np2 0

and Av -BB*X is the generator of a Co-semigroup, exponentially stable on V.
3. There exists an e > 0 such that for all (a,x, u) IR x D(Av) x U that satisfy

iax AVx + Bu there holds

(4.14) 2 2IIc + I1’ ,(llxlljlclxllc,l --IIC.x IIg- > v + I1",11 Crr

Furthermore, if one of these conditions holds, the minimizing ft(.) in (3.7) can be
given in feedback form

(4.15) (.) -B*Xx(.)

and

(4.16) inf J(xo,u(’)) J(xo,t(’)) (xo, Xxo)v.
U(’)Udm

Finally, if the X in (3.8) exists, it is unique.
Remark 4.2. As explained in Remark 3.3, if

(4.17) sup

then the frequency domain condition of item 3 is equivalent to the condition that for
all o R and all u E Cm

((iwI Av)-IBu, u)
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----IIC1(iwI Av)-I Btllp,- IIC2(iwI AV)- Bull2 2

(we note that for our delay system (4.17) will generically hold; in fact, stabilizability of
the delay system implies that there are finitely many unstable poles; see [2]). Hence,
defining the transfer functions

Gl(s) := Cl(sI- Av)-IB and G2(s) C2(sI Av)-IB,

it follows that the frequency domain condition of item 3 is in this case equivalent to
the condition that for all E R

(Gl(iaJ))*Gl(ion) -(G2(icd))*C2(ia))

_
(51 1)1

for some E1 > 0. Hence, the solvability of the LQ-problem depends on a trade-off
between the ’:sizes" of G1 and Gg. on the imaginary axis.

Finally, we note that if (4.17) holds and C 0, then the frequency domain
condition is automatically satisfied (this corresponds to the standard LQ-problem,
except that here there is no exponential detectability assumption on C).

4.2. Parabolic PDEs. Next, we discuss a nonstandard LQ-problem for the
class of parabolic PDE systems given in [15].

Let A.be a selfadjoint operator on a separable Hilbert space H, and suppose that
it has compact resolvent and that its spectrum consists of strictly decreasing real
eigenvalues )n, n E N, with eigenvectors E H, I},;ZSllH 1. In this case {G,
n N} forms an orthonormal basis of H so that for all x H,

H < oo and x
n--O n=O

A can be represented as

(4.18)

.D(A) {

and the C0-semigroup S(.) generated by A is given by

(4.19) S(t)x E exp(,kt)(x, Sn}Ubn.
rt--0

Now let fin and % be positive sequences satisfying 0 < fin _< _< 7n < oc and suppose
that W and V are determined by
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with the obvious inner products. Here we assume that H is identified with its dual
so that V’ C H H C V. This means that V can be represented as a space of
sequences

v= xl Zx<
n----0

and the injection H C V is given by identifying x E H with the sequence { (x, Cn}H n E
N}. Finally, let B ff (R, V) and C (W, R) be given by

Bu= {bnu, n N} and Cx= ECn(X,n}H

where the sequences {bn, n N} and {cn, n E N} are such that

It is not ditficult to show that B and C are admissible with respect to (W, V) in the
sense of Definition 2.1 if

where no l+max{n N A _> 0}. Furthermore, given sequences bn, cn, An ]

such. that An is strictly decreasing and An -ec, there exist sequences /n,’/n such
that the inequalities (4.20) (4.21) are satisfied if and only if

bnCn(4.22) E i1/
<

(see [15, Lemma 4.4]). This last result particularly shows that B and C cannot be
"too unbounded" with respect to H. Furthermore, it shows that B can be "more
unbounded" as long as C is "less unbounded" and vice versa. We Inention that in
addition to (2.3)--(2.4), the condition D(Av) W is also satisfied provided that
7,/n are chosen appropriately. Hence, this class of parabolic systems fits into the
Pritchard-Salamon framework. A particular example of this class of parabolic systems
is given by the PDE model for the temperature distribution of a heated rod with
boundary heat control:

(4.23)

Oz 02Z
(, t)= _-.(. t). > o. o < < ;
or,

Oz Oz
(0, t) (t), (, t) 0, > o;

z(, 0) z0(),

t>0;

0 < < 1 (intitial condition),
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where c(.) E L2(0, 1) (the output y(t) is sorne averaged measurement of the ternpera-
ture). Formally, the PDE may be expressed as

OZ 02Z
0-(, t)= 5- (’ t)- 0(t)

where 0 denotes the Dirac delta impulse at 0 (actually, this can be done in a
rigorous way, using distribution theory; see Salamon [20]). Choosing the state-space
H .L2(0, 1) with the state function

x(t) z(t,), t > o, o < <1,

the PDE can be modeled as a system of the form (2.5) with D 0, i.e.,

(t)

(t) c(t).

s(t- ,)g,()&,

Here S(-) is a C0-semigroup on H and its infinitesimal generator A, the input operator
B, and the output operator C are defined by

D(A)= { dx
x H Ix,- are absolutely continuous

d2x dx dx
H, and -- (0) --;(1) 0 j,d2

d2x
d2

Cx ((.),(.))..

it follows that A is indeed selfa.djoint, that it has compact resolvent, and that it is
of the form (4.18), where A0 0, b0 and ,kn -nrr, () /2cos(nr) for
n _> 1. Furthermore, we get cn (c(’),}H,n N, and b0 -1, bn -/ for
n >_ 1 and condition (4.22) is satisfied if and only if

(4.24) E
n--1

2Since c(.) H, we have EnC= cn < oc and so condition (4.24) is satisfied. In fact, we
can choose the sequences 7n and fin by 7n 1 and fin n-, n _> 1. This corresponds
to the choice W H and V’ W’e(0, 1) (the Sobolev space of absolute continuous
functions in L2(0, 1) whose derivative is in L2(0, 1)).

Now it is of course possible to set up a nonstandard LQ-problem for the above
described abstract parabolic systems. The system is given by

(t) s(t)zo + foo’ s(t )S,() &,
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and one can choose output operators C1., C2, and L with the same admissiblity prop-
erties as the output operator C above and construct a cost function of the form

J(zo, u(.)) ((Cz(t)) -(Cz(t)) + Lz(t)(t) + r((t))) dr.

If b, - 0 for n 1,...,n0- 1, the pair (AV,B) is exponentially stabilizable (see
[1,5]) and so in this case Theorem 3.1 is applicable. In order to make this very general
result a bit more explicit we consider the special case of the PDE in (4.2,3) and we
choose the output operators C1, C2 E (W, R) as follows:

Clz K(o(’),x(’))H for some K E R,

C2z <c(-),z(’)>H for some c(-) H

(we take L 0). It follows from the above that with / 1 for n > 0, //0 1, and
/. 1/n for n >_ 1 we have a stabilizable Pritchard-Salamon system that satisfies
assumption (2.6) and C1 and C2 are admissible output operators (recall that A0 0,
00 1; , .-n27r, ()= 2cos(nTr) for n >_ 1; b0 -1, bn -x/ for n _> 1,
and c, {c(.), ,)H for n _> 0). The nonstandard nQ-cost function is given by

J(x0, it(-)) ((Cx(t)) (Cx(t)) + r(u(t))) dt.

Now let us consider the frequency domain condition of Theorem 3.1 for the problem"
There exists an > 0 such that for all (a, x, u) IR x D(AV) x C that satisfy
iax AVx + Bu there holds

(4.25) IClXl* IC x / ->  -(11 ’11 / I 1
The expression icx AVx + Bu can be reformulated componentwise as

iaXn (AVx), + (Bu)n AnX + bu for all n _> 0,

and due to the fact that 0 0 we need to consider two cases:

w=0=

and

x0 is arbitrary, zn 0 for n >_ 1, u 0;

Clx Kxo;

C2x c0x0.

0

bnu
Xn for n _> 0, u arbitrary,

Ku
Cx Kxo ,

iw

cnbnu
n--O

forn >0.
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It follows that a necessary condition for the frequency domain inequality to hold is
that I/s’l > Ic01 (due to the case 0). Sucient conditions on cn for the frequency
domain inequality to hold may now be obtained by estimating IC,.zl.

Hence, just as in the delay example, Theorem 3.1 is applicable and the frequency
domain inequality is the condition that is most easy to verify.

4.3. A beam example. Finally, we discuss the applicability of Theorem 3.1 to
a flexible beam example. In [2] an example is given of an Euler-Bernoulli beam with
Kelvin--Voigt damping that can be modeled as a Pritchard-Salamon system (it is in
fact a simple model for a satellite). The corresponding PDE is given by

c)2w Ow 1
-O-, (,t) +alA-(,t) +aAw(,t -fi,(5ou(t)-5ou(t)), > 0,-1 < < 1;

02w O2w(1 t) for > 0;-0(-1,t) 0 -Oaw Oaw
,-a-, (-1,t) 0 -a- (1,t) for t > 0;

y,(t) w(O t) y2(t)
OW

(O,t) fort>0

where Ctl and ct. are the damping and stiffness coefficients, pa is the mass per unit
length, and A is the selfadjoint positive operator from D(A) C L2(-1, 1) to .L(-1, 1)
given by

D(A) {h e L2(--1, 1) lh’,h"h’",h’"’, e L(-1, 1)
h"(-1) h"(1) 0, h’"(-1) h’"(1) 0},

Ah
d4h

Choosing the state x(t) (w(. t) ,-0-i-(.,t)) e D( x L(-1,1), this PDE can
be reformulated as a Pritchard-Salamon system of the form (2.5). For the details
we refer to [2]; iInportant elements are the spectral analysis of the system operator

0
-A -xA) and the use of scaled Hilbert spaces, just as in the parabolic PDE ex-

ample. Furthermore, it is straightforward to formulate nonstandard LQ-problems for
this example by choosing appropriate admissible output operators C, C, and L just
as in the delay example and the parabolic PDE example, so we need not pursue this
issue any further.

Acknowledgment. I thank the authors of [3] and Martin Weiss for some inter-
esting and helpful discussions.
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EXACT CONTROLLABILITY AND STABILIZATION
OF A VIBRATING STRING

WITH AN INTERIOR POINT MASS*

SCOTT HANSENt AND ENRIQUE ZUAZUA

Abstract. In this article we examine the problems of boundary control and stabilization for
a one-dimensional wave equation with interior point masses. We show that singularities in waves

are "smoothed one order" as they cross a point mass. Thus in the case of one interior point mass,

with, e.g., L2-Dirichlet control at the left end, the tnost general reachable space (from 0) that one

can expect is L x H-1 to the left of the mass and H L to the right of the mass. \Ve show that
this is in fact the optimal result (modulo certain compatibility conditions). Several related results
for both control and stabilization of such systems are also given.

Key words, boundary control, hyperbolic system, hybrid system, vibrating network

AMS subject classifications. 35P10, 35P20, 35L20, 73K03, 93C20

1. Introduction and main results. In recent years there has been much
interest in the topic of control and stabilization of so called "hybrid systems" in which
the dynatnics of elastic systems and possibly rigid structures are related through some
form of coupling. For example, see [1] for serially connected beams, [8]-[10] for beams
with end masses, and [4], [2], [14] for networks of strings and beams.

In this article we examine a simple model for an elastic string involving an interior
point mass. We obtain a precise description of the space of exact controllability when
control is active at one or both ends of the string and also describe the best possible
stabilization results via velocity feedback at one or both ends. We refer to [14] for a
discussion on the Inodeling and well-posedness of networks of strings containing, in
particular, point nasses. Approximate controllability results for these networks were
announced in [13].

It will be convenient to regard the string-mass system as two separate strings in
which one end of each string is attached to a common point mass. Thus assume the
first string occupies ft (--g, 0) C R and the second one f (0, te) C R, where
t and g are positive.

For simplicity of the exposition we suppose both strings to be homogeneous.
The deformations of the first and second string will be described respectively by the
functions

U=U(X,/:), X fl,

V V(X,t), X e f, t > O.

The position of the mass (which is attached to the strings at the point x 0) is
described by the function z z(t) for t > 0.
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To fix ideas we suppose that the strings satisfy Dirichlet boundary conditions
at the end points (x -tl,t2). Then the equations modeling the dynamics of this
system in the absence of controls are as follows:

(1.1)

Pl Utt O’l txx

p2Vtt Cr2Vxx,

Mztt(t) + alux(O,t) a2vx(O,t) O,
(-e, t) (e, t) o,
(o, t) (o, t) z(t),

x tl, t>0,
x ft2, t>0,

t>0,

t>0,
t>0.

The constants pl > 0 and p2 > 0 represent the density of each string and M > 0
represents the mass of the point mass. The tensions in each string are assumed positive
and denoted by a and r2. If the only forces acting on the point mass are those of
the strings then al or2; however, if an external force is present (for example, gravity
acting along the x-axis) then the two tensions.will be different.

Note that when M 0, system (1.1) describes the motion of a string with a
piecewise constant wave speed.

Of course, in order to detertnine the solution of (1.1) in a unique way we have to
add some initial conditions at time 0 that will be represented by

U(X, O) --’O(x), t(X, O) t (X), X ’1,

(1.2) V(x,O) vO(x), Vt(x,O) 721 (X), X e ’2,
(0) z, z,(O) 1.

As usual, depending on the regularity properties and the compatibility conditions
these initial data satisfy, we may expect a different degree of regularity of solutions.

Let us introduce the energy

(1.3)

0

EM(t) - --i

+
0

[plut(x,t)l 2 + CrllUx(X,t)l]dx + AI2 lzt(t

pelvt(x, t)l e + ere v(x, t)le]dx.

In the absence of controls, i.e., for solutions of (1.1), this energy is constant in time.
We are interested in the controllability properties of this system when control is

active at one or both of the end points of the string-nass system. We will discuss these
control problems from two different point of views. The first consists of finding suitable
observability estimates and then applying Hilbert’s uniqueness method (HUM) (cf.
J. L. Lions [6], [7]) and the other is based on the use of nonharmonic Fourier series
and moment problems (cf. D. L. Russell [11]).

We will see that the presence of the point mass introduces sone important changes
in the behavior of the system with respect to the observability properties.

Let us recall what one has concerning the observability of (1.1) in the absence of
the mass (i.e., when M 0):

(a) If T > g V/fli/cr -+- g2 V/f12/o’2 there exists C(T) > 0 such that

(1.4)
T

Eo(O) <_ c f[,
0

u(-e, t)l + .Vx(e2, t)12]dto
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(b) If T > 2(gi V/pl/0.1 + t2V/P2/a2) there exists C(T) > 0 such that

T

E0(0) <_ C/
0

We will see that an estimate of the form (1.4) holds for any M > 0 but only if T >
2 max(tl V/Pl/0.1,g.2V/P2/a2). Thus when controlling at both extremes x- -tl, t2 we
will get the analogue of the results one can prove (see Theorem 3.1) for two serially con-
nected strings without the point mass but only for T > 2 max(tl V/pl/o’,.2V/P2/0.2).

However, we will see that the observability inequality (1.5) does not hold when
M > 0, no matter how large T is. By an explicit computation (see Proposition 2.5)
one sees that when a wave starting from initial data

U 9P0 e H(tl), v0 0,
u 1 ( L2 ("i), V 0,
Z0 Z 0

crosses the point mass, part of the wave is reflected off the point mass and part is
transmitted. The part which is reflected keeps the same regularity as the initial data,
but the part that crosses the mass is regularized by one degree (i.e., v(., t) E H2(Ft2)
for all t > 0). Of course this is due to the presence of the mass and does not occur
when M 0.

This phenomena explains why, if we want to observe the initial energy of the
solution (in this case the HI-norm of to), we need an estimate on vxt(2, t) in L2(0, T)
and not only on vx(t2, t).

When M > 0 and T > 2(1V/Pl/0.1 + 2v/P2/a2) we are able to prove that

T

(1.6) EM(O) + [Ivx=(’, 0)l[=(,) + [Ivxt(’, 0)l[=()
_
C /[vxt(2, t)[2dt

o

and this inequality is sharp in the sense that the reverse one holds for all T > 0.
As a consequence of (1.6) we deduce that when controlling from only the end

x t2 with L2(0, T) controls, the controllability is achieved in a space smaller than
the usual one (the one we have for M 0) since the components corresponding to
the first string are of one more degree of regularity. The well-posedness of the system
(1.1) in this asymmetric space is due to the presence of the point mass and does not
hold when M -0.

It is also interesting to understand this phenomena from the point of view of
nonharmonic Fourier series. Let us consider, for simplicity, the case Pl P2 1
2 al 0"2 1. By a careful study of the spectrum of the elliptic operator involved
in system (1.1) we can see that vx(g2,t) is given by the nonharmonic Fourier series

(1.7) vx(1,t) aoe-it + boe’"t + E (akeik’t + baeit)
kez\{0}

That an estimate of this type can be obtained was mentioned by Schmidt [13]; however, the
optimality of T is much more subtle and was unknown at that time.
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where ak and bk are complex numbers related to the Fourier coefficients of the initial
data and (iak) is a sequence of eigenvalues such that

(1.s)

When M 0 this second sequence (ak)U--a0 of eigenvalues becomes (kr+ )kez and

vx(1, t) is given by a (harmonic) Fourier series involving the exponentials (eik=t/2)keZ,
which are orthogonal on L2(0, 4).

In terms of (1.7) the inequality (1.5) (which we already mentioned does not hold
when M > 0) would be equivalent to

T

(1.9) [Idol + Ibl] _< C /Iv(, t)ldt,
k---cx 0

for T > 4. However, all results concerning inequality (1.9) for nonharmonic Fourier
series existing in the literature require an asymptotic spectral gap (cf. [2], [3], and
[16]) that, in view of (1.8), does not hold in our case. Instead of (1.9), employing a
result of D. Ullrich [15], we get the following weaker version of (1.9):

T

(1.10) E lak + bl + (we kr)ela bkl 2] <_ C f IVx(1, t)12dt,
k---oc 0

which holds for T >_ 4, and is just the Fourier version of the observability inequality
(1.6).

When controlling at both extremes x -51, t2 but with

(1.11) 1 P+f P<T<2max(f1/,yal tP)
(which is only possible if tl v/pl/crl =/= e V/-p/cr2), we again obtain, as above, an asym-
metric controllability space since the solution components corresponding the string
with the longest propagation time has one more degree of regularity over a portion
of that string. Thus we also obtain controls with different regularities, namely, the
control on the side of the mass with the smoother solution belongs to H0 (0, T) and
the control at the other end belongs to L2(0, T). Therefore, even if we control at
both ends when T satisfies (1.11), this phenomena in which the controllability space
is asymmetric appears.

We will also briefly discuss the stabilization problem concernings two different
situations. First we prove that by introducing boundary damping at both extremes
x -tl, t2 the energy of solutions decays exponentially uniformly. Moreover trajecto-
ries converge exponentially to a constant equilibrium that can be determined in terms
of the initial data. We then consider the case where the boundary damping acts only
at one extreme point. In this case the energy of every solution converges to zero but
there is not a uniform exponential decay since a sequence of eigenvalues of the system
approaches the imaginary axis. This phenomena is similar to that founded by E. B.
Lee and Y. C. You [5] and W. Littman and L. Markus [10] when studying the stability
properties of strings and beams damped at one extreme through a point mass.

This paper will be devoted to the particular case of two homogeneous strings with
a point mass, but the techniques and ideas involved are rather general and may be
used to discuss nonhomogeneous strings, other boundary conditions at the extremes,
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other dynamics at the point mass, and other situations where more than two strings
and one mass are present. A more detailed discussion of some of these extensions will
be given in the last section.

The rest of the paper is organized as follows. In 2 we give some preliminary
results concerning the existence, regularity, and uniqueness of solutions of both the
uncontrolled and the controlled system. In 3 we examine the controllability problem
for the case where the control acts at both extremes. In 4, using energy methods we
prove estimate (1.7) and its consequence concerning controllability. In 5 we carefully
analyze the problem of controlling from only one extreme by means of moment prob-
lems and nonharmonic Fourier series. In particular we discuss and prove inequality
(1.10). In 6 we discuss the boundary-stabilization problem. Finally, in 7, we give
some extensions of our main results.

Throughout this paper C will denote a positive constant that may vary from line
to line. We will make explicit the dependence of these constants with respect to the
various parameters of the problem only when this becomes necessary.

2. Existence uniqueness and regularity of solutions. In this section we
give some preliminary results concerning the existence, uniqueness, and regularity of
solutions. First we consider the system (1.1) without controls and then the case of
nonhomogeneous boundary conditions.

2.1. Homogeneous boundary conditions. Let us introduce the vector spaces

’I {(#9 E H (’1): ((--1) 0},

o {(, ) e o x o2: (o) (o)}

endowed with the norms

f I(x)l dx, 1, 2,

Note that the space 0 is algebraically and topologically equivalent to
However, since we are considering a system made of two different strings it is conve-
nient to think of as a subspace of 1 .

Let us also consider the following closed subspace of :

w {(,,, z) e o (0) (0)

which is densely and continuously embedded in the space

Wo L2(1) L2(a2) ].

Define the Hilbert space by

W1 X IWO

with the product topology. In terms of the vector-valued function

y (u,v,z, it, i,i;)
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(the superscript denotes transposition), we may define an unbounded operator ,4 on
7-/by

Ay A 0 Y; A 0 a2 d2 0
P2

--M--a1 dSo -2 dSo 0

where d denotes the (distributional) derivative operator and 5o denotes the Dirac delta
function with mass at x 0. The domain of ,4 is given by

D(,4)- {y E T(" u e H2(fl),V e H2(a2), (/t,/, ) e W, }.

When 19(j[) is endowed with the graph-norm topology

it becomes a Hilbert space with dense and continuous embedding in 7-/.
System (1.1)-(1.2) can be written as

(2.1) --- Ay,
dt

y(0) yO (no, vo, zo, ul, V Z )t.

It is easy to see that ,4 is skew adjoint and m-dissipative on 7-t and therefore
generates a strongly continuous group of isometries on 7-/. Therefore we have the
following existence and uniqueness result for (1.1)-(1.2).

PROPOSITION 2.1. (i) For every yO (uO vo, zo, u, v, z 1)t 7-I there exists a

unique solution of (1.1)--(1.2) in the class

(u, v, z) e C([O, T]; WI C ([O, T]; Wo).

Furthermore, the energy EM remains constant along this solution trajectory.
(ii) If yO 19(,4) then the corresponding solution has the following additional

regularity:

u e C([O,T];H2(fI)r’]Cl([0, T];H(ftl)),
v 6 C([0, T]; H2(ft2)V C([O,T];HI(f2) ).

Let us denote those solutions satisfying (2.2) by finite-energy solutions.
We can also prove the following regularity result for finite-energy solutions.
PROPOSITION 2.2. For every T > 0 there exists some constant C(T) > 0 such

that the following inequality holds for every finite-energy solution:

(2.4)
T

t) = .+ t)l]dt <_ CEM(O).
0

Pro@ It is well known by now (cf. [7])that this estimate is of local nature.
Therefore it does not depend on whether there is a point mass on the string. However,
we have to use the conservation of the energy EM(t) in (1.3) to obtain the upper bound
in terms of the initial energy. [l

It is also convenient to consider system (1.1) in the presence of some external
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distributed force:

putt au + f(x, t),
fl2Vtt a2Vxx + g(x, t),
Mztt(t) + a,u(0, t) cr2v(0, t) h(t),
(o, t) v(O, t) z(t),
(-, t) v(, t) 0,

XEI, 0<t<T,
xEf2, 0<t<T,

0<t<T,
0<t<T,
0<t<T.

T

/ I(-e, t)l + I,(e, t)l] dt <_ c [1111 +
(.6) o

We will also need the following result.
PROPOSITION 2.4. Suppose that yO 0 and

OF OG dH
Or’ g Or’ dt

where (F,G,H) L(0, T;h). Then the solution (u,v,z) of (2.5), (1.2) is such that

(u, v, z) (v,, y, z,)
with

(U, V, Z, Ut, Vt, Zt) e C([0, T]; D(A))
and therefore, in particular,

(u, v, z) e C([0, T]; W),
(2.7) (ut,vt, zt) e C([0, T]; Wo) + La(0, T; Wt),

(U, V)e C([O,T];He(Q) H2(Q2)).
Moreover, there exists a constant C > 0 such that

T

lUx(-el, t)l + Ivx(e, t)l]dt <_
o

Proof. We have (u,v,z) (Ut, Vt, Zt) where (U, V, Z) is the solution of (2.5),
(1.2) with zero initial data and (f, 9, h) (F, G, H). We have

(U, V, Z, Ut, Vt, Zt) C([0, r]; D(A)),
and therefore (2.7) holds.

The regularity property (2.8) is more subtle and can be proved proceeding as in
[7, Chap. I, Thm. 4.2, p. 46]. 121

Let us now study the regularity of solutions where the initial data belong to a
space where the regularity is not the same in each of the strings. More precisely, let
us consider initial data

(2.9) yO

By standard semigroup methods we have the following proposition.
PROPOSITION 2.3. For every yO 7-t and (f, g, h) L1(0, T; Wo) there ezists a

unique finite-energy solution of (2.5), (1.2) in the class (2.2). Moreover, there ezists
a constant C > 0 such that
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such that

(2.10) u H(I}, u 1, gl(0) ZI"
Of course, (2.9)-(2.10) do not imply that y0 E D(A) and therefore we cannot apply
the regularity Proposition 2.1(ii) provides. However, we can prove the following result.

PROPOSITION 2.5. Suppose that the initial data yo satisfies (2.9)-(2.10). Then
the solution of (1.1)-(1.2) is such that, in addition to (2.2), we have

(2.11) u C([0, T]; H2 (fl)) C ([0, T]; bql ).

Moreover, there ezists C > 0 such that

(2.12)

for every solution with initial data satisfying (2.9)-(2.10).
Proof. It is sufficient to prove the existence of some v > 0 and C > 0 such that

(2.11) and (2.12) hold in the time interval [0, -]. By scaling the spatial variable in

fl and changing the time scale we may assume tl 1 and in the wave equation u

satisfies, pt al 1. Likewise, by changing the length of the second string we may
assume p2 a2 1 in the wave equation v satisfies. However, the conditions at the
point mass change and we are led to consider the following system:

-1 <x<0,

0<x<,
0< <T,
0<t<T,

0<t<T,

with 7 > 0 and m > 0, f being the length of the second string.

-1

0<t<T,

0<t<T,

X

FIG,

The value of u and v in the regions

/-1 {(X,t) E (--1,0) X (0, 1): t < --X},
t)e (0, e) (0, e): t <

respectively, does not depend on the point mass because of the finite speed of propa-
gation (see Fig. 1).

Therefore, in R1 and R2, u and v remain as smooth as in the absence of mass.
In particular u C([O, 1];H(R(t)) C([O, 1];H(RI(t))) where R(t) (-1,-t).
Moreover
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Let us compute u and v in $1 and Se, respectively, where

S- (z,t) -,0 (0,).12t-#l<#+2x

0, g
with # min(g, 1) (# 1 in Fig. 1).

We have from D’Alembert’s formula

(2.13)

Likewise for (x,t) in /1 and Re, u and v, respectively, are given in terms of the
initial data by D’Alembert’s formula. By Proposition 2.1 we know that the solution
is continuous, in particular, along the rays Ixl, (-#/2 < x < #/2). Imposing
continuity in the expressions for u and v along these rays leads to

(2.15) Zt(t -[-
(1 + )z(t) Z -- --[L(t)+ 7R(t)], z(O) z

and

(2.16) 0 x(O, t) z,(t) + (-t),

where

(2.17)
-t

0 0

From the conditions the initial data satisfy we deduce from (2.17) that L and
R belong to Hi(0,#). It thus follows from (2.15) that z z(t) belongs to He(0, #).
Then, from (2.10) and (2.16) we deduce that ux(0, t) E H (0, #).

Now, from (2.13) we easily deduce that

# He C #

Finally, it is easy to check that the expressions we have for u in/,1 (as a solution
of the wave equation) and in S (by (2.13)) are such that Ux and ut are continuous
across x -t. This concludes the proof of the proposition. [-]

Remark 2.1. It is obvious from the proof of this proposition that we cannot replace
in the hypothesis (2.10) and in the conclusions (2.11)-(2.12) the space He(-1, 0) x
H(-1,0) by any HS(-1,0) x Hs-l(-1,0) with s > 2. In other words, the most extra
regularity degree we may keep in one of the strings is one.

2.2. Nonhomogeneous boundary data. In this section we prove the existence
and uniqueness of weak solutions when we introduce Le (0, T)-Dirichlet controls at the
extreme points x
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Let us consider the system

(2.19)

XEI, 0<t<T,
x E f22, 0<t<T,
0<t<T,
0<t<T,
0<t<T,
0<t<T,
x fit,
z E f2,

with p,q L2(O,T), u e L2(ftl), v L(f2), the initial velocity u and v belong-
ing, respectively, to the dual spaces zg and zg and z, z E R.

The solution (u,v, z) of (2.19) has to be understood in the sense of transposi-
tion. Let us give its precise definition. For that, consider the following system with
homogeneous boundary conditions:

P2tt 0"2xx -k 9,

Mtt(t) + 0".tpx(O, t) 0",,bx(O, t) h(t),
g)(--el, t) @(e2, t) 0,

(o, t) (o, t) (t),
(, T) (x, T) O,
(, T): (x,T)=0,
(T) (T):0.

XI,
XFt, 0<t <T,
0< t <T,
0<t<T,
0< t <T,
X f’l,

For every (f,g,h) L(0, T; W0), in view of the time-reversibility of the system
and as a consequence of Proposition 2.3, system (2.20) has a unique solution

(,
, ) e c([0, 7"]; w),

(,,) c([0, r]; w0)

satisfying

T

I(-e, t)l u / Ix(ge, t)l]dt <_ Cll(f g, h)IIL(O,T;Wo).
o

Multiplying by qo and b in the equations satisfied by u and v in (2.1.9) and
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integrating formally by parts with respect to x and t, we obtain the following identity:

T 0 T g2 T 0

0 .-0.1 0 0 0

(2.23) P2 / vOyt(x, O)dx +/91 (lz (., 0))ill + p2(v [J(.,
0

T T

ip(t)x(-gi,t)dt- or2 1 q(t)x(g2,t)dt + Mzi(0)- Mz(,(O).+ r

0 0

We adopt this identity as the definition for weak solutions of (2.19) in the sense
of transposition, i.e., (u,v,z) is said to be weak solution of (2.19) (in the sense of
transposition) if (2.23) holds for every (f,g,h) E LI(0, T; W0).

In (2.23) observe that the initial velocities (u 1, v 1, z) are applied (in the sense of
the duality in W1) to the elements ((., 0), b(., 0), (0)) of W1. Therefore two initial
data that coincide in W0 W (note that W is a quotient space of (01 02 IR)’)
give rise to the same solution.

We have the following result.
PROPOSITION 2.6. For everyp, q L2(0, T), (u,v) L2(tl)XL2(2) (ul,v 1)

(0’ v92) and z, z e there exists a solution (in the sense of transposition) of (2.19)
in the class

(2.24) (u, v, z) e C([0, TI; Wo),
(2.25) (, ,<, z) e c([0, T]; oi o ).

Moreover, there is a one-to-one correspondence between the initial data as elements of
the quotient space Wo W[ and the solutions of (2.19) in the class (2.24)--(2.25).

Proof. In view of Proposition 2.3, the right-hand side of (2.23) defines a linear
and continuous form on (f, g, h) E L (0, T; W0). Therefore, there exists a unique

(2.26) (u, v, z) e L(0, T; W0)

satisfying (2.23). Furthermore, there exists C > 0 such that

II(u, ,,, z)ll,(o,r.Wo) <_ c { Ilplls_,,(o,’) + Ilqll,(o,) +
(2.27)

+ II?llL(a,) + I111,o, + I1111,, + Izl + Iz’l}.
When the data are smooth, the solution of (2.19) satisfies (2.24). By a density

argument using (2.27), we deduce that (2.24) holds for our weak solution.
Suppose now that

(f,g h)=(OF.__ OG dH)Or’Or’ dt

with (F, G, H) 7)((0, T); W1) (C and compactly supported with respect to time).
In this case the solution of (2.20) can be written as

o, /,, () 0---" Ot dt

where (, tIs, E) is the solution of (2.20) with data (F, G,H) instead of (f, 9, h).
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In view of Proposition 2.4 we have

(2.28)
CI(F, G, H)I]L(O,T,W,).

On the other hand,

p,,(, 0) p,,(, 0) (,0) + (, 0) (,0) e (2),
M4t(O) MZtt(O) -(0, 0)+ (0, 0) e

with the bound

(2.29) II(t(’, 0), t(., 0), Ct(0))]lVo

_
C]{(F, G, H)IILI(O,T;W1).

As a consequence of (2.28)-(2.29) we deduce that

(u, v, z) W’(0, T; (0l)t X (02)t X ] ).

The continuity in time of (ut,vt, zt) with values in (0)’ (0)’ can be proved
again by density.

Let us finally consider these weak solutions when the initial and boundary data
corresponding to the first string have one more degree of regularity, i.e.,

(2.30) p H(0, T),

We have the following result.
PROPOSITION 2.7. Suppose that the initial and boundary data in Proposition 2.6

satisfy the further regularity and compatibility conditions (2.30). Then, in addition to
(2.24)-(2.25) we have

(2.31) u C([O,T];HI(fi)) C([O,T];L(at)).
Furthermore, Ux(--gl, t) L(O, T) and there exists some C > 0 such that

T

C +
(.3) 0

Pro@ The proof of (2.31) can be carried out in the same way as in Proposition
2.5. Indeed, in R1 (see Fig. 1), the presence the nonhomogeneous boundary condition
does not change the regularity of the solution, which matches that of the initial data.
Thus (2.31) holds when restricted to R. When studying the regularity of the solution
in $1, the argument is the same as in Proposition 2.5, although since the regularities
of the initial data. are one degree less, the formulas (2.13)-(2.17) (which no longer have
a pointwise interpretation) need to be justified by a density argument.

The regularity property (2.32) is a direct consequence of (2.31) and the local
nature of the wave equation. More precisely, the trace regularity

(2.33) /x(-- t)] 2 dt _< C /[(., t),() + tt(’, t)]] 2L2(I) dt

o o
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is local and does not depend at all upon whether there is a point mass. Since u has
the regularity in (2.31) it follows that the solution map (p,q, u, v,z, ul,vl,z1) - u
is continuous from the space it is defined (with norm defined by the right hand side
of (2.32)) into the space in (2.31). Thus

T

dt < C ]ull, (a)
o

holds and (2.32) follows.

3. Control at both extremes. In this section we consider the problem of
controlling our system from both ends x -g, g2. The system now reads

fll’Utt fflUxz, X [1, 0 < t < T,
pvtt a2vx, x 2, 0 < t < T,
M(t) + u(O, t) (0, t) O, 0 < <
,(-e, t) p(t), 0 < < T,

(3.) v(e, t) q(t), 0 < < T,
(0, t) (0, t) z(t), 0 < < T,
,(x, 0) ,(x), (x, 0) l(x), x

(x, 0) (x), (, 0) 1(),
z(0) z, z(0) z.

We have the following results.
THEOREM 3.1. Suppose that T > 2max(gpl/a,gp/a). Then, for every

0, z0) e Wo,
(3.) (,,z) e (,)’ x ()’ x

there exist controls p, q L:(0, T) such that the solution of (3.1) satisfies

.(x, ) (x, r) o, x

(a.a) ,,(x, r) (x, T) 0, x

z() (r) 0.

Remark 3.1. Concerning Theorem 3.1 we have the following"
(1) As a consequence of Proposition 2.6 the solution of (3.1) (which is defined by

transposition) satisfies (2.24)-(2.25).
(2) Due to the linearity and time-reversibility of system (3.1), we deduce that

for any initial data as in (3.2) and final data (0, o, 5o, ,, 1) satis(ying the same
properties, there exist controls p, q L:(0, T) such that the solution of (3.1) satisfies

.(x, T) o(), .(x, T)
(3.4) v(x, T) (x), (x, T)

z(T) o, z(T) 1.

(3) The controllability space (3.2) is that same as what one obtains when M 0;
however, the control time is strictly larger when
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THEOREM 3.2. Suppose that T > 1 v/Pl/O’l+e2V/P2/a2 and forinstance, 1V/Pl/71
2 V/P2/a2 Then, for every initial data as in (3.2) satisfying the additional regularity
and compatibility properties

u E )1, u E L2(gtl), u(0) z

there exist controls p e H(O,T) and q e L2(0, T) such that the solution of (3.1)
satisfies (3.3).

Remark 3.2. Concerning Theorem 3.2 we have the following:
(1) In addition to satisfying (2.24)-(2.25), by Proposition 2.7 the solution of (3.1.)

also satisfies (2.31).
(2) Due to the linearity, time-reversibility, and well-posedness of the system in

the (asymmetric) space (3.2), (3.5), as a consequence of Theorem 3.2, we deduce that
we can drive system (3.1) from any initial state in the class (3.2), (3.5) to any terminal
state in the same class.

(3) The control time we obtain is the same as in the absence of the mass (M 0).
However we only get controllability in the space (3.2) when T > 2max (gl v/Pl/al,

The proof of Theorem 3.2 will be given at the end of 4.
Applying Lions’ HUM (see below), Theorem 3.1 is a direct consequence of the

following observability result for solution of the uncontrolled problem:

(3.6)

XEI, 0<t<T,
xEft, 0<t<T,
0<t<T,
0<t<T,

0<t<T.

PROPOSITION 3.3. Let To 2max(g1V/p/rl,gv/p2/r2) and suppose that
To. Then
( .71

T

(r- < + t)l + t)l ]d
2 2(p + P2)

o

for every finite-energy solution of (3.6).
Proof of Proposition 3.3. We proceed in several steps.
Step 1. Consider the x-dependent energy:

T-(X+l)-i

(3.8) el(x)= [pl]t(x,t)l 2 + al[z(x,t)] 2] dt, -gt

_
x

_
O,

(z+e)-

where T v/pi/a,. It is easy to check that e(.) is nonincreasing. Thus

T

(3.9) el(x) el(--l) -- I(-g.,t)12dt, --I X O.
0
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Step 2. Consider

T-(-x)’

(3.o) e=(x) p= lOt (x, t) = + c=l/,(x, t)l] dt, 0 < x <
(e.-z)r=

where 72 V/(p2/cr2). This energy is nondecreasing and therefore

T

(3.11) e(z) < e(&)
0

Step 3. From (3.9), (3.11) we deduce in particular that

T- 0 T-

T

max(gt,)f [atlz(-gi,t)l 2 + a2[z(&, t) 2] dr,
0

where max (rgl,
Moreover, since (0, t) (0, t) (t), we have

T-

M f &(t)12dt _< M(r

T

< [1(-, t)l + (1,t)l]dt.p +P
0

Thus

(T- 2#).EM({}) / EM(t)dt

< (max(g1, g2)
\ 2

T

2( + p) [’l(-e’, t)l + l/(&,t)l]dt,
0

A(99o, ft_)o, o, 1, if21, 1) (?.tt (0), vt(O),zt(O),--it(0),--1)(0),-z(0))
E ’ (dual of 7-/),

which is precisely (3.7). []
Remark 3.3. (1) Inequality (3.7) provides explicit constants. In particular, we

have explicitly the dependence of the observability constant with respect to the mass.
As M- 0 we obtain the usual constant one has for a. wave equation with piecewise
constant coefficients.

(2) The reverse inequality of (3.7) has been proved in Proposition 2.2.
End of Proof of Theorem 3.1: Application of HUM. For any (p0, /0, 0, 1, /1, l)t

E 7-t we define
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where (u, v, z) is the solution of

(3.13)

pl Utt 0"1Uxx

p2vtt cr2Vxx

Mztt(t) + crlux(O, t)- a2vx(O, t) O,
(-e,t) -(-e,t),
(e, t) (e, t),
(o, t) (o, t) z(t),
(,) (, f) 0,

(,T) (,)=0,
z(T) z(T) O,

x E 1, 0<t<T,
x E ft2, 0<t<T,
0<t<T,
0<t<T,

0<t<T,
0<t<T,

and (p, p, , 5, , )t is the solution of (2.1) with y0 (40, p0, o, p, )1, l)t.
In view of Proposition 2.2 we have

x(--el, "), /)x (e2, ) L2(0, T)

and as a consequence of Proposition 2.6, (u, v, z) satisfies (2.24)-(2.25). In particular,
(ut(0), vt(O),zt(O),-(0),-v(0),-z(0)) is well defined as an element of ’.

Thus A" 7-t 7Y’ is continuous and linear.
Using the transposition formula and Proposition 3.3 one obtains

T

(A(99,),,1,/1,1), (99,,,99l, ’1,1)> / [IVx(e,t)l / Ix(-e,.,t)] at
0

>_ CE(O).

Taking into account that (EM(O)) t/ is equivalent to the norm of (po,
in 7-t, we conclude that A" --+ 7-{ is an isomorphism.

Given any (u, v, z) W0 and any (u v z t) E 0 x tg xR, we have (u
W[ and therefore the equation

A(9o, o, 0, 1 /31 1): (U V Z1 __uO __VO, __ZO)

admits a unique solution (a, 0, 0, p,, <1) 7-{, but this is equivalent to the fact
that the solution of (3.13) satisfies

U(x,O) O(x), Ut(x,O ul(x),
(X, O) 0(), ’*’(X, O) (),
z(0) z, z(0) .

This concludes the proof of Theorem 3.

4. Control at one extreme. In this section we consider the problem of con-
trolling our system from only one extreme-point, for instance, x t. The system



CONTROLLABILITY OF A STRING-MASS SYSTEM 1373

now reads

(4.1)

x E ftl, 0<t<T,
x E f2, 0<t<T,
0< <T,
0<t<T,
0<t<T,
0<t<T,

x E Ft2,

We have the foil.owing result.
THEOREM 4.1. Suppose that T > 2(gl V/i/(Yl -1-g2V/P2/0"2). Then, for every

such that

(4.3) u(O) z

there exists a control function q L2(0, T) such that the solution of (4.1) satisfies
(3.3).

Remark 4.1. (1) As a consequence of Proposition 2.6 the solution of (4.1) satisfies
(2.24)-(2.25). Furthermore, by Proposition 2.7, it also satisfies (2.31).

(2) Due to the linearity, time-reversibility, and well-posedness of the system in the
(asymmetric) space (4.2) (4.3), as a consequence of Theorem 4.1, we deduce that we
can drive system (4.1) from any initial state to any final state in the class (4.2)--(4.3).

(3) The control tiine we obtain is the same as for the case M 0. However,
notice that, when M 0, the controllable space is larger and is given by (3.2). The
controllable space we obtain for M > 0 is the optimal one.

By HUM (see the proof of Theorem 3.1 for more details), Theorem 4.1 is equiva-
lent to the following observability result for the solutions of the uncontrolled problem
(3.6).

PROPOSITION 4.2. Suppose that r > 2(elV/P1/0"1-t-e2V/P2/0.2). The,l there

exists C C(T) > 0 such that the following holds for every finite-energy solution of
(3.6):

I1 ( + o)11 +

(4.4) f
T

I(0)1 + I&(O)l < C [ Ipx(&, t)ldt.+
0

Remark 4.2. This inequality is sharp in the sense that, as pointed out in Propo-
sition 2.7, the reverse holds for all T > 0. As a consequence of this double inequality
we deduce that the controllable space (4.2)--(4.3) is the optimal one.

Proof. However, first note that by rescaling the spatial variables and renaming
the densities p and p2 we can obtain the system (4.1) with g & 1. Thus it will
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suffice to prove Proposition 4.2 for the case fl (-1,0) and ft2 (0, 1).
We proceed in several steps.
Step 1. Consider the space-dependent energy e2(.) defined in (3.10). Since it is

nondecreasing we have

T

/e2(z) <_ e2(1)= - Ipx(1,t) dr,
0

0<x<l.

This implies, in particular, that

(4.5)
T-- T

II" I[pl(, t)l " / I(, t)l] dmdt <_ cr I/,x(1, t)ldt,
w 0 0

where z-2 v/p/q2. Taking into account that /;(1, t) 0 for z- _< <_ T- r2 from
Poincar6’s inequality and (4.5) we deduce that

T-- T2 T

] }p(O,t)12dt <_ C/ Cz(l,t)2dt
"r2 0

and therefore, since F(0, t) ’ga(0, t)

(4.6)

On the other hand, since e(0) <_ e.(1) we have

(4.7)
T-’r T

/ [pl/,(O, t>l: + cr: k<O, t>l :] dt <_ cr/I/(1,
T2 0

and therefore, since (t) /;’(0, t),

(4.8)

Furthermore, since Crlx(0 t) -Mtt(t)+ cr2x(O, t), in view of (4.7)-(4.8) we have

(4.9)
T

I=(0 t)ll < C/IP=(1 t)ldt.H-t(r,T-r)
o

Step 2. As a consequence of (4.6) and (4.9) we have

(4.10)
T

I1(o t)tl,(. < c /I(] t)l dt,,T-,-) + x(0, t)ll H--l(ro.,T-.r)
0
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The well-posedness of the one-dimensional wave equation as an evolution in x-
variable allows us to prove that (see [17], [18] for details)
(.11)

0 T-v2+vlx

(..>._..) + I1o.,(o, t)ll- (..,r-..)
-1 "re-’rl x

where ’1 V/Pl/al. Combining (4.10) and (4.11), we deduce that

T-(r.+rl) 0 T

1 I ’(x’t)i2dxdt<-cS
T2 "-TI 0

Step 3. Set # -I + 72 and let > 0 be such that

(4.13) T-2z> 2#

and 7 7(t) E C1(#, T- #) such that

0_<7(t) di, t-<t-<T

(4.14)
7(#) 7(t- #) 0,

(t) 1, #+<_t<_T-#-,

I12 L

Let us introduce the function (x, t) such that

-z=, -l<x<0, #<_t<_T-#,
(4.15)

(-1,t)=(0,t)=0, p_t_<T-#.

we have

0 0

(4.16) S o.(x, t)(x, t)dx S ]o(x, t)ldx o(0, t)(0, t), _< t _< T p

-1 -1

and

o 0

(4.17) i (x, t)(x, t)dx S ICt(x, t)l’dx IIot(’, t)llo,),, p <_ t <_ T .
We multiply by ? the equation satisfied by and integrate in the region (x, t) e

tl (#, T- #) to get, in view of (4.16)-(4.17),

(4.18)
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On the other hand,

(4.19)

Note that

(4.20)

T-p 0

/]’pttdxdt
T-#

<_ lf [lt(., t)[iolr(t)dt -1 / [1(’, t)]Il --dt.l?]t]2

Combining (4.18)-(4.20) we deduce that

(4.21) IIqt(., t)l]j rl(t)dt <_ C c22dxdt + crl

Since CrlCpz ((), t) cr2@x(0, t) MCtt(t), we have

T-# T-it

x(0, t)qS(0, t)rl(t)dt

T-
-M f u(t),(O,t)(t)dt.

On the other hand,

T- T- T-

Now, observe that

Therefore, there exists C > 0 such that

T- T- T-

(4.24) (t(t)t(O, t)v(t)dt

Moreover

and thus

(4.25)

and

(4.26)

Iqs(0,t)l CIIqs(.,t)ll, CIl(.,t)llc(--1,o)

t(t)dp(O, t)tdt
#

<_ C 2dzdt + ICt(t)ldt

bx(0, t)(0, t)?dt <_ C 992dxdt + I/,x(O, t)12dt
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Combining (4.21)--(4.26) with e > 0 small enough, we deduce that

(4.27)

Step 4. As a consequence of (4.5), (4.6), (4.8), (4.12), and (4.27) we have

(4.28)

< C f I/x(1, t)12dt.
0

dt

Recall that, in virtue of Proposition 2.7, system (3.6) is well posed in the space

p L2(-1, O),

,6 eR

with compatibility condition

(o) =.
Therefore, (4.4) is an immediate consequence of (4.28) and the time-reversibility of
system (3.6). [.1

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Theorem 3.2 is a direct consequence by HUM (see proof of
Theorem 3.1) of the following observability result for the uncontrolled problem (3.6).

PROPOSITION 4.3. Suppose that r > e v/tgi/crl --g2V/P2/O’2 and gl v/Pt/crl >
&V/p/re. Then there exists C(T) > 0 such that the following holds for every finite
energy solution of (3.6):

(4.29)

Proof of Proposition 4.3. As in the proof of Proposition 4.2 we assume that
t2 1 without loss of generality.

Let rl. and - be the same as in the proof of Proposition 4.2 and let
For any sufficiently small > 0 we have

(4.ao)

T--

t)ll uL’(-1 r-2-7-Lt)q- }l(tgt(" t)ll’ dt
2"rl H-I (_i La_Z_L!_

2r

<_ CIl(-*,
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and

(4.31)
T-tt-

#+e 0

T

< C f I(1,
0

[l(t)12 + I(t(t)l]dt

The inequality (4.30) is a standard estimate that holds for the wave equation (which
we may apply here due to the finite speed of propagation) while (4.31) is proved in
the same way that (4.28) was.

Since

T-t- T--

the inequalities (4.30) and (4.31) can be combined and we deduce easily (4.29) as in
Step 4 of the proof of Proposition 4.2.

5. Representation of controllability spaces by Fourier series. In this
section we give a characterization of the controllable and observable spaces for (4.1)
in terms of nonharmonic Fourier series. For simplicity, we limit our analysis to the
case where

(5.1) g g cr cr p p 1,

although a similar analysis is valid, for example, when the above parameters are
rational.

5.1. Spectral analysis. We begin with a spectral analysis of the operator
in (2.1). Since A is skew adjoint with compact inverse, a(4) consists of a discrete
sequence of imaginary eigenvalues. Ve seek nontrivial solutions y for

(5.2) Ay iy,

We obtain nontrivial solutions only when a S1 t2 S2, where

f(5.3)
S2 ()k)k--0-,0+,+/-l,+2

where w0+ -w0-- and for k N, wa -w-k, where wa-1 is the kth positive root of

(5.4) M 2 cot

It is easy to see from (5.4) that Ia kTv -, 0 as k -- . In fact, if we let

(5.5) 5 ,. kr, k l,

a simple calculation using Taylor’s formula applied to (5.4) gives

2
(5.6) 5k Mk----- +
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The eigenfunctions of ,4 corresponding to the eigenvalue w are given by

U sinw(x + 1)
V 5 sinw(x 1)
Z M/0 cosw(5.7) (x) gr iasinw(x + 1)
l)’ sin co(x 1)
2o i(1--a)

Mw COS CO

where a 1 when co E $1 and a -1 when co E $2.
Under the above normalization there exist positive constants C1, C2 for which

< <- e

Remark 5.1. The form of the eigenfunctions in (5.7) shows that each spectral class,
S and $2, has its own physical significance; namely, if co $1 then describes a
sinusoidal motion of the string which does not move the mass, while if co $2 then
describes an even, piecewise sinusoidal motion of the string with a jump in the spatial
derivative at the point mass. It is insightful to note that, although (oo)ioea(.a) forms
an orthogonal set, ]]Vk,r Vwkllgl(f2) -t" II’Zkr ?wkllL2(a2) --+ 0 as k oc. It thus
becomes increasingly difficult to distinguish such consecutive modes (as the frequency
gets large) by only observing the v (or only the w) portion of the state. This explains
why, in terms of the eigenfunctions, we obtain an asymmetric observability (and hence
also controllability) space when we only observe (or control) at an endpoint.

5.2. Reduction to moment problem. Let us consider a general class of
control problems which will include the problem (4.1).

Let b T)(l) and consider the system

(5.9) ) Ay + bg(t), y(O) O,

where g L2(0, T). A unique mild solution y E C([0, T]; D(4)’) is given by

(5.10) y(t) Otg,

where for 0 <_ t _< T, (I)t" L2(0, T) --, 7:)(,4)’ is given by

(5.11) @th / et(t-S) bh(s)ds.
0

This notion of mild solution coincides with that of the weak solutions in the sense
of transposition introduced in 2. (Note that (A)’ Wo x W.) We adopt here
this notation and terminology of the theory of semigroups for the sake of clarity and
brevity.

The central problem for controllability of (5.9) is to-determine the range of (I)t.
By integrating (5.10) against we obtain the modal solutions

/ei(t-S)bwg(s)ds, co S U $2,(5.12) y(t)
0

where

u (t) (u(t),
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and (., .) denotes the duality pairing of D(A)’ and 7)(,4) relative to (.,.). Thus
x -E(,a)z E g(Or) if and only if there exist 9 ff L(0, T) for which

T

/ei’Sbg(s)ds Vw S1 O(5.13)
0

Hence the problem of determining (T) has been replaced by one of determining
the moment space (i.e., the sequences (x) associated with some g e L(0, T) in (5.13))
of the moment problem (5.13).

5.3. Some general results on moment problems. Before determining the
moment space of (5.13) we first give some background and some results of independent
interest.

A Riesz basis for a HAlbert space X is the image of an orthonormM basis through
a bounded, invertible operator B" X X.

The following is due to Ullrich [15]
THEOREM 5.1. Let (an)nZ be a sequence of distinct, noninteger, complex num-

bers with limll_o . n O. Then

(5.14) (int,e }nZ U ( eint eit )n nZ

forms a Riesz basis for L:(O, 4).
COROLLARY 5.2. For each T 4 the moment problem

T T

(5.15) /eintf(t) dt:an, ]eiatf(t) dt:bn; n EZ,
o o

has soltio f E (0, T) if and onl if

(5.16)

Proof. It is obvious that if the result is true when T 4, then it is true for
T > 4. Hence we may assume T- 4. By Theorem 5.1 we know that

T T

" f eint eian
(5.17) eitf(t)dt c:, f(t) dt dn

0 0

has a solution if and only if (c) f2 and (da) g. Putting a, c
and bn c, n Z we recover (5.15)

Since

(c,) g: and (dn) e (5.16) holds

the result holds.
When applied to the moment problem (5.13), Corollary 5.2 completely describes

the moment space. However it will be more convenient to use a dual version of
Corollary 5.2, which we give below after we develop some notation.

Let
{(a) U (bn)’(a), (b) satisfy (5.16)}.
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Then J4 becomes a Hilbert space when endowed with the inner product

\an-n. rn-n / e

One easily computes 2A’, the dual space of A/I relative to the g2 inner product,
to be the Hilbert space of sequences (c)ez U (d)ez with (c + d) f2 and
([ak--k][c -d]) e e2 with corresponding scalar product given by

+ + + &)>
COROLLARY 5.3. For any T > 0 there exists M > 0 such that for any N N

T N 2

(5.20) aet + be*t dt M[[(a) (b)[.,
0 k N

Furthermore, there exists m > 0 such that for any N N
4 N 2f ae + beit dt >_ ml](a

_
(b)l 2,,

0 k=-N

Proof. Let gr Lu(O,T) + by

By Theorem 5.1 and the proof of Corollary 5.2, gr is continuous for all T > 0 and
becomes onto when T 4. Equation (5.20) is simply the statement that g} is
continuous for T > 0 while (5.21) states that Q is bounded away Dom zero for
T 4.

5.4. Fourier description of observable space. We close this section with
a description of the observable space in terms of nonharmonic Fourier series. In
particular, we obtain a slight improvement of Theorem 4.1 for the case where (5.1)
holds and also examine the dependence of the observability in terms of the frequency
of the initial data.

PROPOSITION 5.4. Assume (5.1) and let y (u, v, z, i,, ia, )t be a finite-energy
solution of (2.1) with

y0= akqk + bkk.

Then for any T > 0 there exists C > 0 for which

(o

Frthermore, there ezists c > 0 for which

(

(b ak)2 + (b + ak)2

52(bk ak) "2 )+ (bk, + a)
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In particular, Theorem 4.1 and .Proposition 4.2 remain true when T 4 and (5.1)
holds.

Proof. For h (u, v, z, it, i,, )t E D(A) define b* (C)(A) + R by

b*h Vx(1).

Then b can be viewed as an element of D(A)’ and we are in the setting of (5.9). Under
the normalization of the eigenfunctions taken in (5.7) we have

b*,=l VwEStUS2.

It follows that for T > 0

(5.24)
T T

E akeikrrt - Z bkeiwkt
kz\{o} s

2

A Riesz basis of exponentials (eirkt)kz is stable with respect to the perturbation
r0 - 0 provided ro 7 ra, k +1, +2,..., (see [16]). Therefore Theorem 5.1 and its
corollaries remain true when the exponential 1 is replaced by exptcz0.-. Thus (5.22)
and (5.23) follow from (5.24) and Corollary 5.3.

Define E as the completion of 7-t with respect to the norm

Z akkr + E bkgwk
kZ\{0} wS2

II(ak)t2 (b)llza,.

Corollary 5.3 and (5.22) show that the map E--, IR defined by

defines a norn on E for any T >_ 4. By Proposition 4.2, an equivalent norm on E is
given by the left side of (4.4). It thus follows that the inequality (4.4) remains valid
when ((5.1) holds and) T _> 4. Consequently Theorem 4.1 renains true when ((5.1)
holds and) T >_ 4. Ill

Let us now give a characterization of the observable space E defined in (5.25) in
terms of the eigenfunctions.

Let P0 o-, q0 o+ and for k Z \ {0} define

LEMMA 5.5. (Pk)keZ t2 (q)keZ forms a Riesz basis for the space E defined by
(5.25). In particular,

E={Zcapk+dkqk’(ck)g2,(dk)g2 }.
kZ

Proof. From (5.6) and (5.19), an equivalent representation for
to our problem is

as it applies

3/[’ { (a,) t2 (b)" b02+ + b02_ + ((a b)6k) + (at + b)
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Thus the topology obtained by making (Pk)U (%) form an orthonormal basis must
also be equivalent to the natural one given by (5.25). I-1

W’e can now easily prove the following result, which describes the dependence of
the observability, upon the frequency.

PROPOSITION 5.6. Assume (5.1) and let y (u,v,z,i,i,) be a solution of
(2.1) with

N

yo E ckpk + dkq.
k=-N

Then there exists C > 0 independent of N > 0 for which

(5.26) Ivx(1, t)ledt _> yO I1 .

Furthermore, the bound is sharp in the sense that if yO qN then the inequality in

(5.26) is reversible for some larger value of C.
Proof. First note that (p)U (qk) form an orthogonal system on 7-/. In particular,

where C1 is independent of N. By Proposition 5.4 and Lemma 5.5 there exists C2 > 0,
independent of N for which

4 N

k=- N,k:/:O

Let AN min{ 1, 52, 5,... 5v }. Since

(5.26) follows from (5.6). To show the optimality, it is enough to see that all the
inequalities are reversible when y0 qN. For (5.27) this is obvious, for (5.28) the
reversibility follows from Lemma 5.5, and for (5.29) we have equality for N sufficiently
large by (5.6). Thus the reverse inequality of (5.26) holds for all N by making C
sufficiently large. [-]

Remark 5.2. In the previous proof, the constants C1 and C2 can be shown to be
independent of M for M (1, ec). Thus (5.29) shows that the constant C in the

1/2statement of Proposition 5.6 is proportional to Ax i.e., to M- as M - oc. Thus
for solutions of a fixed energy level, the frequencies one can observe above a certain
threshhold level vary inversely with the mass. As M 0, the numbers AN in (5.29)
approach 1 for all N, but not uniformly. Thus as M --, 0, for fixed N, we obtain the
same observability constant as with the string without a point mass.

6. Some results on boundary stabilization. In this section we examine the
problem of stabilization by velocity feedback at one or both ends. Thus we will be
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interested in the decay properties of solutions of the system

(.1)

x E ftl, t>0,

xEf2, t>0,

t>0,

t>0,

under the following two types of boundary conditions:

j" t(--l,t) 0, t > 0,
(6.2)

v(, t) + -(e, t) 0, t > 0

and

alUx(-g., t) 7ut(-gl, t) O, t > O,
(6.3)

aVx(g, t) + 3’vt(g., t) O, > O,

where -y is positive.
In (6.2) we are introducing some damping on the system at the extreme-point

z t% and in (6.3) at both extremes
The effect of the damping can be seen by noting that (formally) the energy of

solutions of (6.1)-(6.2) and (6.1), (6.3) satisfies

dEM
dt

(t) -’ylvt(g, t)

and
dEM
dt

(t) -7[ lut(-el, t)l + I,,,(e,

respectively.
Standard semigroup theory allows us to prove the following two facts"
(i) If y0 (u0, v0, zo, ul, v z)t and

(6.4)
y0 E H(ftl) x Hl(f2) N L(ft) x L2(f2) x R,
u(O) v(O) z (u(-gl.) 0 in case of (6.2)),

then (6.1)-(6.2) and (6.1), (6.3) have a unique solution in the class

(6.5)
(tt, V,Z) C([0, o);Hl(al) Hl(f2) It{),
(tt, vt, zt) E C([0, 0); L2(fl) L2(f2) )

and the following energy identities hold:
(6.6)

2
(i) EM(t2) EM(t) --/ f I,,(e, t)ldt

t
(for (6.1)-(6.2)),

t2
(ii) EM(t) EM(t) --’7 f[lut(-g,,t)l +

t
(for (6.1), (6.3)).
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(ii) If the initial data satisfy the following additional regularity and compatibility
conditions:

(6.7)

then the solutions have the following added regularity:

(6.s)
(u, v) C([0, oc); H- (ftl)
(ut,vt) C([0, oc);Hl(a ) x

In what follows, solutions in the class (6.5) will be referred to as finite-energy
solutions and those in (6.8) as smooth solutions.

There is an important difference between boundary conditions (6.2) and (6.3).
For solutions of (6.1)-(6.2) the energy EM is coercive and thus the only equilibrium
configuration is the zero one. However in the system (6.1), (6.3) the energy is not
coercive and for every real constant k, (u, v, z) (k, k, k) defines a solution.

In both systems we may expect the energy to decay to zero and this is the case.
However, in system (6.1)-(6.3) additional work is required to show that every solution
converges to an equilibrium.

There is another important difference between system (6.1)-(6.2) and (6.1), (6.3).
In (6.1), (6.3) we will prove a uniform exponential decay of the energy; however, we
will see that this does not hold for the system (6.1)-(6.2) since the system possesses
a sequence of eigenfrequencies that approach the imaginary axis.

We have divided this section in three parts. In the first one we show that the
energy of solutions of (6.1)-(6.2) converges to zero. In the second one we prove the
uniform exponential decay of energy of solutions of (6.1), (6.3) and the fact that every
trajectory converges toward an equilibrium. In the last part ve study the spectral
properties of system (6.1)-(6.2) and prove the nonuniform decay of energy.

6.1 Strong convergence to the equilibrium for (6.1)--(6.2). We have the
following result.

THEOREM 6.1. Every trajectory associated with a finite-energy solution of (6.1)-
(6.2) converges strongly to zero in the finite-energy space (6.4).

Proof. It is sufficient to prove that

(6.9) EM(t) --* 0 as --+ x.

First observe that due to the density of the data satisfying (6.7) in the finite-energy
space (6.4), the decreasing character of the energy (as in (6.6)) and the linearity of the
system, if (6.9) holds for all smooth solutions then it also holds for all finite-energy
solutions. Thus we will need to consider only smooth solutions.

Next we observe that (ut, vt, zt, utt, Vtt, Ztt) is a solution (6.1)-(6.2) with the initial
data (u V zl p-I O’l?-txx0 p cr2vxxO M- (cr2vx crlu)) which satisfies the compat-
ibility condition u (0) v (0) z 1. Thus the trajectory (ut, vt, zt, utt, vtt, ztt) is a
finite energy solution and hence due to the fact that this energy is nonincreasing we
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deduce that

and then by elliptic regularity that

This shows that trajectories

{ ((t), v(t), z(t), (t), (t), z(t))}0
are relatively compact in the finite-energy space. Let w be its w-limit set with respect
to the strong topology of the finite-energy space.

Since the energy EM is a Lyapunov function., by LaSalle’s invariance principle we
deduce that w is reduced to states for which the corresponding solution has constant
energy for all t > 0. It is easy to see that the only solution satisfying this property is
the zero solution. This sh.ows that w {0} and concludes the proof.

6.2. Uniform exponential decay for (6.1), (6.3). We have the following
result.

THEOREM 6.2. There exist C > 0 and wo > 0 such that

(6.10) EM (t) <_ CEM (O)e-t Vt > 0

holds for every finite-energy solution of (6.1), (6.3).
Moreover,

(.)
II((.,t)- k) ll--Zl(al) + II(V( ", t) k)ll./l(-).2) + Iz(t) kl <_ CE(O)e-"t

0

with k E R such that 27k f
-gi 0

Proof. It is sufficient to prove the result for smooth solutions. Let us first prove
(6.10).

We have
T

(6.12) EM(T) EM(O) - I[lu(--el,t)l + Iv(h,t)l]dt VT > O.

o

Therefore it is sufficient to prove the existence of C > 0 and T > 0 such that

(6.13)
T

EM(T) < C/[ lut(-gl, t)l / I,(e, t)12]dt
o

for every smooth solution. Indeed from (6.12) and (6.13), (6.10) holds easily by using
the semigroup property.

On the other hand, (6.13) can be proved the same way as we proved inequality
(3.7) in Proposition 3.3.

Let us now prove (6.11). By differentiating the quantity

(6.14)
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and using (6.1), (6.3), one sees that I(t) remains constant in time.
Given a solution of (6.1), (6.3) we decompose it as follows"

(6.].5) o, o),

where

(6.16) ==2=k and =u-k, =v-k, 5=z-k

with k a constant such that

(6.17) 2,k I(0).

Clearly (, , 2) is a stationary solution of (6.1), (6.3). On the other hand, the
quantity I(t) associated with (u, v,z, ut, vt, zt) is identically zero. It is esy to check
that EM(.) is coercive over the subspace of the finite-energy space in which I 0.
From (6.10) we then deduce that the component (, 9,5, ut;vt, zt) of our solutions
decays exponentially to zero in the energy space, i.e., (6.11) holds.

6.3. Nonuniform energy decay. Let jt be the differential operator in (2.1),
however, on the space

(6.18) 7-/-- Wl x Wo,

where

(6.19) /’ {(U,V,Z) HI(I) X H(2) x "u(-g) 0, u(0) v(0) z}

with domain
(6.0)
5(,4) {y e 7’u H2(1), v e H2(t2), (it, ), ) d ;1 cr2Vx(g2) + //(g2) 0}.

We have the following result, which describes the amount of damping in (6.1)--
(6.2), in terms of

THEOREM 6.3. Let A be defined by (6.18)-(6.20), with y > O. Then there exists
a sequence (s)k C a(A) for which

(i) crkTrg, Im sk 0 as

C1 C2(ii) there exists c, c_ > 0 for which -5 > Re Sk >
ik

/f A or(A) \ {(s)} then there exists c3 > 0 for which Re A < -c3.
Remark 6.1. The second inequality of (ii) implies that the energy of solutions

does not decay uniformly to zero in bounded sets of 7-t. But as a consequence of
general result due to W. Littman and L. Markus [8], in view of the first inequMity of
(ii), one can obtain uniform polynomial decay rates of energy for solutions with initial
data belonging to a bounded set of the domain of some power of A.

Proof. We assume without loss of generality (by rescaling) that ga g,2 1.
We seek nontrivial solutions of

(6.21) Jty iwy.

Let

c= =
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Using (6.21) and the boundary conditions one can easily calculate

u asin w--(z + 1),

__7 sin
w w

(x,- 1)(.) b(); ,() (- ) + co
a b d

Z
M

cos
M dz

(0)

where a, b, are to be determined. The boundary conditions in (6.19) imply that

(.23) ,, in- b,(0) ;.

The possibility that z 0 leads to only trivial solutions. Thus we may set a (0),
b sin/a, and obtain from. (6.23)

(.24) M 1co/ d (0).
in/

h(); h(,) (0) d

Now there are three separate cases to consider:

In each case the result is the same and the idea is the sane. Thus let us consider only
the first case, /< v/p2cr2.

Let K denote the roots of /J(0) 0. A simple calculation shows

For S c C, define

N(S) {/k E C: dist(,k, S) < ).

From (6.25) it follows that N6o (K) Y?N6o(aTrZ 0 for 5o small enough. Furthermore,
since h(w) and cotw/a are periodic and analytic outside Neo(K and, respectively,

No (aTrZ), h(w) is uniformly bounded in N5 (aTrZ) and cot w/a is uniformly bounded
in N5 (K). Since the moduli of both sides of (6.24) are the same, it follows that for
any e > 0, only finitely many eigenvalues lie outside N(aTrZ) U N(K). Rouch’s
theorem can be used to show that for any > 0 if Iwl is sufficiently large, there is
a unique root of (6.24) in each. component of N(aTrZ) and .N(K). (See [8] for an
example of this calculation.)

A simple calculation shows that lm h(w) < -a < 0 for all w E R. Since h(w) is
periodic and analytic in a neighborhood of the real axis, we may assume there exist
positive numbers a0 and for which

(6.26) Imh(w) <-ao VwC: [Imw I_<l.

Let akzr + s + i- denote a root of (6.24) in Ne(aTr:E ). By setting the imaginary parts
of (6.24) equal and then using (6.26), we find that for e sufficiently small (and hence

Ikl sufficiently large) we have

O’1
8
2(6.27) 9-- + < 4a("

Thus for ]w] sufficiently large, these roots lie in disks of radii o/2ao tangent to the
real axis at the points in {azrZ }.
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Due to the upperbound on Ih(w)l in Ne (cTrZ), since the moduli of both sides of
(6.24) are the same, for Il sufficiently large we must have

(6.28)
M Icr11 < cot- < M 1.

Since cot /a is periodic and has a first-order pole at 0, (6.28) implies there exists ca,
c > 0, and k Z for which

el e2(6.29) < 1- ak < , Iw sufficiently large.

Intersecting the sets described by (6.27) and (6.29) and recalling (6.21), we obtain
(i) and (ii). For any other roots of (6.24), either N60(K or is one of the
finitely many outside of both N (K) and .Ne(akZ ). In either case, by (6.25) and the
dissipativity of we have Im > const > 0. Thus Re

7. Extensions. In this final section we discuss two important generalizations of
the results in the previous sections. First we consider a string with n point masses
and describe the manner in which the previous results extend to this case. Second
we analyze again the one-mass problem, but this time with a string having spatially
varying coefficients.

7.1. n masses. All the regularity results carry over to strings with n masses due
to the local nature of these results. In particular Proposition 2.5 and the remark that
follows it imply that the degree of regularity of a travelling wave solution increases
exactly one order as it crosses each mass. (Of course, part of the wave is reflected
at each mass point with no increase in regularity.) Furthermore, the method used to
prove controllability (Theorem 4.1) relies only upon the regularity result (Proposition
2.7) and the use of characteristics (as in construction of the energy functions e and
e in (3.7) and (3.9)) and hence applies equally well to strings with n masses. As such,
analogous controllability and observability results hold for strings with n masses. For
example, if we consider the problem of Dirichlet control of the rightmost end of the
string, which has n- 1 masses (and n intervals), the control space one obtains is
the same on the first (farthest right) interval as in Theorem 4.1. For each succes-
sive interval the regularity increases one order, i.e., on the kth interval [ (from the
right), the position of the string (respectively, velocity) is in H-(I) (respectively,
Hk-(I)). In addition, boundary conditions and compatibility conditions up to the
proper order for that interval must be imposed to obtain a well-posed system. A
detailed examination of this problem is beyond the scope of this paper, however.

7.2. Variable coefficients. All the results of the previous sections remain valid
for strings with spatially variable coefficients. To see this, let us consider the following
system:

p()(, t)- (()(, t)) 0, a, > 0,

Mztt(t) a(0+)w(0+, t) a(0-)w(0-, t), > 0,

(0-, t) ,(0+, t) (t), > 0,
(.)

,(-t, t) 0, (, t) q(t), > o,
(, o) o(), (, o) ,’ (),
(o) z, (o) ,

where [) (-1,0)U (0, 1) and the notation 0+, O- refers to right- and left-hand limits
at O.
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We have the following result.
THEOREM 7.1. Suppose that p,a E H2((-1,0) U (0,1)) and that both functions

are bounded below by a positive constant. Then, if

T>2
-1

the conclusion of Theorem 4.1 holds.
Sketch of proof. Let us introduce the following change of variables"

/ ()/()-/,8

0

’t (-t,0)U (0, ge); f. -s(-1), ee s(1),

b(8) p(z)-I d

(s,t) exp (b(r)/2dr) w(x(s),t),

a p(0+)a(0+) b(0+ p(0-)a(0-) b(0-).
2 2

Then (7.1), in the absence of control (q 0), becomes

Mz(t) + az(t) (0+)(0+)e(0+, t)
-(0-)(0-)(0-, t), t > 0,

e(0-, t) (0+, t) (t), t > 0,

(.e) ,(-e, t) o (e, t), > o,

(s,0) exp b(r)/2drw(x(s)), s a,
0

z,(, o) xp ] b()/2g(x()), e ,
0

z(O) z, (o) z.
Therefore, it is sufficient to prove the controllability of this system at time T >

2( + f) with a control at the right end x e.
First let us examine the system (7.2), but without the potential term. This is

equivalent to

(7.3)

Wtt Wxx O
Mztt(t) + az(t) 7w(O+, t) wz(O-, t),
w(O-, t) (o+, t) .(t),
w(-gl, t) 0 w(ge, t),
(, o) o(), (, o) (),
z(O) z, (o) .

z E t2, > O,
t>0,

t>0,

t>0,

xE,
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We assume M, 3’, gl, t2 to be arbitrary positive numbers, and a is assumed only to be
real. One can check that the proof of Proposition 2.5 remains valid for the system
(7.3); when Mztt + az replaces Mztt in (2.14)one still obtains (2.18). It hence follows
that all regularity results, in particular Proposition 2.7, remain valid for (7.3).

b’(s) b2(s)Finally, the assumptions on the coefficients imply the potential (--V- + -7-)
remains in L2(ft). We can thus write the solution of (7.2) in terms of an integral
equation given by the variation of constants formula for (7.3) and for small enough t
determine a fixed point having the same regularity as the solution of (7.3) with initial
data as in the hypothesis of Proposition 2.7. The remaining parts of the proof of
Theorem 4.1 only rely upon the use of characteristics, and hence can be done directly
for the variable coefficient problem (7.1). 1i
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OPTIMAL STOPPING OF A DISCRETE MARKOV PROCESS
BY TWO DECISION MAKERS*

KRZYSZTOF SZAJOWSKI

Abstract. In this paper a problem of optimal stopping of the discrete time Markov process
by two decision makers in a competitive situation is considered. The zero-sum game approach is
adopted. The gain function depends on the states chosen by both decision makers. The random
assignment mechanism is used when both want to accept the realization of the Markov process at
the same moment. The construction of the value function and the optimal strategies for the players
are given. Examples related to the generalization of the best choice problem are solved.

Key words, optimal stopping problem, game variant, Markov process, random priority, secre-
tary problem, zero-sum two-person game

AMS subject classifications. 60G40, 90D15

1. Introduction. This paper deals with a class of the following two-person de-
cision problems Let (Xn T’n Px)N be a homogeneous Markov process defined onn--0

probability space (, , P) with fixed state space (, B). The decision makers, hence-
forth called Player 1 and Player 2, observe the process sequentially. They want to
accept the most profitable state of the process from their point of view.

We adopt the zero-sum game model for the problem. In view of this approach,
the preferences of each player are described by gain function f / - . The
function depends on the state chosen by both players. It would be natural to consider
the stopping times with respect to ()Nn=0 as the strategies of the player if the players
could obtain the state which they want. Since there is only one random sequence
(X)1,=0 on a trial, at each moment n only one player can obtain realization x of
X. The problem of assigning an object to the players when both want to accept
the same one at the same moment is solved by adopting the random mechanism; i.e.,
a lottery chooses the player who benefits. The player chosen by the lottery obtains
realization x, and the player thus deprived of the acceptance of Xn at n < N may
select any later realization. The realization can be accepted only when it appears.
No recall is allowed. We can think about the decision process as an investigation of
objects with characteristics described by the Markov process. Both players together
can accept at most two objects.

The above-described decision model is a generalization of the problems considered
by the author in [20] and by Radzik and the author in [13]. The related questions,
when Player 1 has permanent priority, have been considered by many authors in the
zero-sum game or the non--zero-sum game setting. One can mention, for example, the
recent papers of Ano [1], Enns and Ferenstein [4], Ferenstein [5], and Sakaguchi [16].
Many papers on the subject were inspired by the secretary problem (see T. S. Ferguson
[6] for an extensive bibliography on the problem). Sakaguchi [16] considered the non-
zero-sum two-person game related to the full-information best-choice problem with
random priority. The review of the related models can be found in [20].

In this paper a formal model of the random priority is derived. The lottery is
taken into account in the sets of the strategies of the players. The most interesting

Received by the editors April 2, 1993; accepted for publication (in revised form) February
18, 1994. This research was supported in part by Komitet Badan Naukowych (Polish Research
Committee) grant 2 1163 91 01.

Institute of Mathematics, Technical University of Wroctaw, Wybrzeie Wyspiafiskiego 27, PL-
50-370 WrocIaw, Poland (szajou(C)+/-m. pur. uroc. p).
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question concerns the influence of the level of priority on the value of the problem or
the probability of obtaining the required state of the process (or, in other vords, the
required object). The tip of the problem is shown by the examples. The random-
priority game approach to the generalized secretary problem is considered. At first,
random priority is added to the problem of choosing the best or the second best (BOS)
but a better one than that of an applicant who is chosen by the opponent (the game
considered in [20]). The dependence of the value, the strategies, and the probability of
obtaining the required object by Player 1 on the priority is investigated. The second
example tries to answer the question of what is the relation between the priority
level and the aims of the players. The simplest problem with asymmetric aims of the
players is considered. The first player’s aim is to choose the best applicant (BA), and
the second player wants to accept the BOS but a better one than the opponent. The
numerical solution provides that the game is fair when Player 1 has priority p 0.7579
(in the limiting case when N --,

The organization of the paper is as follows. In 2, the formal model is formulated
in a rigorous way, and the general solution of the problem is given. The ideas used by
Yasuda. [21] and in [20] are employed. In 3 and 4, the above-mentioned examples are
solved. Section 5 contains some final remarks. Among other things, the probabilities
of the success in the considered games are given.

2. Random priority and stopping the Markov process. Let a homoge-
neous Markov chain (Xn, .T’n, px)Nn=o be defined on a probability space (ft, , P) with
a state space (/E,B), and let f /E: x / -+ N be a B x/3 real-valued measurable
function. Horizon N is finite. The players observe the Markov chain, and they try
to accept the "best realization" according to function f and a possible selection of
another player. Each realization xn of X, can be accepted by only one player, and
each player can accept at most one realization. If the players have not accepted pre-
vious realizations, they evaluate the state of the Markov chain at insta.nt n and have
two options" either to accept the observed state of the process at moment n or to
reject it. If both players want to accept the same realization, the following random
priority mechanism is applied. Let 1, 2,..., N be a sequence of independently and
identically distributed random variables with the uniform distribution on [0, 1], and
let c (c1,c2,..., CtN) be a given vector of real numbers, c E [0, 1]. When both
players want to accept realization X.n of Xn, then Player obtains
otherwise Player 2 benefits. If Player 1 rejects the applicant, then Player 2 turns to
exercise one of his options, which also consists of accepting the observed state of the
Markov chain or rejecting it. If one of the players accepts realization xn of X., then
the other one is informed abc,ut it and he continues to play alone. If, in the above de-
cision process, Player 1 and Player 2 have accepted states x and y, respectively, then
Player 2 pays f(x, y) to Player 1. When only Player 1 (Player 2) accepts state x (y),
then Player 1 obtains fl (x) SUpy f(x, y) (f2(y) infxe f(x, y)) by assumption.
If both players finish the decision process without any accepted state, then they gain
0.

Let Sv be the aggregation of Markov times with respect to (y)N We admit
that Px(- _< N) < 1 for some - E 8N (i.e., there is a positive probability that
the Markov chain will not be stopped). The elements of sN are possible strategies
for the players with the restriction that Player 2 cannot stop at the same moment
as Player 1. If the players declare willingness to accept the saIne object, the random
device decides which player is endowed. Let us formalize these considerations. Denote
,kN {T ,N "T > k}. Let Av and MN be copies of 8v ($N SON). One can
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define the set of strategies N {(k, {.(rn}) E AN Ner, E An+l for every n} and
2 M,V.+l for every n} for P1wers and 2, respectively.5IN {(>, {a,,}) ,

Denote a(Y, {, {u,..., {,,) and let N be the set of stopping times with respect
to (Yn)r,=0. Define

LEMMA 2.1. Random variables r and r2 are Markov times with respect to
-.),,=0 and rl #
Proof. We have

and

> u
i--0

U {p n,,/ gt, rt On } ."n for every n;

hence r and r2 are Markov times and 7" 7"2. [’]

Let Exf+(X,) < oc and Exf (.X,) < for n, rn O, 1,... ,N and x
Let s N and t /17/N. Define R(x, s, t) Exf(X,1,X.) as the expected gain of
Player 1. In this way" the normal form of the game (N,f"IN,f(x,s,t)) is defined.
This game is denoted by . The game ig is a model of the considered bilateral stopping
problem for the Markov process.

DEFINITION 2.2. Pair (s*,t*), s* ]N, t* 57IN, is an equilibrium point in the
game iS for every x 1, s N, and lIN we have

R(.,

The aim is to construct the equilibrium pair (s*, t*). The following approach is pro-
posed. When one of the players accepts realization x, at moment n, the second player
will try to maximize his gain without any disturbance from another player. It means
that if there is no acceptance of states until mornent n, the players must take into
account the potential danger from a future decision of the opponent before accepting
or rejecting realization x of X. To this end, they consider the following auxiliary
game a.

Define so(x, y) So(x, y) .f (x, y) and

s,(x,y) inf E.vf(x,X-),

S,(x, y) sup E,S(X., y)
ES,

for all x, y E )/, n 1, 2,..., N. By the theory of optional stopping for the Markov
processes [17], the function sn(x,y) (S,,(x,y)) can be constructed by the recursive
procedure as s(x, y) Qinf(X, y) (S,(x, y) Qxf(X, y)), where Qminf(x, y)
f(x,y) A T:f(x,y) (Qmf(x,y) f(x,y) V Tlf(x,y)) and T:f(x,y) Ef(x,X)
(Tf(x,y) Ef(x,y)). (A and V denote minimum and maximum, respectively.)
Operations A and T: (V and T1) preserve measurability. This can be proved in a
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standard way. Hence 8n(X, y) (Sn(X., y))are/3 (R)/3 measurable (cf. [3]). If Player 1 is
the first to accept x at moment n, then his expected gain is

(1) h(ft, x) EzSN-n-1 (x, 21

for n 0, 1,...,N- 1 and h(N,x) fl(x). When Player 2 is the first, then the
expected gain of Player 1 is

H(n, x) ExSN-n- (X, x)

for n 0, 1,... ,N- 1 and H(N,x) f2(x). Functions h(n, x) and H(n,x) are well
defined. They are B-measurable of the second variable; h(n, X1) and H(n, X1) are
integrable with respect to Px. Let AN and MN be sets of strategies in a for Player 1
and Player 2, respectively. For A E AN and # MN, define the payoff function

h(, X)(x<. +
(3)

0
if A < N or # < N,

otherwise,

where ira is a characteristic function of set A. As a solution of the game we search
for equilibrium pair (A*, p.*) such that

(4) R(x,;,#*) < R(x,;*,#*) < R(x,A*,#) for all x

where R(x, , #) Er(l, #). By (3) we can observe that with the sets of strategies
AN and MN is equivalent to Neveu’s stopping problem [1.2] considered by Yasuda [21]
if the sets of strategies are extended to the set of stopping tithes not greater than N+ 1
and the payoff function is (3). Because the Markov process is observed here, one can
define a sequence v(x), n 0, 1,..., N + 1, on by setting VN+ (x) 0 and

(5) vn(x) val [ h(n’x)an + (1-cn)H(n’x)H(n,x) Tv+(x)h(n’x)
for n 0,1,...,N, where Tv.(x) Exv.(X) and val A denotes a value of the
two-person zero-sum game with payoff matrix A (see [10], [21]).

To prove the correctness of the construction let us observe that the payoff matrix
in (5) has the form

s
(6) A

zall s f

b c

where a, b, c, and a are real numbers and a [0, 1]. By direct checking we have the
following lemma.

LEMMA 2.3. The two-person zero-sum game with payoff matrix A given by (6)
has an equilibrium point (, 5) in pure strategies, where

(s,s) ira >_ b,

(e, )= (s,f) if c <_ a < b,
(f,s) if a < b <_ c,
(f,f) if a < c < b.
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Notice that VN+I is measurable. Let usassume that functions vi, N, N- 1,..., n+
1, are measurable. Denote

and

A {x F." h(n,x) >_ H(n,x)},
A {x lE h(n,x) < H(n,x),h(n,x) >_ TVn+l(X)},
d[ {x e . h(n,x) < H(n,x),g(n,x) <_ TV+l(X)},

A lE \ A U .A U A
By sets A Asf and A[ e B and Lemma 2.3 we have

v(x) [(h(n,x) H(n,x))a.. + H(n,x)]gAS(X) + h(n,x)gA(x
+ H(,x)a()+ T+(X)A();

hence v (x) is B-measurable.
Define A* inf,{X A U Af} and p* inf{X, A U A[}.
THEOREM 2.4. Game a wih payoff funcfion (3) and se$s of strategies AN and

IN for Players 1 and 2, respectively, has a solution. Pair (X*, p*) is the equilibrium
point and vo(x) is the value of the game.

Proof. The theorem follows from the results in [21]. The form of the equilibrium
point is obtained by Lemma 2.3.

Let us construct an equilibrium pair for game . Define (see [3])

(r) ** inf{ > S_,(Xm,X) f(Xm,X)},
(8) an* inf{m > n SN-,(X,X) f(Xn, Xm)}.

Let (A*, p*) be an equilibrium point in a.
l*THEOREM 2.5. Game has a solution. Pair (s ,t*) such that s* (A*, {an })

2"and t* (,*, {, }) i th qiZiai point, fh wZ of th va i o().
Proof. Let

and

We obtain by the properties of conditional expectation and by (7) and (8)

Let t (#, {a, }) h)N. Ve obtain
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Ez[g{x* <u}{x*=,,,x. 5,,} Exx. I(Xa. ,X1:

5 E[ff{.<}{x.=,.5,IEX. f(Xx.,X.)

Similarly one can show that for every s Xs we have .(z,s,t*) (z, s*, t* ). Hence
(s*, t*) is the equilibrium pair for

3. Random priority in choosing BOS but a better one than the oppo-
nent. Let us formulate the problem. Two employers, Player 1 and Player 2, are to
view a group of N applicants for vacancies in their enterprises sequentially. Each of the
applicant has some characteristic unknown to the employer. Let {Zl, z2,..., ZN}
be the set of characteristics, assmning that the values are different. The employer ob-
serves a permutation , 2,..., N of the elements of g( sequentially. We assume that
all permutations are equally likely. Let Z denote the absolute rank of the object with
the characteristics ’rl, i.e.,

l<_i<...<i,..<_N l<_j<_r

(/ and V denote minimum and maximum, respectively.) The object with the smallest
characteristics has the rank 1. The decisions of the employer at each time n are based
on the relative ranks Y1, Y2,..., Yv of the applicants and the previous decisions of the
opponent, where

The random priority assignment model is applied when both players want to accept
the same applicant.. We assume that a, p, p E [0, 1] for every n. If the applicant
is viewed, the employer must either accept or reject her. Once accepted, the appli-
cant cannot be rejected; once rejected, the applicant cannot be reconsidered. Each
employer can accept at most one applicant. The aim of the players is to accept BOS
but a better one than that chosen by the opponent. Both players together can accept
at most two objects. It makes the problem resemble the optimal double stop of the
Markov process (cf. [9], [18], [3]). It is a. generalization of the best-choice problem.
Excellent reviews of the extensions and modifications of the best-choice problem or the
secretary problem are given by Gilbert and Mosteller [8], Freeman [7], and Rose [15].
The review of the game extensions of the problem are mentioned in [20]. We adopt
the following payoff function here. The player obtains +1 from the other if he has
chosen the required applicant, -1 when the opponent has done so, and 0 otherwise.
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Let us describe the mathematical model of the problem. With sequential ob-
servation of the applicants we connect the probability space (ft, , P). The elemen-
tary events are a permutation of the elements of 1/, and the probability measure
P is the uniform probability on Ft. The observable sequence of relative ranks
k 1, 2,..., N, defines a sequence of a-fields ck a(Yt,...,Y/), k 1, 2,...,N.
The random variables Y are independent and P(Y i) 1/k. Denote by ,SN

the set of all Markov times r with respect to the a-fields {Y}N=I. The problem
considered can be formulated as follows. For s E N and t IN denote Ai {w
X- 1} t2 {w X- 2, X- - 1}. Define the payoff function g(s,t) IA1-
and the expected payoff a(,t) v(,t). w are looking for (s*,t*) such that for
every s zv and fix

It is obvious that the essential decisions of the players can be made when ap-
plicants with relative rank 1 or 2 have appeared. We will call them candidates.
For further consideration it is convenient to define the following random sequence
(W)v=l. Let W1 (1, Y) (1, 1), Pl 1. Define

pt -inf{r > Pt-1 Y {1,2}}, t>l,

(inf 0 oc) and Wt (pt, Yp). If pt oc, then we put We (oo, oc). The Markov
chain (Wt,t,P(l,1))=l with state space - {(s,/)" l {1,2},s 1,2,...,N} O
{(oo, oc)} and t a(W, W,..., Wt) is homogeneous. The one-step transition
probabilities are the following:

(9)
p(r,s) P{Wt+l (8,1s) II/Vt (r,/r)}

if r-l, s-2,
(-t) if 2 < r < s,((,_-U;2) ifr>_sor (r=l, s-2),

p(oc, oc) 1, p(r, oo) 1- 2-.N_+ip(r,s) for l,l {1,2} and 1 r s N.
We will call this Markov chain the auxiliary Markov chain (AMC).

The solution of the two-decision-makers problem will partially use the solution of
the problem of choosing BOS (see [8], [2], [14]). The problem can be treated as an
optimal stopping problem for AMC with the following payoff finction"

r(2N-r-1)
N(N-) if l- 1,

(10) fBos(r,l) (_) if l 2N(N-1)

Let TN { $N r r Y {1,2}}. It is a set of stopping times with respect
to t, 1,2,.., N. We search * 8N such that

P{Zr* e {1,2}}- sup P{Z {1,2}}= sup E(,,a)fBos(W).

Denote F(r,s) {(t, lt) > r, It 1} {(t, lt) > s, It 2}. Let r < s
and c(r,s) -.E(,t)fBOS(), where inf{t Wt F(r,s)}. Denote c(r)

(N-) inf{t Wt F(r, r)}. We haveE(,)fBOS(WI) 2 N(-t), where a

r 2N- i- 1 r
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for r < s, r,s 1,2, N (E -0ifs < r). Define r inf{1 <_ r <_ N
fBOS (r, 2) _> c(r, r) } and rb inf{ 1 <_ r <_ ra" fBOS (r, 1) >_ c(r, ra }. Denote

aBOS(r, It) sup P{Z e {1,2} Yr lr}.

We have

(12) aos(, z) aos() { c(r) if ra <_ r

_
N,

c(r, ra) if /’b r <
c(rb- 1, ra) if 1 <_ r < rb.

The optimal stopping time for the one-decision-maker problem of choosing BOS is
or* inf{t Wt E F(ra,ra}} TN or 7.* inf{r" (r,Y) F(r,ra)} sN. We have

,’a 2 b limN_, 0.3470 and limN--.SBOS(1) 0.5736 (cf.a limN_c 5’ oc

[ill, [2], [9]).
To solve the two-person competitive stopping problem described at the beginning

of the section let us perform a strategy of the players when one of them accepts
some observation at moment r with relative rank Y l. It is enough to focus our
attention on a situation when Player 1 has accepted and Player 2 is alone in the
remaining decision process. Player 2 will use a strategy cr.* * (r, l). The strategy

* (r, 1) is such that

), (#,*(r, lr))) inf(13) h(r, l) E(,t)g((r, r, ), (#, )),E(,)g( (r,

where the expectation is taken with respect to P(,t) of AMC. To perform strategy
;*(r,l) let us consider the possible essential situations. Let Wt (r,l). Since
Player 2 minimizes his expected loss (cf. (13)), he can do so by stopping on some
object with relative rank 1 or 2. If l 1, then he cannot change the payoff by
stopping.on the objects with relative rank 2 before another one having relative rank 1
has appeared. Let I’V (m, 1) and W (n, 2) for u t + 1, + 2,..., s- 1. Player 1
can be the winner in this case if W+ (ec, ec) and Player 2 does not accept the ruth
object. We see that it is the first moment after the acceptance decision of Player 1
when Player 2 can change the gain of Player 1. We want to know if it is optimal for
Player 2 to stop at (m, 1). If he stops, he has -1 with the probability fBos(m, 1)
(see (10)). When he passes over and will behave optimally in the future, he has
-1 with probability 5BOS(m). Since he minimizes his loss, his optimal strategy in

(m, 1) is the same as in the previously mentioned one-player problem. If it happens
that n < m < rb, then according to the optimal strategy in the problem of one player
choosing BOS, the ruth object will not be accepted and Player 2 will behave according
to a*. It means Player 1 will have +1 if the nth object is the best or it happens that
his candidate is the absolute second and the best one will not be chosen by Plaver 2
(because she has appeared before rb). If l 2, then the optimal behaviour of Player 2
is to use the optimal strategy for the problem of one player choosing BOS. Hence, by
(9), (12), and (10)we have

hi (7", l,.) P{A 7"1 ?, 7"2 > 7"1, Yr l}

/ {- + V’rb- r s(s-l)
z--s=r+ s(sZ.-)(N-1)

(-t)
N(N-1)

if r >_ rb
for lr 1,

if r < rb

for 1 2
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and

if l 1,
if l 2,

where o-ni" , (, Y,,), s (., {anl }), and (#, { an }). The optimal strategy *,
after the first acceptance has been made at moment r on Yr lr, has the form

(14) /’ )T if .0 > rb for 1,. 1;*(r,l,.) =., or;. if0 <rb
or; for l 2,

where , inf{s > r: Ys 1} and cr inf{s > r: (s, Ys) E r(rb, ra)}.
Let us consider the auxiliary game described in 2. The above comments and

the solution of the problem of one player choosing BOS suggest that it is enough to
consider AMC. We will use it for further calculations. For presentation of strategies
the sequence of relative ranks N(Y)n=l is more convenient. To avoid some misun-
derstanding the arguments of the functions h, H, and v are the moment n and the
relative rank Y as well as the state of process Wt. We have also h(r, l.) -H(r, l,)
hi (r, lT) h(r, l). By backward induction we construct the strategies and the value
of the game. The results of this calculation and consideration can be presented as
follows.

Denote for p E [.5, 1]
s-1

w(r,s,t,u;p) E p(r,j)[H(j, 1) + w(j,s,t,u;p)]
j=r+l

t-1

+ -]p(r,j)[h(j, 1)(2p 1)+ w(j,j + 1, t,u;p)]
j=s

+ p(r, j)[h(j, 1)(2p 1) + H(j, 2)]
j=t

N

+ (2p 1) E p(r, j)[h(j, 1) + h(j, 2)]
j=u

and Bst(k) {(r,l) s <_ r <_ t, l. k}. Solving (5) recursively we have r
min{1 _< r _< N" h(r, 2) _> 0} and obtain that there exist r(p) min{r < ra
H(r, 2) <_ O(r;p)}, % min{r < r((p) h(r, 1) >_ 0}, and rz(p) min{r < r.
H(r, 1) <_ .0(r;p)} such that

(15)
h(r,l)(2p- 1)

v(r, lr;p) H(r,l)
(r;p)

where

if (r,/,,) BrN(I)O BrN(2),
if (r,l) B,,()r. 1(1) O
if (r,l) B,,()_. (1) U Bl(,-l(2),

w(r,r+ l,r+ 1, r + 1;p)
w(r, r + 1, r + 1, r ;p)

(16) (r; p) (r, lr; p) Tv(r, lr; p) w(r, r + 1, r(p), I’a; p)
w(r,r.,r(p),r;p)
w(r(p), r.r, rc(p), ra; p)

ifr <_r<_N,
if r(p) <_ r < r,.,
if r < r < r(),
if r() < r < r,
if <_ r < r().
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(o)

-1

ff

FIG. 1. The gain functions, the value function, and strategies of the first stop in the BOS vs.
BOS game.

The optimal first-stop strategy is given by the sets (see 2 and Fig. 1) As SrN(1)[-J
rN(2), A{ B,(,) (1) t2 B,)o (2), A{f \ (A 2 d{), t 1, 2,..., N.

The above solution was obtained in the following way. Let us assume p [0.5, 1].
For n N we have that ss is an equilibrium point. Assume for induction that ss is
the equilibrium for n, n + 1,..., N and l 1, 2. It is not easy to check whether this
assumption implies that ss is the equilibrium at n- 1 and 1,_ 1,2. Instead of
looking for a solution for every N, we will be content with the limit of the value of
the game and the asymptotic behavior of the equilibrium strategies. By monotonicity
of h(r, l) and H(r, l) on r this approach gives the solution for large N. To this end
we find the limit of functions h(r,/), H(r, i) and under the induction assumption
the limit of O(r, l; p) when N in such a way that . x. Let us denote these
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TABLE
The value of the game BOS vs. BOS ,and decision point as a function of priority.

Priority c(p) fl(p) Value of
p the game

1.00 0.5365 0.3263
0.95 0.5485 0.3421
0.90 0.5608 0.3557
0.85 0.5736 0.3682
0.80 0.5866 0.3809
0.75 0.5998 0.3940
0.70 0.6131 0.4073
0.65 0.6266 0.4209
0.60 0.6400 0.4349
0.55 0.6534 0.4493
0.50 0.6667 0.4639

0.1789
0.1651
0.1505
0.1350
0.1186
0.1013
0.0831
0.0639
0.0436
0.0223

0

limits by (x, l), /-)(x, 1), and ?(x, 1), respectively. Next, we are looking for xss such
that the strategy ss is the equilibrium for the game

(7)
s

f

s f

(x,/)(2p-1) (z,1)
(, ) (,, ) ]

for every x E [x,,, 1], 1,2. In the presence of the above, the value xss is the
value of x nearest to 1 at which the equilibrium will change to the other one. VVe
have xs a. One can show that if e > 0 is small enough, then for x (x, -e,xs)
the equilibrium point is ss at (x, 1) and fs at (x, 2). We can also say, by the above
consideration, that for large N there exists r such that for every r >_ r, and 1, 2
the equilibrium is ss and for r r 1 at one of the state (rs 1, 1) or (r 1, 2)
the strategy ss is not the equilibrium. One can check that for p (0.5, 1] we have that
at (r 1, 2) the strategy fs is the equilibrium strategy and at the state (r 1, 1)
the strategy ss is the equilibrium. Let us assume for backward induction that for
r, r + 1,..., r 1 the equilibrium strategies are the same. By analysis of (17) for
x < x, similarly as for x [x,, 1], one can find xi x such that for x e [zf, x,)
at the state (x, 1) the equilibrium is ss and at (x, 2) the equilibrium is fs. When we
iterate the above consideration up to r 1 (or x 0 in limit case), the construction
of the strategy and the value of the game will be finished. The strategy is presented

Theby constants fl(p), , a(p), and a. The numeric value of ? 0.4639 and a .
parameters a and fl depend on the value of the priority parameter p, and some values
of p are given in Table 1 (see lso Fig. ). The value of the game also depends on p
(see Table 1 and Fig. 1). By asymmetry of the problem with respect to p 0.5 we
have that the vMue of the problem fulfills the relation (r; p) -(r; 1- p). We have
also following relations between stopping sets for equilibrium strategies. We have that,

A for p and Asd for 1 -p are equal.
The analytical description of the vMue function follows.
Denote

@ (xz, y y, z; p) 2x In X2 + x2(y,. x2) + x2[(lnx2)2 (ln
Y

(2p 1) [2x2 In y + x2(yl Y2) + x2[(lny2)2 (lnyl)2]]+
Y

+x2y (4(2p-1)-3z+21nz)( ly zl) (2p- 1) In y2
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+ 2(2p-- 1)
1 lnz- lnez

Y2 z z z

Let po be the solution of the equation (b, 1) @1 (b, /, c(p), a: p) in [0.5, 1]. Such a

solution exists since tbl is a nondecreasing function of p and (b, 1) < 1 for p 1.
We have P0 - 0.9358, and for p E [0.5, 1] we define

.tb(x, xe, y, y2, z; p) (2 x2 + xl)(x2 xl) + (4- x. + 21nxi)Xl In x-! 1 tr{p>po}
x2

+ 2xl In x ).0/ xI(Yl X2) / xl[(lnx2) 2 (lnyl

.+ (2p-1)12xlln y-yl +xl(Yl-y2)+ Xl[(lny2)2- (lnyl)]

/ xlY [[4(2p- l) 3z / 21nz] ( ly zl) -(2p-l) ln--zy
/ 4(p 1) ( ln y ln z ) ( lnz

+ 2(2p 1) - In ez
y z z

We have

(18) )(x;p) lim 5(r;p)

@(x,x,x,x,a;p)
@(x, x, x, c(p), a; p)
@(x, x, , a(p), a; p)
@(x, max((p), b), 7, a, a; p)
@(, max((p), b), 7, c, a; p)

So we can formulate the following theorem.

ifa<x<l,
if c(p) <_ x < a,
if <_ x < (p),
if max(b, fl(p) _< x < /,

if min(fl(p), b) <_ x < b,
if 0 _< x < min(fl(p), b).

THEOREM 3.1. In the competitive two-person problem of choosing BOS but better
than the opponent the asymptotically optimal strategy of the first stop is described by
the sets A, Afts, and A{f. The second stop is according to (14). The value function
of the problem is given by (15), the expected value with respect to P(,z) of AMC by
(16), and its limit by (18).

4. The best vs. the BOS game. Let us consider once more the game inves-
tigated in 3, but let us assume that the aim of Player is to accept the BA. The
meaning of the most of the denotations is the same as in 3. The changes of notation
will be given.

Ve denote by A the random event that the ith player is a winner. For s E f
and e ]IN we have A1 { "Xn 1} and A2 {w "X- 1} U {w" X,
2, X, # 1}. The payoff function in this game is 91 (s, t) trA tra.

First of all, let us consider the position when one of the players has accepted some
object at moment r with the relative rank Y l. We construct the strategy of the
player who has not accepted any state yet. Since the aims of the players are different,
we have to consider independently the situations when Player 1 has stopped as the
first and when Player 2 has done so. We introduce the useful denotation

h(r, l) P(AIT. r, Ty > r, Y l)

for k,i,j 1,2, =fi j, r 1,2,...,N, lr 1,2.
Let Player 1 stop the process as the first at the moment r on the object with

Y l. As he wants to accept the object with the absolute rank 1, it is obvious
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that he will stop on the relatively first, object. He will also probably accept, in some
circumstances, the relatively second objects to disturb Player 2 in the realization of
his aims. We will see that this supposition is true. Player 2 staying alone will use a
strategy a* ;*(r, lr) defined in (14) with g(s,t) gl(s,t). Let Wt (r,/r). Since
Player 2 minimizes his expected loss and he would like to choose the BOS object, he
can do so by stopping on some object with relative rank 1 or 2. The optimal strategy
;* is given by (13). Consequently,

where we have hll(r, lr)= - for lr 1 and O; otherwise, h!2(r, lr)= h2(r,
Let us assume that Player 2 has stopped the process as the first on some object

* *(r,l).at moment r with relative rank Yr It. Player 1 will use a strategy c%
The strategy 6*(r, lr) is such that

H(r, lr) E(r,lr)gl((/,(*(?,lr)), (r,(T2A)) sup (r,l.)gl (/, (T), (?’,

Let Wt (r, lr). Since Player 1 maximizes his expected gain and would like to
choose the best object, he can do so by stopping on some object with relative rank 1.

N <P{Z, llYr =lT} re =inf{1 <r < N’i=r+lDenote BA(r) sup,es+
1}, and r.2 inf{s > r Y 1, s >_ re}. The optimal strategy ?5* of Player 1, after
the first acceptance at the moment r on Yr lr by Player 2, has the form

( Or if Or >_re
forlr=l,(19) 6* (r, lr) , r if ’0r < rc

r, for lr= 2,

where O.r is the first moment after r when Yr 1. We have

H(r, lr) hl (r, /r) h22(r,

where

N

h21(r, lr)= E p(r,s) [max{
s=r+l

BA(r)} + BA(r)] aBA (r)

and

ifr >_ r
for lr 1,if r < rc
for lr= 2

Denote hp(r, lr) ph(r,l,.)+ (I- p)H (r, l,.). Define rd rain{1 <_ r <_ N"
h(r, 2) >_ H(r, 2)} and re min{1 <_ r <_ rd’h(r, 1) >_ H(r, 1)}. During the recursive
construction of (r, lr; p) and the strategy according to Theorems 2.4 and 2.5 (see also
(5)) for a large N we get that there exist r,(v min{r < rd’H(r, 2) <_ (r;p)} and
.1 min{0 _< p <_ 1" h(e, 1) < o(e; p)}. For p _>/51 there exists r,(p) min{r <_ re"
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-1

h(,

1 0

Relative rank

FIe,. 2. The gain function, the value functions, and strategies of the first stop in the .random
priority game BA vs. BOS but a better one than the opponent.

H(r, 1) 4_ (r;p)}, and for p < 1 there exists r(p) min{r _< re" h(r, 1) _> /)(r;p)}.
These points rd, re, ru(p), and r(p) are such that

(20)

hp(r,l)

v(r, lr; p)
+ h(r,/)r{p<p
(r;p)

if (r, 1,.) E BeN(1) BN(2),

if (r,l,) E B,.(,)_,(1)U B,..(,)_, (2),
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where

(21)

w(r,r + l,r + l,r + 1;p)
w(r, r + 1, r + 1, rd; p)
w(r, r + 1, r.(), ra; p)
w(r, re, r.(p),rd;p)
w(r(p), rg, ru(p) rd; p)

ifr<r<N,
if r.(p) <_ r < ra,
if re <_ r <
if r(p) <_ r < re,
if 1 <_ r < r.(p)

and

w(r, s, t, u; p)
s-1

Z j(j
r

1)
[H(j, 1)tr{p>_, + h(j,

j=r+l

t-1 u--1 2)+-j(j_l)hp(j,1)+ j(j_l)(j_2)[hp(j, 1)+H(j, 2)]

N
r(t 2)

[hp(j, 1) + hp(j, 2)]+ Z j(j_ 1)(j- 2)
j=u

for r <_ s _< _< u. The optimal first-stop strategy is given by sets A BreN (1) U
B.N(2), Aft (l[{p>_,}Br()re-,(1))U [r.,,(p)rd.__l(2), A"f

Aftf I \ (A U ift U istf ), t 1, 2, N (see 2 and 3 and Fig. 2). Here we
adopt the convention that for every set A we have 1. A A and 0. A , where is
the ernpty set.

The function w(r, s, t, u;p) also depends on rb and re. Let r _< s <_ r <_ < u.
When N oc and N xl, N x, N - yl, and :N --, y, we get

b(xl, x2, Yl, Y2;P) lim w(r, s, t, u; p)
N---c

21(Xl,X2,yl,Y2;p)lllp>_p} +u22(X1,x2, Y1,y;p)g{p<p,},

where
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TABLE 2
The value and decision points as functions of the priority in the BA vs. BOS game.

The priority u(p) [p) Value of
p the game

0.00 --.285 0.2856 -0.2339
0.10
0.20
0.30
0.40
0.50

0.5659
0.60
0.70

0.7580
0.80
0.90
1.00

0.7111 0.3084 -0.2068
0.6922 0.3326 -0.1780
0.6719 0.3581 -0.1476
0.6500 0.3832 -0.1156
0.6268. 0.4078 -0.0823
0.6109 0.4237 -0.0598
0.6024 0.4134 -0.0483
0.5772 0.3843 -0.0167
0.5624 0.3679 0
0.5517 0.3504 0.0114
0.5265 0.3157 0.0357
0.5023 0.2881 0.0568

and

’ff (x, y, y; p) x
3p- 1 ](3p- 1)In y--j- + ((lnyt)2.(lnx2)2)-p(yl -x2)

x2 2

In y )Y

Parameter pl is asymptotic equivalent of/51. The value of pl can be determined as
the solution of some equation which will be given later.

r
_

0.4237. We have that u(p)Let d limN--, 0.7587 and g limN__, NN

limN-, r’(P) is the solution of the equation @1 (u, u, d; p) /2/(u, 2) in [g, d] Now(x N
we can determine Pl as the solution of the equation l(g, u(p), d; p) //(g, 1) with
respect to p in [0, lJ. Such a solution exists since 1 (g, u(p), d; p) is a nondecreasing
function of p and H(g, u(1), d; 1) < tbl (g, u(1), d; 1). We have p 0.5659.

(’) The decision point (p) is the solution of theDetermine (p) limN--, N

equation @(,g,u(p);p) h(t, 1)lr{p<p} + /2/(e;, 1)tr(p>_m}. The asymptotic value
function (see also Fig. 2 and Table 2) is

(22) +(x; p) lim 9(r;p)
(v(x, x, x, d; p)

e, .(p), d; p)
&(e;(p), g, u(p), d; p)

ifd<_x_<l,
ifu(p) <_x < d,
if g <_ x < u(p),
if n(p) _< x < g,
if 0 _< x < n(p).

We can formulate the following theorem.
THEOREM 4.1. For a large N in the competitive two-person problem of choosing

the best vs. the BOS applicant but a better one than the opponent, the asymptotically
ss fs sfoptimal strategy of the first stop is described by the sets A A A and A ".

The second stop is according to * given by (14) for Player 2 and * given by (19) for
Player 1. The value function of the problem is given by (20), the expected value with
respect to P(r,t) of AMC by (21), and its limit by (22).
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P(p; .)
0.5

.29
23

o

P(v; BOS )_._"

FIc. 3. The probability of success in the BOS ’vs. BOS and BA vs. BOS games.

5. Final remarks. The results of 2 and 3 give an image of the influence of the
priority level on the game value. We have naturally realized that the such influence
depends also on the definition of the gain function or, in other words, the aims of
the players. To compare the role of priority in the two games considered we compare
the results obtained. We can observe that the BOS vs. BOS game is fair for p 0.5
(3) and the BA vs. BOS game is fair for p 0.7580. The question is, how much
does Player 2 have to reduce his demand concerning the absolute rank of the chosen
applicant to recompense the full priority (p 1) of Player 1 looking for the BA?

Finally, let us investigate the probability that Player 1 will be the winner in both
examples considered. Let us denote as PN(P; BOS) and PN(p; BA) the probability of
success for Player 1 in the BOS vs. BOS game (3) and the BA nvs. BOS game (4),
respectively, when the two players adopt the equilibrium strategies and the horizon
is N. From the definition of event A1 and the definition of the equilibrium strategies
in the two examples we have

PN(p; BOS)
r --1

r(p)
z_. j(j_

j--r2(p)+l

[g{p<0.5}hl (j, 1) + g{p>O.5}h2(j, 1)]

z’a(p)--

j=’r
j(j- 1)
-h(j, 1) + (1 p)h2(j, 1)]

j(j 1)(j 2)
j=r(p)

+ {p>o.5}h,2(j, 2) + ph (j, 1) + (1 p)h(j, 1)]

r(p) (r(,)
k--1

j(j 1)(j 2)
[phl (j, k) + (1 p)h(j, k)]

and

PN (p; BA)
re

ra(p)Z j(j 1)[tr{p<_p}hl (j, 1) + tr{p>}h2 (j, 1)]
j--r(p)+l

ru(p)

j--rg

r(p)

j(j- 1)
--[phx(j, 1) + (1 p)h21(j, 1)]
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TABLE 3
The probability of success for Player 1.

Priority
P
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Probability of success
Pi; BA
0.2358
0.2402
0.2460
0.2532
0.2626
0.2742
0.2907
0.3122
0.3311
0.3465
0.3584

P(p; BOS)
0.2900
0.2978
0.3064
0.3152
0.3243
0.3338
0.3679
0.3983
0.4250
0.4483
0.4765

rd--1 ( 2)Z r,p,.r,,p,
[h2a (j, 2) + phil. (j 1) + (1 p)h2a (j, 1)]

j(j 1)(j- 2)
,j=r(v)

N 2 r(p)(r.(p) 2)Z Zj(j_I)(j_2)
j--rd k=l

[ph (j, k) + (1 p)hg.; (j, k)],

where 15 0.5659 (see Fig. 3).
When N --+ oc such that x we get

P(p;BOS) lim PN(p;BOS)

.tr{p<_t_po}/3(p [(1 + b)In -j +/3(p)- b + In

+ {1-po<p<_O.5}(P) In
(p)

+ l[{o.5<p<po}/3(p)_ [/-/3(p) + In 3(P-)+lny/3(p),y ln(/3(p).y)l
+ tr{p>po} (2-b)(b-3(p))+ (p)(2b.-- 3- 21nb) in/3(p)

+/3(p)(7 b) +/3(p) in
b
+ ((lna) (n). ;(P)

? ln(a(p)5)+ (1 p)(p)in

+ .g{peO.5} [a (P) (P) In
a (p)+

a
(- 3a + 2ana)(a-

+ 2(1 p)(Pa (a(P)In a a in a(p))]
1

+ a(p)(p) 1 + (2p- 1)lna + 2(1 p) 2(1 p)

-2(1 p) lna ]
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and

P(p;BA)=ff{p>=pa} [c-t(p)+ --- (1- (lng,)2)]
9{p<pl [(p)((ln (p))2 (ln g)2)]

+ (p) [p In u(p)g (1 -2 p) ((ln u(p))2 (ln

2p- 1 (1 p)
in u(p)]+ (p)u(p) 1 2p-

u(p) u(p) .1

+ t,(p)u(p) [1-1+ lnu(P) ( l +
p l.

d

The numerical comparison of the probabilities of success is given in Table 3 (see also
Fig. 3).
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ON NONLINEAR OPTIMAL CONTROL
PROBLEMS WITH STATE CONSTRAINTS*

MONICA MOTTAt

.Abstract. This paper is concerned with an optimal control problem vhere the state is con-
strained to stay either in a smooth open set f or in its closure f. Under a "higher-order" sufficient
condition for the viability of 2 and f, we prove that the optimal cost function vn is the unique
continuous constrained solution of the Hamilton-Jacobi-Bellman equation. Furthermore, we show
that v.q coincides with the optimal cost function v on f].

Key words, viscosity solutions, Hamilton-Jacobi--Bellman (HJB) equations, state-space con-

straints, Lie brackets

AMS subject classifications. 93C10, 49L25

1. Introduction. This paper studies the value functions of optimal control
problems where the state is constrained to stay either in a smooth open set f or in
its closure Q. We are interested in the continuity properties of the value functions
va and v, respectively, in the Hamilton-Jacobi-Bellman (HJB) equation of dynamic
programming they satisfy in some weak sense, and in proving that va v on

These problems were first studied by Soner in [13] in the context of viscosity
solutions (see [5], [6], [10]) under the assumption that at each point of 0f there is a
field of the system pointing inward f. Clearly this condition ensures the "viability" of
the sets ft and Q for the system, that is, the existence of controls that do not violate
the constraints. Soner proved that v is the unique viscosity solution of the HJB
equation with a suitable new boundary condition. This notion of constrained viscosity
solution was studied by Capuzzo-Dolcetta and P. L. Lions in [4] for more general
problems and by Loreti and Tessitore in [12]. Loreti proved in [11], among other
things, that va v under Soner’s assumption. The goal of this paper is to weaken
this assulnption and consider a "first-order" sufficient condition for the viability of
and ft, that is, a condition involving the derivatives of the fields of the system. This is
analogous to the application of "higher-order" controllability conditions to the study
of the value function in time-optimal control problems, see, e.g., the survey paper of
Stefani [14], Sussmann [15], and Evans and James [7] as well as Bardi and Soravia [1]
for the connection with Hamilton-Jacobi equations.

Our condition is that, around the points of Oft where Soner’s assumption is not
satisfied, the system is symmetric and there is a Lie bracket between two fields of the
system pointing inward f.

More precisely, let f be an open subset of R, let b(-, .) be a continuous function
from R x U into R, and let or(.) be a C function from R into Mx,, where M,
denotes the vector space of n x m matrices on R. We consider the trajectories y(., u)
which are solutions of the controlled dynamical system

y’(t)= b(y(t),u(t)), > O,
(1.1)

Received by the editors April 14, 1993; accepted for publication (in revised form) March 1,
1994.

Dipartimento di Matematica Pura e Applicata, Universith di Padova, via Belzoni 7, 1-35131
Padova, Italy (motta(C)pdmat 1. unipd, it).
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which will be assumed to have the syminetric structure

:q’(t)- a}y(t))u(t),x

t>0,

around certain points of the boundary, and where the control u(.) is measurable and
takes values in a compact subset U of IR symmetrical with respect to the origin. Let
A and Ax be the sets of the controls under which 9x(t, u) lies in ft or, respectively,
in gt (bar denotes the closure). Given a discounted cost associated to every control u
and x in R, we consider either 4 or Ax as tim set of admissible controls, so that we
obtain, respectively, the optimal value functions

(1.3) v(x) inf e-tf(y(t),u(t)) dt, x

or

(1.4) v(x) inf e-t f (y(t) u(t)) dt x ,
by assuming Az. (and hence Az) 0.

The sufficient condition given in [13] to prove the continuity of v follows:

(S) Vx 0 () U" b(,,()). (x) < O,

where n(z) is the exterior normal vector to ft at z. Moreover, [13] introduces the
definition of constrained viscosity solution of the HJB equation

(HJB) v + H(x, Dv) 0 x f,

where the Hamiltonian is given by

(1.5) H(x, p) max{-b(x, u) p f(x u)}
’uEU

that is, a subsolution in f which is supersolution in Ft, and [13] checks that, under
condition (S), is the unique constrained viscosity solution of the HJB equation.

Here we replace (S) with the following assumption"
(A1) Vx Oft min.u b(x,u).n(x) <_ 0 and in case minu b(x,u).n(x) 0, there

is a neighborhood of x where the system takes the form (1.2) and

(1.6) u(x), u2(x) U satisfying [O’I,Cr2](X ?t(X)< 0,

where ai(x)"= a(x)ui(x) (i 1,2) and [h, k] denotes the Lie bracket between h, k e
C(R",Rn), i.e., [h,k](z) k’(z)h(x) h’(x)k(z).

Note that under such an assumption, the set of all points z 0f which fails to
verify (S) has always empty interior, as it is observed in Remark 2.2.

Thus by assuming (A1) and some technical hypotheses stated in (A0) in [2, we
prove that vf coincides with v in . Furthermore we check that the value function
v is (bounded and) uniformly continuous (briefly, v BUC(f)), so that it has
unique continuous extension 9 on fi, and we characterize as the unique continuous
constrained viscosity solution of the HJB equation, therefore extending the main result
of [13]. Here we need some results in the theory of discontinuous viscosity solution, see
Barles and Perthame [3], Ishii [9], and Bardi and Soravia [2]. Finally by means of an
example we show that, unlike assumption (S), (A1) does not guarantee the continuity
of v on 0.
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The paper is organized as follows. In 2 we lay down the hypotheses. In g3 it is
shown that va E BUC(f), and in 4 we check that va v in ft. In 5 we prove
that is the unique constrained solution of the HJB equation, and in ,6 we give an

example where v is discontinuous on Oft.

2. Statement of the problem. Throughout this paper we will use (A1) and
the following assumptions:

(A0) (i) ft is a connected, open subset of ]R with a C2 compact boundary
(ii) the controls take values in a compact symmetrical subset of R", U;
(iii) cr E C (R, M.) is bounded and Lipschitz continuous;
(iv) f C(R x U, R) and b C(R x U,R’) are bounded and Lipschitz contin-

uous in z, uniformly w.r.t. U, i.e.,

If(x,u) f(y, u)I <_ L(f)lx Yl, If(x,u)l <- N(f)
(2.1) Vz, y e R, Vu e U.

Ib(z, u) b(y, u)l <_ L(b)lz 91, Ib(z, u)l <- K(b)

For any Lipschitz-continuous (possibly in z, uniformly w.r.t. U) and bounded
function 9, we call L(g) and K(9) the Lipschitz constant and the bound of g, respec-
tively.

Consider .4, the set of all measurable maps of [0, +oc) into U. For any u A
and z , let y(., u) be the solution of (1.1) with initial data y(0, u) z. The
associated payoff is

(2.2) J(z, u) c-t f (y(t), u(t) dto

Ve allow only the controls which leave y(., u) in [ (or in ); thus the sets of admissible
controls are

A {bE.A" yz(t,u) f Vt >_ O} for anyxft

and

Ax {u e A yc(t,u) e- Vt >_0} for anyxe,
respectively. We suppose A - 0, hence both the optimal value functions v- and

defined in 1 are bounded. Setting 3t(x,u)"-.[t e_.f(y(s),u(s) ds the dynamic
programming principle (DPP) assumes for every > 0 the form

(2.3) v(x) inf { Jr(x, u) + e-tvfl(y(t)) } Vx a

and

(2.4) v(x) inf {Jt(x,u) + e-tv-(y(t))} Vx -,
uEA

respectively.
Remark 2.1. For the sake of simplicity we assuIne that the boundary Oft is con-

pact and that both the functions b(., U) and or(-) are bounded and Lipschitz continu-
ous, but we could obtain the same results by using a local version of the techniques
indicated in this paper.

Remark 2.2. The assumption (A1) implies that the set of the points z 0f for
which the Soner’s condition (S) fails, i.e., where minu b(x, u). n(x) 0, has empty
interior.

Pro@ Assume (A1) and let us suppose that there exists an open subset A of ]R

such that 0A := A/)ft =fi 0 and for all x /)a, one has minu b(x, u).n(x) 0; hence
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we can assume that the system has the form (1.2) on A. Then we find a contradiction
in that for any pair ul, u2 E U, the Lie bracket [Crl,a2](z), where i(z)
(i 1, 2), is tangent to ft in x. Indeed, since under our assumption Vu E A the
corresponding trajectory 9(t,u) is in c9 for all time t small enough, by standard
properties of the Lie brackets we have [o1, o-2](x ,n(x) 0 for all ui, uu E U. Hence
(1.6) fails to hold, and that contradicts assumption (A1).

3. Uniform continuity of the value function vn on f. In this section we

prove that the value function vn belongs to BUC(ft). First, let us note that, if u is
an admissible control for x0 f which leaves Yxo (t, u) either in ft or in ft Vt > 0,
then u is not necessarily admissible at any point x, regardless of how close that point
is to x0. The following lemma shows a way to modify it, keeping yx(., u) in ft at least.
on the interval [0, t*] with t* > 0, independent of x0 and x, and changing the cost
proportionally to Ix- xol /.

LEMMA 3.1. Assume (A0), (A1). Then there are some t* > 0 and L > 0 such
that for any x and u A there exists some constant c > 0 such that for all
a [0, cx] one can determine a control t A satisfying

(ii) IJt.(x,)- Jt.(x,u)l < Lx,
wheTe

(3.1) ftc := {y ft" dist(y, 0f) > c}
and

(3.2) := sup{dist (yx(t, u), ft) [0, t*] }.
Pro@ First of all, let us observe that under the hypotheses on and 0[ in (A0),

there exists some d > 0 such that for every a [0, d] the set is a nonempty,
connected open subset of R with C compact boundary 0. Moreover, the signed
distances d(.):= d(., 0) and d(.):= d(., 0a) veri[y the simple relation

(3.3) d (y) d(y) + Vy

The proof of (3.3) follows quite easily, e.g., by the e-neighborhood theorem in 3 of

Furthermore, we note that x 0f there are (x) > 0 and 0(x) > 0 such that
the signed distance d(.) d(.,O) can be redefined as a C2 and negative function
inside , verifying, by (A1), either

(3.4) b(y, u(x)) d’(y) -o(x) < 0 Vy e B(x,(x)),
if min,u b(x, u). n(x) < 0 and this minimum is attained at u u(x) or

-ae 0(x) < 0
e

with hi(y) a(y)ui(x) (i 1,2), if minev b(x, u). n(x) 0. By the compactness
of 0, there exist Xl,...,xR e O such that {B(xj,hj/4) j 1,...,R} with
5j 5(xj) as an open covering of 0. By setting

5"=min{j/4" j=l,...,}, 0:=min{0(xj)" j=I,...,R},
:= {j{1... R}" Ininb(xy,u).n(xj)=0}I

uU
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one has for all x B(Of,6):: {y 6 IR dist(y,@[) < 6}"

(3.6)
x e B(xj, (5j/2) for some j,

yx(t, u) E B(xj,(5j) Vt E [0, 5/K(b)] and Vu A.

Furthermore, if j e {1,..., R} \ I, one has

(3.7) b(yx(t, u), u(xj)) d’ (yx(t, u)) <_ --o < 0 Vt [0, 5/K(b)] and Vu e ,4;

otherwise, i.e., if j E I,

(3.8) [a,a](yx(t,u)).d’(yx(t,u)) <_--32o < 0 Vt E [0, /K(b)] and Vu .4,

with ai(y)= cr(y)ui(xj) (and i= 1,2) holds.
For any x ft let us set

(3.9) (..

where V, # R, z A # denotes the min{z4 #}. Note that, by decreasing (5 if necessary,
we can assume 5 _< &, hence Va E [0, ax], (3.3) holds.

Let x fte. Then B(x, 5/2) C fie/2, hence by (3.9) and by a standard estimate it

follows that for all a [0, ax], yx(t, u) fl Vt [0, t*] and Vu ,4 if t* 5/2K(b).
Thus both (i) and (ii) hold by choosing u.

Let x ft N B(Of, ), so that x B(xj, (5y/2) for some j {1 R} and either
j {1,...,R} \ I, or j I. Since for all a E [0, c] the signed distance d(.)
d(.,/).f) satisfies (3.3), in the first case Soner’s condition (S) holds on 0ft N B(x, )
Va [0, a.], see (3.7). Thus, analogous to Lemma 3.2 of [13], one can verify that there
exist some constants t* > 0 and L > 0, independent of x and a, such that Vu A,
the control defined by

(3.1o)

with d in (3.2), and

4
k’= -, to:= inf{ (0, t*] yx (t, u) 0f. },

1 tEZ
V:ZcR,x(t)’--

0 teIR\2?

satisfies both (i) and (ii), for we can assume da <_ 1 so that
Otherwise, if j E I, for a fixed t* (0, 5/K(b)], we set

(3.11) Cti(t) 1 (X[o,t,/4)(t) .[t/2,3t,/4)(t)) + u2(X[ti/4,t,/2)(t) X[3t,/4,t](t)),
where ti >_ 0 will be chosen later, uh ?-th(Xj) (h 1,2), and we define To "= 0,

kT := }-i= t. Let some u E A and a [0, a] be fixed. We claim that the control

(3.12)
N

(t) E cti(t Ti_I)X[T_I,T)(t) q- U(t TN)X[r.,+.)(t),
i=1
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by choosing convenient values of t* > 0, ti ti(x, a) and N N(x, a), reaches our
goal. We set y(.) := y(-, u) and 9x(’) := y.(’,/). Then for t 2 0 we get the estimate

(3.13) d(z(t+TN))=d($x(TN))+ d’((S+TN)).a(x(S+TN))U(s)ds

d(x(TN)) + d(y(t)) d(x) + (L(b) + K(b))Ig(TN xlL(b)-(eL(b)t- 1),
by using

(3.14) ]x(S + TN) yx(8)] [x(TN) XleL(b)s,
which follows by Gronwall’s lemma. Furthermore, by g’s definition (3.12), one has for
k=l ,N

o(t +

which implies

k k

(3.15) ]x(Tk) x + -.[a,, a] (:z(Ti_)) -- + E o(t),
i=1. i=1

and therefore

(3.16) Ix(TN) x <_ C1 E ti
i=1

By d(.)’s expansion around z we obtain

with C1 > 0 independent on x and a.

k k

e(x) + +
= i=1

which yields

k

(3.17) d(x(T)) <_ d(x) o t for k 1,..., N,
i=1

if ti T (for a convenient T > 0 independent of x and a) for all 1,...,N and
TN- /K(b), by (3.6), (3.8), and d’(.)’s continuity. Applying these results to the
estimate (3.13) and recalling the relation (3.3) between d(.) and d(.), we get

N N

da(x(t +TN)) d(yx(t)) -ot +C2(L(b)t --1)
i=1 i=1

for all 0 and for some C > 0, i.e., by the definition (3.2) of d

i=i

if we assume t* _A<5 ln(1 + )and

(3.19) t := d-,k. for i= 1,... ,N,

where k,..., kN are to be chosen (generally depending on x and a). As we will show,
verifying theses (i) and (ii) is equivalent to checking that there exist N, k,... ,kN
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such that, first, the estimate (3.17) holds for tl,... ,tN given by (3.19), the following
relations

N

(3.20) E k,s ,
i,--1

and

N

(3.21) E -< C3
i--1

for some Ca independent of x (and

hold; second, Ix(t) e f for all E [0, TN]. Note that the estimate (3.17), decreasing
t* if necessary, is verified. It is important to remark that it is not restrictive to assume

d’(yk) a(yk)ul < 0 and d’(y) cr(y)u2 < O,

where y := flx(Tk) and k 0, N. Indeed by using the identities [crl,a2]
[-cr.,al] [a2,--crl] I-or2,-crl], we can modify in the definition (3.11) of ai with

k the order of u l, u2 and their opposites in a convenient way, so that both (3.22)
and (3.15) are true. Then we claim that both

(3.23) d(z(t)) <_ d(x) + C4t2 Vt e [0, tl],

and

(3.24)

e((t)) _< e(,0x(-)) + c4(t- T_)
k-1

<_ d(x) o E t + C4t2k Vt [Tk-,Tk],
i--1

for k 2,...,N hold. In fact,

d(flx(t)) d(x) + d’ (x(8))cr (]x(8)) d8

< d(x) + td’(x)al(x) + L(d’r) Iflx(s)- xlds

<_ d(x) +C’4t Vte [0,-];(3.22)1

e((t)) e 2 + e’(x())(()) e
/4

t t d’ (x) + C; tC; + (x)., + d(x)

d(z)+C;t Vt --,
(3.)

9x(t) 9 /{al (z) + a (x)(gx(S) x)} ds + o
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t ,()t-- - 0-1(X)--0-1
/2

vt -’T

(() x)d + o -5-

and expanding d(.) around z we get

d(flx(t)) < d(x) + d,(x) [(3tt )-g- ,, ()+ -g

<_ d(x) + C4’t2 Vt e Its.(3.22)

tl
2

tl

Furthermore, we have

x(t) - {(x) + 4(x)[() x]} d + o t-

’X -- (t, t)0-2(X -I- - - (210"1,0"2]- 0-;0-1) 0-;(X) [x(8) X] d8

+ o(t) + o .- vt e _A,tl

which yields, as before, d(flx(t)) <_ d(x)+C’4’t2 for all t E [3t,/4, t,]. Now, by replacing
x with Yk for k 1,... ,N and choosing C4 max{C, Cg} we can conclude that
(3.3) and (3.24) hold.

By estimate (3.23), to keep fix(t) in ft for all t E [0, tl], it sumces to have

4 Id(x)l(3.25) 11 :=o A , with/3 "=

2C4c
If 4/.o <_ , choosing N 1 we have (3.20) and (3.21); otherwise, i.e., if (0, 4/o),
we set for r > 1

By the estimate (3.24), (3.26) implies that x(t) gt for all [0, Tr]. As long as

Y-i=l ki < 4/0, kr is defined by (3.26)2, thus

k,r 0 k +"" + k-i 1 + 0
/r--1 C-- /r-1 44 --: a,

i.e., we get

(3.27) kr a-l, where a > 1 and r > 1.

The geometric series =l kr diverges, hence there exists some N(x, c) N such
that -N=I k _> 4/Co; moreover, we can determine an upper bound for N:

aN 1 >
4 N 4

(a 1)[-
r--1

a’-1[:1
a- 1 0

for a 1 _> o
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(3.28) N log 1 + (a 1)--1 -- 1,

where [. represents the integer part. The values kl,..., kN satisfy (3.20) by con-
struction, hence it remains to check that (3.21) is also true. By (3.28) it follows
that

N N
aN/2- 1

r=l

+ (- )-

where

sup g (fl) g (0) 2v/ / 1

At this point, the part (i) of the lemma is proved for all x E , a [0, a], and u G A.
Part (ii) follows easily frown (3.14), (3.16), and (3.21).
This technical lemma allows us to obtain the following continuity result.
THEOREM 3.1. Under assumptions (A0), (A1), the value function va belongs to

uc(fi).
Proof. Let x, z be in and x- z < r (where r < ). For ny p > 0 by the DPP

(2.3) and choosing t* as in Lemma 3.1, there exists a control u such that

with yz(’) y(.,u), holds. Since u A, there is a constant > 0 such that
(t) for all a [0, ]. For any x, choose a := z A and let U be the control
defined }n Lemma 3.1, let be the corresponding trajectory, and recall that ,
sup {dist(yz(t),a,) t [0, t*]}, with yz(.) yx(.u). By standard estimates,
Ar for some A > 0. Thus we have

and the definition of g implies

Therefore we get

(3.29)

and

[x(t*) (t*) <_ Av

[x(t*) z(t*) <_ A;

A>0.

A3 > 0,

(3.30)

Now we set

(r) := sup{Iv(x -v(z)l" x,z E :t and Ix- z < r}.
Combining these relations and using the DPP (2.3) we have

],]t.(x,E) Jt.(z,u)] <_ Lv/AIr + IJt.(x,u)- Jr. (z, u)] _< A4v/,

(3.31)

A4>0.

() () <_ g.(x,) g,.(z,) + -’.* [v(x(t*)) -((t*))] +
<_ A4x/7 + e-t*(Av/7) + p Vp > O,



1420 MONICA Mo’rTA

(3.32) w(r) <_ A4v/ + e-t*w(A3v/) where A3 > 1 and A4 > 0.

Since w is nondecreasing on (0, +), the limit w(+0) [0, +) exists. By (3.32),
we have (0+) e-t*(O+) and conclude tha,t (0+) 0.

4. Relation between the value functions v and va. In this section we
prove that the value functions and va coincide on

THEOREM 4.1. Assume (A0) and (A1). Then

v(x) v(x) Vx

Proof. Since A C A, the inequality v(x) v(x) holds by definition. There-
fore it is enough to show that va(x) v(x) Vx . Let x and e > 0 be fixed.
Then there exist some u Az such that

+
e-tf(yx(t), u(t)) dt

and some T > 0 such that

e-t f (x(t), ,(t)) dt

if y(.) and x(’) denote y(., u) and Yx(’, ), respectively. Therefore the inequality

(4.1) v(x) (x) e-t{f($x(t), g(t)) f(yx(t), u(t)) } dt +

holds for any A. Now let usconsider some a (0, ax] (a < 1), where ax is
given by Lemma 3.1. By this lemma, there is a control 1 satisfying

and (since u is in A)

Now, if t* T by choosing e/L and using the estimate (4.1), we can conclude
that va(x) -.v(x) 0 by the arbitrariness of e. Otherwise, we set

Xl yx(t*), 1 yx(t*, 1),

and call ut* the control ut* (t) u(t + t*) for all 0. Since 2 [ and ut* Xl
we can again apply Lemma 3.1 with a replaced by a/2 (see the definition (3.9) of ax)
to obtain a control g analogous to 5, but starting from 2 instead of x. Let M be
IT/t*] + 1. For m {1,..., M- 1} we set recursively

x := u(t*), x(t*, ),

where any g for m 2 is determined on the basis of Lemma 3.1 applied to 2_
_/-: with a replaced by a/2’-1 and u(-)t* A_ and g is defined by

gin(t) := gm-(t)X[o,(m_l)t.](t) + gm(t- (m 1)t*)x((m-1)t*,+)(t).
We claim that for any m {1,...,M- 1}

(4.2) 2 x.. aa-" for some a > 0,
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and

(4.3) IJ(m+l)t*(x, ftm+l) J(rn+l)t.(x,u)l <_ Lct2(’’’) (Lt >_ L),

hold. For m 1 they follow by Lemma 3.1 and standard estimates, under which we
use in particular

dist(yl(t, ut*),a) <_ ly(t, ut*) yx(t, ut*) <_ L’lCl Xll,

dist(y (t, ut*), f/) < dist(y (t, ut*), ft) + /2, a < x/.

By finite induction we can easily verify (4.2) and (4.3) for all m. Now, for any fixed

e it sumces to choose some a c <_ (e/Lt)2’ and to set fi g;Jz on [0, T] to have
v-(x) vg(x) _< 4e by inequality (4.1); by the arbitrariness of e, that concludes the
proof. ]

5. Constrained viscosity solutions and a comparison result. We begin
recalling the definition of viscosity solution (see [3], [9]) and a comparison theorem in

[9]. First of all, for any bounded function u" E R, E C. Ra: we define

u*(x)’= limsup{u(y)" yE, Ix-yt_<r}
(5.1)

\0
for all x

u.(x)’= liminf{u(y)" ye E, Ix-yl_<r}
r\0

Throughout this paper we consider the Hamiltonian H defined by (1.5).
DEFINITION 5.1. We say u is a viscosity subsolution (supersolution) of the Hamilton-

Jacobi equation

(5.2) u(x) + H(x,.Du(x)) 0

on E, if for all C(E) such that u* 4) (u, -) has a local maximum (minimum)
at x G E, we get

u*(x) + g(x, V(x)) <_ 0 (u,(x) + H(x, V(x)) > 0).

If u is both subsolution and supersolution, then u is called a viscosity solution.
When f is an open set and u is subsolution on
is a constrained viscosity solution on f.

THEOREM 5.1. Let vi . .---, R where 1, 2 be bounded, v be upper semicon-
tinuous and continuous at each point of (gf, and v2 be lower semicontinuous. Assume
v and w. are, respectively, viscosity subsolution ,in and supersolution in f of (5.2).
Then v < w. in f.

Proof. Theorem 5.1 follows as a corolla,ry of Theorem 2.1 in [9] or from Theorem
1.l in [2] in the unbounded case.

In a way similar to the one indicated in Theorem 2.1. of [13], but using also Barles
and Perthame’s and Ishii’s arguments on the discontinuous solutions in [3] and in [9],
respectively, it is not hard to check the following proposition.

PROPOSITION 5.1. The value flmctions v and vf are constrained viscosity so-

lutions of the HJB equation on f.
The last result says that under the assumptions of }2, ,vf is the unique continuous

constrained solution of (5.2).
COROLLARY 5.1. Assume (A0), (A1). Then, the unique continuous extension

of vn to ft is the unique continuous constrained solution of the HJB equation (5.2).
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O(z) (f),(z) for all x E ft.

Proof. ’The existence of the unique continuous extension ) of v follows by Theo-
rem 3.1, and moreover by Theorem 4.1 in 4 the restriction of v to Ft coincides with
the value function va. Hence the inequality

(v). <_ i <_ (v-)* on Oft

is always true, while the relation

< (’v-). on Oft

follows from the comparison Theorem 5.1 applied to vl and v Cv-),. Thus we
have verified that (5.3) holds. The uniqueness of the continuous constrained viscosity
solution is a consequence of Proposition 5.1 and Theorem 5.1. I1

6. An example of discontinuous v--. Under hypotheses (A0), (A1) in the
previous sections, we proved the (uniform) continuity of the value function v: only on
the open set f. In fact, unlike assumption. (S), (A1) does not ensure the continuity of

w on the whole f, as shown by the following example.
Consider the control systeIn

(6.1)
y (t)

+
where the state (yt y) is constrained to stay in the closure of the set ft defined by

(6.2) ft :-- {(Yl,Y2)E 12 yl
2 < Y2},

while the control u (u, u) takes values on the compact symmetrical w.r.t. 0 subset
U of R given by

(6.3) U’= { (1,0), (--1,0), (0, 1), (0, -1) }.
Let /: C(R+) be a nonincreasing flnction such that (r) 1 if 0 <_ r _< 1 and
(r) 0 if ’r _>_ 2, and consider

(6.4) J(x, u) := e-t((yg. (t, u)) dt

as the associated payoff to be minimized. Thus the value function v is defined by

(6.5) vfi-(x) inf J(x, u) Vx-- (Xl,X2) ft,
E .4

where .Az denotes the set of the admissible controls u such that y(t, u) E 9. Vt
[0, +oo). Note that the admissible vector fields are all tangent only at (0, 0) and here
there is a Lie bracket pointing inward ft. Indeed, by setting u (1,0), u (0, 1),
one has [cx, a2](0, 0) (0, 4), where cr(ya, y)= (2, 0) and cr(yl, y.,) (0, 2y + 2y).
We shall prove that v is discontinuous at (0, 0) by showing that for some T > 0:
v-(0,(5) <_ l+e-T < 1 v(0,0) V > 0. To this end, in a similar way to that
used in Lemna 3.1, see (3.11), (3.12), for any > 0 we define a control u A(0,) as
follows"

(6.6)
N

i=l
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where

ci(t) Ul (X[0,t,,)(t)- X[2t,3t)(t)) + u2(X[t,2t)(t) X[3t,4t](t)),

T0"=0, Ti 4Z j,

and

k-1 k-1

t A - t Vk> 1,

while N represents the minimum integer such that the y2-component of the trajectory
y(o,5) (’, us) satisfies y:(TN) >_ 1/2. It is straightforward to check that at Tk (k _> 0)
one has y(o,5)(Tk, u) _.= (0, ya), where ya is given by

(6.8) yo 5, Ya Y--1 + 2tk(1 e-2tk) (k > 0),

which is equivalent to

y =(5+4
k k

i--1 i=1

Hence it follows that

witho(t)’=2ti(1-e-2t) 4t gi, k > O.

Furthermore as long as E%1 t < 1/4, t is given by

we can determine an upper bound for N’

where [. represents the integer part. Hence a time sufficient to reach the position
(0, 1/2) is given by

_< +4Zt <- T 2 (X//2)- 1i=1 i--1

and by definition (6.6) of u. it follows that

v-(0, 5) _< J((0,5), u,s) <_ 1 -e-t if, e.g., T "= x/(2 + v/)+ In 2 V(5 > 0.

Acknowledgments. thank M. Bardi for helpful discussions and good advice
and H. M. Soner for a useful suggestion about the construction of an example of dis-
continuous vg. Thanks are also due to the referees for the suggestion of a simplification
in the proof of Theorem a.1,
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THE LINEAR-QUADRATIC CONTROL PROBLEM REVISITED*

TOMASZ R. BIELECKI*

Abstract. A long-run, average-cost, stochastic, linear-quadratic control problem that incorpo-
rates different time scales is considered. The system dynamics and the cost functional are modeled
with the help of a locally square-integrable semimartingale process with independent increments and
the corresponding predictable quadratic variation process. The solution of the control problem is
given in terms of the solution of certain system of algebraic and differential Riccati equations. The
model considered here embodies as particular cases the "traditional" continuous-time and discrete-
time linear quadratic control problems, and is applicable, for example, to certain hybrid control
problems that cannot be treated using existing control methods.

Key words, linear-quadratic control, square-integrable semimartingales, various time scales,
hybrid control

AMS subject classifications. 60H30, 93E20

1. Introduction. In recent years there has been growing interest in develop-
ing a unified approach to control and identification problems for both discrete and
continuous-time scales. In Middleton and Goodwin (1990), the unified approach to
control and estimation is presented via the so-called "generalized transform." In spite
of its many advantages, the method is not capable of handling the problems that
"live" in continuous and discrete time simultaneously or stochastic control problems
involving the continuous-time scale, for example. This paper provides a way of look-
ing at some of these problems via the stochastic calculus for locally square-integrable
semimartingales.

In this paper we consider a long-run, average-cost, stochastic, linear-quadratic
control problem that incorporates different time scales. The system dynamics and the
cost functional are modeled with the help of a locally square-integrable semimartingale
process with independent increments and the corresponding predictable quadratic
variation process. The situation considered here is not, of course, ’:the most general"
one. But it is general enough to produce as particular cases the traditional continuous-
time (e.g., Davis, 1977) and discrete-time (e.g., Hall and Heyde, 1980) linear-quadratic,
stochastic control problems with the average cost per unit of time criterion. The results
obtained in the paper follow from an application of the powerful general theory of
random processes (Dellacherie and Meyer, 1975, 1980, 1983; Jacod, 1979; Jacod and
Shiryayev, 1987; Lipster and Shiryayev, 1989; Protter, 1990, among others). We
emphasize that the asymptotic results obtained here are essentially due to the strong
law of large numbers type property for semimartingales (see Lipster and Shiryayev,
1989, for example). The L2-ergodic type results for martingales, discussed by Sundar
(1989), may be useful in the study of the control problem with the expected long-run
average cost, which is not included here.

The solution of the control problem considered in this paper is given in terms of
the solution to the system of algebraic and differential Riccati equations (3.1). The-
orem 3.1 concerning the existence and uniqueness of the solution for system (3.1) is
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interesting in itself. At the very least it interprets the relationship between the alge-
braic Riccati equations corresponding to continuous and discrete time, as indicated in
Remark 3.2 and in 6. The "classical" relationship between continuous- and discrete-
time Riccati equations resulting from time discretization is reconfirmed by limiting
analysis of equations (3.1) (see 6).

We were inspired to consider a control problem incorporating different time scales
by some work on the semimartingale regression problem (Christopeit, 1986; LeBreton
and Musiela, 1988), where the time scales are modeled in terms of the predictable qua-
dratic variation process of a semimartingale. Control problems involving continuous-
time semimartingale dynamics were considered before in Foldes (1990), for example.
To the best of our knowledge, linear quadratic (LQ) control problems incorporat-
ing both continuous- and discrete-time scales in the system dynamics have not been
considered in the literature before.

Although we consider here only the ergodic linear-quadratic control problem,
the modeling methodology presented in this paper is applicable to a wider spectrun
of control problems. As a direct control application we see an application of our
methodology to a class of hybrid control problems which are attracting more and
more interest (see, e.g., Elliot and Sworder, 1992). A simple example of a hybrid
control problem that can be treated by methods presented in this paper is given in

7. In this paper we treat neither a finite-time horizon problem, nor an infinite-time
horizon with a discounted cost criterion. These are for future research.

The paper is organized as follows. In 2 we describe the noise process. Section
3 introduces a system of differential-algebraic Riccati equations that plays a central
role in characterization of the optimal controls (as expected). The system of those
equations reduces to the well-known algebraic Riccati equations corresponding to the
continuous-time or discrete-time linear-quadratic control problems under appropriate
parametrization. Section 4 formulates a semimartingale driven linear-quadratic con-
trol problem and provides a solution to it. In 5 we point out how our control problem
relates to some other problems considered before in the literature. Section 6 contains
three limiting results. One of them reconfirms the classical relationship between con-
tinuous and discrete Riccati equations resulting from time discretization. Moreover
the result indicates that our approach allows for a "partial" time discretization, that
is, time discretization with respect to only some of the coraponents of the state vector.
The other two limiting results analyze the effect on the control system of vanishing
discrete components (k3 0) and continuous components (k 0), respectively. In
7 we provide a simple but illustrative example of a hybrid control problem and solve
it by our method. A few final remarks are formulated in 8.

Much of the notation used in the paper is taken from Jacod and Shiryayev (1987).
"T" denotes the transposition of a matrix.

2. The noise process. In this section we shall describe the noise process Z
{Zt, t >_ 0} that will be appearing in the dynamics equation of the control model. We
begin with the following assumption about Z.

Assumption A1. Z is an n-dimensional locally square-integrable semimartingale
(Jacod and Shiryayev (1987), Def. II.2.27) and a process with independent increments.
The underlying stochastic basis is (,9, F, P) and it is supposed to satisfy the usual
conditions.

Let J denote the set of fixed times of discontinuity of Z, that is, J {t _> 0
P(AZt : 0) > 0}, where AZt := Zt- Zt- is the jump of Z at time t, (AZ0 0).
As usual {B, C, } will denote a triplet of predictabl.e characteristics of Z with regard
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to some truncation function h. According to Theorem II.4.15 of Jacod and Shiryayev
(1987) we also have, under A1, that the characteristics of Z are deterministic processes
and J {t >_ 0 ({t} x R) > 0}. We will denote the stochastically continuous and
stochastically discontinuous components of Z by 2, and 2 respectively. This means
that

t= AZs and2t=Zt-t, t>_O.
O<s<_t

sEJ

From Proposition II.1.16 of Jacod and Shiryayev (1987) we know that d is countable.
Denote elements of J by j,, n E I, where I is a countable index set. Also let e, Zjn,
n E I, so that {e},Ei is the embedded random sequence. Because of the control
problem we will treat in 4 we introduce the following two assumptions.

Assumption 12. (a) I N* {1,2, 3,... }; (b) jn en, e > O, n N*.
Assumption A3. Both Z and {en}eN* have stationary increments.
Assumption A2(b) is not essential for the control-theoretic considerations to fol-

low. It will be used to simplify the presentation.
We will keep the usual notation for the measure of jumps of Z #z. From the

above stated assumptions and the results of Jacod and Shiryayev (1987), Chapters I
and II, we infer the following.

PROPOSITION 2.1. Assume A1-A3. Then
(i) the canonical decomposition of Z has the form Z Zo + N1 + N2 + N3 + A, where

N1 := Z is the continuous martingale part of Z, N2 := (zlj (#z_ ) is the
stochastically continuous jump-martingale part of Z, N3 := (zl.]), (#-,) is the
stochastically discontinuous jump-martingale part of Z, and A B+ (z- h(z)) ,,
is a deterministic process.

(ii) the characteristics of Z are Bt bt + (hl), ,, Ct ct and ,(.,dt, dz)
dtK2(dz)lj(t) + K3(dz)lj(t), where b e R", c e L(R, R) and c >_ O, K and
K3 are positive measures on I satisfying ./i({0}) 0, a’d k "--,fl IzI2[4i(dz) <
+ec, 2,3.

(iii) N, N2, and N3 are independent and their .predictable quadratic variation pro-
cesses are given by

c
<N,N2) (zizi)l ,,
<N ,Ng>

for i,j= l,2,... ,n.
Proof. (i) The result follows from (2.30) and (2.39), Chapter II of Jacod and

Shiryayev (1987).
(ii) The result follows from (2.14), (4.16), and the result analogous to Corollary

4.19 of Jacod and Shiryayev (1987) applied to Z and Z, respectively.
(iii) This part of the proposition follows from (2.31) and (4.16) of Jacod and

Shiryayev (1987), Chapter II. []
As usual, we let {N):= trace C, {N} := trace(zzT)ljc, u and (Na} :=

trace(zzT)l. u denote the scalar predictable quadratic variation processes of N1,
Ne, and Na, respectively.

Rema’rk 2.1. From now on we will assume (without loss of generality) that A 0
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and Z0 =0.
COROLLARY 2.1. Under conditions of Proposition 2.1 we have

iNl}t t. trace c,

(N2}t k2 for >_ 0, and

(N3)t n./3, t E]cn, c(n / 1)] n _> 0,

(N:)0 =0.

Remark 2.2. In fact, NI is a Wiener process.

3. The Riccati equations. In this section we let A,B L(R,Rn), E
L(R", R), and F L(R, R). Also let QI Q2 d L(Rn, Rn), -,1 d .L(/rn,
R2 E L(R,R), and Q,Q >_ O, R,R>0.

In Definition 3.1 below we recall the concepts of Hurwitz and Schur stability of a
matrix, which we shall respectively call c- and d-stability with reference to "continu-
ous" and "discrete" time.

DEFINITION 3.1..A quadratic matrix M is called d-stable iff its spectrum is con-
tained in an open unit disk. A quadratic matrix N is called c-stable iff its spectru’m is
contained in the complex left open half-plane.

DEFINITION 3.2.
(a) A pair (B,F) is called d-stabilizable iff there exists .H e L(R", Rk) so that B +

FH is d-stable. A pair (B, F) is said to be dT-stabilizable iff there exists H
.L(Rk, R) so that B + HF is d-stable.

(b) A four-tuple (A, E, B, F) ,is called cd-stabilizable iff there exist H1 L(Rn, R
and H2 L(R, R) so that A(HI, H2) is d-stable, where

A(.H, H) :: eA+EH’ (B + FH).
DEFINITION 3.3. A .four-tuple (A,Q,B,Q) is called cd-detectable iff (Bed,

v/BTeAQleAB + Q) is dT-stabilizable.
Remark 3.1. Note that if (eA, v/ArQeA) is dT-stabilizable then (eA, v/-), is

dT-stabilizable and consequently (x/-Q, A) is c-detectable, which means that there is
a, matrix. H such that AT + v/T H is tiT-stable.

Proof. This follows from the fact that Ker(v/) Ker(M) for any symmetric,
nonnegative semidefinite matrix M and from Proposition 3.1 in Vonham (1979).

In what follows we will require more notation. Let > 0. Let Pt [0,
L+(Rn, R) be a continuous function, where "+" denotes nonnegative semidefinite-
hess. Next define
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and

A(,(),) L(R, Rn) L(R",R)

given by

Consider the following system of Riccati equations, which we will call a cd-Riccati
equation:

(3.1) Pt Q1 + ATpt + PtA PtER- ET

Po t e [o,

Observe that

(3.2) PC ev(()’)/ee(()’) + 8(’p(), e).

Therefore the first equation in (3.1) can equivalently be written as

(3.3) (B+FL2(T)(e),e))Tp(B+.F.L2(7)(e), e))+Q2+LT(7)(e), e)R2L2(IP(e),e) R.

Remark 3.2.
(a) If we assume that B=l, or B I, F=0, Q2 =0, andPt const,

then (3.1) reduces to the following algebraic Riccati equation;

(c-ARE)
0 Q + AT.R + RA- RER-{1ETR,
Pt- R, te [0,

We call the above equation c-ARE because it is related to the continuous-time
linear-quadratic control problem (see Davis (1977), p. 185).

(b) If we assume that A 0, E 0, Q1 0, and e 1 then (3.1) reduces to the
following algebraic Riccati equation,

R BT[R-- RF(FTRF + R2)-FTR]B + Q2,

(d-ARE)
Pt=R, e [0,1].

Ve call the above equation d-ARE since it is related to the discrete-time linear-
quadratic control problem (see Bertsekas (1976), p. 355).
In Theorem 3.1 below we shall consider equations (3.1) for e 1 only. The result

is true for any e > 0, as can be easily deduced from the proof of the theorem. We will
use a simplified notation by omitting e from the above definitions. So, for example,
we will write 7) instead of 7)(1), L instead of _L(P(1), 1), AT instead A(7(),), etc.

We note that Theorem 12.2 of Wonham (1979) and Proposition on page 75 of
Bertsekas (1977) are special cases of Theorem 3.1.

THEOREM 3.1. Let e 1. Assume that (A, E,B,F) is cd-stabilizable and (A, Q,
B, Q2) is cd-detectable. Then there exists the ’unique solution ([, ) to (3.1) such that
[ >_ O, Pt >_ 0 for t [0, 1], and 4(1,) ’is d-stable, where/,i ’= L(73), 1, 2.

Proof. See Appendix 1.



1430 TOMASZ R. BIELECKI

4. Linear-quadratic stochastic control problem. We begin with introduc-
ing the dynamics of the controlled process first"

dxt (Axt_ + Evt_)d(M}t + (Bxt_ + Fut_)d(N}t
(4.1) + dZt, xo x, >_ O,

where M N1 + N2, N Na. The admissible control processes u. := {ut, > 0} and
v. := {vt, t >_ 0} are supposed to satisfy the following conditions:

They are non-anticipating w.r.t. Z,
There exists a weak semimartingale solution to (4.1) in the sense of Jacod (1979)
Chap. XIV,
limt_. 0, a.s.,

2 II)ds < +ec a.s.
The class of admissible controls is denoted by Na. The cost functional will be given
in terms of (T 2 0)

We want to show the existence and characterization of optimal controls, that is,
admissible controls u. and v. such that for all v., u. E b/ha and z E R it holds that

C(vO., o., x) _< C(v., u., x),

where

C(v. u.,x)’= lim
1

TocCT(v., U.,X).

In the above description of the control problem we have supposed A, B
e n(n,n), , e n(n,n"), , nd : re in L(n",n), nd (?,): >_ 0,
e L(R", Rm), e n(Rk, Rk), and /1,/ > 0. Throughout this section we let

kl k + trace c, A := klA, E kE, B kaB + I, F kaF, Q1 "= kQ,
Q2 "= kaQ, R klR1, and R2 := k3R. The following assumptions will be used.

Assumption A4. (A, E, B, F) is cd-stabilizable.
Assumption Ah. (A, Q1, B, Q9.) is cd-detectable.
Fix e > 0. Let (R, P) denote the solution to (3.1) with t substituted with k3t and

/St changed to kn.kat, t e [0, el. Define 1-it ’[0, ec) L(Rn, Rn) by

1-I+ P(_)k, s E [0, e), n 0, 1, 2,

Remark 4.1. Note that

AT ( Afit -kaP(en-t)k. -Q1 P(.n-t)aa en-t)ta

+ (n--t)kaER’lETf)(n-t)k3
-Q1- AT[It l-IrA + [ItER-IETI-It
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for E [en, e(’n -+- 1)), n 0, 1,2,
Also let/ := _-1 y) Yltd; _-1 f) ff:tkadt. Define controls (u., v.) by

(4.2) vt atxt, ut := .Agxt,

where

t -R-IETI-It, A2 :=-(F’r’IIoF + R2) -1FTI-IoB

min [xTIltEv -t- vTET.[Itx + vTR1 v] xT’[ItER-IETIItx --xTl-ItEtx
vER

where the minimuIn is realized by

For each x E R

min [u7"FrHoBx + X
TBTIIOFu + .uTFTIIoFu + U

T

uE R

xTBTHoF(FTIIoF + R2)- IFTIloBx
3gTA(FTHoF + R2)A,ex

and the minimum is realized by

0u A2x.

Step 2. Now let (v., u.) /[ad be an arbitrary pair of admissible controls. From
Lemina A.3.1 of Appendix 3 it follows that (v.,u.) /dad. Consider the function
V’[0, Cx:)) R --+ R given by

V(t, z) xrIItz.
Upon application of Ito’s rule for semimartingales (Jacod and Shiryayev (1987), Thm. 1.4.57)
to V we obtain, for > 0,

(4.a)

/0xTl-Itxt xTl-Iox T [IsXs_. --+ ._ Xs 1-is "Ys- q- xT’ s- fi"rII x- .+ y.s-T-./T I-Is- xs-

vt

for > O.
We will need one more assumption.
Assumption A6. f
THEOREM 4.1. Suppose assumptions A1--A6 are satisfied. Then we have the

following:
(a) The definitions (4.2) are correct: there exists a unique, strong, semimartingale

solution to (4.1) with (v., u.) in place of (v., u.),
(b) The controls (v.,u.) are optimal,

(c) C(v., u., x) e- trace(c + kI)P + e-1trace kaHo for all x R.
Proof. (a). It is enough to note that {M)and (N} are special semimartingales

and apply Theorem V.3.7 of Protter (1990).
(b). } will use the standard comparison method.
Step 1. Let us first observe the following:
For allxR andt>0
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T 1-1 lts---+ T TI-I Z+ [Sn.-.- +-+

+ 2 XsT- H-dZs + xT_ dHsx.-
+ +

+ trace - cds
+

O<st
sJ

X X

z_-z- (BZn- + Fu-.

+

+ Ln - +-+

sJC

ro H z}+ trace cds
+

T

+

FrBz- + FrF-+ [x BTHF’u- + u_ u_
+

d<N}+ s- Xs-

r Frs]dNs + 2 r

__
dZ

+ +

+ dNyHdN
+
9

i=1

Note that from Step 1 it follows that I 0 and I 0, t 2 0. As in Theorem g.6.1

of Lipster and Shiryayev (1989) we have

[ (zTHz)Ij , (pz ")t + (zTnz).l. * "t

and note that in view of A6 the process t := (zTHz)lg * (pz P)t is a locally
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square-integrable martingale with predictable quadratic variation process

(}t (zTHz)l.dsK’2(dz).

Taking the above remarks into account we obtain from (4.2) the following, t > 0,

(4.4) x rIoz +
>_ (zTrIz)lJ * ’t + trace IIs-c ds

+ dNTrIdNs ./ t + pt + (t, a.s.,
+

where
7" Frl-is]dNsPt 2 [x.sT_ BTIIs + us-

+

and t := 2 f+ z_T II- dz are locally, square-integrable martingales. Since (1-It)t>0_ is

ZTperiodic we have limt__, 7 IIz) 1 dc *’t e-1 k2trace and limt_, Z f2+ trace II.- cds
e trace Pc. Applying ergodic theorem to opt f+ dNTIIdNs we get limtoc yqt
e-lka trace II0, a.s. Also, it follows from the results of Lipster and Shiryayev (1989),
2.6, that limt_,c -t limt_ pt limt_ t 0, aos. Therefore from (4.4) we
conclude that

(4.5) C(v., u.,x) >_ e-ltrace (c + k2I) + e-lkri0, a.s.

Using considerations analogous to the ones above, it is straightforward to show that

(4.6) C(v.,u.,x) e--trace (c + kI)’ + e-kH, a.s.

This concludes the proof of (b).
(c). This result follows from (,.4.5) and (4.6). !i

5. Some special cases. In this section we will shortly demonstrate that Theo-
rem 4.1 encompasses solutions to some "classical" stochastic linear-quadratic control
problems.

Case 1 (continuous time system driven by Wiener process). Using our notation
this case corresponds to

k2--O, k3 =0.

For a problem of this type see, for example, Davis (1977).
Case 2 (continuous time system driven by Wiener and Poisson processes). This

corresponds to

ka 0, N2 equivalent, to a Poisson process.

Note that in case of a Poisson process Assumption A6 is automatically satisfied. For
a problem of this type see, for example, Wonham (1970).

Case 3 (continuous time system driven by a Poisson process). This case corre-
sponds to

c 0 and k3 0, N equivalent to a Poisson process.

For a more general model of this type (including the multiplicative noise components)
see, for example, Li and Blankenship (1986).
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Case 4 (discrete time system driven by a sequence of independent random vari-
ables). In our terminology this case corresponds to

C--0, k2 0.

For a problem of this type see, for example, Hall and Heyde (1980).
6. Three limiting results. Let us consider equations (3.1) with A, B,E, F,

Q2, R1, R2 as in 4. We also require that k3 is changed to ek3 in the definitions of
B, F, Q2, and R2, that time index t is substituted with k3t, and that tbt is changed to

In this section we shall analyze the behavior of equations (3.1) in the present
setting when (i) e tends to 0, (ii) k3 tends to zero, and (iii) kl tends to zero. Note that
the first case corresponds to "increasing frequency of the discrete time comFonent." A
"classical" prototype of it has been considered before in the context of approximating
of a continuous-time linear-quadratic problem with a sequence of discrete-time linear-
quadratic problems (see Whittle, 1983, Ex. 1, p. 209, for example). The second
case corresponds to vanishing of the discrete-time component, and the third case
corresponds to vanishing of the continuous-time component of the system.

Case i. Assume A4 and A5. Also assume that (A + k3/, [E F]) and (AT +
k3T, v/Q1 + Q2) are c-stabilizable pairs. Denote by (R(, kl, k3), 7)(, k, k3)) the
solution to (3.1). Then, using (3.1).-(3.3) and some algebra, it can be shown that

(6.1) lim(R(e, k, k) P(e k, k)) (P(0, k, k3) .P(0, k,, k3))
e--O

where P(O, ,) is the solution to

(6.2) Q + Q2 + (A + kn)TP + P(A + k3/)
o )I.0 R F]Tp 0

Example (partial time discretization). Here n 2, m k kl k3 1. We
also let

0

(qo (oQ
0

Q
0

R1 rl, R2 r2

o)
q2

This parametrization corresponds, for example, to a partial time discretization, with
time step e, of the following control problem (here we are using notation x(t) and u(t)
instead of xt and ut):

(6.3) Minimize

lim T- (x(t) x2(t)) q 0 xl(t) +(u (t), u2(t)) r
T-cx 0 q2 x2(t) 0

subject to

dxl (t) (ax (t) + bx2(t))dt + eu (t)dt + dWl (t),
dx,.(t) (cxl(t) + dx2(t))dt + fu(t)dt + dw2(t),

r2 u2(t)
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where wl and w2 are standard one-dimensional Brownian motions.
In this case "partial time discretization" means time discretization with respect

to the second state component x,,2(t). The partially time-discretized problem is

Minimize

T N

T.-lim T-l[ (qlx,(t) + rlu (t) 2) dt+ e- N.--.oolim N-1 (eqx, (n) + eru,(n))

subject to

dx,(t) (ax,(t) + bxe,(n))dt + eu (t)dt + dw (t),
t +

x,(n + 1) eCXl,(en) + ( + 1)dx,(n) + eu,(n) + (w(e( + 1)) we(en))
n O, 1,2,....

Here, the limiting equation (6.2) coincides with the algebraic Riccati equation corre-

sponding to the original problem (6.3).
We believe that our methodology will allow for time discretization of continuous-

time control problems using various time steps for various components of state vector,
if necessary.

Case ii. Assume A4 and A5. Then

(6.4) a01im(R(e,k,k3), P(, k, k3))= (P(e,k,O), P((, kl, 0))

where P(e, k, 0) {Pt P(e, k, 0), e [0, el} and P(e, kt, 0) is the solution of

(6.5) 0 Q .- ATp + PA- PER-ETP
Case iii. Assume A4 and A5. Then

(6.6) lim (R(e k,k3) (e k,ka))= (P(,0 k) (e, 0 k3))
kl0

where P(e, 0, ka) {Pt P(e, O, k3), [0, el} and P(e, 0, k3) is the solution to

(6.7) P BT[P PF(FTpF + R)-FTP]B + Q. A simple hybrid control problem. Consider the following special form of
the control problem considered in 4.

System dynamics

d d + dw, [, + 1),
y,.+ =U,+u +., =0,1,,...

where x,n R, (’w)0 is a. standard Brownian motion in R, and ()=0 is
an independently and identically distributed (i.i.d.) sequence of Gaussin random
variables with mean zero and variance one.

Cost functional

(g (x y)) lim T- (x+)dt

where t , E In, n + 1).
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The point here is that a continuous-time subsystem corresponding to at is con-
trolled via a discrete-time subsystem corresponding to y. Using results of 4 we
compute optimal controls

and the optimal cost

+ /3o
Yn, n=0.1 2u.,

2 + v/-i3

29+ 3v3C(’(x’Y))--
18

8. Concluding remarks. We refer to the control problem considered in 4 as
to the "backward problem." The "forward problem" for which the cost functional is
given in terms of

can be studied in the similar way as the "backward problem."
Our formulation of the linear-quadratic stochastic control problem does not allow

for a direct consideration of a deterministic linear-quadratic control problem, one of
the reasons being that the time scales in (4.1) would vanish for k 0 nd/or k3 0.
An obvious reparanetrization will allow for including a deterministic situation in the
model (4.1) as well. We have not done that in order to keep the calculations easy.
Note that equations (3.1) are serving both deterministic and stochastic situations, as
in the "classical" case.

It is still an open. question under wht nontrivial conditions on the parameters
there exists a stationary distribution for (x)to. have some preliminary results
for the noncontrolled case corresponding to the one considered by Zabczyk (1983).

In a subsequent pper we shall consider implications of the approach taken here for
control and identification of general (multiple time scales) ARMA models represented
via a certain integral transform that is given in terms of the predictable quadratic
vriation process of the driving semimartingale noise.

Acknowledgments. I would like to thank the referees for their valuable re-
marks, which helped me improve the first version of the manuscript.

Appendix 1. In this appendix we prove Theorem 3.1. We will need the following
three technical results, which are counterpnrts of Theorem 3.6 ii) and Lemmas 12.1
and 12.2 of Wonham (1979).

LEMMA A. 1.1. If Q o and B is d-stable then the equation

has a unique solution R and R

_
O.

P oof. I:--I
LEMMA A.1.2 (d-Liapunov criterion). Suppose R >_ 0, Q >__ 0, (B, v/Q) is dT-

stabilizable and BTRB + Q R. Then B is d-stable.
Proof. We have

k-1

+ >_ 0.
i=0
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.Assume B is not d-stable and let A be an eigenvalue of B with IAI _> 1, and X the
k-1 2icorresponding eigenvector. We have XTRX I,I2kXTRX + i=0 I’ll Ilv/-Q 2112.

This means that IA and ,-X 0. Let K be a matrix such that B + Kx/-Q
is d-stable. We see that A and X are respectively an eigenvalue and corresponding
eigenvectors of B + Kx/-Q. This is a contradiction. [i]

LEMMa A.1.3. Assume that the four-tuple (A, Q1, B, Q2) is cd-detectable. Let
G’[0, 1] L(.Rn,.R’) be continuous. Let G := f2 Gsds and M > O, N > O, >_ 0,
L be arbitrary matrices of appropriate dimensions. Then the pair

(B + L)e(A+a)

Qe + LTNL + + (B + .L)T e.f(A+GI-)Tds(Q1 + GT_._tMGI_t)eJ (A+GI )dsdt

V/’(B + L))
is dT-stabilizable.

Proof. It will be shown in Lemma A.2.1 of Appendix 2 that

Ker eJ’(A+a)Tds[@ + GMGt]ef(A+G)dsdt

C Ker eAr (Q + aMat)dte.
Therefore we have the following chain of inclusions,

Ker@Q + LTNL +

+(B + L)r ef(A+at-)Tds(Q1 + GTl_tMGl_t)eft(A+al-)dsdt (t? + .L)

C Ker + LTNL + BeATQleAB + (B + L)reAr GTtMGtdteA(B + L)

f

C Kerv/Q. + BTeATQleAB Ker(-L) Ker(eAB eA+Gt)

C Ker(v/Q: + .BreAQeAB eA+aL + cAB- eA+aB).

Let K be such that cAB + Kv/Qe + BTeAQeAB is d-stable. In view of the above
inclusions we conclude that there exists matrix K such that

eA+a(B + L)

+ + +

+(B + L)T e,ftl(A+G-)Tds(Q1 + G_tMG_t)ef(A+a-ddt (B + .L)

cab + K/Q + BTeArQeAB. [1

Proof of Theorem 3.1.
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Step 1. Let R _> 0. Consider the control problem

J(xo, R) min J (xo, u, v. R)
U.

where

subject to

x1 Bxo +
lt Ayt -t-Evt,
Yo x., [0, 1].

It can be easily verified that

J(xo, .) x[BTPIB + Q2 BT.PIF(FT P1F + R2)-IFTpB]xo,

and the optfinal controls are

t [0,
u* L(7))xo,

where 79 corresponds to R in the sense that, 7) Pt, E [0, 1] solves the differential
equation in (3.1) with P0 R.

Step 2. (a) Choose L := {Lt1, t E [0, 1]} and L so that A(LI,L)is d-stable.
Here L := f01 dt.
(b) Having chosen (L), L),..., (L,L), obtain R 2 0 from (use Lemma A.1.1)

MT(L,.L)RaM(L, L) + e (A+L )Tat

[Q + (._s)rR_]ef(a+L-’)dtds + Q + (L)TRL R.
In the above L fo ,tdt. Note that with regard to the control problem of Step
1 we have xRkxo J(xo, u, v., R), where

u Lxo, v f-Yt, [0, 1].

(c) Obtain 7k+l :: {Pq-1, t E [0, 1]} from

(A.1.1) po../..
and define

Q1 -t- ATptk+, .+ .p-+.l A ptk+1j/1 ./T .ptk+ 1,
=Rk, tE[0,1]

.tk+l "-----iTptk,_ll [0, 1],

L+ :: -(FTPI+F + R2)-’ FTP+B.
Remark A.1.1. In case B I, Q2 0, F 0, and Pt const, t [0, 1], consider

(1.1.1) as

0 Q, + (A + EL)TR + .Rk (A /..EL)+ (LI)TRILI
andL =L1, s [0,1].
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Note that with regard to the control problem of Step 1 we have

xTo (BTp+IB+Q2-BTp:+IF(FTp+IF+R2) -1FTp+IB)xo J(xo, Rk) <_ xTo RkXo
After letting K: "= BTpB + Q2 BTpF(FTpF + R2)-IFTpB we then have

Now note that
Apk./l (Rk) + 7)+, ]k-/.l Rk + Rk.

Therefore, in view of Lemmas A.1.2 and A.1.3 we conclude that A(L+I,L+1) is
d-stable. Obtain Ra+l from

A+ (R+) + g+, R+

and note that

AT(L+’,L+’)(.Rk+ R)A(.L+’,L+’) + ICk+ R R+ R.
Henceforth we have

Thus there exist limits

0<_/- lim Rk,

0_</st= lim Pt, tff [0,1],
k-*

and the pair (,)satisfies (3.1), where {t, e [0,1]}..Again by Lemmas
A.1.2 and A.1.3, we conclude that A(L1, L) is d-stable.

Uniqueness of (R, P) follows from the following argument. Let (R, P) be another
solution to (3.1) such that R 0 and Pt 0, t [0 1]. In view of the control problem
analogous to the one considered in Step 1 we have

+
Therefore it holds that

R,

and since A(L, L) is &stable (Lemmas A.1.2 and A.I.3 again) we obtain that R-R
0. Similarly we get that A(R- ) R- and therefore R- R

Appendix 2.
LEMMA A.2.1. In the notation of .Lemma A.1.3 it holds that

c Ker ea (Q + aMa.)at ea.

Proof. Consider the dynamic system

5ct (A + Gt)xt,
xo O, t [0, 1],
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and the functional

T TI xs (Q1 + Gs MGs)xds.

Note that I 0 implies Gxs 0 for almost all s E [0, 1] and therefore

This implies that

Xo e,(tA)xo Xo ,Ma,(tA)xo 0

for k >_ 0 and almost all t E [0, 1]. Thus we obtain

0 0 (Q, +

Appendix 3.
LEMMA A.3.1. Under the assumptions of Theorem 4.1 the pair of controls (v., u.)

defined in (4.2) is admissible.
Proof. Let (xt)t>_0 be the unique, strong, semimartingale solution to (4.1), under

(v., u.), that exists according to Theorem 4.1(a). It remains to show

(A.3.1)

and

t-lim lt./(i 0 2IlXsll d < +, ..

(A.3.2) lira
1

__,-llxll o, a.s.

It is enough to consider the stochastic sequence {Yn}n>l where Yn :co n > 1
Note that

Y,+I A(A1, A)yn + en,

Yl x_., n >_ 1,

flwhere A1 tdt and

J’n+l(A+E’t eA+EAen :-- e )dtdMs + ANn, n > t.

Since A(A, A2) is d-stable (Theorem 3.1) we conclude, upon applying the strong law
of large numbers for martingales (Lipster and Shiryayev (1989), Thm. 2.6.1), that

lim
[lY"II

=0, a.s.,

which in turn implies (A.3.2).
Since A(A1,A2) is d-stable then there exists a positive definite matrix G such

that

AT (A1, A2)GA(A1, A.) + 21 G
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(compare Lemma A.l.1). Next note that, for n 1,

T Gyn+l T T
Y+ Yn A (A, A)GA(Aa, A2)Yn

T T TGen+ 2y A (A1, A2)Gen + en

<_ yr Gyn Ilyll + 2yT MT (A1, A2)Ge
Ten a.s.+en

Therefore we have

Invoking the law of large numbers for martingales again, we finally obtain.

lira -1 ’k=lfrom which (A.3.1) follows.
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TOOLS FOR SEMIGLOBAL STABILIZATION BY PARTIAL STATE
AND OUTPUT FEEDBACK*

ANDREW TEEL AND LAURENT PRALY

Abstract. We develop tools for uniform semiglobal stabilization by partial state and output
feedback. Ve show, by means of examples, that these tools are useful for solving a variety of prob-
lems. One application is a general result on semiglobal output feedback stabilizability when global
state feedback stabilizability is achievable by at control function that is uniformly completely observ-
able. We provide more general results on semiglobal output feedback stabilization as well. Globally
minimum phase input-output linearizable systems are considered as a special case. Throughout our
discussion we demonstrate the usefulness of considering local convergence separate from boundedness
of solutions. For the former we employ a sufficient small gain condition guaranteeing convergence.
For the latter we rely on Lyapunov techniques.

Key words, semiglobal (practical) stabilizability, uniform complete observability, dynamic
output feedback, high gain control, nonlinear small gain

AMS subject classifications. 93D15, 93D09

Notation.
A function is said to be smooth if it is in C, i.e., r times continuously differentiable,
for some integer r >_ 1.
d(t) is a time-varying signal contained in a compact set D C IRd. It will be appro-
priate to denote d(t) and its time derivatives (t), )’(t),... by the same symbol d,
i.e., d (d, , ’,...). Since this aggregated d is still assumed to lie in a compact set,
in some cases we shall implicitly introduce the strong requirement that the external
disturbance is smooth.
0) denotes the function 6-(x)f(x,V d) IR x D IR and the subscript (0) refers
to equation number (0) of the differential equation

(0) f(x, d(t)).

I" denotes the Euclidean norm.

I1" lifo denotes ess--sUpto<t<l. I.
A function "y IR>0 --, IR>0 is said to be of class-K if it is continuous, strictly
increasing, and satisfies "(0) 0. It is of class-K if in addition y(s) cxz as
84-+00.

A function /3 IR>0 IR>0 --* IR>0 is said to be of class-KL if, for each fixed
t IR>0, the function/3(., t) is of class-/( and for each fixed s JR>0 the function
/3(s,.) is decreasing and

(1) lim (s, t) 0,

A function f -- lR>0, where 5 is an open set of IRp, is said to be proper on [

if the preimage of a compact subset of IR>0 is a compact subset of .
A function f U --, IR>_0 is said to be positive (negative) definite on , a subset of
J, if f(x) is strictly positive (negative) for all x in ’.
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A solution x(t) of an ordinary differential equation is said to be captured by a set
F if x(t) is defined on [0, +cx) and there exists to such that x(t) E F for all t in

J.. A motivating problem and some results. We are interested in the semi-
global stabilization problem, as it is stated in [3], for example. In subsequent sections,
the following four tools for solving semiglobal stabilization problems will be presented:
two "backstepping" tools, a robust observer, and a local nonlinear small gain theorem.
The usefulness of these tools will be illustrated by examples throughout the paper.
Initially, to give the reader a sense for what can be proved with these tools, we will
state some general nonlinear output feedback stabilization results which will be proved
in a stronger form and with full details in later sections.

We start by considering the output feedback stabilization problem for nonlinear
systems in the general form

A(z,u),
C(z).

We will make use of the following properties.
DEFINITION 1 (stabilizability). An equilibrium point z 0 of a dynamical system

(3) A(z, u)

with A a smooth function, z in ]Rn, and u in lR is said to be globally (respectively,
locally exponentially and globally) stabilizable if there exists a smooth function z such
that z 0 is a globally asymptotically (respectively, locally exponentially and globally
asymptotically) stable equilibrium of

(4) A(z, t(z))

DEFINITION 2 (uniform complete observability). A function t(z) is said to be
uniformly completely observable UCO) with respect to the dynamical system (2) if
there exist two integers ny and nu and a C function such that, for each solution

A(z, uo),
it0 U

tnu V

we have, for all t where the solution makes sense,

(6) (z(t)) (y(t), y(ny) (t), U0(t),... Unu (t)),

where y(i)(t) denotes the ith time derivative of y at time t.2

Achieving global stabilization by output feedback can be impossible for very sim-
ple systems that are globally stabilizable by state feedback even when each component

See Definition 3. Depending on the authors, this type of stabilization is also called "potentially
global", "on compacta," or "widely local."

2 If u is not present in (6) we let nu -1.
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of the state is uniformly completely observable. For example, it was shown in [28]
that there is no continuous, finite-dimensional dynamic output feedback to globally
stabilize the equilibrium point z 0 of the system

1 Z2
(7)

y Zl,

with n _> 3. This is true even though the system is globally feedback linearizable and
the state is related to the output, by zl y, z2 =/). For this reason we restrict our
attention to the semiglobal stabilization problem.

DEFINITION 3 (semiglobal stabilizability). 3 The equilibrium z 0 of the system
(2) is said to be semiglobally stabilizable by dynamic state (respectively, otput) feed-
back if, for each compact set 1Q, a neighborhood of 0, there exists a locally Lipschitz
dynamic state (respectively, output) feedback u ft(z,), O(z,) (respectively,
u g(y, ), O(y, )) and a compact set 1 such that the equilibrium (z, ) (0, O)
is asymptotically stable, with basin of attraction containing IQ 1.

It was shown in [40] that, when each coinponent of the state vector z is UCO,
global stabilizability by state feedback implies semiglobal stabilizability by output
feedback. An implication of the state being UCO is that any globally stabilizing
function g(z) is UCO. One might hope that this weaker assumption, existence of
a UCO globally stabilizing state feedback, would yield semiglobal stabilizability by
output feedback as well. Unfortunately, soine difficulties appear in this case when
attempting to establish local asymptotic stability. To guarantee this local property,
we will impose extra local requireInents on the system (4). A sufficient condition,
generalizations of which are discussed in 5, is local exponential stability.

THEOREM 1.1. If the equilibrium point z 0 of the system (2) is locally exponen-
tially and globally stabilizable by a UCO and C state feedback, then it is semiglobally
stabilizable by dynamic output feedback.

Otherwise, since the only obstruction is local, we can still achieve semiglobal
practical stabilization as summarized in the next definition and theorem.

DEFINITION 4 (semiglobal practical stabilizability). A point z 0 (not necessar-
ily art equilibrium) is said to be semiglobally practically stabilizable by dynamic state
(respectively, output) feedback if, for each pair of compact sets (1, 1), neighborhoods
of (0,0) ’with C 1, there exists a locally Lipschitz dynamic state (respectively,
output) feedback u (z, ), O(z, ) (respectively, ’u (y, ), O(y, )) and a
pair of compact sets (ICs,ICi,) such that all the solutions of the closed-loop system,
with initial condition in ]Ct x ]C;, are captured by the set

THEOREM 1.2. If the equilibrium point z 0 of the system (2) is globally stabi-
lizable by a UCO and C state feedback, then it is semiglobally practically stabilizable
by dynamic output feedback.

The technique for proving these theorems is to exhibit a feedback controller based
on the given state feedback controller g, implemented dynamically using estimates of
sufficient number of derivatives of y provided by an observer and a sufficient number of
derivatives of u provided by a suitable dynamic extension. The idea of implementing
.fi through dynamic extension comes from the work of Tornamb [43]. That such a
dynamically extended state feedback controller can be constructed while retaining
semiglobal (practical) stabilizability will be shown using the iterating tool of Lemma

3 It follows from this definition that a family of feedback laws is involved, This family is indexed
by t,.
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2.3. Further, we will show that combining the dynamically extended controller and an
appropriate observer still yields semiglobal (practical) stability. Our robust observer
tool, Lemma 2.4, will provide the technical result for showing this can be done.

Although different from the technicalities of the proof, the intuition behind our
analysis follows from considering the closed-loop behavior as having two phases. Dur-
ing the first phase while we are trying to find, in finite time, an exact estimate of
the derivatives of y, we acknowledge that this dynamically extended, estimated state
feedback makes no sense. Still we must make sure that there is no finite escape time.
To solve this problem, we use the a priori information that the actual control (z)
is in a known compact set to disregard any estimation g(z) which would lie outside
this set. Mathematically there are many ways to reject these bad estimates but a
very simple and efficient way is to saturate the estimated control as proposed in [11].
Then, using the worst saturated control, we can estimate the smallest time period T
which will be needed by the system to go from its initial compact set to some larger
compact set on which our estimated state semiglobally stabilizing feedback is valid.
This time period is the period within which we should get our exact estimate of the
derivatives of y. (See [18, Rem. 5].)

In phase two, if the estimates of the derivatives of y were correct, we could apply
our dynamically extended state feedback. Unfortunately we are not always able to get
an exact estimate of the derivatives of y. This is due to the possible presence of un-
observed states and possible uncertainty in A. However, we can obtain an arbitrarily
good approximate estimate. If we have designed our (dynamic) state feedback control
using Lyapunov methods we have a measure of the stability robustness achieved by
our feedback controller via the derivative of the Lyapunov function. We consequently
build our approximate observer to account for this robustness margin. This strategy
in fact has been exactly applied in [13] but in discrete time. There, no finite escape
time is possible and exact estimation in finite time is assumed.

Finally note that Theorems 1.1 and 1.2 as well as the other results on semiglobal
stabilization to come are presented here only as existence results. Nevertheless, the
practical significance of the dynamic output feedback we shall exhibit has been inves-.
tigated in the context of robotics applications in [1] and [2].

The remainder of the paper is organized as follows. In 2 we present tools for
semiglobal practical stabilization by state and output feedback. Several applications
of these tools are presented including, in 3, the proof of Theorem 1.2 and generaliza-
tions. In 4 we present a small gain theorem for local asymptotic stability analysis.
This tool along with the tools of 2 are used, in 5, to prove Theorem 1.1 and gen-
eralizations. In 6 several corollaries for minimum phase input-output linearizable
nonlinear systeins are presented.. A nonminimum phase example is also discussed.

2. Tools for semiglobal practical stabilization. As exhibited by the state-
ment of our two theorems, we have found it is very useful to decouple the local
convergence analysis in robust semiglobal stabilization problems from the analysis
regarding the boundedness of solutions. In this section we are concerned only with
the problem of uniform semiglobal practical stabilization by partial state and output
feedback. We defer study of local convergence until 4. We will present tools that will
be used to construct an output feedback for proving Theorem 1.2. However, these
tools have their own interest. As illustrated by examples throughout this section, they
can be used to address a wide variety of control problems.

These tools provide conditions under which solutions starting in some compact
set are captured by a "smaller" one. They consider systems with an interconnection
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structure and a state decomposed, accordingly, into two parts, say (z, x), where the 2
equation contains a large gain, say K. The effect of this large gain K is to introduce
an exponential dichotomy between the x component and the z component. This im-
plies the existence of a center-stable manifold which can be described by x H(z, K).
It follows that the motion of the solutions can be decomposed into two stages: con-
vergence to this manifold and sliding along this manifold. This decomposition has
been a standard tool used to prove early semiglobal stabilization results (see [36] and
[7] for example). Here instead, like in [4], we completely ignore this decomposition
and use a Lyapunov argument showing the decrease of an energy function outside a
neighborhood of the origin. More precisely what is implicitly used here is the fact
that as K -, ec, the manifold tends to the set {(z, x) :x 0}. So a Lyapunov func-
tion, which is simply the sum of the energy functions of x and z separately, should
be sufficient and indeed it is. The availability of a Lyapunov function is extremely
useful. It makes explicit the ultimate bound on trajectories as well as the domain of
attraction without the formalism of invariant manifolds. It will also allow us to use
our tools consecutively.

We will present two closely related "backstepping" tools, to borrow the terminol-
ogy of [17]. This will be followed by an observer tool useful for analysis when the
parameter K comes from a high gain observer. These tools are based on the following
technical lemma, inspired by a similar result in [4].

LEMMA 2.1. Let S be a compact set in a product space IR x IRn, and denote by
S and Sx its respective projections (i.e., S c S x S). Let X(z) be a continuous real
function on Sz which is positive definite on the projection of the set { (z, x) x 0}S.
Let 2(x) be a continuous real function on Sx which is positive definite on Sz\{0}. Let
p(z,x, d) be a continuous real function on S D which satisfies

(8) d) =o V(z,x,d) ({(z,x)’x 0} C? S) x D.

Let be a function of class-K. Under these conditions, there exists a positive real
number K, such that, for all K >_ K,,

(9) X(z) (K)(x) + (z, x, d) < 0 V(z, x, d) S x D.

Proof. For purposes of contradiction, assume the result is false. This implies that,
for each n, there exists a point (z, xn, d) in S .D such that

(10) x(z ) + x.., >_ o.

Consequently, since is class-K and > 0 we have, for each m >_ 1 and for all

(11) X(Zn) /’i;(m)(Xn) -}- )(Zn, Xn, tin) O.

Now, since S x D is compact, the (sub)sequence (z,,x,d) converges to a point
(z,,x,,d,) in S x D. By continuity, this point satisfies

(12) x(z,) + >_ 0

for all m >_ 1. Then, if x, 0, (8), (12), and the properties of imply -X(z,) >_ 0
which is not possible since X is strictly positive on the projection of the set {(z, x)
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z 0} N S. On the other hand, if Ix, - 0 then (x,) > 0 and there exists an m, >_ 1
such that, for all m >_ m,,

(13) X(z,) a(m)g(x,) + (z,,x,,d,) < 0

since a(-) is of class-Ko. This contradicts (12), however, and completes the proof.

Throughout the remainder of this section we use the following assumption.
Assumption ULP (uniform Lyapunov property)4. For the system

there exists an open set L in ,, a nonnegative real number < 1, a real number
c 1, and a C function V U o such that the set (z" V(z) c + 1} is a
compact subset of 11, and we have

(15) 14) --l(Z),

where 1 (Z) is continuous on b and positive definite on the set {z" 0 < V(z) c+1}.
Remark 2.1. In the absence of d(t), if the equilibrium z 0 of the system

(16) h,(z, O)

is locally asymptotically stable with domain of attraction , the converse Lyapunov
theorem [22, Thm. 7] provides a smooth Lyapunov function satisfying Assumption
ULP. Further, 0 can be chosen to be equal to zero and c can be chosen to be arbitrarily
large.

Ve now present our backstepping tools. The first lemma shows how one can
semiglobally practically stabilize from a disturbed first derivative of the control in-
stead of the control itself. The second lemma allows, in one step, the designer to
semiglobMly practically stabilize from a jth disturbed derivative of the control when
the perturbations have a special form.

LEMMA 2.2 (semiglobal backstepping I). Consider the C nonlinear control sys-
tem

h(z,x,d(t)),

where x , z , the sign of g(z,x, d) is constant, and the magnitude of g is
bounded away from zero by a strictly positive real number b

Suppose Assumption ULP is satisfied. Given # >_ 1, we define the function

V z
g(19) W(z,x) =c

c + 1 (z)
X2

#+l-x2

and the set

(20) 52={z’V(z)<c+l} {x’x" <#+1}.
4 The number "1," here and in the following, is arbitrary arid could be replaced by any strictly

positive real number.
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Under these conditions, W(z,x) J2 ]R>_o is proper on 2. Further, if

(21) u -Ksgn(g)x

then, .for each strictly positive real number p, there exists a positive real number K,,
such that, for each K >_ K,, W satisfies

() v(;) < -.(z, x),

where O2(z,x) is continuous on U2 and positive definite on the set {(z,x) + p _<
W(z,z) <_ F + + }.

Proof of Lemma 2.2. With u -Ksgn(g)x the closed loop system is

(23) h(z,x,d(t)),
f(z,x,d(t))- Ksgn(g)g(z,x,d(t))x.

For sake of generality we replace x2 in (19) by U(x). Now assume W(z,x) <_
This implies

(24) V(z) <_ (c + 1)c2+#2+1+c,
c2 + p2 -}- 1

U(x) <_ (#+1)c2+#2+1+#
Now, we have

c(c + 1) i>(2) + #(# + 1)(25) 1(23)

From (24), we get, when W(z,x) <_ c2 + #2 + 1,

(26)

Then, let us define

(27)

(:)
.(x)

p(z,x,d)

(K)

and consider the left-hand side of (9) in Lemma 2.1. We pick an arbitrarily small but
strictly positive real number p and define a set S by

(28) S {(z,x)" ) + p <_ W(z,x) <_ c + #2 + 1}.

The set S is compact from (24) and Assumption ULP. Also, from (24) the projections
of S satisfy

(29) c {z V(z) < + i}, S c {x xe < tt + l }.
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Consequently X(z) is continuous on S. and (x) is continuous on S and positive
definite on Sx\{0}. Further, (24) also implies that p(z,x,d) is continuous on S x D.
From (27), it follows that

(30) c2( z, x, d =0 V(z,z,d) ({(z,z) x=O}nS) x D.

Finally, to see that (z) is positive definite on the projection of the set { (z, x) x
0} S, we note

V(z){x=O
c + V(z)

Further, for 0 _< O _< 1,

(32) .0 + p _< c- -- 0 < V(z) Vp > O.
c + 1 V(z)

Then, from Assumption ULP, X(z) is positive definite on the projection of the set
{ (z, z) z 0} CS. This demonstrates that the conditions of Lemma 2.1 are satisfied.
It follows that there exists a positive real number K, such that, for all K > K,, (22)
is satisfied with

c(c+ 1)
(33) (b(z,x)- 2(c + 1- V)

#bl (z) + Kbx2.

Also, since is positive, it follows, from (27) and (9), that this function (I)2 is positive
definite on {(z,x)" 0 + p <_ W(z,x) <_ c + tt + 1} for all K >_ K.. 1

Ezample 2.1. The first application of Lemma 2.2 is a result for the C control
system:

A(z,(34) F(z, , d(t)) + G(z, , d(t))u,

z IRTM, IR, where the sign of G(z, ,d(t)) is constant and the magnitude of G is
bounded away from zero. Specifically, if the equilibrium point z 0 is semiglobally
stabilizable by Ce (e >_ 2) state feedback, with as control, then (z,) (0,0) is
semiglobally practically stabilizable by C state feedback.

This statement is to be added to the many results known on the stabilization via.
a disturbed derivative of the input ([6], [9], [12], [44]). Its proof follows.

Let g(z) represent the control law we get once the compact set zt of the semiglobal
stabilizability property for the z subsystem is chosen. Define x ,(z). Then we
have

(35)

A(z,’Ct(z) +x)
h(z, z)

(z)A(z, +5c F(z, x + .g(z), d(t)) + G(z, x + ft(z), d(t))u
f(z,x,d(t)) + g(z,x,d(t))u.

Froth [22, Thm. 7], Assumption ULP is satisfied with 0 0 and a positive definite
function V such that K; is contained in the set {z" V(z) <_ c} for some real number
c>1.

With t C .1R, a chosen compact set, we choose # to satisfy

max {- g(z)} }(36) p _> max i,
{c,’:}



TOOLS FOR SEMIGLOBAL STABILIZATION 1.451

Similarly, let K;s, a neighborhood of (0, 0), be the compact set we want the solutions
of the closed-loop system to be captured by. We choose p to satisfy

{ 1
inf {max{V(z) (-ft(z))2}}}(37) 0 < p <_ nin 1,

(,)tc,

With these choices, the function W(z,x) defined in (19) satisfies

(a8) w(, ()) <_ p V(z) < p (- (z)) <
(39) == (z, () /Cs.

Now, from Lemma 2.2, if u is chosen to be of the form

(40) u -Ksgn(9)x .-.Ksgn(G)[ 2(z)],

then there exists a positive real number K, such that, for each K _> K,, (22) holds
with 52(z,z) positive definite on the set {(z,z) p < W(z,z) <_ c2 + #2 + 1}. We
conclude that, for each initial condition (z(0), (0)) in ](:z x h:z, the corresponding
solution of (34), (40) is captured by the set {(z, ()" W(z, ft(z)) <_ p} and therefore
by/Cs. Since this holds for any compact sets t, K:t, and/, the semiglobal practical
stabilizability result follows.

Now, if y C(z) is an output function, the discussion above and the very special
structure of (40) yields the following result.

If the equilibrium point z 0 is semiglobally stabilizable by Ce (g >_ 2) and UCO
state feedback, with as control, and is UCO, then the point (z, ) (0, O) is

semiglobally practically stabilizable by Ce and UCO state feedback.
.Example 2.2 (almost disturbance decoupling). A solution to the almost distur-

bance decoupling problem as described in [25] can be obtained by repeated application
of Lemma 2.2 for systems that can be put in the following form:

h(z,z),
x2 / f (z, Xl, d(t)),
+ (z,,, d(t)),

r

(41)

z + f_, (z, xt, z-t, d(t)),
f(z,z,,...,z,d(t)) + g(z,x,...,z,d(t))u,

where the equilibrium point z 0 of i h(z, 0) is globally asymptotically stable and
where the sign of 9 is constant and the magnitude of 9 is bounded away from zero.
This is illustrated by the following example (compare with (7))"

(42)
2 x2+d(t),
ic2 xd.(t) + da(t) +u,
y Xl,

where dl (t), d2(t), d3(t) are unknown bounded disturbances The problem is to achieve

IXl (t)l _< < 1 asymptotically from arbitrarily large domains of attraction. Without
loss of generality we assume I&(t)l < .

Assume the initial conditions satisfy Ixi(0)l 2 _< c. We first consider the interme-
diate subsystem

(43) , u + d (t).



1452 ANDREW TEEL AND LAURENT PRALY

If we choose the control Ul -/lXl, and the Lyapunov function candidate Wl(Zl)
z, then for the intermediate closed-loop system

(44)

we have

1 ’-KlXl q- dl(t)

(45) /r1(44 -2Xl [/1Xl d],

Wl(x.)} x {Idl 1} We thenwhich is negative definite on the set {x (_ 1).
choose

2
(46) K 1 +-

so that 11(4) is negative definite on the set {x" @ W (Xl)} x {Id] 1}. We now
make the coordinate change x + KlX to get the system

(47) 4 + (; + + da(t).

By applying Lemma 2.2 with ’0 p- , we get the final control

(48) u -Ki -Kze KKx

and a Lyapunov function candidate

#1W1(x1) #22

(49) W2(xl, ) +
#1 -- 1 "--Wl(Xl) 2-- 1 --.2’

where #1 c and #. is so that the initial value of satisfies 2 <_ #2, i.e., #2
(1 + K1)2c. We then have that the initial condition satisfies lV2(xl, ) <_ # + #.
Also, we know that, for/(2 large enough (see [41] for an explicit expression), the time
derivative of W2 is negative definite on the compact set

(50) { (Xl’ ’)’T W2(Xl’ ) //’12 @ I/’22 +

Therefore, the solutions, with Izi(0)l
<_ -}, contained in the set

It is important to note that, with our controller (48), we do not have the vanishing
regions of attraction phenomenon as described in [21] and [25]. Indeed, in these papers,
the same type of high gain controller is proposed but with the implicit constraint that
/(2 K1. Here, instead, our iterative design leads to gains such that the ratio

K2/K tends to infinity as K1 tends to +co. However, although zl and can be
made ultimately arbitrarily small, z2, called the peaking component, remains of unity
magnitude as long as dt is present. For a discussion of the peaking phenomenon in
feedback systems, see [a6] and the references therein.

Finally, we remark that, if dl (t) has a known bound (see our notation section), by
applying our forthcoming robust observer tool, Lemma 2.4, the almost disturbance
decoupling problem for the system (42) can be solved semiglobally by output feedback.
(See [41].)
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It is possible to handle a block of integrators in one step, instead of iterating
the application of Lemma 2.2, when the system has the structure described in the
following lemma.

LEMMA 2.3 (semiglobal backstepping II). Consider the C nonlinear control sys-
tem

(5)

h(z,,d(t)),
gl x + f(z,x,d(t)),
2 X3 zr- f2(z, Xl, d(t)),

2j-.-I xj + fj_l(Z,x,d(t)),
dcj u + fj(z, Xl,d(t)),

where x (xl,..., xj)T E IRj,, z IR". Suppose Assumption ULP is satisfied. ".Let
the polynomial

(52) p(8) 8
j + aj8

j-1 +... Zr- al

be Hurwitz and let Ac be the companion form matrix corresponding to p(s). Also let
Pc solve the matrix equation .A[Pc +PcAc -I. For K >_ 1 to be specified, define
the variables

Xi(53) , i- ,... ,j.
Ki-1,

Then given # >_. 1, define the flmction
V TPc(54) W(z, ) c + #

c + 1 V # + TPc
and the set

(55) 3 {z V(z) < c + 1} x {c. Tpc < p + 1}.

Under these conditions, W(z, ) [ ]R>_o is proper on . Also, if

(56) u .-Kj(al +’" + ajj)

then, for each strictly positive real number p, there exists a positive real number K, 1
such that, for all K K,, W satisfies

(57) ) -+(,),

where 2(z, ) is continuous on 2 and positive definite on the set {(z, ) 0 + p
W(z,) c + + }.

Proof of Lemma 2.3. With the control (56) and the coordinates defined in (53),
the closed-loop system becomes

where

(59) F(z,,d)

h(z,,d(t)),
KAc + FK(Z, l, d(t)),
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From here, if we replace {Tpc{ in (54) by U(s), then we can follow the proof of
Lemma 2.2 with the only modifications being that, in (27) and (aa), .= is replaced
by 1/2T, xf by {TpcFK, and b 1. The fact that .FK(Z, {l, d) depends on .K is
immaterial because, for K _> 1, {TPcFK can be bounded by a continuous fllnction
which is independent of K. cq

Remark 2.2. Lemma 2.a is used in the same manner as Lemma 2.2 in Example
2.1. One difference is that the free parameter # is chosen so that the initial conditions

{ Pc{ <_ # with . defined as in (53). The parameter # thus appears toof x satisfy T

depend on K. Hovever, for K _> 1, we have

/max {Pc }(60) XTpcx
_
# Tpc [.t

,min{Pc}
where the left-hand side can be achieved independent of K. Nevertheless, the in-
equality (57) will not guarantee that z ultimately becomes small but only that (z, {)
ultimately becomes small. As mentioned in Example 2.2, the coordinates z are called
peaking coordinates.

Ezample 2.3 (observer canonical form). We have used Lemma 2.3 as a tool in [42]
to design a semiglobally stabilizing output feedback for the following class of systems:

h(z,x),
dcl x2 + fl (z, X1),

5c.,. u + fi.(z,x),
y Xl

under a global minimum phase assumption (the point z 0 of the system h(z, 0)
is globally asymptotically stable) and a small gain-based assumption which guarantees
local convergence. Here, h and fi are C and u in IR. The special form of (61) permits
a technique for output feedback stabilization different from the one mentioned at the
end of 1 and used in the proof of Theorem 1.2. Here, on the contrary, we design the
observer first, then we define the controller in such a way that the stability it provides
is robust to the estimation errors. Our algorithm is inspired by the global results in

[17], [26], [27], and [29]. We begin by building the dynamic compensator

Xl 22 +I.(Xl :1),
(62)

Xr U -Jr- .r(Xl gl ),

where the coefficients g,i are the coefficients of a Hurwitz polynomial.
ei xi 2i we get the error dynamics

If we define

(63) Aoe + F(z, xl ).

We choose to consider the dynamics

(64) Aoe + F(z, O)

as an augmentation of the zero dynamics h(z, 0) so that the equilibrium point
(z, e) (0, 0) of the augmented system

h(z,O),(65) Aoe+F(z,O)
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is globally asymptotically stable. This follows from the cascade structure and that
the state e is input-to-state stable with respect to the input z. (See [35] or Lemma
4.1.) Now we consider the complete system

(66)

h(z,z),
Aoe+F(z,x),
c + e2 + f(z,x),
3 +

It is in the form (51), and we can apply Lemma 2.3 to construct a controller depend-
ing only on x, 22,..., 5:r and achieving bounded trajectories from a given compact
set of initial conditions. Local exponential stability of the point z 0 of the sys-
tern i h(z, 0) is a sufficient condition to guarantee convergence to the equilibrium
(z, e, x1,22,... ,2r) (0,. 0). This condition can be relaxed by using the tools of
4.

When the output feedback stabilization problem is approached from the point of
view discussed in 1, a linear high gain observer is introduced to get approximations
of the derivatives of the output. The high gain paraneter is tuned according to size
of the compact set of initial conditions and the stability robustness that would be
achieved by the state feedback controller. However, the linear high gain observer
introduces possibly very large values of the state estimate over a short period of
time. As already noted, this means that during this short period of time, the state
estimate makes no sense and should be disregarded. This was achieved in [11] by
saturating the control when the estimates had a value which was known a priori to
be unreachable within this period of time by the actual state. The success of this
modification was demonstrated by using a singular perturbation approach. However,
the result seemed to require a form of nonlocal exponential stability [11, Assump. 2].
Even the more general interconnection conditions of [30] on which this assumption
is based are too restrictive for the problem of boundedness (only) of solutions from
compact sets. These assumptions mix the local and nonlocal analysis while weaker
assumptions can be imposed if these aspects are handled separately. The next lemma
demonstrates this.

LEMlVIA 2.4 (robust observer [11]). Consider the C nonlinear system

h(z, d(t)),(67) LAoe+p(z,e,d(t)),

where z IRTM, e IR, and L is a strictly positive real number. Suppose Assumption
ULP is satisfied and let

(68) r= {z. V(z) <_c+ l}

Also assume the matrix Ao is Hurwitz and there exist positive real numbers 1 and .
and a bounded continuous function "y with "y(O) 0 satisfying

(69)
Ih(z, e, d) h(z, O, d)l ([el)

Ip(z, e, d) <_ /]1 + P21 el
V(z, e, d) F x IR x D.
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Let #(L) be a class-Ks function satisfying

L
(70) lim inf

L- p4(L)

Let Po solve the matrix equation AToPo + PoAo -I and, finally, define the function

V(z) ln(1 + eTpoe)
(71) W(z e) c + #(L)

c + 1 V(z) #(L) + 1- ln(1 + eTPoe)

and the set

(7) 2 {z V(z) < c + 1} {e "ln(1 + eTpoe) < #(L) + 1}

Under these conditions, for each strictly positive real number L, the function W(z, e)
J2 -- lR>0 is proper on _. Also, for each strictly positive real number p, there exists
a positive real number .L, such that, for all L >_ L,, W satisfies

(73) 1(6) <_ -(z, e),

where (.(z,e) is continuous on J2 and .positive definite on the set {(z,e) ) + p
W(z,e) <_ c2 + #2(L) + 1}.

Remark 2.3. The motivation for allowing # to depend on L, in contrast to the
previous two leInmas, is to allow the initial conditions of e to possibly depend on L.
If the initial conditions of e can be bounded independent of L, then

1. the bounds in (69) are not needed,
2. p can be chosen independent of L and the function ln(1 + eTPoe) in (71) can

be replaced by eTpoe.
Examples 2.4 and 2.5 demonstrate situations where the initial condition of the obser-
vation error can be bounded independent of L.

The motivation for the choice of the function In is that for our problem, as will be
seen later in the proof of Theorem 1.2, we wish to allow initial conditions of e to be
of order L. This requires that we choose a Lyapunov function U(e) and a function
#(L) satisfying the limit (70) and such that, given a strictly positive real number
we have

(74) I1-< ,kl ==::> V(e) <_ #(n)

For instance, if we choose #(L) ln(1 + AL()), with any strictly positive real
number, then the limit (70) is satisfied since we have

8
(75) lim cx VA2, a, a2 > 0

--,o in(1 + As)a

Then, with the appropriate choice of 2, (74) is satisfied if we choose U(e) ln(1 +
eTPoe). The choice of In in turn requires the special form of the bounds imposed in.

(69).
With this remark, we see that if we disregard the issue of ultimate convergence,

we recover the result of [11, Thm. 2].
Proof of Lemma 2.4. We follow the lines of the proof of Lemma 2.2. We begin by

replacing ln(1 +eTpoe)in (71) by U(e). Assume that W(z,e) <_ c2 +#2(n)+ 1. From
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(24) and the definition of F in (68), this implies, for any L, that z is in F. Hence from
Assumption ULP and the bounds in (69) we can write

(76)

?() <_ -,(=)+-(11)
V(z, , d) e r n x D,

) <- ,+’-o [-nll +em{Po}tl(’ll +

where P3 is a positive real number which bounds - on the set F. Such a bound exists
because V is C and F is compact. Then from (71), (25), and (76) we can write

(77)

Now fix L. so that #(L.I) c2 + c + 1. Such an L.1 exists because #(L) is of
class-K. Then, using the bounds from (24) and (26), using c _> 1 from Assumption
ULP, and choosing L _> L. we have

1
< c(c + 1)(78)

(c/ 1-V)2 4 24.

Thus we (:an rewrite (77) as

(+i) {t}V’(67) 4 (c+l.V}) --(I)l(Z) / -3(le
(79)

#(# + 1) 1 [ L
+ [(# + )- 1 + Po el + 4Amx{Po}le[(alel +/21)

Since (c(c + 1))/((c + 1 V)2) is positive and bounded away from zero on F, it suffices
to consider the expression

(80)
.()(.()+) lel@l(z) //233’(lel) + ((L)+i.U(e)). l+eTpoe --2.(L) + 4.max{Po}lel (/221el //21)

We are interested in evaluating this expression on the set

(81) AL {(z,e)"

We do so by considering the two sets

(82) A-" {(z,e):V(z) <_c+l, l<U(e) <lt(L)+l},
(83) Ao-" {(z,e):V(z) <c+l,U(e)<_l}

n {(,).O+p<_ cV() }. + i V(z) + u(.)

and by observing that AL is contained in A U A0, since we have

(84) {U(e) <_ 1, tO + p

_
W(z e)} ’0 + p <_ cV(z) +u().

c/l-V(z)

In the set A1, observe that the limit (70) holds, z is contained in a compact set
(+)independent of L, the function /(lel) is bounded, and (.+_u(e))_ is bounded away
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(+1)from. zero from (26). We do not use the upper bound on +l-u()) from (26) which

depends on/5. Finally note that the function V+ is positive and bounded away
from 0 on A1. Thus, by examination of expression (80), it follows that there exists
a positive real number /",2 such that, for each L >_ L,2, the function I(67) can be
upper bounded by a function, of (z, e) which is negative definite on A1.

In the set A0, to check that W(67) is negative for all (z, e, d) A0 x D, we apply
Lemma 2.1 to the expression (80). We remark that, for L _> g,, we have

(85) min { #(#+1) }=0_<u_< (#+l-U)2 #+1’ o.<_u.<_ (#+l-U)2 -<

It follows that to know the sign of the expression (80), we can look at (9) by taking

(86)

and g(.) any class-K function satisfying

L
(87) (L) <

2#3(L)(p(L)+ 1)

Such a function exists because L/(2#a(L)(#(L)+ 1)) > 0 for L > 0 and (70) holds.
The set S in Lemma 2.1 is given by A0. It is independent of L and compact. The
respective projections satisfy

(88) Sz C{z’V(z) <_c+1) =F,

Then, from (86) and the properties of t, X(z) is continuous on S. and .(e) is con-
tinuous on S. Clearly, (e) is positive definite on S\{0}. Also, from the continuity
of y and the fact that /(0) 0, p(z, e) is continuous on S and

(89) p(z,e) =0 v(, ) e {(z, ). . o} n s.

To see that X(z) is positive definite on the projection of the set {(z, e)’ e 0} r-)S,
we have, with0_<0_< landp>0,

(90) {e-0 0+p_<
cV }o+-v +u() o<v().

So from Assumption ULP, X(z) is positive definite on the projection of the set {(z, e)
e 0} S. It follows that there exists a positive real number L, such that, for each
L _> L,a, the expression (80) can be upper bounded on S by the function

--e,(z) (L) 1 + eTPoe
which is negative definite on Ao since is positive. We then take L,
L,}. [3

max{L. ,L,,
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Example 2.4 (mechanical systelns). We consider the multi-input nonlinear system

(91) / f(q,r) +9(q,r)u,

where q E IR, r E IRn, u IR is the input and f and 9 are C. This system
could represent a robot model, for example. We assume the existence of a (dynamic)
compensator

(92) { u g(q,r,v),

with v Nt such that the closed-loop system

O-r,
(93) ? f (q, r) + 9(q, r)g(q, r, v),

C(q,r,g(q,r,v)),

which we rewrite, with z (qr, rT, vr)r, as

(94) i h(z, O)

satisfies Assumption ULP for some neighborhood .-1 and some function V, proper
on LI, with 0 and c arbitrarily large. Assumption ULP is satisfied if, for exam-
ple, the equilibrium (q, r, v) (0, 0, 0) is made (locally) asymptotically stable by the
compensator (92). To implement the compensator (92) without measurement of r we
build the observer

(95) L2e2(q

where L is an adjustable parameter and gl, f2 are coefficients of a Hurwitz polynomial.
We implement the compensator

(96) { )

where

C(q, zx(/),
zx(/),

(97) A(/)- ? min { 1 ’l l’r n x }
and rma is the maximum value of trl on the set r {(q, r, v) z V(z) <_ c + 1},
where V(z) and c come from Assumption ULP. This idea for the modification of the
compensator is based on the idea in [11]. We choose to saturate the state ’ rather than
the entire control u and compensator C because the state r has physical significance
and thus determining rmax in the region of interest should be quite natural. Compare
with equations (116) and (139) in the proof of Theorem 1.2. If we define the error
state

(98) eq "-- L(q O) er "- r /,

we have the error dynamics

q Let Lgl eq,(99) r -Leeq + f(q, r) + 9(q, r)’Ct(q, A(r er), v)
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and we can apply Lemma 2.4. The bounds in (69) can be readily checked and follow
from the introduction of A in the compensator (96). Consequently, by choosing c large
enough, the modified compensator (96) together with the observer (95) can be used.
to yield bounded trajectories from the compact set of initial conditions K;1 x (0,) C

IR2+t IR2, where/l is any compact subset of bl.
As pointed out in Remark 2.3, the bounds in (69) are required because the initial

conditions of e grow with L. Specifically, eq L(q-0). However, observe that it may
be reasonable to initialize the value of 0 such that 0(0) q(0) since q is measured.
In this case, the initial condition of e is (eq(O) 0, e(0) r(0)- /(0)) which is
independent of .L. As mentioned in Remark 2.3, in this case the bounds in (69), and
hence the function A in (96), are not needed. Nevertheless, if this initialization cannot
be done exactly, then the function A should be retained.

It would also be possible to build a reduced-order observer for this system. Con-
sider the state s r Lq. We have

( 00)
(101)

f(q, r) + 9(q, r)u Lr

f (q, r) + 9(q, r)u Ls L9‘q.

If we build the observer

(102) ?

then for the error e r- ?, we have

(103) f(q, r) + 9(q, r) Le,..

If we don’t specify the initial value of g, then we choose the modified compensator in
(96). If (0) is chosen so that 5(0) -Lq(O) then. e,(0) r(0) and the function A
is not needed. Let us also remark that the linear operator q -+ ? defined by (102) is
output strictly passive. This important property has been exploited in [5].

In all cases, if the original compensator (92) is locally exponentially stabilizing
then the conditions of Lemma 4.1 will be satisfied and asymptotic stability is also
achieved.

As mentioned earlier, the ideas presented here have been investigated further in
[1] and [2].

Example 2.5 (the ball and beam). This example summarizes the result, of [37],
Consider the ball-and-beatn system

(104)

with three strictly positive real numbers G, M, and J, four state variables xl to x4,

and one control -. See [14] for an interpretation of the state variables and a derivation
of the dynamics. We wish to stabilize the system using measurement of xl and x3 only.
It can be shown that there exists a semiglobally stabilizing, and locally exponentially
stabilizing, control 2(x, x, x3, x4). See [39] for the case when M, J are known. For
the case where M, J are unknown but have known bounds, the procedure is to use the
results of [39] to get a result for the (x, x, x3) subsystem and then apply Lemma 2.2
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and Lemma 4.1 to get a result for the full system. See [37] for a complete discussion.
From the results of [22, Thm. 7], Assumption ULP is satisfied with 0 for the
closed-loop system with 5(xl, x2, x3, x4) as the control. To implement this control,
we build the observer

(105)

+Lg(z-),
-Gsin(x3) + L2/2(Xl 1),
4 + L (z3 3),
L22(x3 23),

and ve let

(106) T --t(Xl,22,X3, Z(24))

where A is defined as in Example 2.4. Note that A does not need to act on 2o- because,
coincidentally, a can be chosen so that the z. dependence is already bounded. Again
we choose to saturate the state 24 instead of the entire control r because the state z4
has physical significance. If we define the observer error

(107) el L(xl 2l) e2 X2 22 e3 L(x3-- 23) e4 X4 24

we have the error dynamics

(108)
do_
d3

Le2 Lg.le,
-Lgeet + xtx4,
Le4 Lge3,
-ce  3 + zZa l

The bounds in (69) are satisfied and we can achieve bounded solutions from any
compact set of initial conditions (x, 2). Furthermore, since 2 is locally exponentially
stabilizing, asynptotic stability is also achieved.

Note that, as for the system in Example 2.4, we could choose the initial conditions
of 2 and 23 so that el (0) 0 and e3(0) 0. This is possible because xt and x3 are
measured. This, in turn, would remove the need for introducing the function A in
the control . Building a reduced-order observer is also possible.

3. A generalized version of Theorem 1.2.

3.1. Assumptions and results. The proof of Theorem 1.2 follows from an
appropriate application of Lemmas 2.3 and 2.4. An even more general case can be
considered. Indeed, let the control system be5

f A(z,u,d(t)),(109) y C(z,d(t)).

We assume only that the point z 0 is semiglobally practically stabilizable by UCO
static state feedback, as in the following assumption.

Assumption S-GPS. There exist two integers N.u and N.,, so that, for each pair of
compact sets (/8,/t), neighborhoods of 0 and with K C K, we can find

5 May be augmented with the dynamics of a controller in the case of a dynamically stabilizable
system.
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1. a positive C function V, zero at 0, which is defined on U, an open set
containing/zt, and such that there exist three positive real numbers 0t, cs, and c
satisfying

(110) Cs < Cl, {z. V(z) <_ 0} c lC., c {z W(z) <_ c}

and so that the set {z" V(z) <_ ct} is compact and contained in
2. a C2 function 2(z) which is zero at 0, is defined on [, and is UCO (i.e. (115)

holds) with n.v <_ Ny, n,, <_ N,, such that, for the system

(111) ;; A(z, t(z), d(t)),

we have

(112) 11,) _<-q)(z),

where (I)(z) is continuous on [ and positive definite on {z )s _< V(z) <_ cz} for some
real number 0 satisfying

(113)

The meaning of this assumption, as we shall make precise later, is that, once a
pair of compact sets (1(:, z) is chosen, we know the existence of a UCO control law
g so that Assumption ULP holds for the system (14). We shall prove the following
proposition.

PROPOSITION 3.1. If Assumption S-GPS holds then the point z 0 of the system
(109) is serniglobally practically stabilizable by dynamic output feedback.

Proof of Theorem 1.2. If the equilibrium z 0 of the system (2) is globally
stabilizable by a C2 state feedback g(z), i.e., z 0 is a globally asymptotically stable
equilibrium of

(114) A(z,’fi(z)),

then, according to the converse Lyapunov theorem [22, Thm. 7], there exists a C
function V defined on R" which is positive definite on IR’\{0} and proper on IR so
that 14) is negative definite on IR’\{0}. It follows that point 1, (112), and (113)
in Assumption S-GPS hold for any pair of compact sets (K;z, ). Therefore, if ft(z)
is also UCO, Assumption S-GPS holds. Thus Theorem 1.2 follows from Proposition
3.1.

3.2. Proof of Proposition 3.1. Our idea for proving Proposition 3.1 is, instead
of using g(z) which cannot be "measured", to use an approximation ’. To get this
approximation, we use the fact that 2 is UCO, i.e,,

(115) 5(z) II/(y, y(1) y(n) %t, it(1) ...,
Following [43], the control u and its n, derivatives can be obtained if we augment
the dynamics of the controller. But for y and its n derivatives, we shall need an
observer. Our proof is made in three steps. The first two stepsdirty derivatives of
y and dynamic extensionconcern the dynamic output feedback design. In the third
step, we shall establish practical stability.

6 Note the strong requirement that is independent of d.
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For the first two steps of this proof, the compact sets K:s and K:zl are arbitrary
but fixed So from Assumption S-GPS, , V, and [ are given. Then, the following
real number is well defined:

(116) max max {I.5,(z)l}
{-:v(-)<_

And, by picking 0 as an arbitrary real number in (0, 1/8), let be a C class-K
function satisfying

(117) (s) =, (t) k80, (c) kl, (ct) > l+(c).
This function exists since our assumption gives

(118) 0 < < ’0t c < c.
Then we let

(119) V(z) t(V(z)),
So Assumption ULP is satisfied and we have

(120) {z: Vl(z) 801} C ]zs,

Let us also pick p as

(121) P= 2"
3.2.1. Dirty derivatives of the measurement. With ny the number of deriva-

tives of y needed in (115) to reconstruct 2, we see, by induction on the order of deriva-
tion (see also the notation section), that there exist ny + 1 smooth functions Ci, and
an integer rn _< n. such that, for each solution of

(122)

A(z, uo, d(t)),
t.0 ttl,

we have, for all t where the solution makes sense,

(123) y(i) Ci (z(t), uo(t), u, (t), d(t)) i- 1,...,ny + 1.

Then, for the system

(124)

y(1),

C,+ (z(t), uo(t) u (t), d(t)),
we can propose the following approximate observer:

Y0 yi +

Yn.,-- Y +

Leo

L.e.._ (y- o),
L’n -F eny (’1-- 0 -t- Cny + O, to rn, O

with the .fi’s chosen as the coefficients of a Hurwitz polynomial associated with a
matrix Ao and the real number L to be specified later. It is important to note that
(125) is not a true observer since (.g,y(t), y()) is not a solution of (125).
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3.2.2. Dynamic extension. To reconstruct , .we need to know n derivatives
of u. Similarly, to implement the above observer, we need rn derivatives of u. So, by
letting7

(126) lu max{n,m} + 1

we see that, by adding l integrators to the system (109) to be controlled, we shall
have u and its required derivatives as measured state components of the system

(127)

A(z,o,d(t)),
0 ttl,

’tl. V.

To design the control v for this augmented system we can use Lemma 2.3. By letting

with K a positive real number to be specified later, we get the system

(129)

A(z, ft(z) + 1, d(t)) h(z, 1, d(t)),
[ 2 cg(t (z)A(z t(z) -+- 1, d(t))
K 3,

/(1--lu v,

which is in the form of the system (51) written in the Ci’s coordinates. As we men-
tioned earlier, Assumption ULP is satisfied by the system

(130) i h(z, O, d(t))

Then we choose coefficients, ai’s, of a Hurwitz polynomial associated with a matrix

Ac. Let Pc be the solution of

(131) AYPc + Pc A -I

Let be an arbitrary compact set where we choose to initialize . We let

(132) #l--max{I, tcmax{rpcC}}
Then Lemma 2.3 gives the bound K,, the intermediate control

(133) V -Kl(all .+... + al,l.,)
-Kt (a [uo (z)] + a.,,. +... + at,t)

and the intermediate Lyapunov function

Tc v (z) P(134) W(z,) +
c + l- V(z) # + l--rPc

In fact the result holds with lu max{nu, rnu} but such a. choice leads to more complicated
notation.
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We have

() w(z, ) <_ + #
and, for K >_ K.,

(136) tl (5.27,133) -l(Z,),

where (I)l (z, ) is positive definite on {(z,)" 01 + p _< Wl(z,) <_ c + lz + 1}.
For future use we define the set

(137) F {(z,) Wl(z,) <_ c’ + # + 1}

This set is compact. (See (24).) We also define the real number (:2 c + #. To
summarize, by denoting by Z the state vector (zT,T)T, we can write the system
(127), (133) as

(138) 2 .Ho(Z,d(t))

and we have that Assumption ULP is satisfied for this system with V Wt, 0 01 +p,
and c c2.

3.2.3. A dynamic output feedback. To summarize our design, we can pro-
pose the following dynamic output feedback for the system (109)"

(139)

Yo yl + Lgo (y o),

Y.,._,=Yn + Lgn..--, (Y- o),
Y’nu Lnu+lenv (y-.o) +Cn.,+t (O,u,K2,...,K’m+,O),

-Kl" (a, [u-- A()] + a22 +... + alu i.u.),

where

(140)

and

max(141) A(s) s min 1,

with max given in (116). This function A, already encountered in Examples 2.4 and
2.5, is one of the many possible ways of disregarding estimates when they are not
in a given compact set and therefore make no sense. More specifically, this function
guarantees that the assmnption of Lemna 2.4 holds. And, in. particular, we have

(142) I/(’-Sl)-- (82)1

______
min {I8] 821, 2max}
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It would also be possible to saturate each component i independently. See Examples
2.4 and 2.5.

For the controller (139), we have chosen the is and is as coordinates for its
realization. Indeed, it is for this state that we shall be able to prove the practical
stability.

Finally, note that we cannot implement the controller with t as one of its state
components since ’i involves unknown quantities.

3.2.4. Practical stability. To study the closed-loop system (109), (139), we
use the coordinates Z (zT, T)T and e where

(143) ei=L-i (y(i)-’i).
The closed-loop dynamics can be written

f 2 H(Z,e,d(t)),(144) LAoe+.=.(z,,d(t)),

where -e(z, , d) is a vector whose components are zero except the last one which is

(145)
=.(z,,d)n Cny+l (Z,l + ,(z); K2,...

This system is in the form (67) considered in Lemma 2.4 with the Z dynamics playing
the role of the z dynamics in that lemma.

From the conclusion of the dynamic extension stage and the facts

(146) e=0 =g(z), Z F H(Z, O, d(t)) Ho(Z, d(t)),

which follow from

(147)
(148)

Z r V(z) <_ c,

Assumption ULP is satisfied. We also have

(149) H(Z, e, d) H(Z, 0, d)

0

K a [A(t) A(g(z))]

But, with (123), (128), and the compactness of F and D, the following function on

IR>0 is well defined"

(150) (K,E) sup
(z,e,d,O,i,.L)8

Oenu 1 + (Z), t(2, I(n’ n,,, +

where

S r x {e "lel _< E} x D x [0, i] x {1,..o,nu} x [1, oc).
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Then, from (115), (140), and (142), we have, for L > 1 and all (Z,e,d) in FxIR(n+i) x
D,

(152) IH(Z,e,d)-g(z,O,d)l < Klail min{l-fi(z)l, 2fimax}
(153) <_ K lal[ min {(K, [el)[e[, 2max}
(154) <_

for some bounded and continuous function -y" IR_>0 -- IR>_0 satisfying 7(0) 0. Note
that /depends on K which is fixed at this stage. Also .=.(z, , d), given in (145), is
bounded on the compact set F x D by a positive real number i, independent of L
but dependent on K. Now, let Po satisfy the matrix equation

(155) ATpoo / PoAo -I.

Also let K:yt be a compact set where we choose to initialize the estimated derivatives
of y. Since, from (123), the y(i)s are bounded on/(;zt x EU x D, the following positive
real number is well defined and depends on K but not on L:

(156) k= sup {lY(i) -il}
(z,,(y),d)EICz xlCct xlCt xD

If we then choose

#2(L) ln(1 + ])max{Po}L2nv)
we have, for the initial condition e(0),

(158) ln(1 + eT(O)Poe(O)) <_ #2(L)
and the limit (70) is satisfied. So Lemma 2.4 gives us a bound L., depending on K,
and the final Lyapunov function

w(z)(159) w:(z,e)
c + 1- wi(z) + #2(L) ln(1 + eTpoe)

p(L) + i in(l + eTPoe)
so that for L >_ L., we have

(160) #:(L) >_ 1

and

(161) I?. (144) -(I)2(Z, e),
where (I)2(Z, e) is positive definite on {(Z, e) 1 +2p _< W _< c +#2(L)9 + 1}. Since
the set zt x t x vt is contained in {(Z, e)" We c + pc(L)2} and p , we
conclude that the solutions initialized in t x t x vt remain forever in the set
{(Z,e) We(Z,e) c + e(L)e} and are captured by the set {(Z,e) W(Z,e)
2i}. Then we remark that, cl, pl, #2 being larger than 1, we have

(162) (W2(Z,e) 201) (eTpoe exp(401)- 1, Tpc 80i, Vl(Z) 801).
Since the real number O1 can be chosen arbitrarily small and (120) holds, we have
proved the following.

For any pair of compact sets (zs,z), neighborhoods of O, with zs C z,
we can find compact sets (vs,s) and (yt,U); gains s; as; a bound K.; a
bounding function L.(K); integers l, ny; and functions , A, so that, for each
K K., L L. (K), the dynamic output feedback (139) in closed loop with the system
(109) makes all the solutions, with initial condition in zt x x U, be captured by
the set x x .



1468 ANDREW TEEL AND LAUF[ENT PRALY

4. The small gain theorem for asymptotic stability. Up to this point we
have focused on boundedness of solutions only However, we have constructed Lya-
punov functions to guarantee that, in appropriate coordinates, the states become
ultimately arbitrarily small. Now, if the linear approximation in these coordinates
is exponentially stable we are effectively done. If the linear approximation is not
exponentially stable, then the problem reduces to studying the local stability on the
center manifold. See [8]. Because the center manifold analysis can be quite involved,
we choose to develop a sufficient condition, other than exponential stability, that can
be checked a priori.

Our approach will be to appeal to the notion of "small gain." We will state here
a version of the small nonlinear gain theorem, expressed in terms closely related to
the nonlinear L-gain from input to state. This is inspired by Sontag’s input-to-
state (ISS) stability definition [33]. We start with the following definition and give an.
illustrative fact.

DEFINITION 5. ’he system

( 63) h(x u, t)

with x E IRn, u IRm, and t lR>o is said to be uniformly (e,5) input-to-state
stable (uniformly (e, ) ISS) if there exist a class-KL function ,, a class-K function
/, called the gain, and strictly positive real numbers , such that, for each to >_ O,
for each initial state x(to) Xo satisfying Xo <_ and for each measurable control
u(.) satisfying lullto <_ e, the solution of (163) exists for each >_ to and satisfies

(164)

FACT 4.1 ([35],[20],[45]). For the system (163)
1. if h does not depend explicitly on time and the equilibrium point x- 0 of the

system

(165) 2 h(x, O)

is locally asymptotically stable, then the system is (uniformly) (e,
2 if Oh (x O, t) "is bounded for sufficiently small x uniformly in h(x,

locally Lipschitz in (x, u) uniformly in t, and the equilibrium point x 0 of the system.

is uniformly locally asymptotically stable, then the system (163) is uniformly (, 5)
ISS. Moreover, if x 0 of (166) is locally exponentially stable then 7 can be taken to
be of the form 7(s) ks, for some positive real number k, and/ can be taken to be

of the form/(s, t) bse-at, for some strictly positive real numbers b and a.

Proof. See the appendix.
Remark 4.1. For the local exponential stability case, this result was presented in

[45]. For the time i.nvariant case, the result is essentially contained in [35, Thm.
For the case where h is differentiable, the proof of this fact can be constructed from
theorems in [20, 4.5.2].

The local asymptotic stability of the equilibrium point of interconnected uniformly
(e, 5) ISS subsystems can then be analyzed using the following result.
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LEMMA 4.1 (small gain). Consider the feedback interconnection

/ al hl(x,ul,v,t), ui x2,
(1)

ic h(x, u, v, t), u x,

with x e lRTM for 1, 2 and v E IRm. Define x (xT, xT2 T. Assume hi is locally
Lipschitz in (x,u,v) and piecewise continuous in t. Assume the ith subsystem is

uniformly (e, 5) ISS with respect to both u and v (characterized by , , , /, /?
and ).s

Suppose there exist strictly positive real numbers w and A such that9

(IS)
(1 +) o (1 + )() _<

Under these conditions, the feedback interconnection is uniformly (e, 5) ISS.
More specifically, define

(s) (I+A-1) I/l(s,0)(169) 2(s) (I+A-1) 2(s,0)+
() () + (s)

(1 + A-)(1 + A-1)(2(s, 0))))
(1 + A-I)(1 q- --1)(1(8, 0))))

and

(7o)
(1 + A-1)(’y + "y o (1 + A-1)(1 + A)(7))(s),
(1 + A-1)(3, + 3’* o (1 + A-1)(1 + A)(7’))(s),
() + (s).

Then, for any pair (, 5) satisfying

(171) e_< min{e,e} U0() + r(e) < min{5, 52, e e, co}

and for each class-K function a there exists a class-KL function 3 such that, for
each to >_ O, for each initial state satisfying Ix(to)l <_ 5, and for each measurable input

v(.) satisfying [[v[]to <_ e, the solution of (167) exists for each t >_ to and satisfies

(172) Ix(t)l (Ix(to)l, t to) + (r + )(llvllo).

If each subsystem is uniformly globally ISS and inequality (168) holds for all s

[0, ec), then inequality (172) holds for all initial conditions and all measurable inputs

Proof. See the appendix. [3

Remark 4.2. 1. Notice that when Ivllto 0, the lemma provides an asymptotic
stability result. For the local case, this lemma can be seen as a generalization of [7,
Lem. 4.13] where, there, "Y2 0. In the global case, this lemma is a generalization
of the result that the cascade of an ISS system and a globally asymptotically stable
(GAS) system is GAS.

2. This lemma is a form of the small nonlinear gain theorem (see [10]) which
includes explicitly the effects of initial conditions. Its condition (i68) was introduced
in [24]. For other purely input-output results see [24] and [32] and the references

For example, Ixl(t)l _< 31(Ix1(to)l,t- to) -I-(llulllto)/’Y(llvllto).
See Fact A.2
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therein. In [16], a generalization of this lemma is presented dealing, in particular,
with practical stability and the input-output case.

To make this small gain result more efficient we remark that [20, Thm. 4.10],
reproduced here, gives us a way to compute effectively the gain function 3’.

LEMMA 4.2. Let B be the set {x ltl. Ixl <_ r}, V lR>0 x B IR
be a C function, ct, a2, c3, and a be class-If functions defined on [0, r], and
h B;2 x B x lR>_o IRY be piecewise continuous in t and locally Lipschitz in (x, u).
Assume e satisfies

(173) ([ O;-l((yl(ol(r)))

and, for all >_ O, for all (z, u) in B By, we have

(174)

and

(175) Ixl > a5(lul)
c)V OV

+ h(x, <_

Under these conditions, the system

(176)

is uniformly (, 5) ISS with,

(177) ( O1 ((Yl (r)) (S) O-1 ((t2((25(8))).

Furthermore, if ci(s) kis, for 1,..., 3 and some k.i > 0 then

(178) 8(s,t)= sexp -t
Ezample 4.1. Let us consider the systen

_z3 + y,
(179)

l u zlzl
where j is some nonnegative real number. We can apply Lemma 2.2 to deduce that
the point (0, 0) is semiglobaJly practically stabilizable by the output feedback

(180) u .-Ky

with K large enough. To study whether we have asymptotic stability, we check to see
if Lemma 4.1 applies.

First we consider the system

(181)

To get an expression for 71, we apply Lemma 4.2. We have

(182) 1/2Xl(181)-- _.2;41 ql_ 2 /1,1

_7 3
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It. follows that

(184) /a (s) 2s1/2, el 51 +.oc.

Similarly, for the system

(185) 22 -Kx2 + u2lu2lj

we get

1
(1.86) /2 (8)

Therefore by choosing K large enough, we can meet the constraint (168) for some
strictly positive and w 1 if

(187) j >_ 2.

In this condition, we know that the equilibrium (0, 0) of (179) and (180) is locally
asymptotically stable.

In fact the condition (187) given by Lemma 4.1 is not: necessary. Indeed, we have

(188) - -Ky2 --Izlj+4

(179)-(180)

This implies global asymptotic stability for all nonnegative j.
Ezample 4.2 (A continuation of Example 2.1). Consider again the system (34)

of Example 2.1. We have seen that the semiglobal stabilizability of the z subsystem,
the definite sign of G, as well as the existence of a lower bound for G, are sufficient
conditions for the existence of semiglobally practically stabilizing feedback.

We study now whether we have not only practical stability but also asymptotic
stability when

(1.89) A(0,0)=0, g(0)=0, F(0,0, d)=0 VdeD.

For this study and with the notation of Example 2.1, consider the system

(190) ic f(z,x,d(t)) + g(z,x,d(t))(-Ksgn(.q)x)

with input z and a disturbance d. We consider the analysis on the set

(191) B(5) {(z,m) maxIIzl, lxl} 5},

where 5 is some strictly positive real number. Because of smoothness, compactness
of D, and the definition of f, we can write

(192) V((z, x), d) e B(5) x D,

where /f is any class-K flnction satisfying

(193) /S(s) _> max {IS(z, 0, d)l)

and kl is some positive real number independent of .K. Recall also that b <_ Igl IGI.
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We show now that the system (190) is locally asymptotically stable when z 0
and that it has the uniform (e, 5) ISS property with respect to z. Indeed we have, for
((z,x),d) B(6) x D,

(194)
(195)

1/2’(190) -.[4bx2 --F Ixl[ Ixl / S(Izl)],
<_ -x -Ixl [(Kb- 1)lxl- f(Izl)]

So, from Lemna 4 2 we have established that for K > b
uniformly (ex, 5x) with

the system (190) is

(196)
/f x <:2

()
__

()
/x(s,t) sexp(-t)

On the other hand, we notice with Fact 4.1 that the asymptotic stability assumption
for the z subsystem implies the existence of a class-K function /z and two strictly
positive real numbers 52 and ez such that the system (see (35))

(197) /: A(z, ft(z) + x)

with x as input is (e, 6z) ISS with gain function Vz and class-KL function flz.
So let us assume the existence of strictly positive real numbers ,\, M, such that

1
(198) (l+)7zO-7S(s) <s Vs [0, w].

Then by imposing the constraint:

K>max’(l+’)M+l+kl k1+2"(199) I, b b J
the conditions of Lemma 4.1 are satisfied with

(00) a min(v, (1 + A)3’z()}

This result gives that the system

(201) 2
A(z, g(z) + x),
f(z,x,d(t)) + g(z,x,d(t))(-Ksgn(g)x)

has a basin of attraction for local asymptotic stability. Precisely, as shown with full
details in 5.2.3, there exists a strictly positive number 00 independent of K, such
that the basin of attraction contains the set

{(z,): I(z,x)l <

To complete our proof of semiglobal stabilizability under the condition in (198),
it remains to establish that the solutions of the closed-loop system are captured by A.
But this follows easily by choosing, in the design, the compact set so that K; C A
and picking/,2 large enough.
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5. A generalized version of Theorem 1.1.

5.1. Assumptions and results. As was done for Theorem 1.2, we prove here
a proposition from which Theorem 1.1 follows directly. W consider again the system
(109) under the following assumptions (see (145)).

(203) .(0, 0, d) 0 A(0, 0, d) 0 Vd D

and
Assumption S. We can find
1. a strictly positive real number c and a positive C function V which is zero

at 0, defined on b, an open neighborhood of 0, so that the set {z’V(z) <_ Cl} is a

neighborhood of 0. compact and contained in
C22 a flmction g(z) which is zero at 0, is defined on b, and is UCO (i.e., (6)

holds), such that

(204) 111)
where (z) is continuous on and positive definite on {z" V(z) ct} {0}.

PROPOSITION 5.1. Suppose the system (109) is so that Assumption S and (203)
hold and there exist strictly positive real numbers , M, such that

1
+ s [0,

where 0,(,) is a class-K function satisfying (see (145))

(206) 70,(,)(s) > max (z)A(z ,(z) d) IZ(z 0
(z,d)" Izls, deN

and is the (e, 5) 9ain, with respect to and uniform in d, of the system

( 07) + a(t)).

Under these conditions, there ezists a dynamic output feedback makin9 the origi of
the closed-loop system uniformly asymptotically stable with a basin of attraction such
that its projection contains any strict compact subset 4 {z" V(z) c}.

Proof of Theorem 1.1. As already mentioned in the proof of Theorem 1.2, there
exists a C function V defined and proper on N" and positive definite on N"{0}
and a C UCO control law so that Assumption S holds for any strictly positive real
number c. Also, this control being locally exponentially stabilizing, it follows from
Fact 4.1 that 7(s) in (205) is linearly bounded on a neighborhood of 0. On the other
hand, with the functions involved in (206) being at least C1, the function %,(,)(s)
can be chosen linear on a neighborhood of 0. Inequality (205) follows readily. The
conclusion of Theorem 1.1 then follows from Proposition 5.1.

5.2. Proof of Proposition 5.1.

5.2.1. Practical stabilization. Let us first notice that Assumption S implies
the existence of a. class-K function a so that

(08) U() (1) V(z).

Then, let us pick three strictly positive real numbers 0, t, and c so that

(209) 0 < 0t c < ct
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and define the following compact sets:

<_

We are in the condition where the controller design in the proof of Theorem 1.2
a:,,plies. So, for any strictly positive real number vl, and any compact sets
we can find, in particular, a real number K,1, a compact set

(211) F D zl {’TPc <- K,;sup {Tpc}}
and positive functions L,I(K), #,.(K), so that, for each K >_ K,1, L >_ L,I(K),
the dynamic output feedback (139) in closed-loop with the system (109) makes all
the solutions, with initial condition in/ x y x KCt, remain in the set {(z, , )
(z,) F, eTpoe <_ exp(#(L)+ 1)- 1} and be captured by

(212)

where Po is given by (155) and Pc is given by (131).
To study under which condition we have attractivity of a single point, we remark

that the closed-loop system is made of the interconnect,ion of

(213) ; A(z, t(z) zr- 1, d(t))

with:

(214) { KAc+ F.(z,,e,d(t)),
LAoe+.(z,,d(t)),

where E is defined in (145) and

(215) --(z,,e,d)

--57(z)A(z, ft(z) + 1, d)
0

0

From Assumption S, Fact 4.1 applies. So there exist a class-K function 7 and two
strictly positive real numbers z and ez such that the system

(216) i A(z, ft(z) + u,d(t))

is uniformly (ez, 6z) ISS stable with gain function 7. It follows then from Lemma 4.1
that local asymptotic stability can be proved if the (, e)-subsystem is also uniformly
(e(,),6(,)) ISS for some strictly positive real numbers e(,),5(,), and gain
satisfying a small gain condition like (168).

5.2.2. Input-to-state stability of the ((, e)-subsystem. With (115), (140)
and the function defined in (150), we have, for all e, K _> 0, and L >_ 1,

(217) V((z,),d) e F x D.
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Also there exists a positive real number ’4 satisfying, for all ((z, ), d) in the compact
set F x D,

(218) -a---(z)A(z, t(z) + d)- .-z(Z)d(z, (z), d)

So, with (142), (148), for all ((z, ), d) in F x D and all e, we have

(219)

Similarly, from. (145), we see that there exists a positive function C satisfying, for
K>_I,

IZ(z, , d) --(z, 0, d)l < C(K) K 1 V((z,),d) E r x D.

With (203), let 70,(,) be any class-K fllnction satisfying

(221) %,(,) (s) >_ max { Oft
z(Z)A(z, t(z), d)

We have, for all ((z, ), d) in F x D and all e,

--KT + 2max{P.}ll [//4 I1 + 0,(,)(Izl) + (K, I1) K la,

-Lere + 2Amax{Po}lel [/(K)Km" I1 /

Then, from the properties of V, there exists a strictly positive real number e(,e)
satisfying

(2.3) Izl <_ (,) z e z.
Let also

(224) r
Amx{P}

Then, with (211), we have

((z,) r, 1 _<. ).

Finally, definel

The second argument in the max guarantees the condition (173) of Lemma 4.2 holds.
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W have established that the condition

dED, z <_(,e) and

implies, for all K _> K.2 and L >_ L.2(K),

K eTe) {Pc ,max (Iz(227) T’Pc" + ePo e <_ -- (T + + (,max } -1- {Po}) "/0,(,e) I) 2

Then by applying Lemma 4.2, we see that, tbr K _> K.2 and L >_ L.(K), the
(, c)-subsystem is uniformly (e(,e), (,)) ISS with

5.2.3. Uniform asymptotic stability. With Lemma 4.1, we can now conclude
that the origin is a uniformly asymptotically stable equilibrium point of the closed-
loop system under consideration with domain of attraction containing

(229) 7= {(z,{,e)’O(I(z,{,e)l,K <min{cS(,e),6z, e(,e),e,,(l +

1. there exist strictly positive real numbers k, M, w such that

(230)
1

+ a) /z o _< w [0, =]

2. K and L are chosen to satisfy

(231)

K > max {K,1 /-k’,, 2 + 2 max{Amax{Pc}’/kmax{P}}(’max{Pc}+/k {Po}) I (1 + A) 2 }min Amin & ,Amin {Po

L > max{L.t(K),L.2(K)}.

In (229), the function O(s,K)is obtained from (169) as

(232)
(]51(8) ---(1+A-1)((S,0)+% ((1 +/--)(1 + /k--)((,e)(S,0)))),

02(S, K) (1 + ,-1)(fx(8, O -’1-")’(.,e)((1 +/-1)(1 + /--l)(z(8, 0))))
((8, K) 1.(8) --1-

where 7(,), dependent on K but not on L, and/3(<,.) are given by (228). From (228),
we see that there exists a class-K function g independent of K and L satisfying

(233) O(s, K) <_

for all s >_ 0 and K,L satisfying (231). It follows from (229) and (233) that there
exists a strictly positive number tg0, independent of K and L, such that the set

(234) A= {(z,,e)’ max {Izl,{rpc,eTPoe} < tg0}
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is contained in P and therefore in the domain of attraction for all K and L satisfying
(231). Then since, in the controller (139), the gains t and a and the bound Umax
are chosen independent of vl and ’0, ’0o does not depend on vgt and 0t. Therefore,
we can choose vl and 0t strictly positive and such that

{1 ln(l +0), _0 }(235) < rain

With such a choice, we are guaranteed that ,4 contains 7 defined in (212). This
implies that the solutions are captured by the set

6. Other examples.

6.1. Minimum phase i/o linearizable systems. Many results in the spirit of
Theorems 1.1 and 1.2 can be formulated for minilnum phase i/o linearizable systems
using the tools developed in this paper. Consider the C system

h(,,),

(236)

f(z, x, (., d(t)) + g(z, x, , d(t))u,
y Xl

y E IR, ’u E IR, z IR and x (x 1,..., Xr) T r and N. We assume a
well-defined relative degree and the global minimmn phase property as follows.

Assumption HFG. The sign of 9 is constant and the magnitude of 9 is bounded
away from zero.

Assumption MP. z 0 is a globally asymptotically stable equilibrium for the
system

(237) h(z, O, 0).

We will also assume semiglobal stabilizability for the origin of the (z, x) subsystem:
Assumption RSE. The equilibrium point (0,0) of the (z,z) subsystem, with ( as

input, is semiglobally stabilizable by Ce (g 2) partial state feedback depending
only z. Furthermore, this feedback locally exponentially stabilizes the origin of the z
subsystem.
Note that, with Assumption MP, Assumption RSE holds in the following cases:

1. [34], [31] the state z remains bounded for all "disturbances" z and ( which
converge to zero. A special case is when the z subsystem is globally ISS with respect
to z and (.

2. [36, Thm. 6.2] h is globally Lipschitz.
3. [7], [36] h depends only on z and z t.

4. [38] h depends on only one component of the vector (z,..., z, ()T.
Then, using Example 2.1 and Proposition 3.1, respectively, we have the following
results.

COaOLLAR 6.1. If Assumptions HFG, MP, and RSE hold, then the origin of
the system (236) is semiglobally practically stabilizable by Ce (g 2 2) and UCO state
feedback.

COROLLAaY 6.2. {f Assumptions HFG, MP, and RSE hold, then then the origin

of (236) is semiglobally practically stabilizable by dynamic output feedback.
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The feedback used to prove Corollary 6.1 is of the form u -sgn(g)K((-
g(x)), where g is the feedback given by assumption RSE. See Example 2.1. We then
remark that the dynamic extension of 3.2.2 is not needed in Corollary 6.2 because
the practically stabilizing feedback of Corollary 6.1 is UCO without using u or its
derivatives.

Local exponential stability for the origin of the x subsystem is not used in either
of these results. It will be used, together with the next assumption, to guarantee
asymptotic stabilizability.

Assumption LSG. With 7z the local gain function of the z subsystem with (x, ()
as input, there exist a class-K function 7f and positive real numbers A, M, and
such that

1
(238) (1 + A)Tz o f(s) s Vs e [0, w],

(239) y(s) sup {If(z, O, O, d)}.
Iz[s,dD

We remark that local exponential stability of the origin of the system (237) and
f(0, 0, 0, d) 0 for all d D are sucient to guarantee that Assumption LSG holds.

COOLLhRY 6.3. If Assumptions HFG, MP, RSE, and LSG hold, then the origin
of the system (236) is semiglobally stabilizable by Ce ( 2) and UCO state feedback.

Proof. Define - (x). With the feedback law mentioned above, the (x,()
subsystem has the form

(40)

(, () + ),
f( () + (t)) -(z ,() + (t)) o()(,() + )

where

(241) IE(x, 2(z) + ) E(z, ft(z)) <_ I1
We will show that, for K sufficiently large, the (z,c) subsystem with z as input is
uniformly (e, 5) ISS with

ka(242) (s, t) l 8 exp(--k2t), (8) f(8)
for some positive real numbers e, 5, k, k, k3, which can all be taken independent of
K. The equilibrium point x 0 of

(243) 2 E(x, (x))

is locally exponentially stable. This guarantees the existence of a function V(x) and
strictly positive real numbers c, c, c3, and r such that, for all ]x r,

(244) (243)

We restrict our analysis to the set

(245)

<_ V(x)
<_ -Ixl

c3[xl.

B() {(z, x, {)" max {Izl, Ixl, I1}
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where _< r is some strictly positive real number. Because of smoothness and com-
pactness of D we can write

(246) f(z, x, t(x) + , d) Vx(X)E(x (x) -t- )

where /f is defined in (239) and c4 and c5 are some positive real numbers independent
of K. With assumption HFG, let 0 < b <_ 191- Then, for all ((z, x, {), d) E B(5) x D,

(247)
2(248) <_-- +

For K sufficiently large, the uniform (e, 6) ISS property, with and ? of the form
(242), follows by applying Lemma 4.2. Compare with (227), (228).

From Assumption MP and Fact 4.1, the z subsystem is (e,&) ISS with respect
to (z
observe that, g being at least C, there exists a positive ra,1 number 4 such that

(249) Ixl z 12(x) _. 4iX].

Then, we can take

 z((1 +

Finally, applying Lemrna 4.1 to the interconnection of the z and (x,{) subsystems,
one finds that condition (238) of Assumption LSG is sufficient to guarantee local
asymptotic stability for K sufficiently large. Moreover, as in Example 4.2, Lemma
4.1 demonstrates that a neighborhood ,4 can be described, independent of K, which
is contained in the basin of attraction for all K sufficiently large. Then, semiglobal
stabilizability follows from Corollary 6.1.

COROLLARY 6.4. If Assumptions HFG, MP, RSE, and LSG hold, then the origin

of the system (236) is semiglobally stabilizable by dynamic output feedback.
Sketch of proof. The proof is the same as that of the previous corollary. In this

instance, the closed-loop system has the state (z, z, , e) and the (x, , e) subsystem
is uniformly (e, ) ISS with ; and /again of the form (242). The conclusion follows
from the small gain theorem and Corollary 6.2 with K chosen large enough.

Weaker versions of this last corollary have been published. In [15, 4.7] a similar
local result is established for systems with locally exponentially stable zero dynamics.
In [19], a similar global result is established for globally Lipschitz nonlinearities. More
recently, for the case where the equation in (236) is linear in z, it has been shown
in [11] that the equilibrium point (z,z) (0, 0) is locally stabilizable by output
feedback. This result provided estimates for the region of attraction but did not
guarantee arbitrarily large domains of attraction. In all of these cases, Assumption
LSG is automatically satisfied. When the system does not have zero dynamics it was
shown in [18] that the equilibrium point z 0 is semiglobally stabilizable by output
feedback. For these results, high gain observers are used. In the special case where
only x appears in h, f is generated by differentiation of nonlinearities that depend
only on x and z, and g(zl) is known (see (61)), it has been shown in [42] that the
system (236) is semiglobally stabilizable by output feedback, under an assumption
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similar to Assumption LSG, but without requiring high gain observers. See Example
2.3. If, in addition, the inverse dynamics satisfy an input-to-state stability property
with respect to xl then, as was shown in [29], the system (236) is globally stabilizable
by output feedback. This generalized the results of [17] and [26], [27] where it was

required that the system be linear up to output injection.

6.2. A nonminimum phase i/o linearizable system. Consider the non-
minimum phase system on ]I3 with y as the output

(251)
:21 -zl+z2-zly2,

z + + z2z,
u+ze.

The origin of the zero dynamics

il --zl +

is unstable. Indeed, any solution with initial condition satisfying z2(0) > 0 exhibits
finite escape time. Instead of a decomposition into z and y subsystems, we view the
system (251) as in Lemma 2.3 with zl playing the role of z and (z2,y) as the block
of integrators. Although the assumptions of Lemma 2.3 cannot be satisfied because
of the presence of y in the ;1 equation, the result is still valid. Namely, for .K large
enough, the control

is semiglobally stabilizing. This can be checked by looking at the time derivative of

~2

(254) w =c +
c + 1 z2

z + z +
1.-(-}z + z-- + ()2)

Local exponential convergence follows from the exponential stability of the undriven 2:1
subsystem as discussed above. To conclude semiglobal output feedback stabilizability
from Propositions 3.1 and 5.1, it remains to verify that the control (253) is UCO.
This property holds trivially since we have

(255) z 0 u.

7. Conclusion. We have developed tools for semiglobal stabilization by partial
state and output feedback with, as a main application, semiglobal output feedback
stabilization for nonlinear systems that admit a uniformly completely observable sta-
bilizing function. Our approach for this problem uses the observer idea of [11] and
the dynamic extension of [43]. This result can be seen as an extension of the result
given in [40].

An important feature in our approach is to consider the issue of bounded solutions
separate from convergence to the equilibrium. To guarantee convergence we have
imposed a sufficient, but not necessary, small gain condition which generalizes local
exponential stability assumptions.

We have given several applications illustrating our tools:
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We have shown that semiglobal stabilizability by uniformly completely ob-
servable state feedback is a sufficient condition for semiglobal practical stabi-
lization by output feedback. Stabilization itself is obtained if an extra local
small gain property is satisfied. We have applied this result to input-output
linearizable systems.
We have given output feedback solutions for certain robotics problems (Ex-
ample 2.4), for the ball and beam (Example 2.5), and for a nonminimum
phase system (6.2).
We have applied our semiglobal stabilization design to the almost disturbance
decoupling problem to eliminate the vanishing regions of the attraction prob-
lem discussed in [21] and [25]. See Example 2.2.

Appendix A. Appendix.

A.1. Proof of Fact 4.1. For a strictly positive real number r and a. positive
integer n, define the set B, a closed subset of IR’n, by

CLAIM. Under the conditions of Fact 4.1, there exist a strictly positive real number
r, a C function V IR>_o x B --+ lR>o, class-I( functions Ctl, c2, ca, andc defined

B,n we haveon [0, r] such that, for all t >_ 0 and all (x, u) in

(257) OI(Ixl)

_
V(t,x)

and
OV OV

(s) Ixl _> (11) 0-7 + -bTx(x’ ,t) _< -(ll)

In the time-invariant case, V can be taken independent of t.
Proof. We start this proof by defining a function do [0, r] -+ IR_>0 as follows:
1. For the time-invariant case, as in [35, Eqs. (13), (14)] but assuming only LAS

of x 0 for 2 h(x, 0), we know that there exist a strictly positive real number r,
a C function V B -+ lR_>0, and functions ca, c2, c3 of class-K defined on [0, r]
such that

OV
& (.)h(x, o) + (Ixl) < o vx e t\{o}.

Then following [35, Proofs of Lem. 3.1 and 3.2], there exists a piecewise constant
function do [0, r] --+ lR>0 such that

(261)
do(O)
do(s)

lul <_ do(lxl)

O,

> 0 Vse(0, r],
ov (x)h(x, O) <

2. For the time-variant case, from the assumptions on h, there exist strictly
positive real numbers r and L, a C function V IR_>0 B --+ IR>0, and class-K
functions c1, ag., ca, and o4 defined on [0, r] such that, for all (x, t) in B’ IR_>0,

(262)
.(11) - v(t,x) < (lJ),

_#f (t, x) + ov (t, x)h(x, o, t) <_ -2a3(Ixl),
}ov (t,x)l <
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(see [20, Thm. 47] for example) and

(263) Ih(x, u, t) h(x, O, t)l _< Llul V(z,u,,t) E B x B x IR>_0

From (262) and (263) it follows that

(264)

v(z, u, t) B x 87 x lR_>0.

In this case, we let the function do be

(265)
do(O) 0,

do() ()
Lc4 (8) vs (0, r].

From our defi.nitions of do, we have

(266) inf {a, do(cr)} > 0 V- E (0 r].

So let 0 be the function defined on lR>0 by

0(0) o,
l f0S( - inf {c,do(a)})d- Vs(0, r],(267) O(s)

1+ [.,r]

0() 0() - vs (, +).

This function is of class-K and the definitions of do imply, for all (z, u) in B x B,

(268) I1 0(1:1) === OV OV
--(t,) / -5-, (t,x)h(x, ,t) <_

So, the claim follows by defining as OI1

If the equilibrium point is locally exponentially stable, then from the assumptions
on h, it is well known (see [20, Thm. 4.5]) that the functions a, for 1, 2, 3, can be
taken to be of the form ai(s) kit2 for some ki > 0. Furthermore, (:in can be taken of
the form a4(s) k48 for some k4 > 0. It follows that as has the form as(s) -,s.Ck4

Finally, Fact 4.1 is established using Lemma 4.2 and the fact that, when ci(a)
Lk4kis2, for 1,...,3, cs s implies

A.2. Proof of Lemma 4.1. We will make use of the following facts (see [24]).
FACT A. 1. Let / be a function, o,f class-K and let g be a function of class-Koc.

We have

(7o) ?(a + b) <_ y o (Id + g)(a) + ? o (Id + g-)(b)

Proof.
b > g(a).

The proof follows from considering the two cases b <_ g(a) and
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FACT A.2. Let 71 and 72 be functions of class-K and let A and w be positive real
numbers. Then

(1 + )71 o (1 + )72(s) <_ s vs [0,

== (1 + A)7 o (1 + A)71 < s Vs E [0, (1 + A)72(co)].

Proof. We prove Fact A.2 by contradiction. Assume there exists an s’ E [0, (1 +
A)’2(w)] such that

Since (1 + A)/2 is of class-K, this inequality implies that ((1 + A)72)-l(s’) is well
defined and that

(273) (I + A}Tl(s’) > ((I + A)72)-(s’) t.

This further implies

(274) (1 -- A)’I O (1 nu A)’)’2(t) > t,

which is a contradiction since t [0, w]. E]

We now prove Lemma 4.1.
CLAIM. For the class-K functions and r defined in (169) and (170), for positive

real numbers 5 and e satisfying (171), and for each to >_ 0, we have

(275)

Pro@ Define

(276) u u CO}.5 min{S1,52,el,e2,

The positive real numbers on the right-hand side come from the uniform (ei, 5i) ISS
assumption on each subsystem and condition (168). Notice, from (164) and (169),
that for any pair (5, e) satisfying (171) we have

(277)

Then, from the assumptions on the system (167), for any initial condition x(to) sat-
isfying Ix(to)l < 5 and any measurable function v(.) satisfying Ilvllto <_ min{e,e},
one can find a strictly positive real number T, possibly infinite, corresponding to a
maximal interval [to, to + T) such that there exists a unique solution to the feedback
interconnection satisfying Ixi(t)l < for all [to, to + T). Define

(278) Ilx ll sup
to<_r<to+T

For ease of notation, we take
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From the uniform (ei, csi) ISS assumption and causality of the feedback interconnec-
tion, for all E [to, to + T), we have

(8o) Im (t)l
_< ;(l(to)l, t to) + /(11, ) +

Now, using Fact A.1 and (168) we get

(281) IIlllt,ro ,
<_/1(

(283)

From this we conclude:

(284)
IItll _< (1 -4-- k- [(t (z(to)l,O)--I- ’, ((1 4-/x-l)(1 + -’)(=(l(to)l, 0))

+(1 + A-’)(dr-+-")’1 ((1 4- ,-1)(1 -t- ,X)(d2)))

Using the definition of 0, in (169), rl in (170), and di in (279), we get

(285)

We can repeat the analysis for x2 obtaining the class-K functions 02 and r2 defined
in (169)and (170), respectively. Then choose

(286) 0() , () + (), r(s)---rl(s)-t-r2(8).

Then, since and e are strictly positive real numbers satisfying (171), by contradiction
it is easy to see that if I,(to)l _< and lvllo _< , r must be infinite which establishes
the claim. Note for the global case, there are no restrictions on I(to)l or Ilvll.o.

CLAIM. Let (e,) be an arbitrary pair satisfying (171). For each strictly positive
real number cr and each (X(to),V) satisfying

(287) [m(to)l < 5, IIl o .,
there exists a time T so that the corresponding solution satisfies

(288) (t)l + (livII,o) vt _> to + T.

Moreover
1. T depends only on cr and m defined as

(289) m O(Im(to)l)4- (llv ,o)o

2. T is zero for any cr if rn is zero.
3. For any fixed cr > O, T increases with rn.. For any fixed rn > O, T decreases with .
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Proof. Given a pair (e,) satisfying (171), let z(to) and .v satisfy

(290) IZ(to)l <_ , Ilvt!to <_ e.

Then, given the strictly positive real number or, we pick tl (c, m) to satisfy

(291) /l(rn, tl) + /, ((1 +/-’)2/2(m, t.)) _<
(1 /-1)

It is possible to pick such a because i is of class-KL and 3’1 is of class-K. We will
show that T given as

(292)

where Z(s) is the smallest nonnegative integer greater than or equal to s, is sufficient
to establish (288). From (291), (292) this choice satisfies points 1-4 of the claim.

From the unibrrn (ei, i) ISS property and the previous claim, we have

(293) Im2(t)l /3.(m,t,) +=(llzallt) + d Vt >_. t + t

for each ts >_ to. Using this information, we can establish that

(294) Imt(t)l t(rn, tl) + ")’1 (2(?Tt, tl) -t- "/2(llX.llltoo)-t- d2) -t- dl Vt >_ 2tl + t

for each t.. _> to. Using the choice of t in (291), the definition of d in (279), and Fact
A. 1 we get

(295) };cl(t)l _<
( / X_) + (1 +-)-lll / (- +/k-1)-lr(llvllto) vt >_ 2t + t

for each t >_ to. From this we get

(296) Ilzll2t+t <_
(l+/-t)

+(l+’k)-l[:cllt + (l+.k-)-tr(llvllto) Vts >_to.

Since, from the previous claim, we have

it follows by induction that, for any positive integer j,

1
(298) IIll <- (1 + )-J m + xcr + r(I 1t,) Vt >_ j2tl + to.

Thus, with T defined in (292), we have obtained.

(299) 111, -+- (l[’vllo) t Y-+- to,

The analysis can be repeated for x2(t) to establish tile claim.
With the previous claim established, by following the same lines as in [23, Lem. 2.14],

we can construct a family of mappings {T,},>0 with
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1. for each fixed m > 0, T,n ’IR>o --, lR>o is continuous, strictly decreasing, and
onto;

2. for each fixed c, > 0, Tm (r) is increasing as rn increases, and limm+c Tm (c)

such that, for each pair (e, 5) satisfying (171), we have

(3o0) {Iz(to)l <_ 5, Ill, lifo , r > 0} {l(t)l + (11’11o) t Z()+ to},
(30) {Ix(to)l IIv}lto 0} {Iz(t)l 0 vt _> to},

where m is defined in (289).
The discussion now follows the proof of [23, Prop. 2.1.5] closely. For each. m > 0,

denote t/Jm "-:" T Then for each m > 0, !b, lR>0 --+ IR>o is continuous, strictly
decreasing, and onto. And, for each fixed > 0, ’b., (t) is nondecreasing as m increases.
We also write .m (0) oe which is consistent with , being strictly decreasing and
onto. Finally, we extend this family with

(302) 0(t) 0 vt JR_>0.

To summarize the situation, we have established the following implications, for
each pair (e, (5)satisfying (171)"

(0)
(304)

{Ix(to)l _< 5, I111o -< } {Ix(t)l (t- to)+ ’(11’1 o) vt to},
{IX(to)l < , Ilvllto < e} {Ix(t)l <_ m Vt > to},

with m given in (289).
Now, as in the proof of [23, Prop. 2.1.5], for any s >_ 0, d >_ 0, and t >_ 0, let

(305) @(s, d, t) min{. ()+.()(t), ()},
where 0 may need to be extended to be defined for all s >_ 0. Since and r are
increasing, for any fixed d, t, (., d, t) is a nondecreasing function and, for any fixed
s, t, (p(s, ., t) is a nondecreasing function. Similarly, since, for any fixed m, (.)
decreases to 0 as t --+ , the same holds, for fixed s, d, for p(s, d, .). Finally, if the
pair (e, (5) satisfies (171), we have

(306) {Ix(to)l <_ 6, Ilvllo <__ <}
{Ix(t)l _< (lX(to)i, llvllto,t-to)+ (llvllo) vt >_ to}.

Now, for any class-Ko function c, we can find a cla,ss-/(o function c1 such that

(307) o <__ .
Then, for each t >_ 0, we have

(308) (, d, t) <_ (1 (d), d, ) + (,- (), t).

This follows from considering the two cases, s <_ ct(d) and d <_ c-t(s), and by using
the monotonicity properties of . But from the definition of , it is clear that

(309) (al (d), d, t) (((21 (d)) (:t(d).

Finally, the term ’b(s,c(s),t) can be bounded by a class-Kn function/(s, t) as in
the proof of [23, Prop. 2.1.5]. Combining these manipulations, we have (172). [3
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CONSISTENCY OF PRIMAL-DUAL APPROXIMATIONS FOR
CONVEX OPTIMAL CONTROL PROBLEMS*

STEPHEN E. WRIGHTi

Abstract. Problems in the optimal control of linear systems with convex costs are recast in
a primal-dual (minimax) framework. An approximation scheme which leads to primal and dual
optimal control problems in discrete time having similar structure to the original primal-duM pair
is introduced. The discretization is shown to be variationally consistent in the sense of epi/hypo-
convergence, so that any limit point of solutions for the approximate minimax problems will solve
the original primal and dual problems.

Key words, convex optimal control, duality, Lagrangians, discrete approximation, Euler ap-
proximation, epi-convergence, epi/hypo-convergence, variational convergence
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1. Introduction. In this paper we present a new approach for discretizing con-
vex problems in optimal control based on the direct use of minimax formulations. We
analyze the method through the concept of epi/hypo-convergence [2]-[4]. There are
several advantages to be gained from this viewpoint. First, many nonsmooth problems
and most exact penalty representations can be written equivalently as minimax prob-
lems with sInooth data and siInple constraints. Second, epi/hypo-convergence involves
convergence of both solutions and multipliers, affording better sensitivity analysis at
approximate solutions. Finally, the perturbational properties of epi/hypo-convergence
make it easier to extend convergence results to a broader class of approximations.

A number of authors have studied methods of discretization for constrained opti-
real control problems. Some have used direct approximations of the primal problem,
including Cullum [9], [10] and Daniel [11]. Others have introduced penalties into the
primal formulation; see, for instance, the papers of Chen and Mills [7], Cullum [8],
and Russell [27]. Also various dual formulations have been considered by Hager [13],
Hager and Ianculescu [15], and Pirronneau and Polak [18]. The use of primal-dual
representations for approximation in optimal control as in the current paper is new.

begin in 2 with the formulation of the optiInal control problem and a dis-
cussion of Rockafellar’s primal-dual representation [22]. In 3 we introduce the basic
approximation scheme, given by restricting attention to (primal and dual) controls
which are piecewise constant. It is demonstrated that this leads to a dual pair of
optimal control problems in discrete time. Section 4 is devoted to an exposition of the
relevant facts from the theory of closed saddle functions and epi/hypo-convergence
that will be needed later. In 5, we state and prove our main result about the consis-
tency of the approximation scheme introduced earlier. It is assumed at this point that
the trajectory and cost corresponding to an approximate control can be calculated
precisely at the grid points (as could be done in the autonomous case). The final

*Received by the editors November 18, 1992" accepted for publication (in revised form) April
11, 1994.
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section extends the consistency theorem to approximation by Euler’s finite-difference
scheme.

We will deal with consistency of the approximations, obtaining convergence un-
der the general assumption of (:ontinuity on the data. Rates of convergence are not
discussed in this paper. Such results typically require the data to have Lipschitz-
continuous derivatives (perhaps of several orders). Recent attempts to treat fairly
general problems in optimal control, removing extraneous differentiability assump-
tions, have been undertaken by Dontchev and Hager [12], Mordukhovich [16], and
Veliov [28], to name a few. Earlier work was restricted to problems of very simple
structure---for example, unconstrained problems--or quadratic problems with simple
bounds on endpoints; cf. Bosarge and Johnson [6], Chen and Mills [7], Hager [13], [14],
and Mathis and Reddien [17]. All of the above papers treat primal or dual formula-
tions of control problems. At this time, nothing is known about rates for primal-dual
approximations. The current paper should provide a natural framework for adapting
the concepts of "epi-distance" (cf. [5]) to study this issue.

2. Primal-dual representation of optimal control problems. The problem
we shall consider is the following:

(7)1 minimize the functional

F(u) [pt ut + pt(ut) ct xt + 2;(qt Dtut Ctxt)]dt

+ p . + () .x + (q -.D C
over the control space/gl ; x Rk, with the dynamics given by

..t Atxt + Btut + bt doe., Xto Bu + b.

We shall also work with the problems (P) (for r [1, oc]) given by replacing the
space/d by/d L; R-The functions pt, (for each [to, tt]) and p and g are assumed to be proper,
lower semicontitmous convex functions. (A function with values in R R U {+oc} is
said to be proper if it does not take actually the value -oc and is not identically +oc.)
In addition, we require that t and gat vary epi-continuously with and that the data
elements pt, qt, At, Bt, bt, Ct, ct, Dt are all continuous with respect to [to, t l].

This formulation of an optimal control problem was introduced by Rockafellar
[22]. Its main advantage is that it leads to a clean duality theory, exposing those
aspects of the problem which are important in the study of optimality conditions and
sensitivity. It can also serve as a model in its own right" el. [211, [221. Since pt,

p, b, and g may take values in R, constraints on the controls and trajectories (as
well as endpoint constraints) can be modelled implicitly. In addition, the expression
(qt- .Dtut -Ctzt) can be viewed as a penalty representation for a constraint of the
form

qt <_ Dtut Ctxt.
For r [1, oc], we will also consider the dual problems

maximize the functional

G(v) [qt vt [)t(vt) bt Yt p(D2vt + B;yt pt)]dt

+ q .v (v) b "Yto F(Dg’v + B.Yto p)
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over the control space Fr =/2[ x Rl with the dynamics given by
*V]t A[yt + Cvt + ct a.e., yt C + c

Here the superscript denotes the transpose for a matrix and the convez conjugate
for a function: h*(r) sups{r, s h(s)}. (If h is proper, lower semicontinuous, and
convex, then h (h*)*. See [20].)

Instead of approximating the problems (pr) and (79r) directly, we will work with
a corresponding minimax representation for optimality. To this end, we introduce the
functional

+

where

CXD
Jt(ut, vt)

pt ut + t(ut) vt .Dtut + qt vt

J(ue, v)
p..ue + p(’u) v. D.u + qe .v

if c2t(ut
otherwise,

if (ue)
otherwise,

and

yt (.Btut + bt)dt + Yto (Beue + b.)dt

xt (C;vt + ct)dt + xt (Cv + c).

To avoid ambiguity, 7 is defined using the convention that oc- ec ec. This is used
twice: first in evaluating the integrals and then in adding the integrals to J(u, re).
The expression ftt2 Jt(ut, vt)dt is taken to be oc if and only if Jt(ut, vt) is not majorized
by any integrable function; it is taken to be -oc if and only if Jt(ut, vt) is majorized
by an integrable function but not minorized by an integrable function. Of course, the
term /(u, v) is always finite.

A control pair (2, ) is said to be a saddle point for 7 on L/r x 12r’ if, for all
(u, v) /A x Wr’ it is true that

A theory of duality for problems (7)r) and (:Dr’), linking the primal and dual problems
to the quest for saddle points of 7, was developed recently by Rockafellar [22]. The
next two theorems summarize the facts that are most relevant to our purpose here.

THEOPEM 1 [22]. Consider r, r’ [1, oc].
(i) The functional F is lower sernicontinuous and convex on bl and takes values

which are finite or .+-ec. If and g are finite-valued everywhere, then F is (inf)-
proper.

(ii) The functional G is upper sernicontinuous and concave on Wr’ and takes
values which are finite or-ec. If and are finite-valued everywhere, then G is

(sup)-proper.
(iii) The problems (7)r) and (;Dr’) are the primal and dual problems associated

with the problem of finding a saddle point of 7 on blr x 12r’, i.e.,

F(u) sup ,.T(u, v) and G(v) inf J(u, v).
yEWS., uElg
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In particular, the optimal values satisfy inf(P) k sup(D<), and a pair (t, ’;) is

a saddle point for J over bl Vr’ if and only if solves (r), V solves (/), and
if() uv(’).

TEOREM 2 [22]. Consider r, r’ [1, ]. Assume that ,,,; are finite
everywhere.

(i) The problems .pr and ’ both admit optimal solutions, and

min.(P") max(D’/) (finite).

(ii) A pair (t, 9) is a .saddle point of 7 over bl x P’ if and only if t solves
(70) and f: solves (Dr’).

(iii) Any optimal solution of (70) is actually in bloo, and any optimal solution.

of (’) is actually in V.
The arguments given by Rockafellar in deriving this duality result (as well as the

properness of the functionals F and G) depend heavily on the finiteness assumption
made on the conjugate integrands. This assumption is equivalent to requiring the
functions 9t, et, p, b to be coercive. (A function h" R’ - R is said to be coercive

if liml.,,l_.+o h(w)/w oc. For example, h is coercive if the effective domain of h is
bounded. Also, strong convexity implies coercivity.)

Statement (iii) of Theorem 2 tells us that in the search for solutions to problems
(7o’) and (2)<), we need only consider the problem of finding a saddle point of 7 over
b/ x 2. Indeed, in applications it is often more natural to restrict attention to
essentially bounded controls anyway.

Even so, we still need to work with the larger spaces 5/ and V’ in our discussion
of approximations. The results we give are of the epi/hypo-convergence variety. Thus,
any cluster point of a sequence of solutions to the approximate problems will solve the
original problem. The difficulty in applying such a result is establishing whether the
approximate solutions actually (:luster at all. Of course, clustering is more likely in a

weaker topology than in a stronger one. Thus the sharpest result is that which guar-
antees epi/hypo-convergence relative to the weakest topology available. On the other
hand, many applications require that the trajectories corresponding to approximate
controls converge uniformly (or cluster in the uniform norm) to an optimal trajectory.
This requires working with the weak topologies for L; on the controls.

3. Approximation by step functions. We now introduce an approximation
scheme for finding a saddle point of 7 on b/ Y’. The idea is to approximate
the controls by feasible .step functions on [to, t]. Of course, there might not be any
feasible step functions, so our hypotheses will eventually require the effective domains
domgt and dom’t to be constant with respect to t. Note, however, that this does
not necessarily restrict t and bt from varying with t. More generally, one can obtain
similar results when dora pt WtU + wt and domt ZtV + zt, where Wt, we, Zt. zt
are continuous with respect to t, and the sets ( and IP are fixed convex polyhedrons.
It can also be shown that a related procedure can be applied if the graphs of dora pt.

and dom bt are convex in R: R and R R.
Let rr (to a0 < a < < ar tt) be a partition of the interval [t0,t].

Consider the following subsets of/g and 1;"

{u /dclut, is constant a.e. on Jar-l, at] for 7 0,..., Z},
{v Vl’vt is constant a.e. on [a,_, a] for r 0,..., T}.

The approximate problem is

(&) find a saddle point of 5 relative to gg, l;.



PRIMAL-DUAL APPROXIMATIONS FOR OPTIMAL CONTROL 1493

This is a finite-dimensional problem, and we shall show in 5 that it represents a
variational approximation to the problem of finding a saddle point of 7 relative to
/dr x Fr’. The remainder of this section is devoted to describing how the approximate
problem (q) leads to a pair of optimal control problems in discrete time which are
dual to each other. To simplify the discussion, we shall assume that to 0, tl 1,
and De 0. Furthermore, we will work only with the special case where the given
partition is 7c (0,1/T, 2/T,..., (T-1)/T, 1). It will be clear how to extend the
process to the general case.

Let ,4 be the fundamental matrix for the homogeneous differential equation

dot Atxt,
i.e., the RnXn-valued function on [0, 1] which satisfies

t =AfAr, ,40 I.

Then the unique solution to the initial-value problem

ict Atxt + Btut + bt a.e., x0=Bue +be
is given by

(1) xt ,At Beu, + be + A21 (.B.us + bs)ds

Now suppose that ut is constant on [(-- 1)/T,’r/T) for each T O,...,T. Using (1)
we write

We combine these two equations to get the following representation for X.r/T:

Xr/T- [/TA-(_)/TJ X(-_)/T

A/TA2 Bds u-/T + _-/T A/TA2b
(- )/T . (-)/

This formula leads us to introduce a discrete-time control system with time periods
0 T, controls g u/T, and states Xr/z. The evolution of this system

is described by

(e)
20 0g0 + 0,

where we define
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In a similar fashion, corresponding to having vt constant on each [(r 1)IT, r/T), we
can introduce a, dual control system:

Ary.+l + C-’v,- +
IT.-t- CT+ ’)T+ -t- T-t- 1,

r T,...,1

where we define

T fr/T(,--1)/T
_l)/Td8 for T 1,... ,T,

r .4 I)/T Ascsds for 7 1,...,T,
(r-1)/T

Now, for (u, v) E/At x V, we can reexpress the value of fl(u, v) in terms of the
corresponding (;, ,?) as

T

+ $o. o + o(e0) + Or+l r+ }r+ ()T+I) r((z, ),

where
T+I T

r=t r=0

where the "trajectories" 2 and ) are the solutions of the difference equations (2) and
(3). The functions 5 and are given by

The coefficients i5, c, /)r, and d are given by

r
(r-l)/T

0 P,

-1)IT
,A, 1Bsds A, ct dt for r 1,..., T,

OT-+- qe,

r qt Ct,At
(r-l.)/T -I)/T

4.1 bds) ] dt for r 1.,,.., T,
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Clearly is a saddle function on (R Rk’T) (Rl’r Rl). Thus the approx-
imate problem of finding a saddle point of 7 over 5/ x F leads to the following pair
of optimal control problems in discrete time which are dual to each other:

and

T R/) R(7}) maximize ()= inf (, ) over all ’ E .x__ x .
The functions and are defined by

T

T

++. +, +(’+) 0. $, + (0)*(0 0),

We see that is convex, while is concave. The problems () and () belong to the
realm of convex programming. These problems have a very special structure which
allows the pplication of various "decomposition" techniques, such as the finite enve-
lope method, vhich has been studied by Rockfellar and Wets [24]-[26]. A computer
implementation for solving problems () nd () (in the extended linear-quadratic
case) via this method has been developed by the author [29]’ the code was used by Zhu
and Rockafellar [31] as the basis for their numerical experiments in solving large-scale
optimization problems. In [30], the finite envelope method is shown to converge for a
class of saddle point problems more general than the class of extended linear-quadratic
problems.

A drawback to using the discretization described in this section is the computa-
tional (and numerical) burden of calculating the integrals defining the coecients for
the discrete-time problem, in addition to the calculation of the fundamental matrix. A computationally simpler scheme using finite differences will be examined in 6,
where we explore (from a variational point of view) its relationship to the discretiza-
tion used here. Of course, in the utonomous case (vhere the coecients are constant)
the integrals can be calculated explicitly.

() minimize /()= sup’(, )over allE Rk ( xT_I Rk)
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4. Epi/hypo-convergence of closed saddle functions. In this section we
set up a basic framework in which to study variational approximations for saddle
point problems, which will then be used in 5 and 6 to analyze the consistency of our
approximation scheme for optimal control problems.

First we review the concept of closed saddle functions, which play a role in mini-
max theory similar to that played by closed convex functions in minimization theory.
For a more detailed presentation of this topic, we refer the reader to the paper by
Rockafellar [19]; see also [20]. Let X and Y be Banach spaces. A bivariate function
K X x Y R is called a saddle function if z H K(z, y) is a convex function for
each y E Y and y H K(x, y) is a concave function for each x E X. We shall think of
such functions as representing a "minimax" problem, where we minimize with respect
to z X and maximize with respect to y Y. Note that the inequality

inf sup K(x,y)>_ sup inf K(x,y)
xEX yy yEy XEX

is always valid. In the case that

inf sup.K(x,y)- sup inf /((x y)
xX yy yy xX

the common value is called the saddle value for K. A pair (2, ) is said to be a saddle
point for K if, for all (x, y) X Y, it is true that

/,(., y) <_/c(, 0)_< ;(*., ).

The minimaz problem associated with K is that of finding the saddle value and saddle
points for K whenever either of these exist.

We define the effective domain of K as

domK doml K x dom K {xlK(x,.) < oc} x {ylK(.,y) >--c}.

K is said to be proper if domK - . As with minimization problems, where we
interpret the effective domain of an R-valued objective function as specifying the
constraint set, the effective domain of a bivariate function is the set to which we are

necessarily restricted in the search for saddle points.
To make full use of the usual theory of minimization (or maximization), we need

to impose some sort of regularity hypotheses on K. Ideally, we vould like to assume
that K(x,y) is lower semicontinuous in x and upper semicontinuous in y. It turns
out that this requirement is too restrictive: it strictly prohibits the use of saddle
functions which take both of the values oc and -oc, thus excluding the possibility
of modeling constraints on both x and y through the use of infinite penalties. To
deal with this difficulty, Rockafellar [19] introduced an equivalence relation for saddle
flnctions. Within this framework, the natural regularity condition to impose is that
a saddle function be equivalent to certain upper and lower regularizations of itself.
Functions satisfying this condition, which we describe below, will be called closed.

By cl K we denote the lower semicontinuous regularization of K in x, that is,

cll K(x, y) lim inf .g(x’, y).

The lower closure cl K is then defined as the function which satisfies, for each y Y,

,(., y) ,[ , :(., y) if , :(., y) > -o,Cll -oe otherwise.
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In other words, cl K(., y) is the pointwise supremum of all continuous linear func-
tionals on X which are majorized by K(., y). Similarly, we define the upper closure
of K by

/ c12 K(x, o) if cl K(x, .) < +,cl K(x, .) + otherwise,

where cl.K is the upper semicontinuous regularization of K in y. Note that if L
is another saddle function on X x Y for which K L, then cl K < cl .L and
el: K cl L. We say that two saddle functions K and L are equivalent if they have
the same upper and lower closures, i.e., if

K=clLand clK=clL.

The function K is said to be closed if it is equivalent to both cl K and cl.K, in
which case we write K el: K and c K. If K is closed and K < L K, then
we write L [K, K]. The next two propositions are immediate consequences of the
definitions.

PROPOSITION 1. Suppose K is a closed saddle function.
(i) L [K,] if and only if K and L are equivalent.
(ii) If L is also closed, then L is equivalent to [( if and only ifK < L and L <
PROPOSITION 2. The following are true for any saddle ]nction
(i) [fdoml I( , then cl K .
(ii) If dmn2 K 0, then cA K -.
In particular, the only closed improper saddle flmctions are K and K -.
The following shows why the term equivalent is justified as applied to saddle

functions.
PROPOSITION 3. Suppose that K is closed and equivalent to L.
(i) cl(domL) cl(domK).

y) {- if x e dom, I(, ye Ycl(domI(),(ii) L(z if x .X cl(doml K), y dom
(iii) If a saddle value ezists for K, then it is also the saddle value for L.
(iv) If (, ) is a saddle point for K, then it is also a saddle point for L.
(v) L is finite on domt K x dom K.
We now discuss the notion of epi/hypo-convergence, which is a generalization of

epi-convergence. There are actually several distinct concepts of epi/hypo-convergence
which are useful in different settings; see [3], [4], [23]. In this paper, we shall use a
variant of the definitions used in [4] and [23]. IIl what follows, we denote by s and w
the strong (norm) and weak topologies (respectively) on a Banach space.

Consider a sequence {K,} of closed saddle functions on X x Y. Ve define the
epi/hypo-limits superior and inferior of {K } to be

(seq-e/hw-lsK)(x,y)= sup inf limsupK(x,y,),yxx
(seq-hs/ew-li)(x,y) inf sup liminf K(x,y,).

We say that K epi/hypo-converges to .K if

seq-es/hw-lsK K and seq-h./ew-liK

In this case, we write K e/h-lim K,. Note that this is actually a convergence of
equivalence classes. It is clear from the definitions that if {h } is a,ny subsequence
of {Kn }, then K e/h-lim
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The next theorem demonstrates the variational aspect of epi/hypo-convergence.
It is analogous to a similar result given by Attouch, Az, and Wets [4] and can be
proven by the same argument used there. The pair (2,) is said to be an -saddle
point (for > 0) for K if

sup K(2, y) <_ K(.., ) <_ inf K(x, fl) + .
y x

THEOREM 3. Consider a sequence {K,} of closed saddle functions which epi/hypo-
converges to the closed saddle function K. Suppose that (2k, k) is an a-saddle point

for Knk for some subsequence of {Kn}. If2 2, f] f], and , then (2, 9) is
a 2a-saddle point for [__K, ] and

.K(2,) [limsup K(2,)- ,liminfK,,(2,)+ ].

In the next two sections we will deal with saddle functions of the form

(, ) (z) () r(x, )o

The following result will play a key role in the analysis. Recall that a sequence {f }
of convex functions Mosco epi-converges to a function f if

inf limsupf(xn) <_ f(x) <_ inf liminff(xn) for all x,

in which case we write f M-e-lim f. We refer the reader to the book by Attouch
[1] for an exposition of epi-convergence.

THEOREM 4. Let F" X x Y ---, R be a continuous biajfine map. Suppose 0, 0
X -- R and q2, q2, Y R are pro)per, lower semicontinuous convex functions such
that M-e-lim On and M-e-lim. Let K and K be any saddle functions on
X x Y for which

Kn(x, y) On(X) IIn(y) F(x, y) whenever ec- ocs does not occur, and

.’(x, ) (x) () --r(, ) hv do ot o.

Then K and K are equivalent to closed, proper saddle functions, and K, epi/hypo-
converges to K.

Proof. It is easy to see that cl K and cl K are given by

c :(x, ) (x) () r(x, )

cA K(x, y) O(x) iI(y) r(x, y)

if 0(x)
otherwise,

if (y)
otherwise.

It is clear from these descriptions that c12 K and cl K are both saddle functions and
that c_l (cl K) cll K and cl(cA/() ce K. The properness of K follows from that
of and 9. By the same argument, each Kn is equivalent to a proper, closed saddle
function.

Now fix (2, ) X x Y. We will show that (seq-e/hw-ls K)(, ) <_ K(2, ); the
proof that (seq-h/ew-li Kn)(2, 9) >_ ___K(2, ) is similar. If K(2, 9) oc, we’re finished.
Assume then. that K(2, ) < oc so that 0(2) < oc. Suppose {Yn} converges weakly
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to :0, and fix a > K(2, .0). We need to find a sequence {x }, converging in norm to
such that limsup K,(zn, y,) < c. Choose 1 E (/((2, #), O). Since
there is a sequence {xn} converging to 2 such that

Also, M-e-lim 9n implies that

liminf 9,(yn) >_ () > -[c1 (I)(2) + 1-’(2,.)].

Combining these with the sequential s x w-continuity of I’ allows us to find a positive
integer N so that the following three inequalities hold whenever n _> N:

< +

-r(.., V.) < +
O --Ctl

Thus, for all n >_ N, we have

< (I)(2) -[-" -[- [01 (I)(2) -t- r(2, .t)] nI-

--o

as desired. [’1

5. Consistency of internal approximations. We now give our main consis-
tency result for the approximation scheme described in 3. Let {Tr" E N} be an
increasing sequence of partitions of [to, t] such that la’ a+ 0 uniformly in as
, . 0. Define

r(u,.v) if,u E b/, v 12,

ifu L6-.
The following theorem will be concerned with this sequence of problems. In addition,
we will make use of the following condition on r, r [1, oc)"

(4) the map (u, v) - .ftt( vt" Dtutdt defines a continuous functional on

This condition is satisfied if r >_ r’/(r’- 1) (or equivalently, if r’ >_ r/(r- 1)), in vhich
case C (/)* and ’ C (F)*. If D 0, then the condition is satisfied for any
choice of r, r’ [1, oc).

THEOREM 5. Consider r,r’ [1, ec) satisfying condition (4). Assume there exist
intervals [,..., [M with [0, l]- U..L such that, for each i, one has either

(a) t (C) + 6u for I, where U is a closed, convex set and (.) is a

proper, lower semicontinous convex function with u -, fI (ut) dt continuous o’n 5F,
or

(b) t i for Ii, where (C)i is a proper, inf-compact convex Junction.
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Similarly, assume there exist intervals [,..., Iw, with [0, 1]- ’i-----l’M’ [,, such that,
for each i, one has either

(a’) zp (b / v for I;, where V is a closed, convex set and (.) is a
proper, lower semicontinous convex function with v f; t(t,t)dt continuous on
or

(b’) ’t i fort I’ where ,i is a proper, inf-compact cortvex function.i

Then and , are equivalent to closed saddle flmctions on x /, and
epi/hypo-converges to .
An immediate consequence of Theorem 5 is the following.

COROLLARY. Assume the hypotheses for Theorem 5 are satisfied, and suppose
(’, 9") is a saddle point for ’. I, for some s [max{r, r’}, ), one can 9uarantee
that (fi’, ’) converges in the weak topology on . x V, then the limit point is a saddle
point for relative to x V.

Note that for (,9) to be a saddle point for , it is sufficient to show that
the sequence of approximates merely clusters (weakly) at (,9). This clustering is
guaranteed, for example, when the effective domains dom pt and dora t are bounded
for all (and therefore uniformly bounded, by continuity) or more generally if dora
tBk and dom g’t tBl for some functions a and (with s > 1).

To show the validity of Theore,n 5, we use some basic facts about constrained
approximation of neasurable functions by simple and step functions. We state these
explicitly as lemmas but omit the proofs since they are merely variants of well-known
argmnents in elementary measure theory.

LEMMA 1. Let (,,) be a finite-measure space, and suppose 1 p
Consider f (,,p) and an inf-compact convex function h on R. If f()
dom h almost everywhere (a.e.) [], then there is a sequence {f,} of simple functions
satisfying

(i) h(f.()) h(f.+()) h(f()) a..

(ii) f, I a..

(iii) f. f in (,, ).
LEMMA 2. Let (,, ) be a finite-measure space with - (o), where o is

a field on . Let p [1,). Suppose that h Rd R. Iff R is an -simple
function, then, for any > O, there exists an o-simple function f with the same

’range as f for which llf f lp < and

Prvof of Theorem 5. We shall prove the theorem for the special case ke l 0,
be c,., 0. In addition, we will assume that I. Ij 0 whenever - j and that
each endpoint of each Ii coincides with the endpoint of some cell for some rr’. The
proof of the general case is similar.

For u E k and v E define

b(u) q&(ut)dt, q2(v)-

and

[Vt Dtut pt ttt qt vt]dt + 7(u, v).

Then, for all (u, v) /2 x/2’, we have

oc if (b(u)
otherwise.
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Also define q), + 5(. I/,g,) and . + (. IVy,J). We need to show that
F, , and . satisfy the hypotheses for Theorem 4, thereby obtaining the stated

epi/hypo-convergence. It is easy to see that gP, , , and , are proper, lower
semicontinuous, convex functions and that F is a (norm) continuous biaffine functional.
Furthermore,/7"(u, v) agrees with (D(u) ,(v)-- F(u, v) whenever oc oc does not
occur. We nust therefore show that cD M-e-lim (D, and M-e-lim. Since
cD,(,u) is decreasing in/2 for all u, it suffices to show

V /, .i-," such that 2" 5/., and limsup

Fix g Z;.. Suppose (I)(g) oc. Then limsupcD(u) _< (2) for any sequence
converging (in norm) to 2; there exists such a sequence with u since ,, is
dense in

Assume then that (g) < . Then gt dom, for almost every t. We shall
construct an approximating sequence {g} on .[i for each i. First consider .Ii satisfying
hypothesis (a). Then U for almost every h. By Lemma 1 (taking h({)
+ there exists a sequence of simple functions, with g U for all

t I, such that la -1 + 0 as m- 0. For each m N, by Lemma 2, there
exists u which is measurable with respect o one of the partitions ", has the same
range as .,m, and has lg -mtl., < l/re. rh.ls m converges to g in g*’(.Ii). Since
up U, we have f5 t(u)dt f. t(t)dt, because the map u .) @(ut)dt is
continuous on

Now consider 1) satisfying hypothesis (b). Then t dom i for ahnost every
t I.. By Lemma 1 (with h ), there exists a sequence {g} of simple functions
such that [1TM -gl + 0 as m + and () (gt) almost everwhere. In
particular we have fh t(g)dt fz t(t)dt for all ’m. For each m N there exists,
by Lemma 2, ’u’, which is measurable with respect to one of the partitions " and
has [g’- 1t < 1./,m. oreovr, m may be chosen to have the same range as gm
and to satisfy

1
#{t hl  (up) > <

m. max{I,&}’
where max{i(g) (g)[t, t’ I.i}. Hence u’ may be chosen so that

./" ct(tt’)dt < pt(’)dt + (l/m).

Thus, the sequence {u} converges to 2 in ’(I), and

limsup t(up)dt < c2t(ftt)dt.

So we now have a sequence {u" } of tOrc-step functions which converges (in
norm) to with limsup,_oo (D(um) <_ (I)(g). Choose {/2,} with/2, < /2,+ so that
u 5/ for /2 =/2,. We now define a sequence {.} satisfying (5). If/2x 1, set
gl ul; otherwise, choose g to be an arbitrary element of 5/, and set " 7 for
/2 2,..., /21 1. For/2 u,,...,/2_ set " u". Thus the requirement of Mosco
epi-convergence for is satisfied. A similar argutnent yields M-e-lin. The
conclusion then follows frown Theorem 4. VI

6. Approximation by finite differences. In the preceding sections, we intro-
duced a model in optimal control and demonstrated that, under certain assumptions,
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discretization by partitioning of the tiine interval can be considered as a form of
variational approximation (Theorem 5). Such a discretization leads to a problem in
discrete-time optimal control. The coefficients for tile discretized problem are given
by integral formulas involving tile fundamental matrix associated with tile linear dy-
namics. These integrals could be evaluated numerically by various methods. In this
section, however, we will take an alternative route and discretize the original problem
directly using finite differences. It will be shown that this also leads to a consistent vari-
ational approximation. To simplify the presentation only the Euler forward-difference
scheme is considered.

As before, we shall actually approximate the following saddle point problem which
is associated vith the original optimal control problem:

find a saddle point (u, v) of 7 relative to b/2 x V2.

Here we have

J(u, v) [Pt ut + pt(ut) + qt vt, Z/,t(vt) yr. Dtut]dt

where

"/(’u,, u) a2t (C*i)t nt- c)dt -J- *1" (C:)e -J-

t. (.Bu. + b)dt + o. (Bt + b)

and the dynamics are given by

ct Atxt q- Btut + bt a.e.,

Ot At’lit + Ct + ct a.e.

We assume that the fllnctions t and Ot satisfy suitable conditions for 7 to be a closed
saddle function (see 4 and 5).

We partition the unit interval with a uniform step size h l/T, where T is a
positive integer. Associated with this step size will be two approximate saddle point
problems. The first is the discrete-time problem given in 3, which consists of using
the original saddle function and dynamics but restricting the controls to be constant
on each interval [rh, (r + 1)h):

find a saddle point (u0h,..., UhT; V{,... ,Vh+l) of h
relative to (R x RT) x (RT x R).

Here we define
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where

T

ZT._
7"’--1

T

E ~hYr+

and

The functions 5h, h and the coefficients }, /)h, D, d}, }, bh, a,/5, Oh are
defined as in 3.

The following approximate problem is given using forward finite differences:

find a saddle point (u0h,..., u; vh, V./I) of h
relative to (Rk x RkT) x (R,r x R).

This problem has the same form as (h), but we replace h,
15h, and @ with coefficients )h, /)h, Dh, 0rh, dh, /)h, dh 15rh, and 0h defined by

fl’. I + hA(r_ 1)h

h, hB(_ )h

drh hC(T-
h hD(r_ )h

hr hp(r-

)h hb(,._ )h

hc(._ )

& o,
hq( _

We also define qSrh(uh) c2(r_l)h(Urh) arid rh(Vrh) --ff2(r_,)h(’Vhr).
this problem are given by

The dynamics in

Note that the trajectories associated with problem (h) are denoted by (5:0h,...,2)
and ()lh,..., !)hT+), whereas the trajectories for (gh) are indicated by tildes.

We shall also think of (u) and () as problems on 5/9. x Vg. by identifying
R x RT and (R*T x RZ) with the subspaces 5/h and Vh given by

Lth {u e bl9 ut is constant a.e. on [(r 1)h, rh) fbr r 1,..., T},
Vh {v Y vt is constant a.e. on [(r- 1)h, rh) for r 1,...,T}.
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Thus the point (u0h,v,’, uhr) is identified with the point , where ue u0
h and

ut tth for almost every E [(-- 1)h, -h) for - 1,..., r. The norm on Ra:e x RT
is also given through the identification with lXh"

1/2

Here }. denotes the Euclidean north on R: (or R). A similar formula gives the
norm on R,T x Rte. The functionals Th are extended to 5/2 x F2 by t}king h(u, v)
to be -oc if u E b/h but v Fh, and to be oc if u b/h. We extend Jh in the same
manner.

As one may expect, the saddle functions h and 5h are closely related. An
important aspect of this relationship is given by the following proposition, which
follows essentially from the fact that the Euler forward-difference scheme is a first-order
method, combined with the continuity of the affine mapping of controls to trajectories
given by the dynamics.

PROPOSITION 4. Suppose that the coefficients At, Bt, bt, Ct, ct, Dr, pt, qt are .Lip-
schitzian in t. Assume there is a nonnegative constant a so that, for all ’u R and
v R, one has

Then there exists an r > 0 such that

(6) &(u,v)- rh([ltll + 1)(ll’vll-+ 1) <_ h(U,v) <_ h(u,v)+ rh(llull + 1)(llvll + 1)

for all (.u,v) bl2 x 22 and all h 1/T with T N.
Remarks. (i) The hypotheses on pt are equivalent to saying that its effective

domain is a fixed set U which does not vary with and that for a fixed ’u U, the
function t-+ pt(u) is Lipschitz continous on [0, 1] with modulus alu I. The analogous
statement for g’t is also valid.

(ii) We are tacitly assuming here that the values of h, are defined using the
same conventions regarding oc- oc that are used in defining Lh. If this were not
the case, then we could simply replace !6) by similar inequalities involving c12 ffh and
c2 h (or, equivalently, cl and cl.

(iii) Note that (6) is equivalent to the inequalities given by reversing the r61es of
h and .

Proof of Proposition 4. It is clear that
b/h or v Fh. Similarly, if (u, v) Nh x 12h is identified with (u0h,..., Uhr; vh,..., ’Vhr+),
then h(u, v) &(u, v) whenever one of

and h(v)

equals +oc for some r or when either c2(u0h) or pe(v+,) is +oc. In these cases, (6)
is therefore satisfied trivially, regardless of h or r.

Now suppose that 5(u,h), 5(uh), (,vh), and .(’vh) are finite for each r
1,..., T and that pC(u0h) and /(@.+) are also finite. In this case we may rewrite (6)
as
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since both h (u0,..., u; Vlh,..., Vp.+. and h (u0h,..., u; v),..., t,+ are finite.
then have

T

T

Thus, to prove (6) it suites to find r, r2, and ra so that the following three inequalities
are satisfied:

T T

T

In what follows we sketch how to obtain values for these ri. For a Lipschitz-continuous
matrix-valued function on [0, 1], let Lip() denote the Lipschitz constant for and
define ll supt[0,1j Il. It is easily verified that there exists a constant > 0
(which depends only on the Nnction A) such that the following estimates hold for all
r- 1,...,T’

(r)

(8)

(9)

(0)

--1)h

AhA, lt dt h(_)h <_ h3 [l]ll, + Lip()],
-)h

rh

tAtA-(z1-1)h dt- /1(r-1)h
-1)h

Now, to find r we use the hypotheses on pt and )t (via Remark (i) above) and apply
inequality (7) with ct g)t(u}) and (t zPt(v). This yields rl a/2.

Next we deal with r. Note that we have

r () 1( )
r=l r=l

By applying inequality (7) with {. pt and then inequality (8) with {t ct and
B we see that, for each r,

/12
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Thus we obtain the bound

T
1

_< h Lip(p)+

By similar arguments, we find that

1
_< h Lip(q) +/ Ibll,. ICIl,

T
1
Lip(D)<_h h

Therefore we can take r2 to be given by

r2 max{Lip(p),Lip(q),Lip(D)} + . max{] b[[, IIll, IIcl , ]tcI }.

Finally we turn to finding the coefficient ra. First we see that

(Crz-r-1 .-1-Cx. +1.+,
T

r-1 W--1 Ce

1
x._ x._ l+ II’hllh c ((11) + II,hllh .mxI +h .

Observing that

(1) +C"--1 I1C+x._ < d O +

and

(13) le -11+
we see that we need upper bounds, in terns of h and uh h, for the quantities- 1, tl, I- 1, I1, I- 1, and IdOl
for each r. By using the expansions

2 [(h flhl)(Buh +be)] + [(’" -h (B,-h h -hAr,+l ur, +
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and continuing with repeated use of inequalities (8)-(10) we can. obtain

where

p(A,/3, Be)= (]1/3[’c + IBel)( IAIIc + lAp(A)) + (ll/3l[oc + Lip(/3))
p(A,b, be) (llbllc + Ibl) (llAIl.,o + Lip(A))+ (llb[Ioc + Lip(b)).

These inequalities supply us with a.n upper bound for (11) via (12) and (13), yielding
a value for ra.

The proposition just proved tells us, in particular, that the nets {h} and {h}
are "uniformly cofinal" on bounded sets: for a fixed p > 0 and rp r(p+ 1)2, we have

v) < v) < & +

whenever IIull <_ p and Ilvll <_ p. The uniformity in (6) actually guarantees that the
problems (Sh) and (h) are close from a variational standpoint. This is illustrated by
the next theorem.

THEOREM 6. Suppose {T} is an increasing sequence of positive integers and let
hm 1 Consider a proper closed saddle function lC deftned on lg’- x 12. Under
the hypotheses of Proposition 4, the sequence {Thm } epi/hypo-converges to 1C if and
only if {2h, } epi/hypo-converges to

Proof. This follows from the definition of epi/hypo-convergence by combining
inequality (6) with the fact that weakly convergent sequences are norm-bounded.

Combined with Theorem 5, the above result gives us sufficient, conditions for the
problems {(h)} to be variational approximations to

\Ve close with a few remarks concerning the advantages and disadvantages of
the two discretization schemes considered in this paper. The main consistency re-
sult (Theorem 5) applies to the basic discretization scheme given by restricting the
controls to belong to the class of step functions over a predetermined partition of
the time interval. Since the hypotheses for Theorem 5 are very mild, it is applica-
ble to a wide class of problems. The dicretization entails the calculation of various
integrals involving the fundamental matrix solution of the linear dynamics. In the
autonomous case, where the data are constant with respect to time, these integrals
can be expressed in terms of the power series representation of the matrix exponential.
In practice, an adequate approximation for the series requires a study of the eigensys-
tems of the matrix A. For general nonautonomous systems, the fundamental matrix
solution is unlikely to be available in closed form, so further approximation is needed.
The integrals defining the data of problem (75) of 3 must then be calculated with the
approximate matrix solution. It considerably simplifies the computations if instead we
use the finite-difference scheme given in the current section. The primary drawback is
that this is only a first-order scheme. If the data is sufficiently smooth, then computa-
tionally efficient higher-order methods should be employed. (Analogously, in the basic
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discretization scheme we could replace step fllnctions by higher-order piecewise poly-
nomial functions.) We are led then to questions concerning the rate of convergence
for various discretization schemes and their ecient implementation. These issues will
need to be addressed in future work.
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ERROR BOUNDS FOR PIECEWISE CONVEX QUADRATIC
PROGRAMS AND APPLICATIONS*

WU LI}

Abstract. In this paper, we establish alocal error estimate for feasible solutions of a piecewise
convex quadratic program and a global error estimate for feasible solutions of a convex piecewise
quadratic program. These error estimates provide a unified approach for deriving many old and new

error estimates for linear programs, linear complementarity problems, convex quadratic programs,
and affine variational inequality problems. The approach reveals the fact that each error estimate
is a consequence of some reformulation of the original problem as a piecewise convex quadratic
program or a convex piecewise quadratic program. In a sense, even Robinson’s result on the upper
Lipschitz continuity of a polyhedral mapping can be considered as a special case of error estimates
for approximate solutions of a piecewise convex quadratic program. As an application, we derive new
(global) error estimates for iterates of the proximal point algorithm for solving a convex piecewise
quadratic program.

Key words, local error bound, global error bound, piecewise convex quadratic program, convex

quadratic program, monotone linear complementarity problem, affine variational inequality problem,
proximal point algorithm, rate of convergence

AMS subject classifications. Primary, 90C31; Secondary, 90C20, 90C33

1. Introduction. In a series of papers by Luo and Tseng [18]-[221, local error
estimates for approximate solutions of a constrained convex minimization problem
were proven to be crucial in convergence analysis of descent (or dual ascent) methods
for solving constrained convex minimization problems (cf. also [26], [12], [14]). Mean-
while, Ferris [4] showed that the weak sharp minimum property of the solution set of
a constrained convex minimization problem is sufficient for the finite convergence of
the proximal point algorithm for solving the constrained convex minimization prob-
lem. As a consequence, Ferris established the finite convergence of the proximal point
algorithm for solving a linear program, since the solution set of a linear program has
the weak sharp minimum property [27]. The common feature of an error estimate for
approximate solutions and the weak sharp minimum property is the estimation of the
distance from an approximate solution to the solution set of the constrained convex
minimization problem. In this paper, we give error estimates for feasible solutions of
a piecewise convex quadratic program and show some applications of such estimates.
In particular, this paper provides a unique perspective to the relationship between
Mangasarian and Meyer’s weak sharp minimum property of the solution(s) of a linear
program [27] and Luo and Tseng’s local error estimate for approximate solutions of
an affine variational inequality problem [21]. As applications of error estimates for
feasible solutions of a convex piecewise quadratic program, we obtain a new global er-
ror estimate for approximate solutions of a monotone linear complementarity problem
and a new global error estimate for iterates generated by the proximal point algorithm
for solving a convex piecewise quadratic program.

Our research on piecewise convex quadratic programs is motivated by a reformu-
lation of certain convex quadratic programs as the problem of minimizing a convex

*Received by the editors January 19, 1993; accepted for publication (in revised form) May 3,
1994.

Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529
(wuli@math. odu. edu).
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quadratic spline without any constraint [15], [16]. A Newton method with exact
line ninimization seems very effective for finding the minimizer of a strictly convex
quadratic spline [151. Therefore, it is natural to consider the proximal point algorithm
for finding a minimizer of a convex quadratic spline, since one only needs to find the
minirnizer of a strictly convex quadratic spline, in each iteration. Also it is possible to
design new iterative algorithms for finding a minimizer of a convex quadratic spline
[16]. The error estimates are useful for studying the convergence behavior of new
iterative algorithms for solving the unconstrained minimization of a convex quadratic
spline (cf. [16]). Moreover, convex piecewise quadratic programs are related to a

linear-quadratic minimax problem studied by Rockafellar and Wets in their research
on stochastic programming and optiInal control problems [34]-[36] (also cf. [37] and
some references there).

In 2, we establish local error estimates for feasible solutions of piecewise convex
quadratic programs and global error estimates of convex piecewise quadratic programs.
In 3, we shows that most existing error estimates for linear programs, linear comple-
mentarity problems, and affine variational inequality problems can be recovered easily
as consequences of error estimates given in 2. A new global error estimate for mono-
tone linear complementarity problems is derived by using error estimates for convex
piecewise quadratic programs. Section 4 is devoted to new error estimates of iterates
of the proximal point algorithm, which reveals a new perspective on the relationship
between the convergence rate of the proximal point algorithm and the error estimate
for feasible solutions. In 5 we mention a few possible extensions of the results to
general mathematical programming problems and show how one can view Robinson’s
result on the upper Lipschitz continuity of a polyhedral mapping as a special case of
an error estimate for approximate solutions of a piecewise convex quadratic program.

Now let us give some common assumptions and notations used in the paper.
Consider the folloving minimization problem:

(1..1) fmin min f(z),
zX

where X is a closed convex polyhedral subset of the n-dinensional Euclidean space
IR. We assume that fmin > -oc and the solution set of (1.1) is not empty; i.e.,

.X* := {z X" f(z) fmin} 0.

The 2-norm on IR is denoted by Ilzl] := (-ni.=l 2gi2) 1/2
to the solution set X* of (1.1) is defined as

The distance from a vector

dist(z, X*) rain{ IIz z* .x, }.

The transpose of a vector z (or a matrix M) is denoted by zr (or Mr). For two
vectorsx, IR, we write x < ifzi < yi for 1 < < n. A continuous function
f on IR is called a piecewise (convex) quadratic function if there are finitely many
convex polyhedral subsets {C}n=l of IR such that IR" [_J=t C,s and f is a (convex)
quadratic function on each Ci. A piecewise convex quadratic function f is called
a convex piecewise quadratic function if f is also a convex function. A quadratic
spline is a differentiable piecewise quadratic function and a convex quadratic spline
is a differentiable convex piecewise quadratic function. We use if(z) to denote the
gradient of f(z) as a column vector.



1512 wu LI

2. Error bounds for piecewise convex quadratic programs. In this sec-
tion we give local and global error estimates of dist(x, X*) in terms of (f(x fmin).
We first establish error estimates for convex quadratic programs and then extend the
results for piecewise convex quadratic programs by using Frank-Wolfe’s theorem on
solvability of a quadratic program. The main results are Theorems 2.5, 2.6, and 2.7.
However, Lemma 2.3, based on the following geometric feature of a polyhedral set
and Mangasarian’s characterization of the solutions of a convex quadratic program, is
crucial for establishing all error estimates in this section.

LEMMA 2.1. Suppose that xk, yk E X with x y and

---Z.

Then there exist positive constants ck such that z := yk + (z X and

=0.

.Proof. Suppose that X {x ]Rn Ax >_ b}. Let 0 < A < 1 and w
yk + Allx -yllz. Obviously, (Awk) >_ (Ay) >_ b for (Az) >_ O. If (Az) < O, then,
for k large enough,

>_ b,(2.1) (Awk)i (dx)i + x -YII A iz-
llx_ YkII

since

(( ))lim A Az- =(A-1)(dz) >0.

Since there are only finitely many indices, there exists kA, _> 1 such that (2.1) holds
whenever (Az)i < 0 and k >_ kA, 1. That is, w G X if k >_ kA, 1.

On the other hand, since

(1 A)llzll 1 A,

we obtain that there exists k/,2 ;> 1 such that, for k >

Set k& := max{k,l, k),2}. Then (2.1) and (2.2) hold when k _> k&.
Let s 1- !s for s 1,2 Then there exist k, such that (2.1) and (2.2)

hold with ks when k >_ kks. We may assume kk+, > k,, for s 1, 2, Define
and s 1,2, Thenc As llxk -Y[I and zk yk .__ akz for kA <_ k < kA,+

z X and

x-zkll <2(1_,s)__2 fork>kAy, s= 1,2,
Ilxk Y II

To prove the most important lemma in this section, we need the following char-
acterization of the solutions of a convex quadratic program by Mangasarian [25].
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LEMMA 2.2. Suppose that f(x) := 1/2x-’.Bx +. cTx is a convex quadratic function,
x* in X*, and 2, E X. Then the following statements are equivalent:
(1) 2, e X*;
(2) f,(.)r(_ **) < 0 ang ( *)rB(- m*) _< O;
(3) f’ (5c) f’ (x*) and B(2, x*) 0;
(4) f’(2,)T(x 2,) > 0 for any x e X.

LEMMA 2.3. Suppose that f(x) is a convex quadratic function. Then, for any
constant 6 > O, there exists a positive constant / such that

dist(x, X*) < "/v/f(x)- fmin foT x e X with f(x)- fmin t’.

Proof. Let x X and 2,, x* X*. Then

1
f(x)- f(c) f’(2)T(x

{ l(x- )r(- )}> max f’(c)r(x-

max f’(x*)r(x -2,), .(x 2,)rB(x- 2,)

where the first equality is the Taylor expansion, of f at 2,, the inequality derived from
f’(2,)T(x 2,) >_ 0 (el. Lemma 2.2 (4)) and (x 2,)TB(x 2,) >_ O, and the second
equality follows from Lemma 2.2 (3).

Assume the contrary, that there exists a sequence {xk} C X such that f(x)
fmin <_ (5 and

(2.5) lim
v/f(xk) fmin 0.

k-,o dist(xk, X*)

Let 2, E X* be such that IIxk 2,1[ dist(xk, X*) and set zk :=

(.4),
Then, by

(2.6) f(xk) f(2,k) > 1

[Ix 11 5(z,)rz.

Without loss of generality, we may assume that z --+ z as k --+ oc. Then it follows
from (2.5) and (2.6) that zTBz <_ O. If dist(xk,X*) <_ for infinitely many k’s, then,
by selecting a subsequence, we may assume that dist(x,X*) <_ for all k. In this
case, by (2.4),

f(x) f(ck) > 1

IIx ll 2 ][x kll
1
f, TZk--.f’(x*)rz >_ - (x*)

By (2.5) and (2.7), we obtain that f’(x*)Tz <_ O. If dist(xk, X*) <_ 5 for finitely many
k’s, then, by selecting a subsequence, we may assume that dist(x,X*) > 5 > 0 for
all k. In this case, since .f(x)- fmin _< , (2.5) is equivalent to

f(x)(2.8) lim =0.
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By {2.4},

(2.9) f(xk) f(2) > if(x*)TzIIx -  ll
Again, we get f’(x*)rz <_ 0 from (2.8) and (2.9).

On the other hand, by Lemma 2.1, there exist positive constants ak such that
yk.=xk+a,zE Xand

(2.10) lim Ilxk Y II 0,
IIx 

Since x: 211 dist(x,X*), (2.10) implies yk X* when k is large enough.
follows from Lemma 2.2 (2) and (3) that either

1
f, (:kf,(x.)Tz )T(yk 2) > 0

Ok

or
1

zTBz Ct__k Yk k T t yk gk > O,

a contradiction to f’(x*)Tz 0 and zTBz <_ O.
Remark. IIi contrast to (2.3), Ferris and Mangasarian [5] performed a detailed

analysis on characterization conditions which guarantee the global error estimate
dist(x, X*) _< /(f(x)- fmin) for x E Xo

Now, to extend the above estimate for piecewise convex quadratic programs, we
need the following theorem by Frank and Wolfe about the solvability of a quadratic
program [6].

LEMMA 2.4. Suppose that f is a quadratic function..If fmin > --00, then X* O.
Using Lemma 2.4 we can easily show (2.3) still holds if f is a piecewise convex

quadratic function.
THEOREM 2.5. If f is a piecewise convex quadratic function, then there exist

positive constants 5 and "7 such that

dist(x,X*) <_ /v/f(x)- fmi for x X with f(x)- fmin

Pro@ Let X [-J.i= Xi, where Xi’s are closed convex polyhedral subsets of X
such that f is a convex quadratic function on every Xi. Define (5"-= rain { : 5i > 0,
1 _< i_< s} > 0, where i "-minexf(x)-fmi,. IfXi. CX* , by Lemma2.3,
there exists 7i > 0 such that
(2.12)
dist(z, X*) < dist(z, X* Xi) <_ 7i v/f(x)- fmin for z X. with f(z)- fmin <_ 5.

Let ? := max{/ XX* =fi 0}. By the definition of 5, if x X with f(x) nin "( 6,
then x X. with ninex, f(x) fmin. By Lemma 2.4, X* C Xi 0. Therefore,
(2.12) holds, which implies (2.11). [:1

The estimate (2.11) is called a local error estimate in the sense that the estimate
(2.11) only holds for x near the solution set X* (cf. Corollary 2.9). Next we give
an error estimate for feasible solutions away from the solution set X* (cf. Corollary
2.10).
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"FHEOREM 2.6. Suppose that f is a convex piecewise quadratic function.
for’ any constant > O, there exists a positive constant 7 such that

(2.13) dist(x, 32*) <_ 7 (f(x) fmin) for x E X with .f(x) fmn >_ .
Proof. Assume the contrary, that there exists a sequence {x} C X such that

f(x)- fmi > 5 and

lim f (x) f(2
0,(2.14)

where Y,’ < X* with IIz --’2#11 dist(x, X*). We may assume IIx -ll > (5 for all

For any 2 X*,k >_ 1. Then y 2 + A(x .) X with

which implies Ily-11 >- (5 Ily -2[1 for Y 6 X*.

lid 2,}1 3. On the other hand, by the convexity of f;
Therefore, dist(y, X*)

f(ya) < (1 Ak.)f() + Af(x) fmin + (5. f(xa) f(a)

By Theormn 2.5, dist(y:, X*) 0 as k oc. The contradiction proves (2.13). Yl

If f is only a piecewise convex quadratic function, then Theorem 2.6 is not true.
In general, (2.11) does not hold for any 5 > 0 (cf. Mangasarian and Shiau’s example
[29]). However, for a convex piecewise quadratic function, the restriction on 5 can be
removed.

THEOREM 2.7. Suppose that f is a convex piecewise quadratic function. Then,
for any constant > O, there exists a positive constant ? such that

dist(x,X*) _< "y’v/f(x) fmin for x X with, .f(x) fmin

_
(5.

Proof. By Theorem 2.5, there exist positive constants (50 and 1 such that

(2.16) dist(x, X*) <_ /1 v/f(x) fnin for x E X with f(x) fmin _< (50.

By Theorem 2.6, there exists a constant 3’2 > 0 such that

dist(x, X*) _< %(f(x)-- fmin) for x e X with f(x)- fmi, >_ (50.

v/f(x)- fmin Therefore, itIf (50 _< f(x)- fmin (5, then .f(x)- fmin (5 oo
follows from (2.16) and (2.17) that (2.15) holds with "7 := max {’7, oo }" Yl

An easy consequence of Theorems 2.5 and 2.6 is the following global error estimate
for feasible approximate solutions to a convex piecewise quadratic program.

COROLLARY 2.8. Suppose that f is a convex piecewise quadratic function. Then
there exists a positive constant 7 such that

(2.18) dist(x, X*)<_’y (f(x)- fmi + v/f(x)- fmin) foI’x X.
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Remark. Recently, Luo and Pang [17] studied error estimates for approximate
solutions of nonlinear feasibility problems:

f(x) o, <_ <_ m,
(2.19) .Ax > b,

Let X* denote the solution set of (2.19). Then they established various bounds for
dist(x,X*). In particular, they proved [17] that

i=1

for x E IRn,

if fi(x) are nonnegative on the polyhedral set {x Ax >_ b} and fi(x) are convex
quadratic functions. If f(x) is a convex quadratic function, then. with m 1 and
fl(x) f(x)- fmin, (2.18) follows from Luo and Pang’s global estinate (2.20). It is
unclear whether (2.20) can be used to derive the following estimate for any approxi-
mate solution (not necessarily fasible) of (1.1)"
(2.21)
dist(z, X*) <_3’ (V/ (Ax b).+l + It(Ax b)+ll + V/(f(x) frown)+ + (f(z) fmin)+)

for x

where f(x) is a convex piecewise quadratic function.
The following corollary shows directly why the estimate (2.11) is an error estimate

for approximate feasible solutions near the solution set X*.
COROLLARY 2.9. Suppose that there exist positive constants and . such that

dist(x, X* <_ ? v/f (x) fmin for x X with f (x) fmin (.

Then, for any > O, there exists a positive constant a such that

dist(x,X*) _< a v/f(x)- .fmin for x e X with dist(x, X*) _< ft.

Proof. Let a max {3’,- }. Let x X with dist(x, X*) <_ . If f(x)--fmin <_ ,
then (2.23)follows from (2.22); otherwise, v/f(x) fmin

_
-dist(x,X*).

Similarly, we can recast Theorem 2.6 as the error estimate for approximate feasible
solutions away from the solution set X*.

COROLLAaY 2.10. Suppose that f is a convex piecewise quadratic function. Then,
for any constant 5 > O, there exists a positive consta’nt such that

(2.24) dist(x,X*) <_ /v/f(x)- fmin for x X with dist(x,X*) _< 5,

dist(x,X*) <_ y (f(x)- fmin) for x X with dist(x,X*) _>

Proof. By Theorem 2.7, there exists a positive constant 1 such that

dist(x, X*) _< ")’1 v/f(x) fmin for x X with f(x)- fmin

_
(.
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By Theorem 2.6, there exists a positive constant 72 such that

Let ",/"- max {’)’1, ")’2, 1, v/}. assulne z E X with dist(z, X*) < . If f(z)- fmin < (,
then, by (2.26), dist(z, X*) <_ /v/f(z)- fmin; otherwise,

dist(z, X*) _< _<_ vv/f(z)- fmin ")/v/f(2;) /min.

Hence, (2.24) holds. Now let z E X with dist(z, X*) >_ . If f(z) fmin >_ , then,
by (2.27), dist(z,X*) _< (f(z)- fmin); otherwise, by (2.26), f(z)- fmin >_ ().
In the latter case, by (2.27), we also have dist(2;,rX*) _< (f(z)- fmin). Therefore,
(2.25) also holds.

Remark. In general, we cannot have the estimate dist(z,X*) < (f(z)- fmin)
for z X (cf. [5]). It would be interesting to know what additional conditions are
needed to guarantee such an estimate.

3. Error bounds for linear programs, linear complementarity problems,
convex quadratic programs, and affine variational inequality problems. Us-
ing the local and global error estimates given in the previous section, we can recover
the weak sharp minimum property of a linear program by Mangasarian and Meyer
[27] and the local error estimate for approximate solutions of an attCine variational
inequality problem by Luo and Tseng [211. The unified approach shows that the esti-
mates depend on how the original problem can be reformulated as a piecewise convex
quadratic program. Therefore, it becomes clear that different reformulations of a
given problem as piecewise convex quadratic programs yield different error estimates
for approximate solutions of the given problem. This idea leads to a new global error
estimate (cf. Theorem 3.1) for monotone linear complementarity problems which is
better than the one given by Mangasarian and Shiau [29]. Moreover, using different
reformulations of a convex quadratic program, we have new local and global error
estimates for approximate solutions of a convex quadratic program (cf. Theorems 3.2,
3.3, and 3.4).

Consider the linear programming problem

(3.1) C-min := min cT
xX

Let X* be the solution set of (3.1). Then X* is also a solution of the following convex
quadratic programning problem:

(3.2) rnin (cTx Cmin) 2.

Applying Theorem 2.7 to (3.2), we obtain that there exists a positive constant "), such
that
(3.3)
dist(z, X*) <_ / V/(cTz Cmin) 2

However, (3.1) is also a degenerate convex quadratic programming problem. By The-
orem 2.6, there exists a positive constant / such that

(3.4) dist(z, X*)
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From (3.3) and (3.4) we can recover the following weak sharp minimum property of
the solutions of a linear program, which was proved by Mangasarian and Meyer [271"

dist(x, X*) _< ")/(cTx- Cmin) for x E X,

where /= max{n/i, 2}-
An affine variational inequality problem, associated with X, an n x n matrix M,

and a vector q E IR, is to find a vector x X such that.

(y x)T(q -t- Iz) >_ 0 for y X.

The affine variational inequality problem (3.5) is equivalent to the following system of
piecewise linear equations:

(3.6) nx( (q + z,)) 0,

where 1-Ix(z) denotes the orthogonal projection of z onto X. It is known that IIx(z)
is a piecewise linear mapping of z if X is a. convex polyhedral set. Let f(x) :=

I1" Ix(- (q / .x))ll 2. Then f(x) is a piece,vise convex quadratic function and
(3.6) is equivalent to the following piecewise convex quadratic program:

(3.7) rain f(x).
x]R

It follows from Theorem 2.5 and fmin 0 that there exist positive constants and 5
such that

(3.8) dist(x, X*) <_ 71Ix Ilx(x- (q + Mx))ll for I]x Ilx(x -(q + Mx))ll <_ ,
which is the local error estimate derived by Luo and Tseng [21].

Next, consider a special case of the affine variational inequality problem the
nonotone linear complementarity problem

(3.9) XT(q + Mx) O, x >_ O, q + Mx >_ O,

where M is positive semidefinite. Similarly, the solution set X* of the monotone
linear complenentarity problem is the solution set of (3.7) with f(x) := IIx- (x-
(q + Mx))+]l 2, where z+ denotes the vector whose ith component is max{z/, 0}. In
order to obtain a global error estimate for approximate solutions to (3.9), we need to
use Corollaries 2.9 and 2.10. Since fmi, 0 in this case, by Corollary 2.9, here exist
positive constants 1 and 1 SllCh that

dist(x, X*) _< ,llx ( (q + Ix))+][ for dist(x, X*) <_ 1.

On the other hand, by the proof of Lemma 2.5 in [29], there exists a positive constant
cr such that

(3.11) xT(Mx + q)+ - (ll(-q- Mx)+lla + II(-x)+lll) 0 for x e 1[/r,

where Ilzl}i E.iI Izil Let g(z) := xr(Mx + q) +
Then it is easy to verify that g(x) is a convex piecewise quadratic function, since M is
positive semidefinite. By (3.11), g(x) >_ 0 and g(x) 0 ifI only if [l(-q-Mx)+llt +
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II(-z)+lll 0 and zT(Mx + q) 0. Therefore, the solution set X* of the monotone
linear complementarity problem is the solution set of the following convex piecewise
quadratic program"

(3.12) min g(x).

By Corollary 2.10, for the constant 51 > 0, there exists a positive constant 72 such
that, for dist(x,X*) >_ 51,

(3.13)
dist(x, X*) _< 72(g(x) groin)

/2(xT(Mx + q) + r(][(-q Mx)+][1 +
<_ 72(a + 1)((xT(Mx + q))+ + ]](--q- lx)+lll + ]l(--x)+ ]]l ).

It is easy to verify (cf. [29]) that there exists a positive constant /3 such that

(3.14) (-q- Mx)+ I + (-x)+ll 311x- (x- (Mx + q))+l for x E IR.
From (3.10), (3.13), and (3.14) we get the following global error estimate for approxi-
mate solutions of a monotone linear complementarity problem.

TttEOREM 3.1. Suppose that M is positive semidefinite and X* is the solution set
of the monotone linear complementarity problem (3.9). Then there ezists a positive
constant / such that

(3.15) dist(x,X*) /((xT(Mx + q))+ + x (x (Mx + q))+l}) for x IR.
Remark. Recently, Mangasarian and Ren [28] also obtained an estimate similar

to (3.15).
Now, let us compare the error estimate (3.15) with Mangasarian and Shiau’s

global error estimate for approximate solutions of a monotone linear complementarity
problem.

Applying Corollary 2.8 to the convex piecewise quadratic program (3.12), we
obtain that there exists a constant /0 such that

(3.16) dist(x, X*) <_ 7o(g(x)+ V(X)) for x JR",

Since 9(x) <_ ((7+ 1)((xr(Mx+q))+ +]l(-q-Mx)+lll + II(-x)+lll), using Mangasarian
and Shiau’s notation II(xr(Ix + q) --q l[x,--x)+ll := (xr(hIx + q))2 + ll(--q+
Mx)/ll 2 + I1(-)/112 and the fact that any two norms in IR are equivalent, we can
derive from (3.16) the following error estimate:

(3.17)
dist (x, X* _< 7 ( II(xT(Mx + q),-q- Mx,-x)+

+ V/ll(xT(Mx + q),--q- hIx,--x)+ll ) for x

which is an equivalent form of Mangasarian and Shiau’s estimate (2.6) in [29]. Note
that they also have an explicit expression for y with appropriate norms. However, it
is interesting to see that, theoretically, their estimate can be derived as a special case
of Corollary 2.8.
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In the following analysis, we show that there exists a positive constant such
that, for x E IRn,
(3.18)
(x(Mx + q))+ + IIx ( (Mx + q))+

<_ t(ll(xr(Mx .+ q), --q Ix,--x)+ll + V/[I(xT(Ix + q),-q [x,

provided (3.17) holds.
Since I1 ( (M/ q))/{l is a piecewise linear function, there exists a positive

constant/ such that

Ilix (x (Mx + q))+lI -Ily (Y -(My + q))+lltl llx yllo

For any x, let y E X* be such that dist(x,X*)= IIx- YlI. Then

Ilz (x (Mz + q))+ll -IIx (x (Mx + q))+[ll -[lY (Y (My + q))+ II1.
<_/3. IIx- Yll-/3, dist(x, X*).

Since any two norms in IR,n are equivalent, there exists a positive constant 7 such that

(3.19) Ilx (x (Mx + q))+ll ’’ dist(x, X*).

By (3.17) and (3.19), we get (3.18) with. -yr + 1. The inequality (3.18) and the
following example show that (3.15) is a better global error estimate than (3.17).

0Example. Let M (0 0) and q (0)" Then it is easy to verify that

X* x ___- "Xl 0, x2

_
0

x2

Hence, dist(x, X*) 2 x + (-xg.)_. Next we prove that (3.17) holds and then compare
(3.17) with (3.15).

For any x IRn,

s(x) (xT Mx+q) -x, -Mx-q)+ -(_x1)2+..t_(_x2)2+__(_Xl_X2)2+__(x_t._xlx2) 2

Forxl <_0,

s(x) >_ (-x) + (-x)+ x + (-x)2+ dist(x,X*)o

If X > 0 and x2 _> 0, then

8(X)2 + 8(X)

_
(--X2)_ + (X -t-XlX2)+

_
X -t-(--X2)_ -----dist(x, X*) 2.

When x > 0 and -.. _< x2 <_ 0,

8(X) 2 --8(X)

_
(--X2)_ nt- (Xl2 nt- XlX2)+

_
nt- (--X2)_ _> dist(x, X*

When xl > 0 and - _> x2,

1 1 1
)2.s(x) 2 > (-xg.)_ > -(-x2)+ + -Xl > gdist(x,X*
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Therefore,
dist(x,X*) < 3(s(x)+ V/S(X)) for x ]Rn

By (3.18), (3.15) also holds. Actually, we have the following better estimate:

Thus, for v/,

(3.20) dist(x, X*) <_ Allx- (x- (Mx + q)).+ll for x E IRr.

In the following analysis, we show that (3.20) is better than (3.15), which is better
than (3.17).

Let

xo 0_.

with 0 < 0 < 1. Then

dist(xo,X*) 02, Ilxo (xo (Mxo + q))+ll 02, (x(Mxo + q))+ 04 + O.

Therefore,

(3.21) lim (=(M=o + q))+ + Ilxo (o (Mxo + q))+l
O,

(3.22) lim
]Ix (xo (Mxo + q))+]l

O.
o-o+ (x[ (Mxo +

Remark..An analysis given by Mangasarian and Ren [28] also shows that (3.15)
holds whenever (3.7) holds. They give a counterexanple showing that (3.15) does not
imply (3.17). As a consequence, (3.15) holds for a wider class of linear complementarity
problems than (3.17). The above analysis shows that, in the case where s(x)+ V/S(x)
can be used as a global error estimate, one should still, use IIx (x -(Mx + q))+ll +
(xT(Mx + q))+ as a global error estimate due to (3.18).

Finally, we use the error bounds derived in 2 to establish new error estimates
for approximate solutions of a quadratic program.

If f is a convex quadratic function, the estimates given in 2 are only for feasible
solutions of (1.1). However, in some cases, we can have global error estimates for any
approximate solution of a convex quadratic program. The new global, error estimates
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are based on the unconstrained reformulation of a convex quadratic program and the
estimates given in 2. Consider the following convex quadratic program:

(3.23) min
1

l<Ax<u
xTJx bTx’

where M is an n x n symmetric positive semidefinite matrix, b E IR, A is an m x n
matrix, and l, u E IR". When M is also nonsingular, x* is a solution to (3.23) if and
only if x M-I(ATw + b), where w is a solution of the following piecewise linear
equation [15], [16]:

(3.24) c2(w (aI B)w + AM-lb- (AI-b- Bw) 0

Here c is any positive constant, I is the identity matrix, B aI- AM-IAT, and

(z)[ denotes the vector vhose ith component is min{ui, max{z.i,li}}. When c >
IIAM- ATll, the piecewise linear equation is equivalent to the following unconstrained
minimization problem [15], [16]:

(3.25) (I)min’-- min q)(w),
wEIR

where

(3.26)
c 1

(w) -wTBw- -ll(Bw
1

+ -.AM-b)+]I 2 1 (AM-’b- u- Bw)+ 2

is a convex quadratic spline. That is, w* is a solution of p(w)- 0 (or II(w)ll o) if
and only if w* is a minimizer of (w). Let W* be the solution set of (3.24) (or (3.25)).
Then W* is the set of the Lagrange multipliers of the solution to (3.23). By Corollaries
2.9 and 2.10, we can use IIp(w)ll or v/(I)(w)- (I)min as aI1 error estilnate for w near
the solution set W* and use (w) (I)min as an error estimate for w away from the
solution set W*. Moreover, if x* is the solution to (3.23), then x* =_ M-(ATw* + b)
for all w* W*, which implies IIM-(ATw + b)- x*ll III-- AZ(w- w*)ll for l
w, w,. Thus,

IIS’[-(ATw + b) x*lI <_ IIM-1ATII dist(w, W*),

where III-1ATII denotes the 2-norm of the matrix I-1AT. Therefore, we have the
following global estimate for Lagra.nge multipliers and approximate solution of (3.23).

THEOaEM 3.2. If M is symmetric positive definite and a > IIAM-tATII, then
there exists a positive constant such that, for any w and x := M-(ATw + b),

(3.27) I1 x*ll + dist(w, W*) <_ 7(min{ (w)ll, V/(’)- (I)min} q- ((I)(w) (I)min))

If M is singular but A is nonsingular, then we can still have a global error estimate
for approximate solutions of (3.23). Let E I- c(A-)TMA- and b- c(AT)-lb.
Define

(3.28) 2(x) Ax (EAx + b).

Then, for any ct > 0, z is a solution to (3.23) if and only if (z) 0 (or IIW()ll - 0).
Since I]p(z) 2 is a piecewise convex quadratic function, by Theorem 2.5, we have the
following local error estimate for approxinate solutions of (3.23).
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THEOREM 3.3. Suppose that A is nonsingular and X* is the solution set of (3.23).
Then there exist positive constants / and 5 such that

dist(x, X*) _< 7llAx- (EAx + Y))II for IIAx (EAx + {)?ll <_ .
When 0 < a < II(A-1)TMA-ill --1, x x. if and only if x is a solution to the

following unconstrained minimization problem:

(3.30) min (x),
x]R

where

lxTAT(E E2
1 1

((EAx + D) -u).+l[ 2qy(x) - )Ax + 11(/- (EAx + ))+1[ +

is a convex quadratic spline [15], [16]. We have the following global error estimate for
approximate solutions of (3.23).

THEOREM 3.4. Let X* be the solution set of (3.30). If A is nonsingular and
0 < a < II(A-1)rMA-111-1, then there exists a positive constant 7 such that

(3.31) dist(x, X*) _< 7(Inin{llb(x)ll, v/(x)- tlImin} -t- (kI/(x) tI/min) for x lR.
Remark. The most interesting case of nonsingular A’s is A [. Then (3.23)

becomes the convex quadratic program with simple bound constraints. The estimate

(3.27) (or (3.31)) involve the unknovn value m (or mi), which is not desirable as
a general error estimate for approximate solutions of (3.23). However, such estimates
are useful in convergence analysis of descent methods for solving (3.25) or (3.30) (cf.
[13], [16]). Moreover, it is interesting to.know when II(w)ll (or ll(z)ll) can be used
as a global error estimate for dist(w, W*) (or dist(z, X*)). Some related global error
estimates can be found in. [23] and [311

4. Error estimates for iterates of the proximal point algorithm.
sider the following proximal point algorithm for solving (1.1):

Con-

1
(4.1) xk+ arg minxex f(x) + -gy-_ Ilx- xll2D k-O, 1,...,

where IlXllD := (xTDx)/- denotes the norm induced by a positive definite matrix D,
f is a convex function, x is any given vector, and’ e > 0 for all k.

The proxinal point algorithm was first applied to solving convex programs by
Martinet [30]. It is well known that {x} converges to a solution to (1.1) if limk._.:
inf e e > 0. The convergence rate of iterates were studied by Rockafellar [33] and
Luque [24], and sufficient conditions for the finite convergence of the proximal point
algorithm were given by Rockafellar [33], Ferris [4], and Lefebvre and C. Michelot [9].
See [10] for a survey on the proximal point algorithm and see [7], []--[a], IS], [39]
the recent development on the proximal point algorithm.

Using the error bound for feasible approximate solutions to a convex piecewise
quadratic progratn, we can derive new estimates for the distance from x to the
solution set X*.

The following result is a special case of Giiler’s key inequality in convergence
analysis of the proximal point algorithm in a Hilbert space setting [7].
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LEMMA 4.1. For any x E X,

(4.2)
1

.f(xk+l) f(x) <_ x--- (llx- xllD -IIx- x+lll -IIx+1

THEOREM 4.2. Suppose that there exist positive constants , / such that

(4.3) dist(x, X*) _< 7 v/f(x) fmin for x e X with f (x) fmin <_ 5-

Then there exists a positive constant r (depending only on f, X, D, and dist(xo, X*)D)
such that

/
(4.4) IIzk+l -xIID < dist(xk X*)D < d dist(z-1 X*)D for k > 1,

V 1 + ’rle,_l

where dist(x,X*)o min2x, ix 2 ]D.
Pro@ Since D is positive definite, there exists a positive constant/ such that

which implies dist(x,X*)z) _< /. dist(x, X* ). ’Therefore, by (4.3) and Corollary 2.9;
there exists a positive constant r] (depending only on f, X, D, and dist(xO, X*)D)
such that
(4.5)

dist(x, X*)D /’Z__ v/f(x) fmin for 2: .X with dist(x, X*)D dist(x X*)D.

Let 2 X* be such that dist(z, X*)D IIx --2IID. By (4.5),

(4.6) .f(xk+l) f(:k+l) _> llxk.+.l.
Substituting x by 2 in (4.2), we obtain

(4.7)

It follows from (4.6) and (4.7) that

1
(4.8) xk+’ 2k+ I1) <- llxk 2kll) for k 0, 1,

Substituting x by 2 in (4.2), we get
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Remark. It follows from (4.4) that

fork> 1.(4.9) z z+1 D <_ dist(xk, X )z) < dist(x, X )z)
1 + r/e,i

\i=0

Note that 0 if and only if 1-Ii=0(1 + r/e,i) oc which is equivalent toHi=0 +rl6.i

(4.10)
i=0 i=l

Therefore, by (4.9), any accumula,tion point of {x} is a solution of (1.1) whenever

,i=0 e.i oc. As a consequence, for any sequence of positive constants {eL} with

Ei=0ei oc, the iterates {} generated by (4.1) converge to a solution to (1.1).
This recovers Giiler’s convergence result for the proximal point algorithm [7] under
the assumption (4.3). Moreover, the error estimate (4.9) is interesting in its own right.
If ek >_ c > 0, by (4.9), the iterates {x} generated by (4.1) converge linearly (in the
root sense) to a solution to (1.1). When lim_ eL oc, by (4.9), {x’} converges
superlinearly (in the root sense) to a solution to (1.1).

By Theorem 2.5, (4.4) and (4.9) hold if f is a convex piecewise quadratic function.
However, in this case, the subdifferential mapping Of of f is polyhedral [38] and is
upper Lipschitz continuous [32]. Thus, if f is a convex piecewise quadratic function.
(4.4) also follows from the proof of Theorem 2.1. in [24], which is an extension of
Rockafellar’s linear convergence result of the proximal point algorithm [33]. Of course,
one can also discuss the linear convergence of inexact proximal point algorithms under
the assumption. (4.3) (cf. [33], [24]).

Somehow, (4.9) provides a link between Rockafellar and Luque’s linear conver-
gence results and Giiler’s convergence result and shows how {e } affect the convergence
rate of iterates {z }.

The proximal point algorithm can also be formulated as an algorithm for solving
the equivalent generalized equation of (1,1). In this case, Luque studied the relation-
strip between convergence rates of iterates and error estimates of approximate solutions
in terms of the normal equation. Siinilar results can be established for the relationship
between convergence rates of itera,tes and error estimates of feasible solutions in terms
of the objective function.

Since r/in Theorem 4.2 depends on dist(z, X*)z), (4.9) might not be considered
as a "global" error estimate for , even though it holds for all k. However, as an
application of global error estimates for feasible solutions of convex piecewise quadratic
programs, we can have a "global" error estimate for x when f is a convex piecewise
quadratic function.

PROPOSITION 4.3. Suppose that f .is a convez piecewise quadratic function. Then
there ezists a positive constant/3 (depending only on f, X, and D) such that

dist.(z+ X*) < 1
dist(zk X*) for dist(z+1 X*)D < 1,

1 +e
dist(z+l,X*) _< dist(z’X*)D dist(z,X*)z) for dist(z+l,X*)) _> 1.

dist

Pro@ Due to the equivalence of any two norms on IR, by Theorems 2.6 and 2.7,
there exists a positive constant . (depending only on f, X, and D) such that

1
(4.11) min{dist(z,X*)D,dist(z,X*)9} < -(f()- fmin) for Z X.
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Let k e X* be such that dist(xk,X*)D ]Ixk kll D. If IIx+ +l]D <_ 1, then
(xk+l )) and it follows from the proof of (4.4) that][xk+l :k+l ]1) <: (f f(+’

1 1
(4.12) dist(x+1 X*)20 < dist(xk X*)) < dist(xk .X*)2

Otherwise,

(4.13)
1

I]Xk-t--1_ kWl ) < _(f(xk+ f(tk+l)).

By (4.7)and (4.13), we get

Ilxk+l :k+1119 -- 2/e_kllxk+l :k/lll D < IIXk kll 2
n

Solving the above inequality for IIx+t 2+1 lID, we obtain

(4.14)

Since is a monotone increasing function for t > 0 and IIx-2k
D < dist(x, X*)Dt;k

it follows from (4.14) that

(4.15) dist(xk+l,X*)D <_ dist(x’X*)D
dist(xk, X*)D.

dist (x X* D + e
The proposition follows from (4.14) and (4.15). FI

Remark. The above estimate suggests that, initially, the convergence rate of the
proximal point algorithm might be affected not only by the error bound constant
for f but also by the distance of x to the solution set X*.

5. Comments. In this paper, we have established a local error estimate for
feasible solutions of a piecewise convex quadratic program and a global error estimate
for feasible solutions of a convex piecewise quadratic progran. These error estimates
provide a unified approach for deriving many old and new error estimates for linear
programs, linear complementarity problems, convex quadratic programs, and affine
variational inequality problems. The approach reveals the fact that each error estimate
is a consequence of some reformulation of the original problem as a piecewise convex
quadratic program or a convex piecewise quadratic program.

As an application, we give new (global) error estimates for iterates of the proxi-
mal point algorithm for solving a convex piecewise quadratic program, which provide
additional insight on the convergence behavior of the iterates.

For those who are interested in general convex programming problems, similar
results might be possible when the objective function is a composition of a strongly
convex smooth function and a piecewise linear mapping. That is, if M(y) is Lipschitz
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continuous and strongly monotone, g(x) is a piecewise linear mapping, and f(x) :=

h(9(x)), then the main results given in 2 might still be true. See [20], [19], [11] for
related results. Also it seems natural to conjecture that Theorem 2.5 is still true if f
is only a piecewise quadratic function.

As the conclusion of this paper, we want to show that the estimate (2.11) is
actually a generalization of Robinson’s result on the upper Lipschitz continuity of a
polyhedral mapping [32]. Recall that a set-valued mapping F(y) from IR to subsets
of IR is said to be a polyhedral mapping if its graph {(x, y) x E F(y)} is a union of
finitely many closed convex polyhedral sets. Therefore, for a given polyhedral mapping
F(y), there exist matrices {Ai, Bi}’=l and vectors {ci}[_ such that

{ (x, y)" x E F(y) } 0 { (x, y)" A,x + By >_ c,i }.
i=l

Robinson proved that, if F(z) is not empty, then there exist positive constants 5 and
such that

(5.1) dist(z, r(z)) _< 11- zll for z F(y) with

Define

( min II(Az + Biz- c.i)+lllf:(x)
lir

Since min{t, s} t-(t- s)+, one can easily verify that v/f(x) is a piecewise linear
function of both x and z; hence, for a fixed z, fz(x) is a piecewise convex quadratic
function of x. Obviously, F(z) is the solution set of (0 =)mind,jR- f.(x). By Theorem
2.5, there exist positive constants/ and 7 such that

dist(x, F(z)) <_ /v/f(x) for x ]R with f(x) <_ l?,

For z r(y), ,ve have fv(x) 0. By the piecewise linearity of v/f(x), there exists a
positive constant a such that

v/f,(x) v/f(x) v/f(x) < c. IIz Yl].

Let (5 :=
x/5

Then (5.1) follows from (5.2) a,Ild (5.3). The above discussion shows that

(5.1) can be considered as a consequence of the error estimate (5.2) for approximate
solutions of the piecewise convex quadratic function f(x).
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A PERSPECTIVE THEORY FOR MOTION AND SHAPE
ESTIMATION IN MACHINE VISION*

B. K. GHOSHt AND E. P. LOUCKS
Abstract. In this paper, we consider the problem of motion and shape estimation of a moving

body with the aid of a monocular camera. We show that the estimation problem reduces to a
specific parameter estimation of a perspective dynamical system. Surprisingly, the above reduction
is independent of whether the data measured is the brightness pattern which the object produces
on the image plane or whether the data observed are points, lines, or curves on the image plane
produced as a result of discontinuities in the brightness pattern. Many cases of the perspective
parameter estimation problem have been analyzed in this paper. These cases include a fairly complete
analysis of a planar textured surface undergoing a rigid flow and an affine flow. These two cases have
been analyzed for orthographic, pseudo-orthographic, and image-centered projections. The basic
procedure introduced for parameter estimation is to subdivide the problem into two modules, one
for "spatial averaging" and the other for "time averaging." The estimation procedure is carried out
with the aid of a new "realization theory for perspective systems" introduced for systems described
in discrete time and in continuous time. Finally, much of our analysis has been substantiated by
computer simulation of specific algorithms developed in order to explicitly compute the parameters.
Detailed simulation that would answer the perspective realizability question is a subject of future
research.

Key words, perspective, vision, parameter identification

AMS subject classifications. 93B30, 93C10, 93C15, 93C60

1. Introduction. The problem that we consider in this paper is described as
follows.

PROBLEM l. We have a textured surface which is moving in continuous time
following a certain vector field where we assume that both the shape of the surface and
the vector field are unknown. Assume that a camera produces a perfect image of the
textured surface in continuous time. The problem of interest is to estimate the shape
and motion parameters of the surface from the observed time-varying image produced
by the camera.

Two important assumptions regarding the surface being observed, the camera,
and its imaging mechanism need to be emphasized. First, we assume that the surface
is constantly under focus, i.e., there is no blurring of the image as a result of imperfect
focusing. Second, we assume that the photometric effects on the image due to the light
source and the physical properties of the surface are negligible and can be ignored.
Thus, the process of image formation is such that the intensity corresponding to each
pixel on the surface is transferred to the image plane unattenuated via the projection
process.

The existing approaches to the estimation problem in the literature can be divided
broadly into two categories depending upon what is assumed to be measured from the
scene. If the data observed is assumed to be the brightness pattern which the object
produces on the image plane, a well-known approach in the literature is based on
analyzing the optical flow field (see [1], [32], [33]). For a system theoretic treatment
[2] of the subject we refer the reader to [47]. On the other hand, if the data observed
are assumed to be the discontinuity curves in the brightness pattern on the image
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plane, a well-known feature-based approach is to identify the correspondence of various
features such as points, lines, and curves between one frame and the next (see [3]-[6],
[8], [10], [12], [13], [40]). The former approach assumes that the image intensity is a
smooth function and restricts attention to the smooth part of the image plane only.
The latter approach assumes that the ilnage intensity is a piecewise smooth function
and restricts attention to the region of the image plane wherein the image intensity
is separated by a discontinuity curve. Of course for each of the two approaches, there
are various projection models that one might want to consider. Tile two projection.
models well known in the literature are called "orthographic" and "perspective."

There are also other projection models (see [11]) that generalize orthographic
and perspective projections. They are described as "image centered projection" and
"viewer-centered projection." There are still other projection models in the literature
[48] not considered in this paper. In this paper, we consider a model of projection (see
equation (3.1)) that generalizes the various projection models considered in the liter-
ature. The generalized projection degenerates to orthographic, pseudo-orthographic,
and perspective projection under various limiting cases. The corresponding estimates
of the parameters also degenerate and these have been studied in detail, in this pa-
per. Before we describe the main contribution of this paper, we survey some of the
important contributions in the field of motion parameter estimation.

The problem of estimating the motion paraneters in computer vision has a long
history, initiated by the early works of Ullman [9]. The problem was tested subse-
quently with real images by Roach and Aggarwal [16]. Finally Nagel [17] reduced the
problem to solving a single nonlinear equation. A fairly complete analytical solution
for eight feature points was given independently by Longuet-Higgins [18] and Tsai
and Huang [21]. Zhuang [23], [24] proposed a simplified eight-point algorithm and
discussed the uniqueness issue. On tile question of uniqueness, Netravali et. al. [25]
introduced a numerical technique called tile hotnotopy method and showed the exis-
tence of 10 solutions. Using projective geometry, Faugeras and Maybank [7] showed
that at most 10 solutions can be obtained from 5 feature points. Using the quaternion
representation of three-dimesnional (3-D) rotation, Jerian and Jain [26] reduced the
problem to solving the resultant of degree 16 of a pair of polynomials of degree 4 in
2 variables. Jerian and Jain [27] also compared known algorithms exhaustively and
compared their performances with noisy data.

Many algorithms in the literature are known to perform poorly under noisy data.
A robust algorithtn was introduced by Veng, Huang, and Ahuja [28] and by Spet-
sakis and Aloimonos [14], [15]. They used optimization-based methods to compute
"epipolar equations." Grzywacz and Hildreth [29] have also indicated that the effects
of image noise on reconstruction from image velocities are severe in some cases. Jerian
and Jain [26] and Murray and Buxton [30] proposed various schemes toward a stable
reconstruction algorithm. The particular estimation problem has been summarized in
two books by Maybank [31] and by Kanatani [11]. Ill fact, one of the reconstruction
algorithms described in this paper has been initiated by Kanatani [11]. For some
other related books and references we refer the reader to [391, [41], [45], [421, [43].

In this paper, we consider in detail the problem of estimating motion and shape
parameters of a planar surface undergoing an affine motion. The proposed affine mo-
tion generalizes the rigid motion already considered in the literature (see [3], [17],
[19]--[22]). While preserving the shape of the surface being observed, an affine motion
adequately models many other nonrigid deformations. We also consider a general-
ized projection which includes as a special case both "ixnage-centered projection"
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IDM: Intensity Dynamic Module
SDM: Shape Dynamic Module

1.1. A two-module approach to parameter identification.

Motion and
Shape Parameters

and "viewer-centered projection," together with orthographic and perspective projec-
tions. Finally, we consider both the "optical flow analysis" (see [6], [32], [33]) and the
"feature-based analysis" (see [35], [34], [44], [46], [40]) and show as the main contri-
bution of this paper that irrespective of what is assumed to be the nature of the data
observed (within the class of data considered), and regardless of what is assumed to
be the projection model (within the chosen class of models), the problem of motion
and shape estimation for a moving textured surface can always be analyzed as a spe-
cific parameter estimation problem of a perspective system. The specific form of the
perspective system depends on how the surface and the motion field have been param-
eterized. It may be recalled that perspective systems have already been introduced
in [36] in order to study feature-based estimation of motion parameters. Roughly
speaking, a perspective system is a linear system with a homogeneous observation
function (see [36]).

The details about the estimation scheme proposed in this paper are explained
as follows. As shown in Fig. 1.1, the estimation problem is broken up into two
modules, known as the Intensity Dynamic Module (IDM) and the Shape Dynamic
Module (SDM). Data from the observed surface are first processed in the IDM in
order to estimate a set of "essential parameters." Effectively, IDM performs a "spatial
averaging" throughout the entire image plane from either the observed sequence of
features or the optical flow data.

The essential parameters are functions of motion and shape parameters. The
shape-dynamic module views them as an observation function corresponding to the
"shape dynamics" introduced in this paper. The shape-dynamical system together
with the essential parameters (viewed as an output) can be regarded as an example of
a perspective system introduced in [36]. By observing the essential parameters over
time, the SDM obtains an estimate of the motion and shape parameters.

Thus, via a dynamical systems approach, we characterize a complete set of identi-
fiable parameters or functions of parameters for a planar surface undergoing an affine
motion. Such a characterization is done both for a generalized projection (3.1) and
for an orthographic projection (3.2). As a special case we consider the case when the
motion is restricted to a rigid flow and recover many known results in the literature.

In summary, this paper introduces a new unified treatment of the estimation
problem.

2. Shape dynamics of a surface patch. We assume throughout this paper
that we have a textured surface patch which faces a camera without any occlusion.
Futhermore, we assume that every point on the surface moves according to a certain
differential equation. As a result of the motion of the individual points, the shape of
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the surface undergoes deformation while the surface noves in time. In this section,
we write down a differential equation that describes the motion of the surface. We
also specialize the equation to a planar surface patch undergoing affine motion and
subsequently to a planar surface patch undergoing rigid motion.

Let us assume that (X, Y, Z) is the world coordinate frame wherein we have a
surface defined by the equation

(2.1) Z=S(X,Y,t).

We assume that S is smooth enough so that its derivatives with respect to each of
the variables are defined everywhere. We now assume that tile motion field is given
by the equation

(2.2) 2 =f(X,Y,Z), g(X, Y, Z), 2=h(X,Y,Z).
We now describe how the sm’face (2.1) moves as points on tile surface move following
the motion field (2.2). This is given by

(2 a)
as as as
----at .f(x, Y, s) -5-2 + g(X, Y, s)- h(X, Y, S).

The equation (2.3) is a quasilinear partial differential equation and is called the "shape
dynamics." We consider the initial condition

(.4) s(x, Y, o) O(x, ).

The pair (2.3), (2.4) constitutes an example of a Riccati partial differential equation
introduced in [38]. In this paper, we shall assume that the surface (2.1) is a plane
described as

(2.5) Z pX + qY + r,

where p, q, r are shape parameters that are changing in time as a result of the motion
field (2.2). Furthertnore we shall also assume that the motion field (2.2) is affane and
is given by

(2.6) 2 AX’ + b,

where

A [aij], b col[b1, b, b3]

are respectively a 3 x 3 matrix and a 3 x 1 vector and where A" col [X, Y, Z]. Thus in
this paper, we do not assume that the shape undergoes any deformation as a result of
the motion field. We now construct a differential equation that describes the motion
of the shape parameters p, q, r. This is done as follows. Let us homogenize the vector
(X, Y, Z) as X 2/I, Y f’/, Z 2/177 and the vector (p, q, r) as

We rewrite (2.5) as (/3, q,

2=(2, , 2, ITV)Tand

(2.9)

and (2.6) as , --,4T2 where

.AT=(A b)0 0



1534 B. K. GHOSH AND E. P. LOUCKS

It follows that

d
(2.10) /-(i0, c, .-, ’ )T: A( , c7, --., )T,
where A is the 4 x 4 matrix in (2.9) and is defined up to addition by a scalar multiple
of the identity matrix. If we assume initial condition to be g(0) 1, /5(0) p(0),
0(0) q(0), (0) r(0), it may be concluded that the dynamical system (2.10)
describes the motion of the shape parameters p, q, r. In fact, from (2.8) and (2.10)
the dynamics of p, q, r can be written as the following Riccati equation:

[9 (aa8 a11)p- a21q + aal alap
2

a2apq,

(2.11) 0 (a33 a22)q al2p + a39. al3pq a23q,
/ -(ass + ag_sq + aap)r + (ba bq-- blp).

In general, Riccati equation (2.3) or (2.11) propagates in time the relationship between
coordinates X, Y, and Z expressed via the surface (2.1) or the plane (2.5). Note that
the equation (2.11) is parameterized by 12 motion parameters and 3 initial conditions
on shape parameters. Thus there is a total of 15 parameters describing the shape
dynamics (2.10) for the affine motion.

An important special case of the afline motion (2.6) is the case when A is a skew
symmetric matrix given by

Under this assuinption, the motion field (2.6) describes a rigid motion The shape
dynamics (2.10) can be written as

(2.13) d- -bg 0

Note that the shape dynamics (2.11) reduces to [o -2(1 + p2) q_ colq co3Pq,

O -coa(1 + qU)- cop- cog.pq, and / ba- bp- bq- r(coaq + co2p) which is

parameterized by a total of six motion parameters and three initial conditions on

shape parameters. Thus there is a total of nine parameters describing the shape
dynamics (2.13) for the rigid motion.

3. Intensity dynamics of a moving textured surface. Assume that the sur-
face described by (2.1) is textured, i.e., the intensity E(X, Y, Z, t) of a point (X, Y, Z)
on the surface at time t does not change along the integral curves of (2.2). We also
assume that the catnera is perfectly focused on the object surface, i.e., intensity from
a surface on the object to the image plane is transferred unattenuated under the cam-
era correspondence. The above two assumptions together imply that the intensity on
the image plane does not change along the projection of the integral curves of (2.2).
In this paper we consider the projection to be described as follows.

Let (x, y) be the coordinates of the image plane obtained under the projection of
a point (X, I7, Z) on the surface of the object. We define

fX fY(a.1) .
Z+6’ = Z+6’
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where 5 E [0, f] and of is the focal length of the camera. Note that if i 0 we obtain
a viewer-centered projection. If 5 f we obtain an image-centered projection. These
two projections have been described in [11]. Finally note that if 5 f and f -- oc
we obtain

(3.2) x=X, y-Y

which is known in the literature [11] as tile "orthographic projection."
In an orthographic projection, a point (X, Y, Z) is projected by dropping the Z

coordinate information. In order to motivate the image-centered and viewer-centered
projections, assume that the image plane is perpendicular to the Z axis and passes
through the point Z a. Assume that the optical axis is the Z axis and a point
IX, Y, Z is projected onto the image plane via the center of the camera located at
Z -Z0. In order to derive the projected point, one cmnputes the line passing
through the points (X, Y Z) and (0, 0,-Z0) and conputes the intersection of with
the image plane. The projection of the point (X, Y, Z) is this intersection. If the center
of the cainera is the origin of the coordinate axis, i.e., if Z0 0, we obtain a viewer-
centered projection. On the other hand, if we assume that the image plane passes
through the origin of the coordinate axis, i.e., if a 0, we obtain an image-centered
projection.

For a given fixed value of f, we have a new set of coordinates (x, y, Z). We now
rewrite the shape equation (2.1) and the restriction of the motion field (2.2) on the
image plane in the new set of coordinates as

z t)

and

(3.4) c ](x, y, (x, y, t)), ’ (x, y, (x, y, t))

for some suitable functions , ], .
The integral curves of (3.4) are exactly the projection of the integral curves of the

motion field under the generalized projection (3.1). The vector field described by (3.4)
has been described in the literature (see Horn [1]) as "optical flow." Note in particular
that the optical flow is in general a time-varying dynamical system described via the
coordinates of the image plane. The time variation of the optical flow is a result of
the motion of the surface (2.1), or equivalently (3.3).

Let e(x, y, t) be tile intensity of a point (x, y) on the image plane at time instant
t. Since e(x,y, t) does not change along the integral curves of (3.4), it follows that
e(x, y, t) satisfies the partial differential equation given by

(3.5) Ot
0e 0e

+ f(z,,$(z,,t))-x + (z,,$(z,,t))cy O.

We shall call the dynamical system (3.5) as "intensity dynamics." Let us now assume
that the initial condition is given by

(3.6) o)

We shall call the function (x, y) the "texture function." The above pair (3.5), (3.6)
is a linear partial differential equation, which describes the dynamics of the intensity
function on the image plane.
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Let us now restrict our attention to a planar surface (2.5 with affine motion (2.6)
and assume a generalized projection (3.1). The "optical flow" equation for this special
case can be written as follows:

(3.7)

1
k, dl + d3x + d4y + -/(dTx2 + dsxy)

] d2 + d6y + d5x nt- --; (d8y2 + d7xy)

where

dl f(a3 + Cl)d2 f(a23 + c2), d3 (all an3) (c3 + pcl),
d4 al2 qcl d5 a21 pc2,

d6 (a22 a33) (c3 -+- qc2), d7 pc3 a31; d8 qc3 a32

and where

(39) (: (bi ai35)/(r + 5), 1, 2, 3.

Various limits of the optical flow equation have been considered in the literature.
They all pertain to analyzing what happens when f tends to ec, assuming f 5. In
the process of taking the limit, one would approximate the coefficients of the optical

while neglecting the higher-order terms. If we defineflow equation (3.7) up to order ?,

(3.10) hj lim dy; j 1,2,...,8

we obtain the following:

(3.11)
hi a3r -4- bl h2 a23r A- b2,

h3 all + a3p, h4 a12 -f- a3q,

h5 a21 + a23p, h6 a22 + a23q,

h7 -a3a a33P, hs -a32 a33q.

Thus when f + ec and f 6, the optical flow equation can be approximated up to
order . by

(3.12)
1
(hTx2ha + h3x -+ h4y -4- - + hsxy),

1
h2 + h5x + h6y + --;(hsy + hzxy).

Of course if the focal length of the camera is fixed at oc, one observes the optical flow
equation as

(3.13) h + h3x + h4y, 1 h2 + hsx + h6y.

The projection which produces the optical flow given by (3.13) is known as "ortho-
graphic projection." Such a projection described by (3.2) does not give any information
about the quadratic component dz and ds of the optical flow (3.7) in general. The
optical flow equation (3.12), on the other hand, is an approximation of (3.7) up to
order assuming f is approaching ec. Thus if the focal length of a camera can
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be varied, one can obtain the asymptotic values of d7 and ds for large f and use
this information to compute h7 and hs. We shall call (3.12) the optical flow under
"orthographic approximation," as opposed to (3.13), which is the optical flow under
"orthographic projection."

We also introduce a "pseudo-orthographic approximation" of (3.7) originally in-
troduced by Kanatani [11]. This is described as follows:

1g dl -.d3z + d4y + (hTz2 + h8x),
(3.14)

e + e + + . (h + hx).

"Orthographic approximation" and "pseudo-orthographic approxiination" to the op-
tical flow equation (3.7) is useful in the process of reconstructing the motion and
shape parameters from the coefficients of the optical flow equation. The reconstruc-
tion algorithm has been described in 5 using an approach described by Kanatani

4. Estimation of essential parameters based on intensity and feature
measurements. Assume as in 3 that we have a moving textured plane which pro-
duces a time-varying intensity profile on the image plane. In this section we consider
the intensity dynamic module problem described as follows.

PROBLEM 2 (intensity dynamic module problem). Assume that the intensity
fltnction e(x, y, t) is measured in a given region of the image .plane over a given interval

of time. The problem is to estimate the vector (d,..., ds) from, this data.
In subsequent sections, we shall see that the vector (dl,... ,ds) is of paramount

importance in estimating the motion and shape parameters. For this reason we shall
call the vector (d,... ,ds) the "vector of essential parameters"

4.1. Estimation based on intensity measurements. Assume that the inten-
sity fimction is smooth so that all its partial derivatives exist and can be computed.
If the motion field is affine given by (2.6), it follows from (3.5), (3.7) that the intensity
dynamics is given by

0e 0e 0e
(4.1) Ot + F(z,y) + G(z,y) O,

where e(z, y, t) is the observed intensity function on the image plane and

1
r(, ) + x +a + ? (aT + ax)

(4.)
a(, ) d + d +d + , (d + g).

The parameters d,..., ds can be defined from (3.8) Combining (4.1) and (4.2), we
now write

(4.3) v’d

where

(4.4) ( 11 (xex + xyeg),-] (xye +,T e ey Xex ye Xey, yey, .-]
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and

(4.5) d (dl,..., d8)T

In order to compute an estimate of the coefficient vector d, we proceed as follows.
Choose n > 8 points on the image plane denoted by (x.i, yi),i 1,... ,n. From the
observed data e(x, y, t) we now form the matrices

(4.6) V-(v(x,y) v(xe,y.) v(x,y))

From (4.3) it follows that VTd u. If the points (xi, yi) are chosen in such a vay
that rank V 8, we conpute

(4.8) [t- (VVr)-IVu

as an estimate of d. We therefore have the following theorem.
THEOREM 4.1. Assume that the function e(x,y,t) is such that. all its partial

derivatives are available and can be measured. Assume furthermore that the points

(xi, y), 1, n are such that rank V 8, where V is given by (4.6). It is possible
to obtain a unique estimate of d.

4.2. Estimation based on feature measurements: Curve correspon-
dence. By the word "feature" we shall mean points or curves of discontinuity for
the intensity fllnction e(x, y, t). We shall assume that, via edge detection, these fea-
tures can be observed in real time. We shall assume that the moving textured surface
produces a time-varying intensity function on the screen. The moving intensity func-
tion in turn would make the features nove on the screen. The dynamical system
which describes such a motion is called "feature dynamics." The main result of this
section is to see that the coefficients of the feature dynamics are exactly the essential
parameters introduced in (3.8). Thus under an appropriate technical condition, the
essential parameters can be estimated from the feature dynamics as well, as was the
case for intensity dynamics. In order to describe the feature dynamics we proceed as
follows.

Let

(4.9) y Z(x, t)

be the curve along which the function e(z, , t) is discontinuous. We want to study
how the feature curve (4.9) changes in time. Differentiating (4.9) with respect to time,
we obtain

(4.10) )- -x :b + 0--{"

Recall that

(4.11)
ic F(x, y);
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where F(x, y), G(x, y) are given in (4.2). It follows that

(4.12)

The above equation (4.12) is referred to as the feature dynamics, which can be rewrit-
ten as

(4.13) vTd OZ

where d is defined as in (4.5) to be the vector of essential parameters. The vector vT

is given by

(4.14) vT= (Z,, 1 (x2Z xZ),
1

Ve now choose n _> 8 points on the curve (4.9) denoted by (xi. yi), 1,..., 8. As
in (4.6), (4.7) we construct the matrix V and vector u and obtain an estimate d of d
given by (4.8), provided of course rank V 8.

In order for the matrix V to have rank 8, the curve (4.9) has to be of sufficiently
high order. In fact, if (4.9) is a polynomial, it cannot be of degree < 4. On the other
hand, if

(4.15) Z(x, t) ao + alx + ag.x2 + aax3 + a4x4, a4 yk 0

in order for rank V 8, one must have

8
(4.16) a 5k -a2a4.
Thus we have essentially proved the following theorem.

THF.ORnM 4.2. Assume that the observed feature is a polynomial discontinuity
curve (4.9) of degree 4 given by (4.15). It is possible to estimate d given by (4.8) /ff
(4.16) is satisfied.

If the observed discontinuity curve is of degree < 4, we shall see that one needs
to observe a larger number of features in order for rank V 8. Two cases of interest
are when the observed feature is a line and when it is a point. These two subcases
are now considered.

4.3. Estimation based on line correspondence. Let

(4.17) y ax + b

be the line along which the function e(x, y, t) is discontinuous. Assume furthermore
that the line (4.17) is generated as a result of a discontinuity in the texture of the
surface (2.5). We also assume that changes in x,y are given by (3.7). Thus, the
feature dynamics is given by (4.12) or (4.13) where

(4.18)
027
Ot

4x + )
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and

( b b )(4.1.9) vT a,-1, az, a(az + b), -z, -(az + b), --.-f z, --(az + b)

The vector d of essential parameters (see (4.5)) satisfies the ordinary differential equa-
tion

(4.20)
0 0 -a -a

If we assume that the motion of the line (4.17) is observed, we might infer that
in (4.20), a, b, g, D is observed. Thus (4.20) represents a pair of equations in eight
variables, the variables being the eight-parameter d vector. Choosing a set of four
lines on the surface being observed and assuming that these four lines define a set of
eight independent conditions on the d vector, one can obtain an unique estimate of
the d vector. The procedure is similar to that outlined in. 4.1 and described by (4.8).
We now state the following theorem.

THEOREM 4.3. Assume that the observed feature is a set of four lines on the
image plane given by the equation

(4.21) y aiz + bi, 1,...,4,

where the lines (4.21) are generated as a reslt of discontinuity in the tezture of the

szrface (2.5). Define

-ai 1 0 -aibi 0 bi 0
(4.22) @

0 0 -ai -ai .-?- f
2 a b. a,i. b

i- 1,,..,4 and the 8 x 8 matriz ( )T. It is possible to estimate the
vector d uniquely given by

(4.23) = (*T)-IT (1 1 2 2 3 3 ,4 4 )T
iff ’rank 8.

4.4. Estimation based on point correspondence. If ve assume that the
texture function is discontinuous at a single point, one would observe this point as a

discontinuity in the function e(z, , t). Tracking the discontinuity in real time would
amount to tracking the projection of the feature point on the image plane. Thus we
rewrite the optical flow (3.7) as

(4.24) f f d
0 1 0 0 z y f f

where d is once again the vector of essential parameters given by (4.5). The point
(z, y) is the projection of the feature point on the image plane. Assmning that we are

able to observe z, y, 2, in real time, it follows that equation (4.24) represents a pair
of equations in eight variables, the variables being the eight-parameter d vector of
essential parameters. As in 4.3, if we choose a set of four feature points on the image
plane that are projections of points of discontinuity in the texture of the surface (2.5),
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and assmne that they define a set of eight independent conditions on the vector d, it
follows that one can uniquely obtain an estimate of the vector d. Thus we have the
following theorem.

THEOREM 4.4. Assume that the observed feature is a set offour points on the im-
age plane given by (x, y), 1,..., 4, where we assume that the points are generated
as a result of discontinuity in the texture of the surface (2.5). Assume furthermore
that the 8 8 matrix

(4.25)

is nonsingular, where

(4.26) .i f f
0 1 0 0 xi Yi

x,g y_
f f

1,2, 3, 4. It is possible to estimate the vector d uniquely given by

(4.27)

To summarize the main results of this section, we show that the vector d of
essential parameters can be estimated from intensity and feature measurements. The
task of the IDM is to estimate the vector d. It may be noted that the IDM requires
information only at a given instant of time and performs "spatial averaging."

5. Estimating motion and shape parameters from the recovery equa-
tion. In this section we shall assume that the essential parameter vector d has already
been estimated by the intensity dynamic module. The problem that we would like to
consider is to solve (3.8) for the motion and shape parameters. We would also like
to study how the solution degenerates for f ( as f - oc, i.e., when the projection
model degenerates to that produced by orthographic projection. Some portion of our
analysis in this section is an adaptation of earlier work due to Kanatani [11].

5.1. Estimation under general projection. We assume that we have a planar
surface (2.5) undergoing a rigid motion (2.13). The essential parameter vector d given
by (3.8) for this case is given as follows:

(5 1) dl f(w2 + el), d2 f(w3 + c2), d3 --(C3 pCl), d4 COl qcl,

d5 -COl pc2, d6 -(ca + qc), dv (c2 + pea), ds (COa + qca),

where

C1 (bl CO2()/(? q- (), c2 (b2 co3()/(r -q- (), c3 b3/(r q- ().

The problem that we consider is described as follows.
PROBLEM 3. Assume that we are given (dl,... ,ds). Using the algebraic equation

(5.1), (5.2), solve for the parameters c, c, ca, co, co, COa, p, q.
It may be noted that (5.1) describes exactly a set of eight nonlinear equations in

eight parameters. This particular set of equations is known as the "recovery equation."
The following result is quite surprising, however.

THEOREM 5.1. Assume c3 7 0; then (5.1) can be solved .for exactly two real
solutions. If
(5.3) (el, C2, C3 COl, CO2 Cd3, P, q)
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is one solution, then the other solution is given by

(.-c3p, -c3q, c3, al Clq + c_p, w2 + cl + c3p, w3 + c2 + c3q, -c/c3, -c/c3)
(5.4)

It may be remarked that the existence of two solutions to the recovery equation
(5.1) and described by Theorem 5.1 has been reported earlier in the literature by
Waxman and Ullman [8] and by Kanatani [11]. In [8] the analytical steps leading
up to the two solutions have not been documented. In [11] the analytical formula
(5.4) of the two solutions has not been presented. The purpose of stating and proving
Theoren 5.1 is therefore tutorial.

Before we prove Theorem 5.1., we proceed to solve the set of equations (5.1). Let
us define

T d3 + d6, R d5 d4, Uo d q- ida,
1

K + S + +

and

1
(5.6) P p + iq, V C1 - ic_, W a3 -iw, L fK -TUo.

J

The equations (5.1) can be written as

Uo f(V + iW),
S --PV, L cap V

-iPV* R + 2Wl + i(T + 2c3).

Note that (5.7) is a set of four equations in complex variables that needs to be solved.
From (5.7) we have

V + LV + c3S O.

Solving (5.8) for V and then using (5.7) for P we have

-L + v/L- -4c3Sv
2

L + v/L -4cS(5.10) P
2c3

From (5.7) we have

(5.12)
[Im(PV*) R]/2,

T + 2c3 -Re(PV*).

From (5.9) and (5.10) we have

-ILl 2 + v/(n 4c3S)(L 4caS)*
(5.13) Re(PV*)

4c3

Combining (5.12) and (5.13) we have

(5.14) ILl 4Tc3 8c, v/ILl 4 + 16c1SI 2 8ca.Re(.L S* ).



A PERSPECTIVE THEORY IN VISION 1543

Note that (5.14) as an equation in ca has two solutions. One solution is at ca 0 and
the other solution is at ca c.. Squaring (5.14) on both sides, we conclude that c is
the middle root of the cubic equation

1
(5.15) c33 + Tc. + (r2 -IL

1ISI2)ca + -(Re(L2S*) 7’ILl) 0

Using c3, one can solve for a pair of solutions for P and V from (5.9) and (5.10).
Finally, from (5.7) we have

(1)(5.16) W=i V- ]U0
and from (5.11) one can solve for 021. Thus the set of equations (5.7) can be solved
for exactly two distinct solutions if c3 - 0. If (5.1) is solved, these are exactly the two
solutions that one would obtain.

Proof of Theorem 5.1. It can be easily checked that if (5.3) is one solution of
(5.1), then the other solution is given by (5.4). However, since (5.1) has exactly two
solutions, these are the only solutions. Moreover the solutions are obtained by solving
the cubic polynomial equation (5.15) outlined as above.

Frown the two solutions to the recovery equation (5.7), it is easy to see what
happens when f oc. Note that

(5.17) f,lim C1-----022 flim--*oc c2 -----023, flim--* c3--0.
It follows that one of the two solutions (c, c, c3,021,022, w3,p, q) approaches the vector

(--022, --023, 0, 021, 022, (-d3, P, q),

the first six components of the other solution approach the vector

(0, 0, 0, (a.) / a&gq- 023P, 0, 0)

and the last two components of the other solution approach oc asymptotically along
the line

(5.20) P/q 022/028.

The parameters bl, b2, ba, r are never recovered exactly. In fact, from the definition of
d, d2, ca we have, for a given f, the straight line

w2r + b + d, w3r + b2 1 / 7

described in the (b, b2, b3, r) space corresponding to the solution (ct, c2, c3,, c2, ’3,

p, q). On the other hand, corresponding to the other solution we have the straight
line

(2 + ca + c3p)r + 51

(a8 + c2 + csq)r + b2

b3

1+] d],

1 + d,

c3(r / f).
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As f x, the straight line (5.21) tends to the straight line

2r + bl hl,war + b2 ho,. b3 b*3,

where b; is an arbitrary constant. To see (5.23) we need the following lemma.
LEMMA 5.2. In the (b3, r) space the straight line b3 c3(r + f) converges to the

line b3 b as f -- cxz, where b is an arbitrary constant.
Proof. Recall that d3 =-c3- pc1, i.e.,

(5.24) (d3 -- pC1 )/" -Jr- b3 -(d3 + pcl)f.

As f--+ oc, we have (d3+pcl) 0 and (b3+(d3+pcl)f) O. At agiven f, the
line (5.24) passes through the point (0,-f) and (-(d3 + pcl)f, 0). For large f, the
line passes closely through the points (0,-f) and (b, 0) where b is a fixed constant,
which is also the true value of b3. Thus as f the line (5.24) approaches the line

b3 b.
The above calculation can be summarized via the following theorem.
THEOREM 5.3. Consider the solution vector (w,w2,w3,p,q) for the recovery

equation (5.7). For a given fixed f there are exactly two solutions, one of which
remains unchanged as f and the other of which goes off to infinity as described
by (5.19), (5.20). For the parameter vector (bl, b2, b3, r), the recovery equation specifies
these parameters up to a choice of two straight lines (5.21) and (5.22). The line (5.21)
corresponds to the parameter vector (w,w,w3,p,q), which does not change with f.
Moreover as f , the line (5.21) changes with f and approaches the limit (5.23).

Remark. It follows from Theorem 5.3 that for large f one recovers (b, b, r) up
to a. line given by (5.23) and b3 exactly.

5.2. Estimation under pseudo-orthographic approximation. Under the
pseudo-orthographic approximation, the equation we need to solve for instead of (5.1)
is given by

(5.25) dl f(w2 + Cl), d2 =/(w3 + c2), d3 -(c3 + pcl), d4 1 qc1,

d5 - -pc, d6 -(c3 + qc), h7 w, hs 3.

Let us define T,R, Uo, S as in (5.5) and replace K by K1 given by K } (h7 + ih8).
Furthermore let us define P, V, W as in (5.6) and replace L by L1 given by L
fKl-}Uo. The recovery equation (5.25) can be written as Uo f(V+iW), S -PV,
L1 -V, - PV* + e l) + + which solved
and the solution is given by

(5.26)

V -L1,
P= S/L,

021 -[Im(SL/.L1) + R]/2,
v--_Uo

The following theorem describes an important property of the pseudo-orthographic
approximation.

THEOREM 5.4. The solution (5.26) of the pseudo-orthographic approximation,
converges as f cx to one of the solution of the recovery equation (5.7), described by
(5.9), (5.10), (5.11), and (5.16). The solution to which (5.26) converges to is exactly
the one which does not change with f.
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Proof of Theorem 5.4. It is easy to see from (5.9), (5.10) that

-L v/L2 4caS
lira L,
c0 2

L v/L2 4caS
lira S/L.
ca0 2c3

iff oc it follows that ca 0. Thus it may be concluded that iff c, the
solution (5.26) approaches one of the two solutions of the recovery equation (5.7).
Finally note that as f oc, (5.26) remains finite. To see this we compute

limf L -(h7 + ihs),

(5.27) P: lira S/L: (h3-h6)+i(h4+h5)
f h7 + ihs
[(Pv*)- (h h)]/,

Pv -i.
Thus the solution (5.26) to the pseudo-orthographic approximation remains finite and
approaches one of the two solutions to the recovery equation (5.7). It follows that it
must approach the one which does not change with f because the other solution does
not remain finite. S

Remark. The limiting solution (5.27) is exactly the solution to the recovery
equation under orthographic approximation. Such an equation will be given by
hi w2r + bl, h2 ar + b2 ha w2p h4 + q, h5 - + ap, ha w3q

h7 w’2, and hs wa. Verification of this fact is straightforward.
Remark. The advantage of using pseudo-orthographic approximation as opposed

to solving the recovery equation (5.7) is that one needs to solve only linear equations
in the former whereas one needs to solve a cubic equation in the latter.

6. Identifiability condition of a planar surface undergoing affine mo-
tion. We consider a planar surface undergoing an affine motion and note that the
motion of the shape parameters is given by (2.10). In this section we shall consider
identifying parameters of (2.10) by considering an output equation given by (3.8).
However, since (3.8) is nonlinear in the parameters, we would like to homogenize the
vector (d,..., ds)T as follows. Let us define

(6.1) di= YJ, j=l,...,8
y9

so that the vector

(6.2) (Yl,... ,Y9)

is a homogenization of the essential parameters. Equation (3.8) can be written as

(6.3)

/Yl
Y2
Y3
Ya
Y5
Y6
Y7
YS

\Y9]
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where/, q, s, and f have been defined as given by (2.8) and

(6.4) b’-- (bl a35 b a35 b3 aaa5)(b b; b,).

We now consider the shape dynamic module problem described as follows.
Shape dynamic module problem. Consider a dynamical system (2.10) to-

gether with the output function (6.3). The problem is to identify the paratneters A, b
given by (2.7) and the initial conditions/5(0), (0), g(0), P(0) to the extent possible.

The main result of this section is to derive a, complete answer to the shape dy-
namic module problem. Note in particular that the perspective system (2.10), (6.3)
is parameterized by a set of 12 motion parameters A, b and a set of 3 shape param-
eters p, q, r. We shall show that not all 15 parameters are identifiable, i.e., there is
a nonunique choice of parameters for which the observation described by (6.3) is the
same. The main result of this section is described as follows.

THEOREM 6.1. Under a suitable generic condition on the set of 15 parameters of
the perspective system (2.10), (6.3), the following parameters or functions of parame-
ters are identifiable. They are

(6.5) (A, p, q, cl, c2, c3),

where C1, C2, C3 is defined in (3.9).
Thus 14 parameters or functions of the parameters out of a total 15 free parame-

ters are identifiable. The method of solving a set of recovery equations presented in 5
cannot be used to identify these 14 parameters. This is because the output equation
(6.3) describes only 8 equations in 15 unknowns. In order to identify 14 parameters,
one needs to use the dynamical system (2.10) together with the output equation (6.3).
The paralneter identification has been carried out via a new "realization theory for
perspective systems" described in this section (see also [37]). An important corollary
of Theorem 6.1 is now described.

COROLLARY 6.2. Consider the perspective system (2.13) (6.3) parameterized by
a set of nine parameters. (Here we assume that in (6.3) the parameters aj have been
replaced by wj as given by (2.12)). Under a suitable generic condition on the set of
nine parameters, the following parameters or functions of.parameters are identifiable.
They are

(6.6) (a21 Cd2 W3 p q, Cl C2, C3)

where C1, C2, C3 is defined in (5.2).
Thus for the perspective system (2.13), (6.3), eight functions of the nine param-

eters are identifiable. In 5, we have shown that the eight functions (6.6) can be
identified, up to a choice of two alternative solutions, by solving the output equation
(6.3) alone. Thus use of the dynamical system (2.13) results only in recovering the
correct alternative.

In order to prove Theorem 6.1 we need the following notation. Define

(6.7) 79 (p q g f)T,
(6.8) y

(6.9) A _bT 0

(6.10) A (the 9 x 4 natrix in (4.12)).
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From (2.10), (6.3) it follows that

(6.11) y Aetp(o),

where the vector y is observed up to a homogeneous line. We shall denote this line
by [Y]. As has been described in Ghosh. Jankovic, and Wu [36], the nonuniqueness in
A, A, 7)(0), which produces the same [y], is given by the orbits of the following group
action. They are described as follows:. P GL(4) acting on (A,A,P(0)) as follows:

(6.12) (A,A,P(0)) (AP,.P-AP, P-lp(o)).
2. # N acting on (A,A, P(0)) as follows:

(6.13) (A,A,P(0)) (A,,I + A,P(0)).

3. A,A2 - {0} acting on (A,M, P(0)) as follows:

(s.14) (, A, p(0)),. (AI, A, (0)).

The collective actions (6.12), (6.13), (6.14) will be referred to as the action due to
the perspective group . It is easy to see that the parameters in the orbit of the
group produce the same output [] and hence cannot be identified. The following
proposition shows that under an appropriate generic condition on the parameters
of the perspective system (2.13), (6.3), two orbits of the group indeed produce a
different output []. Hence the orbits of the group can indeed be identified.

PROPOSITION 6.3. Consider a perspective systern in continuous time given by

( 15) z

where we assume that the triplet (C, A, xo) is minimal. The set of all minimal triplets
which produce the same output z is given precisely by the orbits of the action.

Proof of Proposition 6.3. Note that the vector fimction y(t) ceAtxo is observed
for each t up to a homogeneous line. Assume that there is a scaling function r(t)
such that r(t)y(t) is the output of a linear system of degree n, where we assume that
r(0) 1. Discretizing the system (6.15) at discrete interval T, 2T where T has
been chosen to be suNciently small, it follows from [37] that r(jT) r(T)i. Since
T is arbitrary, it follows that the function r(t) is such that r(jTt) r(Tt)J, for all
t , 0, 1, If r(t) is a differentiable filnction at t 0, it follows that

(t +
(t)

One therefore concludes that

(/xt) (0) +

’(t) ’(0)(t).

Thus the scaling function r(t) is an exponential function given by

r(t) =e’()t.

Thus the scaling of C, A, z0 is such that C, z0 is scaled by a scalar multiple. The
matrix A is scaled as

A r’(O)i + A. Cl
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In general the GL(4) action on the triplet (A;A, 79(0)) changes the structure of
the matrix A and A. The subgroup of GL(4) which preserves the structure is now
described.

THEOREM 6.4. Define

(6.16) b bl a13(5, b b_ -a23( b 53 a335.

Assume that

(6.17) bla23 b’2a13 O, b’a31 b’3a2 0, ba32 bal 7 O,

(bl o,

(6.19) ( bA:r ) has rank 3,

where b’T= (bi b b3). Under the generic assumption (6.17), (6.18), (6.19), the only
subgroup of GL(4) which preserves the structure of (A,A) under the action (6.12) is
given by

P

0 0
0 0

all 0
5all (44

where c =/0, (t44 7 0.

Proof of Theorem 6.4. Let

(6.21)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 6 1

It is easy to see that

-AT
J[1 .A= Q-AQ _b,T

0

(6.23) A AQ

0 0 --fb fa3
0 0 -fb fa3
-b 0 b a a33
0 -b 0 a2

-b 0 0
0 -b b az a33

-b 0 0 a31
0 --b 0 a39

\ 0 0 0 1

Let Q (aij) be a nonsingular 4 x 4 matrix. Under the generic condition (6.17),
(6.18) it may be concluded that A1Q1 has the same structure as A if Q has the
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form

(6.24)

c11 0 0 a14
0 all 0 a24()1 0 0 O11 O34
0 0 0 O44

0 (-44

Computing QIA1Q1 we have

-AT-t--t--Q)b’T ATO+ t, Ob,Tt )CX44 11 Cl 11 (-44

i-A
all bT bTl
44 (44

In order for Q-tAIQt to have the same structure as A1 we must have

bTO O and AT o.

Under the generic condition (6.19), it follows that (9 0. Thus Q is of the form

(6.26) Q1

0 0 0

all 0 0
0 atl 0
0 0 044

The structure (6.20) of the /5 matrix is obtained by defining/5 QQ1, where Q, Q1
are given by (6.21), (6.26), respectively. [3

Note that/5-t/5 takes up the form

-AT 0 )(.) b,. 0

On the other hand, /5-7) is given by

(6.28) ( fi g f+(Sg)011 11 11 044

and AP is given by

(6.29)

In order to get the last row of A/5 to be a unit vector we apply the group in (6.14)
From (6.27) (6.28) (6.29)it can be concluded that theto (6.29) with 4---2"

subgroup (6.20) essentially scales the vector b by the scalar l__x. Likewise it scales
C,14
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br + 5 by 1__
.4.4 Hence the function (:%5) remains invariant in the orbit of the subgroup

(6.20) action.
The subgroup (6.13) essentially changes the diagonal of the matrix .4. Since

the diagonal of the matrix 4 is given by (-all -a22 -aaa 0) it follows that the
subgroup which preserves the structure is given by # 0 and the parameters a11,

a22, a3a remain invariant in the orbit of this subgroup action.

Proof of Theorem 6.1. Note that under the generic conditions (6.17), (6.18), (6.19)
the functions (6.5) remain invariant under the action of the perspective group , i.e.,
they remain constant in the orbits of the action. In Proposition 6.3 we show that
additionally if (A,.A,P(0)) is a minimal triplet then no two orbits of the action
produce the same output [32]. [5

7. Identification of parameters based on the orthographic projection.
The orthographic projection occurs as a special case of the generalized projection
(3.1) when we assume 5 f and let f --, oc. In this case, the parameters dT, ds of the
output equation (6.3) or (3.9) are forced to zero or equivalently, the quadratic term
in (3.7) or (3.12) drops out. Thus, the optical flow equation is given by (3.13) and
the recovery equation is given by the first six components hl,.., h of (3.11).

7.1. Solution to the recovery equation for the rigid motion. We begin
this section by considering a plane undergoing a rigid motion given by (2.13). The
corresponding recovery equation is given by

da a.,.r + bl, d2 cd3r + b2, d3 c,2p,(7.1) d4 03 + a.q, d5 -031 / w3P, d6 a3q,

where we shall assume that the vector (d,... ,d6) is estimated by the IDM. Kanatani
[11] has considered the problem of solving (7.1) for the parameters t, c., c3, p, q, r, bl,
be. The parameter b3 does not enter (7.1) and is therefore not recoverable from the
equation (7.1). Moreover since we have six equations in eight unknowns we do not
expect to recover the paraneters even up to finitely many alternatives. In fact, it is
already known (see Kanatani [11]) that the recovery equation (7.1) can be solved in
the following way.

Let us define

V d + id2, T d3 + (t6, R d5 d4,(7.2) S da d6 + i(da + d5), P p + iq, W -w3 + iw2.

iFrom (7.1) we obtain the following:

PW iS,(7.3) PW* -(2w + R)- .iT.

The equation (7.3) can be solved as follows.

(7.4)
031
W=kexp[i{ + argS-arg(-2w -R-iT)}],
P =i,

where k is an arbitrary constant. The parameters bl, b and r are given as B-iWr V
where B bl + ib2. Thus we have the following theorem essentially described by
Kanatani [11].
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THEOREM 7.1. The recovery equation (7ol) can be solved up to two parameters
k2 and up to a choice of sign as follows:

W=klexp[i{ +argS- arg(-2w- R--iT)}],
P =i,
B V+.ikW,
r:2.

The proof of Theorem 7.1 is clear from the above discussion. Note that the solution
to the recovery equation (7.2) is ambiguous up to a sign and is obtained up to a
pair of parameters kl and k2, out of a total of eight parameters, which excludes the
parameter b3.

7.2. Identification of a planar surfaceundergoing affine motion. Let us
now homogenize the output equation (7.1) described as foll.ows:

y 0 0 -b a13
y2 0 0 -b2 aa
y3 a13 0 -all 0

Y4 0 a13 --al 0

Y5 a23 0 -a21 0
Y6 0 a23 --a22 0

\ Y9 0 0 -1 0

(7.6)

We now proceed to consider the technique described in 7 for the perspective system
(2.10), (7.6). Note that (7.6) is the homogeneous version of the recovery equation
(3.8). Denote the 7 x 4 matrix in (7.6) by . The main result of this section is
described as follows.

THEOREM 7.2. Consider the perspective system (2.10), (7.6) parameterized by
a set of 15 parameters. Assume furthermore that the parameters satisfy the generic
condition

(7.7) aa 7 O, ba23 b2a13 7 O, a12a23- a13a22 7 O, alia23 a13a21 = 0

and the triplet (, M, P(O)) is a minimal triplet. The functions of the .parameters that
can be identified are given by

a a22 al.2 a: --at3p all, --al3q at2aa b2 bl a a21 all aa ataa13 a13

(7.8) --a3r b,, (al + aa2 + a3a3) a,
(ata2 + a2a2 + a3a32) a2, (ab + ab + a1363) b,

where is defined to be

(aa13 + aa3 + at3a33)
a13

Remark. Thus there is a total of 11 finctions of motion and shape parameters
that can be identified.

Proof of Theorem 7.2. Let P be a nonsingular 4 x 4 matrix. Under the generic
condition (7.7) it can be shown that P has the same structure as that of provided
P is of the form

a 0 a3 0
0 a a3 0

(7.9) P
0 0 33 0
0 0 a43 a
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and _L 7vP is of the form
C33

(7.10)

( 0
0

al---A al 3O33

0

(33

0

\ o

(:33 a13

a3 a23
0
0
0
0
0 /

Likewise P-.AP is of the form.

(7.11)

where

0)3 _1 ((.t13al3 _+_ o23a23 _+_ 033a33)
C33

I4 c,1 (@13bl -+" a23b2 + ct33b3) + ala33t43 (a13a13 + oz23a23 + ct33a33)

Of course the inatrices (7.10), (7.11) are the new structures of the matrix 7 and A
respectively after transformation.

It follows that the set of parameters that would produce the same output (7.6) is
given by

(7.12)

where

all + all 7r2a13,

a21 a21 7r2a23,

a12 a12 7r3a13,

a22 a22 7t3a23,

a13 - Trial3,

a23 7rla23,

bl bl 774a3,

52 52 4a23,

a31 (Tr2all A--7r3a21 -f-a31)- r: (Tr2a13 + 7r3ao3 + a33)
a32 (Tr2a12-f- 7c3a22 + a32) 2 (Tr2a13 -+ 7r3a23 -+- a33)
b3 (Tr2bl + 7r3b2 -+-b3) 4- (71"2a13 + 71"3a23 + a33
a33 7l2a13 + 7f3a23 -Jc- a33,
p ,+/-(p + 7r2),
q--* 5(q+ 7r3),
r . (r + r4),

7l. at C23 043
033

7[’2 7l"3 71"4C33 0/33 033



A PERSPECTIVE THEORY 1N VISION 1553

In fact (7.12) describes the orbit in the parameter space corresponding to the subgroup
(7.9). The orbit is parameterized by 4 parameters 7rl, 2, 7ra, 7r4.

From the results in Proposition 6.3 it can be inferred that paraneters can be
identified up to the orbit described in (7.12). Finally the functions (7.8) are derived
by choosing 7rl, 7r2, r3, 7I"4 by restricting all 7r2a.3 0, bl 7r4a13 0, 7ra.a 1,
and a. 7r3a13 0. [:]

7.3. Identification of a planar surface undergoing rigid motion. If we
assume that the matrix A is skew symmetric, one needs to restrict the following in
(7.12)"

(7.13) al a22 a33 0 a12 --a21, a13 --a31 a23 --a32.

a31, i.e. 7 --1
71"1_

further restricted to

It follows that 7r2 0, 71"3 0, implying that (t3 0, c3 0. Furthermore 7flat3
or Ctll 4.c33. Thus the subgroup P described by (7.9) is

(7.14)

0/11 0 0 0

P1
0 011 0 0
0 0 4.t-0/11 0
0 0 0Z43 (11

The orbit (7.12) under the new subgroup action (7.14) is given by a12 - a2, a3
c4---a b3 4.b3, p 4.p, q +q,-t-a13, a23 a23, b b a4al3’att b2 b 11

a23,

and r (r + ).lI
Thus we have the following theorem regarding the condition of identifiability for

a perspective system (2.13), (7.6), parameterized by a set of nine parameters.
THEOaEM 7.3. Consider the perspective system (2.13), (7.6), parameterized by

w,w,w3, b, b, b3, p, q, r. Assume that the parameters satisfy the generic condition
w: 0, w3 0, Wl O, bw3 bw O. Assume furthermore that the triplet

0 0 -bl w2 ’0 0 -b w3
w. 0 0 0
0 w -wt 0
w3 0 w 0
0 w3 0 0
0 0 -1 0 /

0 021 W2 0 p
--0.) 0 W3 0 7
--022 --023 0 0
-bl -b2 -b3 0

is ’minimal. The functions of the parameters that can be identified are given by 021,

4.+-022, 4-023, bl _i_K,:,4a.. b2 : ot4---3-3023a1_t 4.b3, 4.p, 4.q, 4.(r + 1_--a)" The ’ratio 4---a is to be
thought of as a single parameter.

Remark. In Theorem 7.3 the parameters that can be identified are ambiguous up
to a sign and up to one parameter. It may be verified that the functions b + 02ur and
b2 +czar remain constant regardless of the choice of the sign. Thus one concludes that
the parameters bl, bz, r can be recovered up to a line in the space (b, b:, r)

THEOREM 7.4. Let us consider the perspective system (2.13), (6.3). Under
generic condition, the set of parameters or function of pararneters that can be identi-

fled in the set 021,02,023, bl,b, b3,p,q, r approaches the set of parameters or function
of parameters (up to possibly a sign ambiguity) that can be identified for the perspec-
tire system (2.13), (7.6) as f -+ oc. The parameters that can be identified as f ---, ec
are given p’recisely by 02,022,023,p, q, b3, b.t + 02r, b: + 023r.
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Remark. The result of Theorem 7.4 is actually quite surprising. It says that for the
projection (3.1), if f 5 and f --, oc, as the generalized projection (3.1) approaches
orthographic projection, the line in the parameter space (bt,b2,ba, r) that can be
identified at any given f indeed approaches (modulo sign) the corresponding line in
the parameter space (bl, b2, ba, r) that can be identified under orthographic projection.
This continuity continues to hold even though under orthographic projection one
measures only the vector (dl,..., d6), i.e., the measurements dr and ds are completely
lost.

The following theorem generalizes the result stated in the Theorem 7.4.
THEOaEM 7.5. Let us consider the perspective system (2.10), (6.3). Under

generic condition, the functions of parameters that can be identified as f -- oc are

given precisely by A, p, q, bl + at3r, b + a23r, and b3 + a33r. Thus parameters
are recovered ’up to a one-parameter ambiguity even when f oc. Moreover this
one-parameter ambiguity curve is a subset of the four-parameter orbit described by
(7.12).

Proof of Theorems 7.4 and 7.5. At a given value of f, the parameters that can be
identified have been already described by Theorem 6.1 and Corollary 6.2. As f --, oc,
the essential parameter dl approaches h and d2 approaches h.. Hence in the limit
one observes bl + atar and b + a.3r. At a given value of f, the parameters ba and r
are known only up to the line given by

(d3 + pc)r (all a33)r + b3 (all (d3 2c- pc1))f.

As f -- oc the above line converges to the line b3 zr-a33r constant. Hence in the
limit one also observes the function b3 + a33r. Finally note that in the orbit described
by (7.12), if we assume that r2 0, r3 0 and 7rl 1, ve obtain a one-parameter
orbit in which A, p, q, b + al3r, b2 + a23r, and b3 + a33r are all invariants. This
completes the proof.

Remark. The proof of Theorems 7.4 essentially follows from Theorem 5.3.

8. Simulation results. Extensive simulations have been carried out for the
methods outlined in 4 and 5 of this paper. Simulations were performed only for
the case of rigid body motion of a planar surface. First, the "intensity-dynamics"
based approach was implemented to estimate the essential parameter vector d follow-
ing equations (4.3)-(4.8). Simulations were performed for this approach using three
different texture functions while the effect of varying the spatial and temporal sam-

pling rates (step size) were examined. Additional algorithms were implemented to
estimate the vector d using "feature-dynamics" based approaches for points (4.24)-
(4.27), lines (4.17)-(4.23), and curves (4.13)-(4.15). Simulations for each of these
approaches were performed to examine the effect of varying the number of points
sampled and the step size. Motion parameters were estimated folloving equations
(5.9)--(5.11) and (5.15)-(5.16). We draw the following conclusions from the results of
the simulations:

1. Under the assumptions of a textured surface, perfect focus, and no noise, the
methods outlined in this paper are effective for the estilnation of shape and motion
parameters.

2. The choice of the initial intensity function does not significantly affect the
accuracy of the "intensity-dynamics" based approach. To illustrate, given the initial
intensity function e(x, y, 0) sin2x + cosy with a step size of Ax Ay At
10-s, we were able to estimate with a root mean square (rms) error of approximately



A PERSPECTIVE THEORY IN VISION 1555

TABLE 8.
Observation at multiple times removes the ambiguity of dual solutions.

Actual values
(at 0.0,.f 1.0)

Solution no.
for t=0.0

Solution no. 2
for 0.0

Solution no.
for 0.1

Solution 0. 2
for 0.1

Motion and shape parameters
’2 C

-4.000 3.500
5.000 1.500
1.000 1.500
-4.750 -0.750
0.750 2.250
7.000 1.500
-4.000 3.500
5.000 1.500
1.000 1.500
-3.932 -1.244
0.083 1.506
5.758 1.574
-4.000 3.673
5.000 1.574
1.000 1.574

0.500
-1.500

-2.333
1.000

0.500
-1.500

-2.333
-1.000

0.790
-0.957

2.9 x 10-5. The rms error for the initial intensity function e(x, y, O) 1Ix + 1/y was
approximately 1.2 x 10.5 for the same step size.

3. Increasing the nmnber of points sampled does not, in general, significantly
increase accuracy. For example, in the case of the "feature-point" based approach,
observation of the minimum four points yielded an rms error of 1.8 x 10.6 whereas
observation of 32 points yielded an rms error of 8.6 x 10-7. In both cases the step
size was as noted before.

4. Decreasing the spatial or temporal sampling rates has a significant adverse
affect on accuracy. For example, if the step size is increased to Ax Ay At 10-5,
the rms increases by roughly the same factor, 103. This effect cannot be compensated
for by increasing the number of points sampled.

Further simulations were performed to demonstrate how" the ambiguity of the txvo
solutions described in Theorem 5.1 can be resolved by sampling at either multiple
times or multiple focal lengths. The use of multiple times to resolve this ambiguity
has previously been suggested by Waxman and Ullman [7] and Tsai and Huang [21].

In Table 8.1 we note that the estimated values for cv do not change with time in
solution no. 2 but do change with time in solution no. 1. Thus, since the a values
are constant, solution no. 2 is chosen as the correct solution. The values of c, p, and
q change with time in both solutions. This is to be expected since c depends on r and
p, q, and r all vary with time. Table 8.2 illustrates corresponding results for multiple
focal lengths. For the correct solution in this case, the values of a:, p, and q remain
constant while the values of c vary with focal length.

9. Summary and conclusions. This paper introduces a two-module approach
to motion and shape estimation either by observing dynamically moving intensity or
shading or by observing dynalnically moving feature points, lines, or curves. When
restricted to a planar surface undergoing affine motion, the problem can be tackled
by estimating an intermediate set of parameters known as essential parameters. We
show that the essential parameter vector can be estimated, under a suitable generic
condition, independent of whether the observation is the moving intensity function or
the moving features oil the image plane.

We introduce a new "dynamical systems" viewpoint on the motion and shape
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TABLE 8.2
Observation at different focal lengths also removes the ambiguity of dual solutions.

Actual values
o.o, f ..o)

Solution no.
for f 1.0

Solution no. 2
for f 1.0

Solution no.
for f 2.0

Solution no. 2
for f 2.0

Motion and shape parameters

-4.000 3.500 0.500

5.OOOl .5oo -.5oo
1.000 1.500 -124.750 [-’0.750/ -2.333
O.TaO 1.2ao / -1.000
7.ooo .aoo 1
-4.(i00 3.500 i 0.500
n.coo 1.500 | -1.500
.coo .oo--123,L.67 -o.5o0 / -4..000
0.500 1.500 / -2.333

L_ :=!6 2- 1:0 2
-4.oo t 4.000 o.oo
.coo I ’ -.oo

L 1.cOO_L. 1.ooo

meter

\ 15 dimensional parameter space

p: position of the actual parameter.

4 dimensional surface passing through p which characterizes the
parameters that can be identified under orthographic projection.

dimensional curve passing through p which characterizes the
parameters that can be identified under generalized projection
(2.12) when f 5 j.

f@ limit of fjwhenj ’% Note thatf%IS.

FIc. 9.1. Identifiable parameters for a planar surface undergoing an ajfine flow.

estimation problem and show that the dynamics of the plane, known as the shape
dynamics, together with the essential parameters viewed as an output equation are an
example of a perspective system. Introducing a new realization theory for perspective
systems, we show that the parameters of the system can be identified up to orbits
of a suitable "perspective group" action, provided of course the parameters satisfy a
suitable generic condition.

Using this approach, we analyze a planar surface undergoing a rigid motion and
show that the solution to the parameter estimation problem under a general projection
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and a pseudo-orthographic projection indeed converges to that obtained (up to choice
of a sign) under orthographic projection as the general projection model converges in
the limit to the orthographic projection. This conclusion is in sharp contrast to that
reported by Kanatani [11], wherein only the recovery equation has been used. We also
analyze a planar surface undergoing an affine motion and show that under general
projection, parameters are recovered up to a one-parameter ambiguity whereas under
orthographic projection parameters are recovered up to four-parameter ambiguity. In
the limit when the general projection model converges to the orthographic projection,
the above family of one-parameter orbits converge to a one-parameter subset of the
four-parameter class.

15 dimensional parameter space

FIG. 9.2. Identifiable parameters for a planar surface under.qoin9 a rigid motion.

This indicates that "one can see a nonrigid affine flow better" using a visual
system with the capability of varying the focal length f all the way to infinity, as
compared to a visual system with focal length f fixed at infinity. However, for a rigid
flow, there is no distinction.

The above conclusion has been summarized in Figs. 9.1 and 9.2. In Fig. 9.1 we
show that if p is the position of the actual parameters in 1R15, where ]Rt is the
parameter space for A, b,p, q, r, under projection (3.1.), if f (5 j, the curve fj,
j 1, 2, 3,... indicates the set of parameters that can be identified for various values
of f. In fact when f --+ oc, f denotes the limiting curve that describes the set
of parameters that can be asymptotically identified. The four-dimensional surface S
characterizes the parameters that can be identified under orthographic projection. In
this paper we show that f: C S. Thus we conclude that for an affine flow it helps
to consider a visual system with a capability to vary f. For f permanently with
focus at oc, parameters are recovered up to a four-parameter ambiguity as opposed
to one-parameter ambiguity in all the other cases.

In Fig. 9.2 we show a nine-dimensional subspace W of parameters describing the
parameters of a planar surface undergoing a rigid flow. The subspace W intersects
S in exactly two one-dimensional curves. In this paper we show that one of the two
one-dimensional curves is fo Thus for a planar surface undergoing a rigid flow,
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orthographic projection identifies parameters up to a one-parameter curve and up to
a sign ambiguity. Via the process of choosing a projection (3.1) and letting f
one can determine the sign. The one-parameter ambiguity remains.

Acknowledgment. We would like to acknowledge the comments of a reviewer,
which improved the presentation of this paper.
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UNIQUENESS FOR VISCOSITY SOLUTIONS OF NONSTATIONARY
HAMILTON-JACOBI-BELLMAN EQUATIONS UNDER SOME A

PRIORI CONDITIONS (WITH APPLICATIONS)*
WILLIAM M. McENEANEY

Abstract. This paper extends the uniqueness results for viscosity solutions of nonstationary
Hamilton-Jacobi-Bellman equations. The conditions for uniqueness whioh are obtained can involve
a trade-off between the growth of the solution and the growth of the Hamiltonian. In particular, the
result is valid for solutions which grow quadratically in the space variable and are associated with
Hamiltonians which also grow quadratically. This particular class arises in the robust control limit
of risk-sensitive stochastic control problems.

Key words, viscosity solutions, uniqueness, Hamilton-Jacobi-Bellman equations, risk-sensitive
control, robust control
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1. Introduction. The question of uniqueness for viscosity solutions of Hamilton-
Jacobi--Bellman (HJB) equations has been considered in great detail in a number of
papers, particularly by Ishii [14], Crandall and Lions [6], Ishii [15], and Crandall, Ishii,
and Lions [4]. This latter paper [4] summarizes and generalizes much of the work of
the other papers. In it both the stationary problem and the Cauchy problem are
considered. The chief assumption on each solution is that it be continuous or even,
as noted in a remark, only semicontinuous. (Then, however, some additional assump-
tions, such as the boundedness of the difference between the solutions being compared,
may be required.) Some assumptions on the Hamiltonian are then employed to obtain
a comparison principle.

More recently, some problems have arisen in risk-sensitive limits and H con-
trol for which the previous assumptions on the Hamiltonian are too strict to yield a
comparison result. However, in these cases, the applications were such that one could
obtain a priori bounds on the behavior of the solutions. In particular, growth con-
ditions and Lipschitz conditions could be obtained. Once the set of functions being
compared is reduced in this manner, the assumptions on the Hamiltonian can be con-
siderably weakened. Since the solutions are then continuous, one obtains a uniqueness
result. The approach used here is specific to nonstationary problems. That is, we
consider HJB equations of the form

o + H(t, u,

on [0, T] x E, where T < ec and .E cA2_- has nonempty interior. A remark at the end
of 3 extends the result to problems on [0, ec) x E, although we do not concentrate
on that here.

A common approach has been to consider first the related stationary problem,
i.e.,

0 U + .H(x, U, VU),

*Received by the editors February 4, 1994; accepted for publication May 8, 1994.
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and to apply a maximum principle type of argument to obtain a comparison principle
for the stationary problem. A modification of that approach is then applied to the
nonstationary problem (1). Thus the required conditions on the Hamiltonian for
problem (1) are similar to those for (2). Here a cone of dependence argument is
applied to the nonstationary problem directly. This type of approach was first used
in the seminal paper of Crandall and Lions [5], although with the earlier definition of
a viscosity solution. In the following, this approach is used to prove uniqueness for
nonstationary problems in which one does not have uniqueness for the corresponding
stationary problem. This will be discussed below.

2. Assumptions. Let QT [0, T] }n, Q [0, T] x {x E jn [x[

_
_]:}, and.

QTE [0, T] E. We restrict our attention throughout to solutions (subsolutions and
supersolutions) U that are continuous and uniformly locally Lipschitz in x. That is,
given R < oc, there exists KR < cx such that

for all (t, x), (t, y) E QTR. Denote this class by CL. By Rademacher’s theorem, U CL
implies

(3) IIVU(t, ")IIL({IxI<_R})

_
KR Vt e [0, T].

Denote the /XR corresponding to a function U by KR(U). Let W be a viscosity
subsolution to (1), and let V be a viscosity supersolution to (1). Assume that V, W
CL.

The weakest assumptions under which the results will be obtained here are as
follows.

(A) H(.,., .,.) is continuous.

(B)
Ba < c such that VR < c, kR < c such that if (t,x) Q QT
such that W(t, x) > V(t, x), then

.H(t,x, V(t,x),p) H(t,x, W(t,x), q) <_ k[W(t,x) V(t,x)] + a(1 +
,p, q E n such that IP], ]ql -4 max{KR(V),

There may be weaker assumptions obtainable by this method, but they will not
be attempted here.

In order to clarify the class of problems satisfying assumption (B), we consider
some stronger assumptions. For any U CL let M(U) maxQ IU(t,x)l. Ve
replace assumption (B) by the following stronger pair of assumptions

(C1)
Given R < c, SkR < such that H(t, x, r,p) .H(t, x, s, p) >_ -knit- s]

Vr, s e such that r > s and Irl, lsl
_
max{Mn(V),JIR(VV)}.

(c2)
a < c such that

v (t, =) e Q, v I1 <_ max{MR(V), MR(W)},
v Ipl, Iql max{Kn(V), Kn(W)}.
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To obtain (B) from (C1) and (C2), consider the following. By (C2) there exists
a < oc such that for all R < ec

IH(t,x,r,p) H(t,x,r,q)l <_ a(1 + R)tp-ql

for all t,x, r,p, q as specified in (C2). In particular, this holds if (t,x) E Q is such
that W(t, x) > V(t, x) and r V(t, x). In this case we have

(4) H(t, x, V(t, x), p) H(t, x, V(t, x), q) <_ a(1 + .R)Ip

Now, by (C1), there exists kR < oc such that

H(t,z, W(t,z),q) H(t,x, V(t,z),q) > -kRlW(t,z V(t,z)l.

Subtracting (5) from (4), we have (B).
Note that (C2) is essentially a Lipschitz bound on H with respect to its last

argument, where the Lipschitz constant may not grow faster than linearly in x. As
we discuss below, this involves a trade-off between the growth of H and the growth of
the solutions via the dependence of H on the solutions.

The assumptions could be made even stronger by retaining (A) and (C2) and
replacing (C1) by

(D1) H(t, x,., p) is nondecreasing V (t, x, p) QT x sRn.

To obtain (C1) from (D1), simply note that (D1) implies that if r > s, then

H(t,x,r,p) H(t,x,s,p) >_ 0 >_ -klr s I.
In particular, (C1) states that H(t,x,.,p) may not decrease faster than linearly on

compact sets. However, it may still increase as fast as it likes.
We now consider some examples fitting the above assumptions.
Consider the case where

H(t,x,r,p) -Ipl 2

and V, W CL are such that

< +
_< a(1 +

for all R < oc (i.e., V, W grow at most quadratically). Then for any / < oc

IH(t,x,r,P) H(t,x,r,q)l <- (Ipl + Iql) p- ql
<_2&(1 +R) p-ql

for all IPl, lql <-max{Kf(V),KR(W)}. Thus assumption (C2)is satisfied. Assulnp-
tions (A) and (D1) are also clearly satisfied.

More generally, consider the case where for some 7 (1, oo)

(6) H(t,x,r,p) -]pl
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and

(7)
nn(v) <_ +

<_ +

for all R < ec. Then, again, assumptions (A), (D1), and (C2) would be satisfied,
and the uniqueness result below would follow. Interestingly, however, one does not
have a comparison/uniqueness result for the corresponding stationary problem in this
case. This was noted in Ishii [14], and the counterexample provided there is as follows.
Consider the one-dimensional case n 1, and let E .. Then (2) with Hamiltonian
(6) has two solutions:

and

U1 =0

where 3’* -_. Both solutions satisfy (7). Thus one would not expect the method
used to obtain a comparison principle for the stationary problem to yield the result
below.

Also consider
H(t,x,r,p) xTp

so that for any R < oc

[.H(t, z, r, p) H(t, z, r, q)l <- RIp ql

for all (t,z) E QT. Thus (A), (D1), and (C2) would hold without a growth restriction
on V or W (other than V, W E Co).

In 4, we will consider an application to the case where

(8) H(t,z,p)
1

472
Ipl min,vu If(t, x, v) p + L(t, x, v)],

where f grows at most linearly in z, L grows at most quadratically in z, and U is
compact. This is related to risk-sensitive control and the robust limit. We will also
consider an application to the case where

(9) H(x, r, p) max.,,u [-B2(v)2r x2p + A(v)xp]
where A and B are continuous and U is compact. This is related to a risk-sensitive
limit in a Merton porfolio problem. Neither of these applications appears to fit within
the framework of existing results.

Finally, note that these extensions of the comparison/uniqueness results do not
come entirely for free. It is now required that the solutions (subsolutions and superso-
lutions) be in CL. This implies that one could not trivially apply these results in cases
where the solutions are obtained via the Barles and Perthame procedure (see Barles
and Perthame [2] and Fleming and Soner [13]), where one has only semicontinuity of
the solutions. In particular, although the comparison/uniqueness results are extended
to problems with more rapidly growing solutions and Hamiltonians, the price to be
paid is that one must obtain the local Lipschitz bounds on the solutions. Of course,
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whereas the growth rates for certain problems of interest are not within our control,
one may with sufficient effort be able to obtain the required local Lipschitz conditions.

3. Comparison/uniqueness result. In this section we derive the main com-
parison result which, under the assumptions here, directly yields a uniqueness result.
Reiterating from above, we suppose that V, W E CL are a viscosity supersolution and
a viscosity subsolution, respectively, of (1) on Q. Further, we assume that

(10) w <_ v on ({t=0} E) U([0, T] xDE).

(As mentioned above, E may be all of sRn, in which case OE is empty.)
The following two lemmas lead to the result. The statements are similar in form

to the corresponding lemmas in Crandall and Lions [5].
LEMMA 1. Let W, V be as above, and assume (A) and (B). Let R < oc. Let

A e CI(QT), A >_ 0, A(t,x)= 0 if Ixl > R, and

(11) -At > a(1 + R)IAx + kA on (suppA) (Q)o.

Then W <_ V on (suppA) QTE.
Pro@ Let C(’), supp() C B(0,1), (0) 1, and 0 < <__ 1. Let
C(N), supp(/) C B(0, 1), qS(0) 1, and 0 _< <_ 1. Define .(x) (x/a) and

(t) -(t/).
Assume that

(12) Mo max A(t, x)[W(t, x) V(t, x)] > 0.

(Otherwise there is nothing to prove.) Let C > Co, where

(13) Co max

Consider

(14) M _= max [A(s,y)W(t,x) A(t,x)V(s,y) + C](t s)(x- y)],

and let the maximum occur at (ta,x), (s,x). By the definition of C, r, and
we have

(5)

and by (13), (14)

(16) rla(t-sa) >min{1 C-Co} c/)o(z-ya) >min{1 C-Co}6’ 6’

By the compactness of QTE, there exists a sequence a 0 such that, (t(,, x()
converges to some (to, xo) QTE. By (15), we also have (s,,y,) (t0, x0).

It is easily shown that

A(t0, zo)[W(to, xo) V(to, xo)] Mo > 0.
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Therefore (to, zo) E (suppA) VI(QTE), where the superscript o indicates interior. This
implies that for rz sufficiently large,

(t,, z) E (suppA) (Q),
(sn, 4a,) (suppA) (QT).

Therefore, for n sufficiently large,

is a local, unconstrained maximizer of (14).
Consider

1
(17) W(t,x)

which has a local maximum of zero at (t,,, x(,,, ). Since W is a subsolution of (1), we
have

where the superscript indicates differentiation.
Similarly (noting that V is a supersolution), we obtain

(19)

We would like to take limits as c,, 0; however, we must ensure that the lim-
its exist for all terms in (18) and (19). Specifically, we will show that there exist
subsequential limits for r/’ (t s and ’, (xa= -y ).

Consider the last term in (18), i.e.,

Since this is being evaluated at a maximum of (14), we have

(20)
Ax(t,,x,)V(s..,y.)-Cr],(t,- s)’n(x y) .<_ ,(w).
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Then, since A, Az, and V are bounded on QT Q and (16) implies that
bounded away from zero, we have some B1 < oc such that

for all n sufficiently large. Therefore, there exists ll E Rn such that Ill <_ B1 and

along stone subsequence (also denoted by cn).
Thus, using assumption (A) (continuity of H), we see that all terms in (18) are

bounded., with the possible exception of

A(s,, y)"

This implies that there exists some .B. > -ec such that

for all n sutiiciently large, which upon noting (16) implies

(21a) r], _>/). >

for all n sufficiently large. Proceeding similarly with (19), we have

for all n sutficiently large. By inequalities (21), there exists 12 E N such that /2 (_
l <_/)8 and

along sone further subsequence (also denoted by cn).
We may now take the limit in (18) and (19) as n oc and employ (A1) again to

obtain

(22)
AtV Cl ( )A +H to, xo W, AxV-Cll < O,A

(23) AsW C12 ( AyW Cll ) > o,A +H to,xo, V,
A

where all terms are evaluated at (to, z0).
Subtracting (23) from (22), we have

(24)
-(v- w) + to xo w,

A

H (t’ x’ V’ AxW Cll
_<0.

By assumption (B), (12), and (20) (and its counterpart for V), this yields

4A
-__2 (V- W) < a(1 + R)A

Ax
T(v- w) +(w- v)
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at (to, xo), or equivalently,

A_At (V--W) < a(I + R)IV W .+ kR(W V)

which, by (12), implies
-At _< a(l+ R)[A + kna

at (to, zo). But this contradicts the assumption of the lemma. Therefore

max A(t,z)[W(t,x)-- V(t,z)] <_ O,

which is the desired result. E]

LEMMA 2. Let V and W be as above, and let assumptions (A) and (B) be satisfied.
Let R < oc. Then

(2) w < v

on
Q r {(t,x) Ix <_ R-a(1 + R)t, E [0min(T, 7e)]},
Rwhere TR a(l+R)"

Pro@ Let g E C (N) for 7 sufficiently small. For D > 0, let

9-(r) 0 if r _< 0

and
() > () > o

To see that such g exist, take for example

if re (O,D].

7(ec/-l)-x ifx (0, D],() g(x)
0 ifx_< 0.

Choose D >_ R0 > 0, and let

(27) A(t, x) .q (no a(1 + R)t

where > 0 and A is yet to be specified, so that

(28)
-At a(1 + R)9 (Ro a(1 + R)t lxll+),

a(1 + n)lAxl- a(1 + R)A(1 + )lxlgC (no a(1 + .R)t lx]l+),
kRA kng. <_ 7kRg (Ro- a(1 + R)t-. A[x 1--)

We would like the conditions of Lemma to be satisfied by this choice of A. In
order that A be zero if Izl >_ R, we require R0 R-+/ < 0, or equivalently,

(29) (A-Ro) _< R.

In order that -At > a(1 + R)IA + knA, by (27), (28), and the properties of 9, we
require

(30) R1 > A(1 + )(,-1/0) @a Jr-7a,1 + R)’
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Let

(3) (1 + 2/3)R+z Ri+;.
Then conditions (29) and (30) become

(32) >

and

(33) 1 > A- (1 +/3)R+- (1 + 2/3)ii+,) + ?’a’li R)’+
respectively. We take

(34) A
R;(1 + 2/3)’;

so that (32) is satisfied. Substituting (34) into (33), the last requirement becomes

(35) 1 >
(1 + 2/3) a(1 + R)

The first term on the right-hand side of (35) is less than one and converges to one as
/ I 0. This implies that if we take

(36) "/=
kR (I + 2) --z

(35) will be satisfied.
Now note that as/3 i 0, we have A --. 1, /0 -- R, and ?- 0. This implies that

any (t,z) E {(t,z) Ix < R-a(l+R)t, E [0,-//]} is in supp(A) for sufficiently small
/. Therefore, by LeInma 1, we have the desired result.

THEOREM 3. Let V and W be as above, and let assumptions (A) and (B) be
satisfied. Then W <_ V on Q.

.Proof. By LemIna 2, W _< V on Q rq {(t, x)" z _< R a(1 + R)t, t [0, -]}.
Letting R --, oc, we see that

TR

This inplies that as R -- oc, the cones cover [0, -o) x .n. Therefore, given any 6 > 0,
W <_ V on [0, min{T, -- 6}] x E.

If - 6 _> T, we are finished. If not, we simply repeat the procedure, with the
new initial time being -- 5. This yields W _< V on [0, rnin{T, 2(- -)}] x E.
Iterating, we obtain the desired result. F1

Under our assumptions, the uniqueness result is a trivial corollary to the com-
parison result.

COROLLARY 4. Let U1, U: CL be two viscosity solutions of (1) with some initial
condition U g(t,x) on ({0} x E)U ([0, T] x OE), where g E CL. Let assumptions
(A) a’nd (B) be satisfied. Then U. U2 on [0, T] x E.
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the comparison and uniqueness results canRemark 5. By noting that - ,
clearly be extended to [0, oc) x E if, for each T < oc, there exists a < ec such that
(B) is satisfied. This yields uniqueness for the Cauchy problem.

Remark 6. An extension in the spirit of the semicontinuity results is possible.
In particular, one can weaken the assumption that W, V are in Cc to a one-sided
Lipschitz assumption on each. That is, we may assume that W E USL and V LSL,
which we define as follows. We say that U USC is in USL if, given R < oc, there
exists LR < oc such that, for any (to,xo) Q, there exists 5 > 0 (depending on

(to, x0)) such that

(37) g(t,x) <_ g(to,xo) / L(lt- tol + 011)

for all (t, x) in a ball of radius 5 around (to, z0)..LSL C LSC is defined analogously by
changing the direction of the inequality and the sign preceding L/ in (37). The proof
of Lemma 2 is unchanged by these assumptions. The proof of Lemma 1 requires some
minor modifications. The only nontrivial modification in the proof is in obtaining
the bound on 05,(x -y,) If we take O(x) exp(_1i1 and use tile one-sided
Lipschitz condition, a bound is obtained. However, at present it is not clear that this
extension leads to a measurable change in where or how the result may be applied.

4. Two applications. In this section, the two applications mentioned at the
end of 2 are discussed.

4.1. Risk-sensitive control and the robust limit. Consider the folloving
finite time-horizon, risk-sensitive stochastic control problem as discussed in Fleming
and McEneaney [10], McEneaney [19], and James [18]. Let the dynamics be given by

dX[ f (t, X[ ut) dt + dBt,

Xs’--X,

where X[ taking values in is the state, u. is tile control, and B. is an n-dimensional
Brownian motion with respect to some reference probability system (fl, {$-t}, P, B.).
Let e and y be parameters.

The cost criterion is

The value function is given by

V(s,x) inf J,(s,x,u).

Here L/ is the set of Ft-progressively measurable controls (see [13]) taking values in
some compact set U, L is the running cost, and is the terminal cost.

Make the following assumptions on f, L, and .
(AF1) f C([0, T] x x U),

If(t,x,v) f(t,y,v)l < KIx- Yl Vt [O,T], Vx, y R, Vv U;
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(AF2)
L C([0, T] ’ x U),
L(t,x,v) >>_ 0 Vt [0, T], Vx ,’,, Vv U,
IL(t,x,v) L(t,y,v)l < C(1 + Ixl + Igl)lx- 91

(AF3) (x) _> 0 V x E

I(x)- (yDI C(1 + Ix + [yl)lx- Yl V x, y ,
where K and C are generic constants.

It can then be shown (see [19]) that V is the solution of

e 1
0 W + AV + IVV mini/( v) VV L(s, v)]

4/ + ,e s,z, .+ x,

V(T, ) (:).

Furthermore,

tv(s,z)- v(t,z)l g(Is- tl) v Ixl, lyl R, v. < ,
where 9R(P) 0 as p 0. Here, the Ci represent generic constants.

By the Ascoli----Arzela theorem and the stability property of viscosity solutions [13],
there exists a sequence {e} such that e 0 and V, V0 (uniformly on compact
sets) where V is a viscosity solution to the limit partial differential equation (PDE)

(39) 0 + (, ,
V (T, ) (),

where
1

H(s,x,p) - lpl + min[f(s,x, p + L(s,x, v)l.

Clearly V satisfies (38) as well.
Note that the PDE in (39) is equivalent to (8) with the exception of a time reversal

due to the presence of a terminal condition rather than an initial condition.
Also consider the following finite time-horizon deterministic differential game. Let

the dynamics be

and let the payoff be

dX
dt f (t’ Xt, ut + wt,

Xs X,

T

P(s, x, u, w) [L(t, Xt, ut) 3’2lwtl] dt + (XT).

The minimizing player’s control is u., and the maximizing player’s control is w..
We require that u. be measurable (with respect to t) and take values in U. Let this
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control set be denoted by b/. For the maximizing player, ve let the control set be
1A?0 L2([s, T]; ’). The Elliott-Kalton definition of value [7] is used. In this context,
we define the set of strategies for the minimizing player to be

(3(s)= {0: W--,/do such that given any re Is, T], wt =t V tE Is, r]
implies O[w]t O[@]t Vt Is, r]}

and the set of strategies for the maximizing player to be

A(s) {,k: L/ lA20 such that given any - Is, T], ut gtt V t [s, -]
implies ,k[u]t a[g]t V t [s, -]}.

The lower and upper values are defined to be

W(s,x)= inf sup P(s,x,O[w],w)
OO(s) ,wWo

and

U(s,x) sup inf .P(s,x,
XEA(s) uE/d

respectively. The game has value if W U.
Generalizing a result in Evans and Souganidis [8], it is shown in McEneaney [19]

that this game has value in the Elliott-Kalton sense and that this value is a viscosity
solution of (39). Furthermore, W U satisfies conditions (38) (with proper choice of
the constants).

Now, suppose that we have a unique solution, V, of (39). Then it is easy to
show that V V (not just along asequence) and that V W U. That is,
the value of the risk-sensitive stochastic control problem converges to the value of the
deterministic game. Note (see [19], James [17]) that this game is related to robust
control.

All that remains is to verify that (39) satisfies the assumptions of 2 which were
shown to be sufficient to yield uniqueness.

Assumptions (A) and (D1) obviously hold. All that remains is to show that (C2)
holds. Let r T- s so that the problem becomes an initial value problem rather
than a terminal value problem. Then

H(r,x,p) H(r,x,q)= q -[p] -+ nin[.f(T-r,x,v).q + L(T-r,x,v)]
U

min[f(T r, x v) ,.p + L(T r, x, v)].
vU

Let v0 argminu[f(T r, x, v) p + L(T r, x, v)]. Then

1
H(r, x, p) H(r, x, q) [q] + [p[]

which by (AF1)
1

[]ql + [P]] [[q[- IP]] + c (1 + )]q- p] (40)

for all x[ R where Ct is a generic constant. By the second inequality of (38), there
exists a < such that K(Vo) a(1 + R) and KR(W) a(1 + R) so that (40)
implies

(aS(r,x,p) H(r,x,q)
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for all IPl, Iql <- max{I(l(V),KR(W)} Switching the order of/9 and q, one obtains
the analogous bound from below. Therefore, assumption (C2) is satisfied, and the
uniqueness result can be applied.

The uniqueness result also has an application to the infinite time-horizon risk-
sensitive limit analogous to the finite time-horizon limit discussed above. In particular,
it can be shown that the value function of the infinite time-horizon risk-sensitive con-
trol problem, under sufficiently stringent conditions, converges to a viscosity solution
V(z) of

o HO(z, VV),

where
1

HO(x, p) ;, pl / min[f(x,u v).p-+ L(x,

See Fleming and McEneaney [11], [12]. (In [12], this is proved for globally Lipschitz L;
however, it is anticipated that the result, also holds for L exhibiting quadratic growth
as in (AF2).)

Then V is a (steady-state) solution to the finite time-horizon PDE

o v + HO(x, VV),
V(T, ) VO(x)

for any T < oc. Again V satisfies a growth condition analogous to the middle
inequality of (38). Then, by the same uniqueness result as used above, one sees that
V is also the value of the corresponding finite time-horizon deterIninistic differential
game, that is,

inf sup [.L(Xt, ut) "7lwtl 2] dt + V(XT)V(z)
oeo(o) ewo

for any T < . This is the dissipation relation used to define nonlinear H control
(see van der Schaft [20], James [17], Ball and Helton [1], and Isidori [16]).

4.2. Risk-sensitive limit in an optimal investment model. In this section,
we consider an application leading to a Hamiltonian of the form (9). The following
optimal investment problem is discussed in Fleming [9]. The dynamics are of the form

(41)
dXt .A(ut)Xt dt + I[-,/e()x.
Xo=x.

Here Xt is the wealth at time t, u. is the control, and B. is Brownian motion with
respect to some reference probability system (f, {t}, P, B.). Assume that u. /2,
where/2 is the set of 5Or-progressively measurable controls taking values in some com-
pact set U. Assume that A and B are continuous functions. 7 will be a parameter
measuring risk sensitivity. The risk-sensitive value at time T is given by

(42) V’(T, x) sup F" [Eo,xF (h.(x))],

where F- has hyperbolic absolute risk aversion, that is,

1
(43) F r r’ < 1, "7 :/: O,
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and h will be a perturbation of a linear function (to be discussed below). This type
of risk-sensitive utility function is also described in Barron and Jensen [3]. We are
interested in the limit as 3‘ .4 -oc. The dynamic progralnming equation corresponding
to (41)-(43)is
(44)

[3(v) i- 3()
)0- V- max z2V2x + .A(.v)xV] z(V2 (T,z) G,

where G (0, oc) x (0, x:). Taking the limit as 3‘ -- -oc, one obtains

(45)
o v + H(., VO,

VO(T, ) ho(), (, )
(T, z) G,

where

This is equation (4.2) in Fleming [9]; see [9] for further details.
Now suppose that V, W C([0, oc) [0, oc)) are both subsequential limits of

solutions of (44) and thus viscosity solutions of (45). Some assumptions on A and

h vill be made, and then the results of 3 will be used to show that V W.
(Alternatively, one can transform this problem, into one of the form given in 4.1 and
then apply the methods used there. This approach is discussed more fully in [9]. in
either case, one utilizes the structure of the probletn to show that the assumptions in

2 are satisfied.)
Assuine that there exists v0 U such that

(46) A(v0) > 0.

For simplicity, let the form of the h be specified by assuming that h(x) xk.(x),
where

(47a) k/(1) --+ c > 0 as 3’ --
and that there exist r/< 0 such that, for all c _> and x > 0,

(47b)

and r//3‘ t 0 as 3‘- -oc. In this way, hn(z) -- ho(x)= kx for some k > 0.
A simple computation using (46) and (47) yields

(48) V(T,), W(T,) >_ Czcr

for appropriate C, (2:2 > 0..Also there exists C3 < oc such that, for all R <

(49) K(V), K(W) < Ca,

where we are now considering (45) for some finite time-horizon T < To. (Remark 5
can be used to extend the result for all T <
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One way to obtain (49) is as follows. Consider Z. log X., where X. is given by
(41). In particular, let Z) logX), where X Zl ezl, and Z? logX?, where
X0 zg ez2 Then one can see that

Also let
U’ (T, z) log[V (T, ez)].

Then one may easily show that

U(T, zl) U/(T, z2)

_
.’)’- 7] (z1 Z2)

for all zl >_ z2. (Note that V and U are Inonotonically increasing.)
calculations, this yields

.After a few

V/(T, xl --()- V’(T, 1)_ C4eCST Ix7r/2 --x;/]
which by (47b) yields (49). (Note that the above argument can be used to obtain
equicontinuity of the V as well.)

To prove that V W, (48) and (49) will be used to show that the Hamiltonian
in (45) satisfies assumptions (A) and (B). Since assumption (A) is clearly satisfied, we
need only show that (B) is satisfied.

Note that
H(x, r, p) min F(x, r, p, v),

EU

where

F(x, r, p, v) -A(v)xp - B (v) xp
2 r

Since U is compact and A and B are continuous, we need only prove that F satisfies
(B).

Let R < oc, x <_ R, T _< To, and suppose W(T,x) > V(T,z). Then

(50)

where we drop the arguments of V and W where unnecessary.
Now, by the mean value theorem, there exists E [V(T,z), W(T, z)] such that,

which by (48)

B2(V) xgp2 ( 1

2 V
1 ) B(v)
W 2
xp (W V),

() p< (w-v)
2 C21 e2c2T

which for IPl _< ma,x{*((v), c(w/} and using (49)
(51) <_ C4(W- V)
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for appropriate C4.
Note also that

which by (48)

which by (49)
(52) <_ CsRlp q[

for appropriate C5.
Combining (50), (51), and (52), we see

F(x, V(T, ,), p, ) F(z, W(T, m), q, v) C4[W(T, m) V(T, m)] + CsR p- ql.

Therefore, (B) is satisfied, and consequently, V W. Of course, in this simple
example with ho(z) z, it is trivial to show then that, one must have

V- 1,1,7- xeCT,

where

C max
vEU

A(v)

REFERENCES

[1] J.A. BALL, J. W. HELTON, AND N[. L. WALKER, H control for nonlinear systems with output
feedback, IEEE Trans. Automat. Control, 38 (1993), pp. 117--164.

[2] G. BARLES AND B. PERTHaME, Exit time problems in optimal control and vanishing viscosity
solutions of Hamilton-Jacobi equations, SIAM J. Control Optim., 26 (1988), pp. 1133-1148.

[3] E.N. BARRON AND R. JENSEN, Total risk aversion, stochastic optimal control and differential
9ames, Appl. Math. Optirn., 19 (1989), pp. 313--327.

[4] M. G. CRaNDALL, H. ISHII, AND P. L. LIONS, Uniqueness of viscosity solutions of Hamilton-
Jacobi equations revisited, J. Math. Soc. Japan, 39 (1987), pp. 581--595.

[5] M. G. CRANDALL AND P. L. LIONS, Viscosity solutions of Hamilton-Jacobi Equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1-42.

[6] , On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear
Anal., 10 (1986), pp. 353-370.

[7] F{. J. ELL1OT’r AND N. J. KALTON, The existence of value in differential gam.es, Mem. Amer.
Soc., 126 (1972).

[8] L. C. EVANS AND P. E. SOUGANIDIS, .Differential games and representation formulas for solu-
tions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33 (1984), pp. 773--
797.

[9] W. H. FLEMING, Optimal investment models and risk sensitive stochastic control, in Mathe-
matical Finance, IMS Vol. Math. Appl. 65, Springer-Verlag, New York, 1995, pp. 75--88.

[10] W.H. FLEM[NO AND W. M. MCENEANEY, Risk sensitive optimal control and differential games,
in Springer Lecture Notes in Control and Information Science 184, Springer-Verlag, New
York, 1992, pp. 185-197.

[11] W. H. FLElVlING AND W. M. MCENEANEY, Risk sensitive control with ergodic cost criteria, in
Proc. 31st IEEE Conference on Decision and Control, 1992.

[12] ---, Risk sensitive control on an infinite time horizon, SIAM J. Control Optim., 33 (1995),
to appear.



1576 WILLIAM M. MCENEANEY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

W. H. FLEMING AND H. M. SONER Controlled Markov .Processes and Viscosity Solutions,
Springer-Verlag, New York, 1992.

H. ISHII, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana
Univ. Math. J., 33 (1984), pp. 721--748.
, Representation of solutions of Hamilton-Jacobi Equations, Nonlinear Anal., 12 (1988),

pp. 121-146.
A. IStDOPI, Hcontrol via measurement feedback for a]fine nonlinear systems, in Proc. 31st

IEEE Conference on Decision and Control, Dec. 1992.
M. R. JAMES, A partial differential inequality for dissipative nonlinear systems, Systems Con-

trol Lett.; 21 (1993), pp. 315-320.
, Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential

games, Math. of Control Signals Systems, 5 (1992), pp. 401-417.
W. tN,I. ]{CENEANEY, Connections between risk-sensitive stochastic control, differential games

and H control: The nonlinear case, Ph.D. thesis, Brown University, 1993.
A. ,l. VAN DER SCHAFT, Nonlinear state space H control theory, in Perspectives in Control

Progress in Systems and Control, Birkiuser, Boston, 1993.



SlAM J. CONTROL AND OPTIMIZATION
Vol, 33, No. 5, pp. 1577 1586, September 1995

() 1995 Society for Industrial and Applied Mathematics
013

CONTROL TIME FOR GRAVITY-CAPILLARY WAVES ON WATER*

RUSSELL M. REIDt

Abstract. This paper considers distributed open-loop control of small-amplitude linear waves
on a fluid in which both surface tension and gravity are significant. It formulates the control system
as a first-order evolution equation, reducing the null controllability problem to a moment problem
involving frequency exponentials. For simple geometries in which eigenvalues can be calculated
explicitly, controllability in arbitrary finite time is established, and a relationship between mode
frequencies and controller norm is noted.

Key words water waves, distributed control, moment problem

AMS subject classifications. 93B05, 93B60, 93C15

1. Introduction. In 1967 D. L. Russell [11] showed that a vibrating string with
distributed control could be steered to rest in a time given by

(1) 2 ffoo’ /p(x)

Open-loop control time for the string thus depends only on physical parameters (mass
density, modulus of elasticity, and length) and not on the initial state or controller.
Russell’s result is sharp in that he shows that the string cannot be controlled in shorter
time.

For a uniform string, (1) is the period of the fundamental mode, but mass density
and elasticity can be chosen to alter the period of any mode but leave the asymptotic
behavior of eigenvalues and control time unchanged, showing that control time is in
general not the period of any mode. One might also view (1) as a signal time, the
round-trip transit time for a wave on a string of length 1, because the integrand
is the reciprocal of phase velocity at any point x. The string is nondispersive: all
wavelengths propagate at the same speed.

Studies [9], [7] of gravity waves on fluids showed infinite control time, perhaps
because wave velocity approaches zero as wavelength decreases, so that transit time
for high-frequency modes is arbitrarily large. However, a general relationship between
wave propagation speed and control time has not been established.

The primary aim of this paper is to investigate control time in a. simple system
with dispersive traveling waves, making note of the effect of wave velocity on control
time and controller norm. Gravity-capillary waves are a physical system in which wave
velocity varies with wavelength (as opposed to the vibrating string) and is bounded
away from zero (as opposed to pure gravity waves). Mode shapes for simple geometries
are identical to those for the vibrating string, but mode frequencies are different. If
wave propagation velocity determines control time, one would expect finite control
time for gravity-capillary waves, and this paper proves controllability in arbitrary
finite time.

Using the same approach as [9] and [7] and some results found there, this paper
writes the equations for gravity-capillary waves in first-order form in an energy space

Received by the editors February 19, 1992; accepted for publication (in revised form) May 18,
1994.

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan
49931.
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and argues that the evolution operator has a complete orthonormal set of eigenfunc-
tions. It is then possible to study a distributed control system by reducing it to a
moment problem along the classical lines of [1] and [11], considering state spaces of
finite energy with L2 controls. The wavenaker problem is complex, especially at the
intersection of the controlling wall with the free surface (see, for example, recent work
by Joo, Schultz, and Messiter [3]), where an infinite-dimensional controller has in ef-
fect a continuous range of Froude numbers, which can be arbitrarily stnall. This work
adopts a small-amplitude linearization and simplifying assumptions on the geometry
and the behavior of solutions at corners of the domain, in pursuit of a tractable model
exhibiting the wave behavior of gravity-capillary waves. It is noted that boundary
control applied to a section of the containing wall is equivalent to a distributed con-
trol at the surface, albeit one whose control distribution coecients are not easy to
estimate. For simple geometry, the eigenvalues of a gravity-capillary fluid system are
calculated explicitly.

For the gravity-capillary systen, the spectrum of the uncontrolled evolution op-
erator has neither finite density nor asymptotic gap, and in studying the moment
problem one cannot appeal to the celebrated results of Paley and Wiener [6], Levin-
son [4], and others.

This work shows controllability by applying the result [8] showing that moment
problems are solvable on an arbitrarily short interval when eigen.value spacing becomes
uniformly large, as is the case for fluids in simple geometries.

The essential difference between distributed control of a fluid and a string lies in
the frequencies of eigenmodes; this work shows how those frequencies influence the
controller norm.

2. Governing equations. Consider a two-dimensional region f, with fixed bound-
ary F (assumed smooth) and no beaches, i.e., with nonzero vertical walls at each end
(see Fig. 1).

Y

FIG. 1. Domain and boundary.

Let the free surface be denoted by S, in a coordinate system in which the undis-
turbed surface is at y 0 and the vertical segments of the containing walls are at
z 0 and x =Tr.

Suppose that the fluid is irrotational and incompressible and has uniform density
and no viscosity. Then the fluid velocity u(z,y, t) can be expressed in terms of a
harmonic potential by u -V I), where (I) has zero normal derivative on the fixed
boundary F. A small-amplitude linearization of the equations for surface waves, with
the surface contour written as y (x, t) and (I)y(X, y, t) and t(x, y, t) evaluated at
y 0, takes the form

(2) 6 -v,
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where T is the surface tension and gravitational and density units have been chosen
so that the gravitational constant is 1. Conservation of volume implies

(4) (x)dx O.

Equations (2) and (3) can be put in first-order form by letting t and constructing
the harmonic function Ot whose y-derivative at the surface gives tt. More specifically,

(5) 05 -(A+F) 0 r

where A is the evolution operator for pure gravity waves and F AL, with L the
Sturm-Liouville operator Lu -Tu". It is desirable to embed (5) in an energy space
where it is skew-symmetric with compact normal resolvent; to do so it is necessary
to suppose energy-conserving boundary conditions on L, which we take to be (0)
(r) 0, corresponding physically to an assumption of no friction with the containing
walls. Let L02[0,r] denote those square integrable functions satisfying equation (4),
with the usual L2 inner product, and let be a function harmonic in f, with zero
normal derivative on the fixed boundary F and value (x) on the free surface. (
would be t in (3) if T were 0.) It is shown in [9] and [7] that A defined by

0<(6) A -y
y--O

is the evolution operator for pure gravity waves and is a positive self-adjoint operator
with compact resolvent on Lg[0, r], with domain D(A)= HI Lg.

The operator F AL can be seen to be positive and self-adjoint with compact
resolvent on L[0, r], with domain D(A) Ha .L C BC, where BC represents the
Sturm-Liouville boundary conditions ’(0) ’(r) 0. When brackets are used to
represent the L2 inner product, note that for u and v in D(F),

<ALu, v> <Lu, Av} <u, LAy}.

The first equality uses self-adjointness of A and the fact that D(A) is contained in
D(F), whereas the second uses self-adjointness of L and requires that Av be in D(L),
which comes from noticing that

(8) Av -y-
y=O

so that

d 02v(9) d-, (Av) OyOx y--O

which is zero at x 0 and x r because . has zero normal (x) derivative there.
(This is really a continuity assumption at the corners, the "no beaches" assumption.)
One can conclude self-adjointness of F from the further observation that A- and
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L-1 are compact operators on L[0: 7r] (see, for exarnple, [10, p. 353]). One can then
embed (5) in a Hilbert space H, defining an inner product

The space H of fllnctions of finite norm is a Hilbert space, and the operator A0 defined
by

0
(11) Ao --(A+ F) 0

with domain

(12) D(Ao)= {[ (rl "( HaNLgBC’?] H3/20Lg}’
is skew-symmetric with compact resolvent in this space.

Although the Hilbert space above is convenient for calculation, its norm does not
give the actual physical energy; rather that is given by

(13)
r] h z

where the first term can be shown to give gravitational potential energy, the second,
kinetic energy, and the third, elastic potential energy. It turns out that eigenfunctions
are orthogonal in the actual energy inner product also, but for now we use H.

One may summarize these observations in a theorem.
WHEOREM 2.1. The system (2), (3) describing gravity-capillary waves on a fluid

surface can be written in the form,

(14) Xt AoX,

where X is in a Hilbert space H and Ao is skew-symmetric with compact resolvent
on H. There is an orthonormal basis for H consisting of eigenfunctions of Ao. The
eigenvalues of Ao are ak v/., k 1,2,3,..., with cv_k =-a;, where ) denotes
the kth eigenvalue of A + F. Solutions of (14).form a group of bounded operators on

H, denoted by X(t) eAtXo.
3. Moment problen for a null control. Consider a distributed open-loop

control applied at the surface, with spatial distribution of control fixed, which can be
expressed in the form

(15) Xt AoX + Bu,

where B is in H and u is the control. An initial state X0 can be steered to zero in
time L (we used T for surface tension), provided that

(16) eALXo + eA(L-)BU(S) ds O.
H

In terms of the basis of H consisting of eigenfunctions 0 of A0, denoting the
corresponding eigenvalue of A0 by a, this becomes

(17) e"La + e(L-)b,u(s) ds O,
H
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where X0 a, and B

_
b0n. A necessary and sufficient condition for this

to be true is, provided that no b, is zero,

L --an(18) e-’u(s)ds
b,

c.,

a standard moment problem for null control of an evolution equation.
One drawback to a moment approach to distributed control is the diculty in

characterizing the controllability space in terms of the coecients b, which themselves
may be difficult to calculate. Capillary waves differ little from other distributed linear
systeIns in this regard, however; this work seeks primarily to consider the effect, of
mode frequencies on the controller norm for a given set of ratios cn. Before doing so,
we note that control applied to a boundary wall can take the form of a distributed
control at the surface.

Consider control applied by small-amplitude vibration of the boundary wall at
x 0. The argument that such a control takes the form (14) is identical to that, for
gravity waves in [9], because the influence of the boundary control separates cleanly
from the surface dynamics. To briefly review that cMculation, let C denote some part
of the wall at x 0, controlled so that the harmonic function t in (3) has normal
derivative on C given by

(19) Ot
On

h(y)u(t)

and normal derivative zero on the rest of F. It is required that h(y) H and
that its integral along C be zero to ensure conservation of volume. Let denote
the harmonic function t that corresponds to a given surface configuration in an
uncontrolled system, and let be a harmonic function which is zero on the surface
S and has normal derivative h(y)u(t) on C and zero normal derivative elsewhere on
F. Then it is easy to see that + u(t)O satisfies the boundary conditions required of
t in the controlled system. It follows that

(e0) C** + -(A +
y=0 y=0

so that (15) holds with

The control coefficients b, that result from controlling part of a containing wall
instead of applying control directly to the surface can be complicated for even the
simplest controllers, however, as the following example, chosen because it can be
computed exactly, shows. Suppose Ft is an infinite-depth domain, with controlled wall
C the entire vertical wall at x 0, and control function, h(y) sin(y) in equation
(19). The y-derivative of the harmonic function which defines the control element
B in equation (21) can be constructed as an integral by using ideas from electrostatic
potential theory. Specifying normal derivative on a surface is equivalent to specifying
surface charge density on the. wall at x 0, and symmetry can be used to ensure
zero normal derivative (electric field) at x r by placing the same charge density at
x 2r. Reflecting both charge distributions above the x-axis vith the opposite sign
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ensures that the value of O (the potential) at y 0 be zero. Then g(x) in equation
(21), temporarily thought of as the vertical component of an electric field at y 0,
can be constructed as an integral (recalling that in two dimensions electric field falls
off as I/r). The y-component of electric field at location x due to charge sin(y) at
depth y (doubled because of an antisymmetric charge above the x-axis), integrated
over y to give the vertical component of electric field at the surface due to the charges
at x 0, gives

sin(y) Y dy.
+ v/X . +

This integral can be calculated explicitly, giving 7re-x, and then added to the
result for the charges at x 27r, which is 7re-(9-x), to give g(x) 7re + 7re-(2-x).
The energy inner product of the control element B defined by this 9(x) with the nth
eigenfunction of Cn of A0 (, not normalized, because cn is a ratio) can be calculated
exactly, giving

(23) bn
-sinh(r) + rv/rn3 + n sin(’v/Tn3 + n)

e(Tn3 + n + 1)

It is not obvious whether any integer value of n gives exactly zero for b, but certainly
one gets arbitrarily close to zero, and a plot shows a complicated dependence on n.

4. Eigenvalues for simple geometries. It is well known that existence of
a solution u(t) to a moment problem such as (18) depends on the interval L, the
eigenvalues n +iv/, and the sequence {c.,. }. This work now restricts its attention
to a geometry in which the eigenvalues of A + F can be computed explicitly.

Suppose that the region Ft has a flat bottmn at y -H. Then any (x) in L[0, 7r]
satisfying (’ (0) (’ (7r) 0 must be

(24) E an cos(nx).
n=l

The harmonic function meeting boundary conditions and matching at y 0 is

(25) (x, y) E nan cos(nx)cosh’n(y + H)

= cosh(nH)

giving

(26) A E nan cos(nx)tanh(nH)
n--1

and

(27) F A(-Tx) E Tn3an cos(nx)tanh(nH).
n=l

(28)

The eigenflnctions of A and F are the same so that

(A + F)cos(nx) (Tna + n)tanh(nH)cos(nx).
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Thus the eigenvalues of A + F in this geometry are An (Tn3 + n)tanh(nH),
so that the eigenvalues of .A0 are wn v/(Tn3 + n)tanh(nH), with w_, -w,n.
A similar calculation for an infinite-depth domain leads to w v/(Tn3+ n). In
particular, eigenvalues wn are O(n3/), so that adjacent differences become arbitrarily
large.

It is helpful to compare the infinite-depth example to the simplest vibrating string
of length 7c, taking the string’s density and elasticity to be 1. If both are put in skew-
adjoint first-order form, the eigenvalues of the first-order evolution operator A0 are

Wn +/-in for the string and w +/-iv@n3 + n for the fluid.
Allowing the ends of the string to slide freely rather than be fixed (to make the

comparison to the fluid more obvious) and normalizing in the energy norm, eigen-
functions for the string are

(29/ - [n-lcs(nx) 1cos(nx)
Similarly, eigenfunctions for the fluid, normalized in the norm of the Hilbert space

H, are

(30) Cn- (Tn3

_
)..-1/ co() 1o(x)

The same eigenfunctions are orthogonal in the actual energy inner product (.13);
normalized in that norm they are

( + )-/ co()(31) v cos(nz)
If control is applied as a distributed force, B has the first-order form

[1(32) B=
f(x)

Suppose one makes the assumption, used by Russell for the vibrating string
(2.17)], that the ordinary Fourier coefficients -y of f(x) decay slowly enough that

(33) lim inf nl’yn > 0.
n--.cxz

A simple f(x)for which this is true is the piecewise linear function

f(x) (7c/2 x)
Then for the string, and also for the fluid using the H-norm,

(34)

so that, under the assumption (33), an/b, O(na,), which is square summable if
the initial state is in P(A0).

For the fluid, if we use the actual energy norm,

(35) Iblv/ 17hi,

so that for large n, again under the assumption (33), an/bn O(na/2a,), which is
square summable for initial states in Z)(A0).

However, in this work we are primarily interested in the effect of wave frequencies
on control time and controller norm; henceforth we consider only the sequence of
ratios Cn under the supposition that it is square sutnmable.



1584 RUSSELL M. REID

5. Controllability and solutions to the moment problem. A moment prob-
lem such as (18) is

(36) (f,

If the sequence {fn} has the property that the equations (36) have a solution
u E H for every t2 sequence {c } so that its moment space contains t2, it is a Riesz-
Fischer sequence; if its moment space is contained in tu, it is a Bessel sequence. A
sequence which is both a Bessel sequence and a Riesz--Fisher sequence is strongly
indepe’ndent and a Riesz basis for its closed linear span. The basic criterion is due
to Boas: a sequence {f} is a Riesz-Fischer sequence if there is an m and a Bessel
sequence if there is an M such that, for every sequence of scalars {cn},

(37)

The sequences {f } which arise in the control of evolution equations are sequences
of complex exponentials {e+’ix*}; they are Bessel sequences in L[-L,L] for every
positive L provided only that the X, are real and separated [12]. Inghatn showed in

[2] that a sequence of exponentials {e+ia* } is a Riesz-Fischer sequence in L[-L, L],
provided that every I+1 Anl exceeds rr/L. It can be shown that if a sequence of
exponentials is incomplete and satisfies Ingham’s condition for all but finitely many n,
then it is a Riesz-Fischer sequence. (See, for example, [8] where it is shown that strong
independence is unaffected by replacing finitely many kn, allowing rearrangement
until Inghanfs condition is met for all n.) For capillary waves the eigenvalues IAnl are

0(n3/2), so that the sequence {f} {e+’x’} is strongly independent in L2[-L,L]
for every positive L.

If a solution u to (36) exists, there is a unique least-norm solution in the closed
linear span of the {fn}. If the sequence {fi, } is strongly independent, every element in
its closed linear span can be expressed as a series ([5, p. 317]). If we let u anf,
and denote the sequences of coeflqcients (finite or infinite) by a {at,a2,a3,...},
c {Cl,C9.,c3,...}, then the requirement (36)is

If G is the Gram matrix whose entries are 9,j (fn, fj}, this is simply

(39) Ga c.

For the control moment problem (18), the entries of G are inner products of frequency
exponentials independent of the initial state or controller; in L2[-L,.L], a simple
calculation gives

gij
sin Llcoi coil

The coefficients of the least-norm controller are determined by solving the system
Ga c, and the norm of the controller itself is

(40) Ilull2 {Ea.,f.., af} aTGa.
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The moment problem has a solution for every c E g2 when G is invertible; the
Gram matrix of a finite set of modes is always invertible. In either case, since G is
symmetric,

(41) C-- G- C,

so that the relationship between controller norm and initial state depends fundarnen-
tally on the eigenstructure of the Gram matrix of inner products of mode frequencies.

If G denotes the Gram matrix of the first n modes (or rather, to preserve complex
conjugates +/-n), then D. L. Russell’s result can be viewed as showing that, for fixed
L

_
27r,

whereas for any L < 27r,

lim IIGI(L)II .
For capillary waves, for fixed L > O,

because a Riesz-Fischer sequence is one for which eigenvMues of finite subsections
of the Gram matrix are bounded way from zero; equivalently the g operator G is

boundedly invertible with norm G-[ 1/m in equation (37).
The remarks above allow a final theorem.
THEOREM 5.1...In tes of the orthonormal basis for H provided by the eigen-

functions of Ao, let B E b@. Let Xo Ea, be an initial state in (Ao)
for which the sequence of ratios c a,/bn is square summable; in particular this is
true of any initial state in (Ao) under the assumption inf ]n3/2b,,} > O, or of any

finite sequence {a}, provided only that no b is zero. Then for any time L > 0
there is a control u which steers Xo to zero in time L and a constant K(L) such that
IlUlIL=[O,L] < K(L)

It is worth remarking that for a capillary wave system, K(L) is 0(1) as long
as L exceeds the natural control time 2/(Wn+ -Wn) %r every mode pair; it grows
extremely rapidly with shorter control times.

Acknowledgments. The author wishes to thank the re%rees %r significant con-
tributions to this work.
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Abstract. Both free boundary problems and optimal design problems involve unknown or
variable domains. We describe a direct approach extending the formulation of the problem to a larger
fixed domain without modifying the differential operator. This argument is based on an approximate
controllability-type property.
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1. Introduction. For the solution of partial differential equations defined in
exterior domains or in domains with a complicated geometry, one procedure consists
of extending the given problem to the whole space or to a convenient simple region,
where an associated control problem has to be solved; see the paper by C. Atamian
and P. Joly [1].

This idea is very usefll in problems involving unknown or variable domains, and
we mention the works of J. Blum [3], [4] related to free boundary problems in the
physics of plasma and the papers of K. H. Hoffmann, J. Haslinger, and M. Kocvara
[8]; D. Tiba [12], [13]; and R. Mgkinen, P. Neittaanln/iki, and D. Tiba. [14] devoted to
applications in optimal shape design.

It turns out that a main ingredient in the argument is given by certain geometric
controllability properties of elliptic systems, vith or without constraints. From this
point of view, the literature is not very rich, and we quote a first result from the classic
book by Lions [9, p. 85] and the recent works by V. Barbu and D. Tiba [2] and by
D. Tiba [12].

In 2 we analyse from this point of view the rapid method of identification of
the plasma boundary in & tokamak used by J. Blum [4, Chap. V], and in 3, we
study a typical optimal shape design problem (see Pironneau [11, Chap. VII). We
use a boundary control approximation, which is efficient since it involves convex opti-
mization problems even when the original problem is nonconvex. In 4 we describe a
distributed control approach in the case of the optimal packaging problem [16]. This
is again based on a controllability-type result, and it may be viewed as a general fixed
domain method in optimal shape design. The last section is devoted to numerical
experiments which investigate the accuracy of the proposed methods.

Let us underline that one of the main aims of this paper is to present a unitary
treatment of the various problems mentioned above and studied previously by other
methods. We emphasize the use of fixed domains (containing the original ones), which
is advantageous from a numerical point of view. Moreover, the partial differential
operator describing the system remains unchanged in this approach and we avoid the
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control in the coefficients techniques specific to optimal design problems (see Murat
and Simon [1.0]).

2. Free boundary problems in plasma physics. In a tokamak, it is essential
to know the shape and the position of the plasma boundary in the void chamber. In
cross section, this gives a regular domain ft C R2 and the plasma covers a subdomain
D C R2, confined by certain limitators F, which may have various shapes. (See
Fig. 2.1, which is a schematic representation of the physics of the problem.)

Fic,. 2.1.

In void region ft \ D (unknown a priori), the poloidal flux ’/ satisfies the linear
elliptic equation

(2.1) L
Or - -r (z ,- z -0,

which is nonsingular since r > c > 0 in ft under the natural choice of axes indicated
in Fig. 2.1, vhich observes the symmetry of the torus representing the void chamber.

On the exterior boundary Oft, it is possible to measure

(2.2) ’/ f on Oft,

(2.3) g on Oft

thus obtaining a Cauchy problem for the elliptic operator (2.1) in f \ D. Assuming
that y) may be computed, the free boundary OD is characterized as a level set by the
relation M OD iff

(2.4) ,(I) sup D(x).

The idea is to find OD using (2.4) nd the overdetermined data on 0. For
arbitrary f and g, the obtained geometry of D may be very general, but for real data
the method proposed by Blum [4, Chap. V] gives very accurate results, according to
his numerical experiments. We follow the same procedure here but our theoreticM
justification is different and avoids any extension assumptions which are equivalent
with exact boundary controllability properties and may be not true in general.

Let F be a closed regular curve in .D, vhich is not in a neighbourhood of
(From the point of view of applications it is even preferable that F is "far" from OD
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in order to allow more liberty for the searched position of the free boundary of the
plasma.) We denote as ft0 the domain between Oft and F, 0 D f \ D.

We replace the ill-posed Cauchy problem (2.1)-(2.3) by the following noncoercive
boundary control problem:

(2.5) minimize { J(u)
1 10 2 }e(r)

g

subject to

(2.6) L0 0 in Ft0,

(2.7) f on 0f,

(:.8) / u on r.

Here, we notice that if f H3/2(0[), then b H2(O), where d is a neighbourhood
of Oft in ft0 and the cost fllnctional is well defined.

We use the approximate boundary controllability result of Lions [9, p. 85] and ve
see that

(2.9) inf J(u) 0.
uL(F)

Therefore, a minimizing sequence of pairs [u; ] will provide a good approximation
of the Cauchy data (2.2), (2.3). Due to the absence of coercivity properties in (2.5)-
(2.8), we haven’t ensured the existence of optimal pairs.

We approximate the problem by the usual Tikhorov regularization technique,
and we shall use an argument based on the uniqueness of the Cauchy problem for the
adjoint system of the control problem

{ 1
(2.10) minimize Je (u)

subject to (2.6)-(2.8), e > 0.
Let [ue, ] be the unique optimal pair for the problem (2.10).
T,eoaeM 2.1. Asswrne that f Ha/(c)ft), 9 L(O) Then, for e O, we

(..)
r On

strongly in L (0).
0’ {1e o4 By taking ’u 0 in (2.8), we infer that { ;- } and bo. d d

in L(O), L(F). We define the adjoint system by

(2.12) .Lp 0 in 20,

(2.13) pa. 0

1 0(2.14) P-
r c)n

g on 0[2,

which has a unique solution p Ht/Z(fo) which is regular around F.
Standard calculus shows that the maximum principl.e (Pontryagin) takes the form

on F.
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o. g) in the weak topology of L2(Ot).) on a subsequence e.,. TheLet g lim (;-55-
adjoint equation (2.12)-(2.14) defines a bounded linear operator from L2(Ofl) to
H1/2(f]0) so we can pass to the limit Pe P, which satisfies in a weak sense

(2.16) Lp 0 in fro,

(2.17) p=0 onF,
(2.18) p on c3t2.

Passing to the limit in (2.15) too, we see that

10p
(2.19) 0 on F.

r c)n

Then the uniqueness for the Cauchy problem (2.16), (2.17), (2.19) gives p 0 that
is, g 0--by (2.18). Therefore, we get (2.11) with weak convergence instead of strong
convergence.

Let {’, } be a sequence of convex combinations of {/; } corresponding to the

sequence {ge} of controls given by the Mazur theorem, i.e., ; o,, 9 strongly in

Let the fixed control ge be a convex combination of controls {ue } k=m n- Then
_1/2{, u.} is bounded in L2(F). Ve put the control fie,. in the problem corresponding

2 and we obtain0 n

r On
g + u;

Lz(Of --(2.20)
I

r On

dT

C(Oa)

dT.

By the above argument, we notice that the right-hand side in (2.20) converges to 0;

therefore 0 9 0 strongly in L2(Ogt). Finally, (2.11) is valid without taking
subsequences.

3. Boundary control and optimal shape design. We analyse the following
standard design problem (see Pironneau [11, Chaps. III and VII)"

(P) minimize{V(D) IVy yaI2 dz

subject to

(3.1) -Ay f in D,

(3.2) y=0 on0D.

Here Yd L(gt) N, f e L(gt), E C D C gt C IRz (compare with Fig. 2.1) are bounded
domains, E C gt are fixed, D is variable (the minimization paratneter), and y is a
weak solution of the Dirichlet problem (3.1), (3.2) in D.

In the absence of regularity assumptions on OD, we haven’t ensured the existence
of an optimal subdomain for (P), and we shall study the minimizing sequences.



AN EMBEDDING OF DOMAINS APPROACH 1591

We associate with (P) the following constrained control problem:

minimize {W(u) J lVY Ydl2dx}
(3.3) -Ay f in

(3.4) y u on

(3.5) u <_ 0 on Oft,

(3.6) y >_ 0 in

We assume that Oft is regular, u E Ha/2(Oft), so y E HU(ft) and it is continuous
by the Sobolev enbedding theorem. Then (3.5) and (3.6) have a clear meaning.
We show that there is a strong relationship between the design problem (P) and
the control problem (Q) defined in a fixed domain. Any ad,nissible control for (Q)
generates uniquely a subdomain of ft with the same associated cost, and we may write
the following theorem.

THEOREM 3.1. The problem (Q) is a subproblem of (P) if f > O.
Pro@ For every u Ha/V(Oft) admissible for (Q), we define

.D,, int{x , y(x) >_ 0},

which is an open set such that E C D C [, by (3.6). We have denoted by y. the
solution of (3.3), (3.4) corresponding to u. We define D, C ft to be the connected
component of D, which contains E, and we remark that YulD is the solution of the

Dirichlet problem (3.1), (3.2)in D..
Therefore, by this correspondence u ---, D,, we associate, with each control u

H3/(Of2) and satisfying (3.5), (3.6), a domain D,, C f2 which gives the same cost
V(D) W(u). No smoothness is valid in general for cgD, but the existence of the
weak solution of the Dirichlet problem in D, is ensured. Since this is given by
it is in fact a strong solution. This correspondence is not void since we may take u -= 0
and D f as an example by the weak maximum principle. It is also injective since

otherwise, if u and uu produce the same subdomain D by the above construction,
then y y 0 in D and, by analyticity, y y2 0 in f2; that is, u u.

For the converse statement, we shall show that it is possible to construct a mini-
mizing sequence for (P) with domains of the type {_D,, }, where {u} is an admissible
sequence of controls for (Q), generally unbounded Then, by Theorem 3.1, {u.} is a

minimizing sequence for (Q) too, and we have

(3.7) inf (P) inf (Q).

Finally, every minimizing sequence {w } tbr (Q) will produce a minimizing sequence
{D} for (P) by (3.7), and this shows that the solution of the design problem (P)is
reduced to the solution of the control problem (Q).

Remark. The advantage of this approach is that the control problem (Q) is defined
in a fixed domain, which avoids the redefinition of new finite element mesh in each
iteration of the algorithm, as in the boundary variation technique. Moreover, the
problem (Q) is convex; therefore, the global minimmn for (P) may be obtained, which
is not ensured by the other methods which generally produce only a local minimizer.

We shall need the following approximate constrained controllability-type hypoth-
esis:
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(H) Let ft be a regular domain and f _> 0 in f. For any subdomain D C f there is
a sequence u E Ha/2(Of), u,. <_ 0 in Oft, such that the solution Yn of (3.3), (3.4)
satisfies

-- YD strongly in L2(D)(3.8) Yn
D

where YD is the weak solution of (3.1), (3.2).
Remark. If no control constraints are imposed, the statement is valid. In [12] and

[14], it is proved that it remains valid if the control constraint acts up to an open part
of Oft of arbitrarily small measure. Moreover, Example 3.1 below shows that (H) is
satisfied in dimension one and Example 3.2 gives a hint in the same sense in dimension
two. So, we conjecture that (H) is true in any dimension.

Example 3.1. If ft C R, we take f (0, 1) to fix the ideas. Let a, b E (0, 1), a < b,
be arbitrary. Let f be negative in (0, 1) and y be the solution of

that is,

y" (x) f (x) in (a, b),
y(a) y(b) O;

x a ab

y(x) (x t)f (t) dt + (b t)f (t) dt.
x-b

Then y may be viewed as defined over the whole (0,1) and satisfying the same equation.
Moreover, we have

a jl
b

y(O) tf(t) dt + b a
(b- t)f(t)dt <_ O,

b-t
dt+ (1-t)f(t)dt<_0,y(1)=(1-b) f(t) 1

b a

so (H) is satisfied as an exact controllability property with constraints. This is also
related to the convexity of the mapping -y.

Example 3.2. In higher dimension, the situation is by far more complicated. Let
ft D(1, ) C IR be the disc centered in the point A(1, 0) and with radius r (see
Fig. 5.1) and let

lx-x2 x <
1
X21 X2

2 (Xl 1) 4, Xl >_ 1,

f(xl,x2) 5’ Xl < 1,

) > 1,+12(x1-1 xl_

for (x,x2) e ft.
We notice that f > 0 in ft and y is the solution of (3.3). Moreover, if D C f is

defined by D {(xt,x2) Ix1 > 0, y(xl,x2) >_ 0}, we obtain, obviously, y 0 on OD.
As u y off satisfies u > 0 between lines x +xl for X < 0 one may conclude,
apparently, that (H) is not valid. This is due to the fact that in higher dimensions the
positivity of Ay does not ensure the convexity of y. In our case, y is a saddle function
forxl <_1.
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However, a standard numerical treatment of the constrained control problem

1 Jfo y2dminimize
D

subject to (3.3)-.(3.5) (see Example 5.1)will produce a negative boundary control
and its associated state .0, whose level lines are shown, in Fig. 5.3, as well as and D
(see also Fig. 5.1).

This shows that (H) also remains valid in this setting as an approximate control-
lability property, but the exact controllability-type property (with constraints) will no
longer be true.

Remark. In the parabolic case, distributed controllability properties with con-
straints are proved in the thesis of J. Henry [7], and constrained approximate boundary
controllability properties have been recently announced by J. I. Diaz [5] without com-
plete proofs.

THEOREM 3.2. Assume (H) is valid. Let E C D C be any fixed subdomains
and > 0 be an arbitrary positive parameter. There exists a control Ue,D
admissible for (Q) such that

(3.9) IV(D)- V(D,)t < ,
Proof. By a variant of a result of Pironneau [11, p. 32] we may limit the analysis

to the case E C D.
We may also assume that f is regular enough such that the weak solution of

the Poisson equation in various subdomains has C interior regularity. This may
be obtained by a regularization of f and doesn’t affect (3.9). That is, if fx is a
regularization of f, A > 0, the H (D) estimate for the weak solutions associated to
f, f shows that the difference between the corresponding costs in (P) is "small."
Moreover, this estimate is independent of D.

Let y E Ce(D) be the weak solution of the Poisson equation

(3.10) -Ay f in D,
(3.1) y--0 on0D.

The strong maximurn principle, since f 0, gives y(x) > 0 in D; therefore, y(x) >_
C > 0 in E by the compactness of E C D.

By the (H) condition, there is u Ha/’(D), u, < 0 in c)f such that the
corresponding solution of (3.3), (3.4) satisfies (3.8). We show that, for n sufficiently
large, the pair [y, u] will be admissible for (Q); that is, (3.6) is also satisfied.

Let 9 be given by

-A) f inf,,

0 0 on 0;

then y <_ in ft by comparison. The harmonic mappings y, y <_ ft- Y in D and
y y 0 almost everywhere D by (H). Then, it is well known that

y., y . 0

in (D), the space of harmonic mappings on D; that is, y, y --, 0 uniformly in
compact subsets of D.

In particular, this is valid in E, and taking into account that y(x) _> C > 0 in
E, we get (3.6) for n big enough. Moreover, we have W(u) V(D.) -- V(D).
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Choosing n big enough such that (3.9) is fulfilled, we obtain the desired ue,D. The
subdomain Du,D C ft is associated to it by the technique of Theorem 3.1.

Remark. Under this approach, it is not necessary to study geometric convergence
properties for minimizing sequences of subdomains as is usual in optimal shape design.
We show directly that the control u,,, will generate a subdomain which gives a cost
close to the optimal value.

Remark. We also underline the simplicity of the method in applications, by com-
parison with other fixed domain methods. In the mapping method of Murat and
Simon [10] the variable domain is mapped on a fixed one and the control appears in
the coefficients of the differential operator, while in the above technique we preserve
the differential operator unchanged.

4. A distributed control approach in the optimal packaging problem. It
is our aim to give a fixed-domain approach to the optimal packaging problem intro-
duced by Zolsio, Sokolowski, and Benedict [16] and discussed by other methods in
books by Haslinger and Neittaanm/iki [6, Chap. X] and Tiba [15, Chap. III, 5].

The distributed control approach we are proposing here has the advantage of a
large range of applications with respect to the equation, the boundary conditions, and
the assumptions on the data.

Let E C ft C R2 be fixed domains with regular boundary and p: H R be a

C2() mapping with 1o < 0. Let D be a variable domain such that E
where E C E {x f; (x) > 0}. In D, we consider the variational inequality

(4.1) -Ay+(y-) f in D,
(4.2) y=0 on0D,

with f L2(f) and fl C R x R, the maximal monotone graph defined by

(4.3)
0, r > 0,

]- 0], 0,

0, r<0.

The optimal packaging problem, denoted (PA), consists of finding the subdomain
D D E with minimal area. such that the coincidence set given by

(4.4)

contains (or equals) E, Z _D E. We note that the whole OD may be variable, and no
global analytic description is assumed for it.

This problem contains several difficulties: it is governed by variational inequal-
ities, and it involves variable domains and nonstandard state constraints given by
(4.4).

We suppose the existence of at least one admissible domain /) such that the
associated solution satisfies (4.4). In order to get an existence result, one has to
impose some uniform regularity assumptions on OD (see Pironneau [11, Chap. 3]).

We associate the control system in ft

(4.5) --Ay + fl(yu -) u inf,,

(4.6) Yu 0 on OFt
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and, for a fixed Lipschitzian subdomain D D E, the variational inequalities

(4.7) .--A. +/:(- p) f in D,
(4.8) =0 on0D,

(4.9) -Ay,, + (Yv ) ,v in t \ D,
(4.10)

with v e L2(t \ D).
The following exact controllability-type result is true.
THEOaEM 4.1. There isv E L’(ft\D) such that Yv given by (4.9), (4.10) satisfies

Oyv_ o(4.11) On Or
on OD.

Here n and are the normals to c)D inside and outside D.
Proof. We give a direct argument.
By the trace theorem, there is ’.0 E H2(ft \ )N H(ft \ ) such that it satisfies

(4.11). We define .Ho (ft \ .) by

(4.12) 0(x) max()(x), (x)),

where we have used the fact that (x) < 0 in ft \ by hypothesis and ) Ho (f \ ).
We notice that for any x OD, )(x) > (x), which is preserved by continuity in a
neighbourhood v(x); therefore, (x)= (x)in v(x) that is, (x) satisfies (4.11) too.
Moreover, we have 9(x) >_ (x) in ft \ D. In order to get more smoothness, one may
regularize locally , which is piecewise smooth. We denote y the regularized function
corresponding to the regularization parameter > 0. It turns out that ye does not
necessarily satisfy y >_ in ft \ D.

To overcome this difficulty, we remark that the set where jumps in the derivatives
of ) may occur is contained in the set {)(x) (x)} C ft \ D, compact and at
positive distance 2c > 0 from the boundaries Oft and OD where )(x) > p(x). Some
local regularization y is different from t on a compact neighbourhood of this set at
positive distance c > 0 from Oft and OD. Then, adding to y a regular mapping of
the type

(4.13) K dist(x, 0ft). dist(x, OD)

with a. sufficiently large K> 0, we obtain the function y(, which satisfies

it is in. H2 (f \ ) a H0 (ft \ .),
Oy Oy O O O
n On On-- On O,

in OD,

due to the properties of (4.13) and the definition of y.
Finally, v -Ay L( D) is the desired control since (YK P) 0 by

y.g(x) > (x) in D.
We define the distributed control problem

(P) rain f (l+n(u-f))dx(4.14)
uL() Eyu
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subject to (4.5), (4.6), (4.4), and n e N. Here Eu is the smallest subdomain of ft
containing E and such that yu 0 on cgEy. The existence of E,u is trivial due to
(4.6). One may ask for OEy to be Lipschitzian since we have this for Oft and the
intersection of two Lipschitzian domains remains Lipschitzian.

It is to be underlined that, generally, (4.14) has no optimal pair since there is no
coercivity ensured for u.

We show that there is a strong approximation relationship between (4.14) and
(PA) for n oc, without any reference to convergence properties of sequences of
subdomains of f, as it is a standard argument in optimal design.

THEOREM 4.2. For any n E N and any admissible domain for the problem (PA)
there is u L2(ft) admissible for (Fn) with an associated lower cost. Then

(4.15) inf(PA) >_ inf(P,,).

Conversely, if 6n > 0 is small and [y,, un] is a n optimal pair for (F), then
’is an optimal subdomain for (PA) (in a sense to be ,specified) with a small . > 0
depending on 5.

Proof. For any Lipschitzian D D E,, Theorem 41 gives v L( D) such that
y, defined by (4.9) and (4.10)satisfies (4.11), with given by (4.7), (4.8). Then, we
have that

(4.16) yu(x) { 9(x) in D,
(x) in a

satisfies (4.5), (4.6), Yu .H(ft)ffl H(fl), and u L(f) is given by

( f(x) in D,
(4.17) u() {

v(x) in ft \ O.

Furthermore, YIOD 0, so E, C D by definition, and u E,u fl Consequently,
the cost in (4.14) is less or equal to meas(D), the cost associated with (PA). It is in
this sense that we may speak about embedding of (PA) in (4.14) for any n N, which
yields (4.15).

Conversely, by (4.15), we have

(4.s) f (1 + n(u, f)2)dx < inf(PA)+ 6., d + 6,.

That is, %tn flL(.) V/q-. Since

--Aye< +/7(y o) u
y =0

then it is close to 7) such that

satisfies the variational inequality

-Agn+jc(-p) f inEy,
)n--O on cgEu"

that is, lY- )-I(,) -< s,. Therefore Ey is an e-subopti.mal pair for (4.1) in the
sense that

meas(Eu) _< inf(4.1)+ 6,
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since Yn E P by the definition of (]P.,).
Remark. In practical solving of (P), one also penalizes the state constraint (4.4),

which gives a weaker evaluation of the same type of its violation in the above argument.
Remark. It is the controllability property from Theorem 4.1 which, in fact, guar-

antees that the subdomains D may be automatically generated by the control system
(4.5), (4.6), thus allowing us to renounce the geometric parameters. Moreover, another
specific feature of the methods developed in 3 and 4 is that the governing equations
remain unchanged when we transfer the problen on the fixed domain.

5. Numerical examples. In this section we note three relevant numerical
examples. We begin with tile numerical treatment of Example 3.2. The other two
examples concern optimal design problems (boundary control and distributed control
approaches). A complete computational analysis of the plasma problem may be found
in tile book by Blum [4], whose "rapid method" is theoretically investigated in 2 in a
general setting. Moreover, other approximation procedures and other plasma models
are also discussed in [4].

Ezarnple 5.1. Let ft {(Zl,Z) R (Zl- 1) + z < 1.5} and F {(z,z)
]2. o 2.._Zo2_(Zl 1)4x2-x5 0 for 0 < Xl < 1 and :iXl 0 for Xl > 1}; see Fig. 5.1.

Consider the minimization problem

(5.1) minimize
subject to

{ --Ay=f in,

y u on 0[2,
u <_ 0 on Oft,

where f is indicated in Example 3.2.
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We have discretized the state problem (5.2) using the finite element method with
triangular elements consisting of 661 interior nodes and 120 boundary nodes (con-
trol variables) and piecewise linear approximation. We formulate the minimization
problem (5.1) (5.3) as a mathematical programming problem and use the sequential
quadratic programming method (subroutine E04VDF of the Numerical Algorithms
Group library). The state problem was solved by the Cholesky method. As usual, the
adjoint state technique was applied to compute the gradient of the cost function J(u)
(see J. Haslinger and P. Neittaanm/iki [6]).

0 -10.0, 1 120. ThisWe have chosen the initial guess as follows: ui
gives the value 187.77 for J(u).

After 17 iterations the value of J(u) was reduced to 4.23.10-4. Figure 5.2 shows
the value of u on Oft (as a function of angle paraneter). The expected symmetry
of u with respect to 3.1416 is slightly perturbed due to the round-off errors which
accumulate in the way that we solve the algebraic system and due to the chosen
triangulation of the disc

0.0000 3.1416 6. 832
AngLe

FIG. 5.2. The value of control u.

Figure 5.3 shows the value of y in f with control u given in Fig. 5.2.
Figure 5.4 shows the value of the state y on the given curve F. The same consid-

erations on the symmetry of y as in Fig. 5.2 hold.
Ezarnple 5.2. Let be as in Example 5.1 and E =]- 0, 0 Ix] 10,7 10["7

Consider the boundary control problem defined in 3 (we also penalize the state
constraint):

(5.4) minimize dx

subject to

j’-Ay=f inft,

y= u on Oft,

(5.6) u < 0 on. OFt.

Here Yd -4x1- x and f 10.
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FIG. 5.3. The value of y in with control u.

H=0.5

G=O.O

F -0.5

E= -1.0

D -1.5

C -2.0

B -2.5

A -3.0

5oLutLon on 9Lven curve from poLnt (2.0) to cLockvLse

FIe.,. 5.4. The value of the ,state y on the given curve F.

We have applied a finite-element grid and elements similar to those in Example
5.1. The initial guess for the control was u -4.5, 1,... 120, giving the value
3.35 for the cost functional J with the penalty parameter A 10-a. After 12 iterations
the value of the cost functional was reduced to 2.10.4 The obtained control and the
corresponding state can be seen in Figs. 5.5 and 5.6.

The same problem was solved in [14] with the conventional moving mesh tech-
nique, and the radial coordinates of the boundary nodes were chosen as tile control
variables. The initial guess chosen was a unit disc. The moving mesh approach gives
essentially the same design with fewer sequential quadratic programming iterations
than the proposed boundary control approach, but the total computational burden is
much heavier, as the finite element mesh has to be updated at the beginning of each
iteration. As tile coefficient matrix in the moving grid method depends on control
variables, one cannot utilize the same factorization of the coefficient matrix as in the
case of the boundary control approach.
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FIG. 5.5. Obtained control in Ex. 5.2.

I= 1.0

H-O.O

G -1.0

F -2.0

E -3.0

D -4.0

C -5.0

B =-6.0

A -7.0

FIG. 5.6. State corresponding to the control given in Ex. 5.2.

Example 503.
the obstacle

In connection with 4, we choose t { (Xl, 232) E 2 2312.q_x < 1 },

1 1 1

( 1) 123,
231 dO,

XlO,

3 3and E =/1 I1E2 --[--,--] x I-g, ] I..J [, ] x [--, ], f -3 in [2. In (4.14), we
also penalize the state constraint (4.4) and solve the control problem

1 ]1 + -e(u- f): dx + (v-

subject to (4.5), (4.6). ttere is given by (5.7).
If we take el 10-a, e2 10-s, and initial iteration u0 2, which gives

EU.o [, then the initial cost is about 3.569.104. After five iterations the cost was

reduced to 0.9571 and the value of the penalization terms was about 3.10-9 which
shows that the error in the state constraints or in the solution is very small.

In Fig. 5.7, the final solution of the optimal shape problem is shown. One should
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FJG. 5.7.

A=O.I

B=O.O

C -0.1

1601

note that the solution consists of two disjoint open sets. Therefore the topology of the
solution set may change during the computation. (Initially it was connected.) This is
another advantage over the standard boundary variation technique.

Acknowledgments. The authors are indebted to R. M/kinen and T. R/is/nen

for their help with the numerical tests.
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SECOND-ORDER OPTIMALITY CONDITIONS IN SETS OF I_

FUNCTIONS WITH RANGE IN A POLYHEDRON*

JOSEPH C. DUNNf

Abstract. Formal extensions of the general second-order necessary conditions and sufficient
conditions for local optimality in a polyhedral convex set U C I are established for l-local
optimality and L2-1ocal optimality in the infinite-dimensional nonpolyhedral convex set f of k
functions u(.) [0, 1] U. A more refined analysis for nonconvex cost functions with specially
structured differentials yields optimality conditions that apply to an important class of constrained
input Bolza optimal control problems. The gap between the necessary conditions and sufficient
conditions in this setting is uncharacteristically small for infinite-dimensional problems. In the control
problem context, the LC-local optimality conditions and L2-1ocal optimality conditions entail a mild
strengthening of a pointwise strict complementarity condition and variants of the Legendre-Clebsch
condition and the Pontryagin minimum principle. In related recent studies, similar second-order
sufficient conditions for the special case U [0, oc) are the key hypotheses in corresponding local
convergence theories for iterative constrained minimization algorithms.

Key words, constrained minimization, function spaces, necessary conditions, sufficient condi-
tions, optimal control, Legendre---Clebsch condition, Pontryagin minimum principle

AMS subject classifications. 49K15, 46N10, 90C06, 49M07, 49M10, 65K10

1. Introduction. Many problems in the calculus of variations and optimal con-
trol theory belong to the class of infinite-dimensional nonlinear programs

(la) min J(u)
uEr-l

(lb) {u E L [0, 1] u(t) e U},

where I_ [0, 1] is the vector space of Lebesgue-measurable essentially bounded func-
tions u [0, 1] --, R", J is a real-valued function that is differentiable in some sense
on a domain :D in km [0, 1], and U is a nonempty polyhedral convex set in Rm, i.e., an
intersection of finitely many closed half-spaces in R’. Although Ft is not a polyhedral
set, its special Cartesian product structure suggests that the well-known second-order
necessary conditions and sufficient conditions for local optimality in U may have valid
formal extensions in Ft. This question is explored here for two distinct species of local
optimality corresponding to the nonequivalent norms I1" I1 and I" 112 on k,[0, 1] and
for nonconvex objective functions J with differentials satisfying structure and conti-
nuity hypotheses that are met by a large class of Bolza optimal control problems, and
in other contexts as well.

The theorems in 5 and 6 greatly extend the L-local optimality and L-local
optimality necessary conditions and sufficient conditions established in [1] for the spe-
cial case U [0, ec). These theorems are proved with geometric techniques that di-
rectly exploit the properties of polyhedra and the product structure in f, and thereby
dispense with the constraint qualifications and multiplier functionals invoked in La-
grangian second-order necessary conditions for general infinite-dimensional nonlinear
programs (cf. [3]-[11]). Smoothness hypotheses imposed in the I_-local optimality
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Mathematics Department, Box 8205, North Carolina State University, Raleigh, North Carolina
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sufficient conditions of Theorem 6.4 are also substantially weaker than the corre-

sponding hypotheses in [1] and are now comparable to analogous assumptions in the
k sufficiency analysis of [9]. tinder stronger smoothness requirements like those in

[1], Theorem 6.6 ensures that kZ-local optimality is implied by k-local optimality
sufficient conditions and a strengthened form of the kZ-local optimality necessary con-
dition. Tile latter condition is closely related to the Pontryagin minimum principle in
the context of ordinary differential equation (ODE) optimal control problems.

Reference [2] develops another far-reaching extension of the k-local optimality
sufficiency theorem in [1] for ODE optimal control problems with terminal state equal-
ity constraints and nonpolyhedral time-dependent admissible control input sets U(t)
prescribed by finitely many slnooth nonlinear inequalities; however, the Lagrangian
formulation in [2] imposes constraint qualifications on the inequalities that define U
and differs in other important respects from the representation-free geonetric ap-
proach pursued here. Lenma 6.5, Note 6.3, and the related discussion in 6 interpret
the principal algebraic hypotheses of [2] in the geometric framework of Theoretns 6.4
and 6.6.

The gaps between tile main necessary conditions and sufficient conditions proved
here are uncharacteristically small for infinite-dimensional nonlinear programs in gen-
eral, and optimal control problems in particular [3], [9]. As noted in [10], tile suffi-
ciency gap has sone computational significance since standard iterative constrained
optimization algorithms tend to exhibit their best local convergence behavior near
stationary points that satisfy known second-order sufficient conditions. The sufficient
conditions in [1] and [2] have already produced new local convergence theorems for
gradient projection methods [12], [13] and sequential quadratic programming algo-
rithms [2] in infinite-dimensional settings. While tile convergence rate estimates in
these theorems are similar to their finite-dimensional counterparts, the developments
in [12], [13], and [19] indicate potentially interesting differences in the computational
implications of I_a-local and L_Z-local convergence theorems for approximate finite-
dimensional implementations of the subject algorithms. The sufficient conditions
proved in the present paper support similar local convergence theorems for gradient
projection iterations and continuous-time optimal control problems with vector-valued
control functions satisfying affine inequality constraints pointwise in bounded time in-
tervals; these theorems will be stated and proved in a later paper.

2. Preliminary considerations. The following brief review is meant to serve as
a bridge between familiar terminology and theorems in R and analogous formulations
for f in the infinite-dimensional space k.[0, 1].

Let J be a real valued function on a domain :D in a vector space V. Then:

(i) J is twice directionally differentiable iff each point of T) is an internal point
of :D [14] and the following limits exist for all u in T and v, w in V:

dJ(u; v)= lim
s--+0

dzJ(u; v,w)= lim
8---*0

d1J(u+sv w)-d1J(u w)

(ii) J is twice Ggteaux differentiable relative to a norm I1" on v iff J is twice
directionally differentiable and, for each u in T), the differentials dlj(u .) and
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d2 J(u ;., .) are linear and bilinear, respectively, and continuous relative to I1" I1.1
(iii) d is twice Frdchet differentiable relative to a norm II" on V iff d is twice

Ggteaux differentiable relative to I1" II, 79 is open relative to II" II, and, for all u, in 79,

IJ(u -F v)- J(u)- dlj(u v)l o(llvll)

sup IdJ(u + v w) dlj(u ,to) d2J(u v, w)l o(llll).

(iv) J is twice continuously F%chet differentiable relative to a norm II" on V
is twice Frchet differentiable relative to I]" and, for all u in D,

lim sup

liin sup sup
IlAull --+0 ii,wl[=l IIvll=l

Id2J(u + Au v, w) -d2j(u v,w)] O.

The uniforIn approximation property imposed in the definition of Fr6chet differ-
entiabilty is closely related to the continuity properties of the directional derivative
maps d d(.; v) and dd( v, w). More precisely, if d is twice Ggteaux differentiable
relative to a norm I1" on V, if D is open relative to )1" II, and if the real functions
dor(. v) and d2or(. v, w) are continuous at each u in 79 relative to I1" II, fomZ
in v and w on the unit sphere S(0, 1) {v V: I111--- 1}, then or is twice contin-
uously F%chet differentiable relative to I1 I1o When or is twice continuously F%chet
differentiable, the second differential is symmetric, i.e.,

dUJ(u v, w) dgJ(u w, v),

and Taylor’s formula yields the irnportant estimate

dj( ,, ,)+ o(ll,llJ(u + v) J(u) + dlj(u v)+ - ).

Note that in R, all norms are equivalent, linearity implies continuity in any norm,
continuity and G’&eaux differentiability and F%chet differentiability are norm-invariant
properties, and the directional derivative uniform continuity requirements are met iff
all first and second order partial derivatives of J are continuous. On the other hand,
in. infinite-dimensional vector spaces, two norms are not necessarily equivalent; linear-
ity does not imply continuity; and continuity, Ggteaux differentiability and F%chet
differentiability are norm-dependent properties.

Let or be a twice Ggteaux differentiable real-valued function on a domain 79 in
a vector space V with inner product {.,.} and induced norm Ilull v/{u,u). At
each u in D, there is at most one vector VJ(u) in V and one continuous linear map
Vor(u) :V + V such that

daJ(u v)= (VJ(u),v) and dJ(u v,w)= (v,VJ(u)w}.

The vector VJ(u) and operator 72j(u) are called the gradient and Hessian of J at
u, corresponding to the inner product (., .}. When VJ(u) and V2J(u) exist at every

This definition of Ggteaux differentiability conforms to [18]. In some references, the terms
directional differentiability and G&teaux differentiability are used interchangeably [23].
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u in 7? for the given inner product, the function J is then twice continuously Frchet
differentiable (relative to the induced norm) iff D is open and the maps VJ(.) and
V2J(.) are continuous (relative to the induced norm and the corresponding operator
norm). If V is a Hilbert space, then the Riesz representation theorem ensures that
the gradient and Hessian do exist at each point in the domain of J. In particular, in
R, every twice G&teaux differentiable J has gradients and Hessians for the standard
inner product, with the familiar matrix representations in the standard basis, i.e.,

OJ "
(VJ(u))i -u(U) and (V2J(u)v)i jl= OuiOuj(u)vj"

Suppose that C is a convex set in a vector space V with inner product (., .) and
induced norm II,ull V/(u, u}. At each u in C, let Arc(u), Tc(u), Nc(u), Tc(u), and
ri N’c(u) denote the cone of outer normals, the polar cone of tangents, and the closed
linear hull, orthogonal complement, and relative interior of Arc(u) in v, respectively;
i.e.,

Zrc( ) e v: w e c _< 0},

Nc(u) cl span [N’c(u)],

Tc(u) N’c(u) -L Nc(u) -L,

and

ri./V’c(u) {w e Arc(u) 5 > 0 Vx E Nc(u) I111 -< + x

The closed subspace Tc(u) is the largest subspace contained in Tc(u) and is sometimes
called the lineality in the tangent cone. In a Hilbert space V, N’c(u) is the polar cone
for Tc(u), Nc(u) is the orthogonal complement of Tc(u), and for all v in V, the usual
orthogonal projection decompositions hold with respect to the pairs (N’c(u), Tc(u))
and (Nc(u), Tc(u)); i.e., for all v in V,

v .PArc() v + P:rc() v, v PNc() v + PTc() v,

where Px denotes orthogonal projection into the set X C V.

3. Structure and smoothness assumptions. Much of the analysis in 5 and
6 applies to objective functions J that satisfy the following conditions:

(i) J is twice directionally differentiable on its domain T) in L[0, 1].
(ii) For each u in T) there is a vector VJ(u) E L[0, 1], an essentially bounded

m x m matrix-valued function S(.) Lx,[0, 1], and a square-integrable m x rn
matrix-valued function K(.) kx, ([0, 1] x [0, 1]) such that

(2a) d1J(u v) <VJ(u), v>2
and

(2b) dJ(u v, w) <v, VJ(u)w)
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with

/01(2c) (V2J(u)w) (t) S(u)(t)w(t) + K(u)(t, s)w(s)ds, E [0, 1],

where (,v, w)9 fd (v(t), w(t))dt, Ilu [2 v/(u, u}2, and (, r) 3i1 irl.i for , r/in

(iii) For z 2 or oc, the domain D is open relative to II, I1, and the associated
mappings S(.) and K(.) are continuous in the sense that for all u in D

and

(3b) lim IlK(v) I((,)ll2 O,

--esssuPtE[0,1 ]]v(t)ll, I11 v/(,> and

IIS(u)lloo ess sup IS(u)(t)ll,

(001 001

II-K(u)(t, )il sup IIK(u)(t, s)gll.

Assumptions (i) and (ii) imply that J is Ggteaux differentiable relative to either
of the norms II" I1 or It’ 112, with gradients VJ(u) and Hessians VJ(u)in the
incomplete inner product space {k[0, 1], {.,-)2, I1}. In Rn, the analogue of the
structure condition (2c) in (ii) can always be met by writing VJ(u) as the sum of
its diagonal and off-diagonal parts; however, (2c) is a nontrivial hypothesis in the
vector space i_[0, 1]. In this infinite-dimensional setting, condition (2c) ensures that
the Hessian operator VJ(u) acts essentially like the simple multiplication operator
S(u) on vectors v that vanish outside a set with small Lebesgue measure in [0, 1].
This "local diagonal doninance" property is essential for the proofs of the k-local
optimality and t3-1ocal optimality sufficient conditions in Theorems 6.4 and 6.6 and
the matching necessary conditions in Theorems 5.3 and 5.4.

If assumption (iii) holds along with (i) and (ii), then J is twice continuously
Frdchet differentiable relative to I1" II on L[0, 1] and, in addition,

(4a,) J(v)- d(u)- (VJ(u),v- u> + 1/2(v- u, VJ(u)(v- ,u)> + r(u;v)

with

(4b) lim
I(**; ,)1 o

2
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For 2. (4b) asserts that r(u; v) o(llv- ’ull 22), as in formula 4 of [1]; this standard
[_2 version of Taylor’s remainder estimate is invoked in the [.2-local optimality and
k-local optimality analyses in [1]. For p oc, (4) reduces to the weaker condition
in the 1_ analyses of [9] and [2]; this form of (4) is imposed here in 6 (and will also
support the k sufficient conditions in [1]). Note that the continuity hypotheses in

(iii) are roughly analogous to partial derivative continuity conditions in ]R’; however,
the norms I1" I1 and I1" 112 are not equivalent on the infinite-dinensional space k[0, 1],
and conditions (3) with 2 are stronger than (3) with oc. Note also that for

oc, (4b) is stronger than the standard Taylor remainder estimate for objective
functions J that are twice continuously F%chet differentiable relative to I1" I1; thus,
conditions (3) with oc imply more than twice continuous F%chet differentiability
in the k norm but less than twice continuous F%chet differentiability in the [_2 norm.

Note 3.1. In an optimal control setting, the structure/continuity conditions (2)
and (3) are satisfied with oc by a large class of Bolza objective functions,

f0(5a) J(u) P(x(1))+ (t,x(t), u(t))dt,

where z(.)" [0, 1] -- Rn is the solution of an initial value problem

(5b) x(0) z0,

(5c)
dz
dt= f(t,x(t), u(t)), t E [0,1],

and P, f0, and f satisfy relatively weak smoothness and growth restrictions. Con-
ditions (2) and (3) are also satisfied with 2 by a smaller but still important
class of quasi-quadratic Bolza objective functions with associated system Hamiltoni-
ans H(t,,x,u) {,f(t,x,u))+ f(t,x,u) that are quadratic in u E Rm. (See [13]
for a discussion of the case rn 1.)

4. Formal extensions of the optimality conditions in polyhedra. If C is
a polyhedral convex set in R, then the tangent cone Tc(u) coincides with the cone

of feasible direction vectors at u, every vector in the subspace Tc(u) is a feasible
direction vector, and u + Tc(u) is the affine hull of the unique polyhedral face of
C containing u in its relative interior. These observations and an application of ele-
mentary calculus immediately produce the following geometric expression of the basic
necessary conditions for optimality in polyhedral convex subsets of Rn.

THEOREM 4.1. Suppose that C is a polyhedral convez set in Rn, u is a local rnin-
irnizer for the restriction of J" 79-- IR to any line in C, and J is twice directionally
differentiable at u. Then

VV C d1J(u v- u) >_ 0

and

VvTc(u) dlj(u v) =0 and d2J(u v,v) >_0.

Note tha.t if J is Ggteaux differentiable, then the first-order necessary condition in
Theorem 4.1 says that -VJ(u) N’c(u).
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The corresponding second-order sufficient conditions for local optimality in poly-
hedra also have a representation-free geometric expression. In this theorem, the di-
rectional differentiability hypothesis is superceded by a stronger continuous Fr6chet
differentiability assumption, and the first- and second-order necessary conditions are
replaced by a strict complementarity condition on Vd(u) and a coercivity condition on
the quadratic form (v, V2J(u)v) in the subspace Tc(u). Under these circumstances,
Taylor’s formula can be used to establish explicit quadratic growth rate estimates for
J near u in C.

THEOREM 4.2. Suppose that C is a polyhedral convex set in Rn and that d D
R is twice continuously Fr’gchet differentiable. In addition, suppose that the following
conditions hold at a point u E C N D:

-X7J(u) ri Arc(u)

and

/2 > 0 Vv E Tc(u) (v, V2J(u)v) .>_ f II,,ll =.
Then u is a strict local minimizer for J in C, and for each # (0,/2), there is a
corresponding (5 > 0 such that

Theorem 4.2 can be proved by using the coercivity condition to estimate J(v)
J(u) for increments v- u in a cone of vectors nearly orthogonal to the subspace
Nc(u), and the strict complementarity condition to make a similar estimate for v- u
in the complement of this cone and v in C. In contrast to the standard indirect
proof of the second-order sufficient conditions for nonlinear programs in R" [22], this
proof technique is not tied to compactness of the unit sphere and can therefore be
applied in infinite-dimensional settings as well as R; moreover, it establishes explicit
quadratic growth estimates for J that are needed in convergence theories for iterative
constrained minimization algorithms [17], [20], [21]. Variants of this proof strategy
are implicit in the treatment of infinite-dimensional nonlinear programs with finitely
many scalar-valued nonlinear inequality constraints in [18], and similar techniques are
used in [1] and [21 and here in the proof of Theorem 6.1.

When U is a, polyhedral convex set in R", the k-fold Cartesian product ft
U x... x U is a polyhedral convex set in R’ R" x-.. x R, and for each
tt-- (Ul tk) in R’,

(6a) N’a (u) {w e Rk "wi e Afu(u,:) 1,..., k},

(6b)

(6c) Na(u)={w6Rtm’wi6NU(u{) i= 1,...,

(6d) Ta(u)={weRwieTu(u.i) i=l,..o,k}.

These cones and subspaces have the following formal counterparts in the nonpolyhe-
dral set ft"

(Ta) hfa(u) {w e L,[0, 1] w(t) e. 3/u(u(t))},
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(7b) Ta(u) {w E L,.[O, 1] w(t) ae. Tj(a(t))},

(7c) Na(u) {w E L,,[O, 1] w(t) ae’ Na(’u(t))},

(Td) T(tt) {w L[O, 1] w(t) e. TU(U())}.

It can be seen that N’a(u) actually is the cone of exterior normals at u in ft in the
incomplete inner product space V {L[0,1], (’,’}2, I1’ 112}. Similarly, Tn(u) is the
polar of A/n(u) in this space, and Nf(,u) and Ta(u) are, respectively, the closed linear
hull and orthogonal complement of A/(,). Moreover, the cones JV’a(u) and Ta(u) and
subspaces Nn(u) and Ta(u) are pointwise polar and orthogonal, respectively; i.e., for
all v and w,

e _<. o

and

v 6 N(u) and w 6 Ta(’u) = <v(t),w(t)) .’ O.

Although {L[0, 11, (., .), I1} is incomplete, it can also be seen that N’n(u) is the
polar cone for Tn(’u), Na(u) is the orthogonal complement of Try(u), and every vector
v in L[0, 1] has a unique orthogonal projection into each of these objects, with

v PJva() v + P() v, v PN() v + P-r() v,

(P-(,) v)(t)- P-((t)) v(t),

and

PNv(u(t))v(t), (t) PT((t))
The necessary conditions in Theoreln 4.1 make no reference to a norm on R, and

formal extensions of these conditions for the nonpolyhedral set Ft are now obtained
by simply replacing Tc(u) with T(u). The formal first-order necessary condition is
well known and follows at once from the convexity of ft and the definition of the direc-
tional derivative; however, the formal second-order necessary condition is a nontrivial
assertion, since the subspace T(u) is not contained in the cone of feasible directions
at "u (Example 5.1). When the degree-2 homogeneous function w dJ(u; w,w)is
L continuous, the second-order necessary condition can be proved by demonstrating
that Ta(u) is the L closure of the union of an increasing sequence of subspaces that
are contained in the cone of feasible directions (Lemma 5.1 and Theorem 5.2). On the
other hand, when w --, dJ(u w, w) is merely L continuous, the analogous proof
construction fails since T(u) contains vectors w that cannot be approximated by fea-
sible direction vectors with arbitrarily small error in the norm I1" Iloo (Note 5.2). Thus,
the norm-free second-order necessary condition for polyhedra in Theorem 4.1 does
have a valid formal extension for f, but the extension is evidently norm-dependent
and tied to I1" I1’ or other similar integral norms. Note that w --, dJ(u w, w) is
automatically L continuous when J satisfies the structure conditions (2).
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Note 4.1. The existence of nontrivial subspaces in the cone of feasible directions
at u in the nonpolyhedral set ft is a special consequence of f’s product structure.
For nonpolyhedral closed convex sets prescribed by finitely many smooth nonlinear
inequalities or an infinitely indexed family of affine inequalities, the cone of feasible
directions at a boundary point u typically contains no subspace other than {0}; more-
over, for nonconvex J, the directional derivative dJ(u; v, v) is typically negative for
some v in the orthogonal cmnplement of the normal cone at a local minimizer u.
For example, in any Hilbert space V, the closed unit ball has the affine inequality
constraint representation

B(0,1)={ueV:ViES(0,1) <i,u> < 1},
where S(0, 1) is the unit sphere in V. If Ilull 1, then the normal cone at u consists
of all nonnegative tnultiples of u and there are no nonzero feasible direction vectors
v orthogonal to u. Furthermore, if J is twice directionally differentiable and strictly
concave, then d2J(u; v, v) is negative for all v - 0 orthogonal to u.

The sufficient conditions in Theorem 4.2 are directly tied to the norm on R
in three ways, through the differentiability, strict complementarity, and coercivity
hypotheses. Since norm equivalence is lost in the infinite-dimensional vector space
1_.[0, 1], it can be seen that nonequivalent formal extensions of the sufl3cient condi-
tions in Ft may arise from the assignment of different conbinations of norms in these
hypotheses. Some of these extensions are essentially vacuous and can be ruled out at
once. In particular, any formal extension that invokes an k2 strict complementarity
condition or an k coercivity condition is uninteresting for present purposes, since
the k2 relative interior of the normal cone Af(u) is typically empty, and the k co-
ercivity condition can’t hold on nontrivial subspaces Tn(u) if w ---, d2J(u w,w) is
continuous in the l2 norm. Nonvacuous sufficient conditions for k-local optimality
in f are obtained by combining an k strict complementarity condition with an l_z

coercivity condition and any smoothness conditions that itnply the two-norm Taylor
formula (4) with u oc (Theorem 6.1); however, the gap between these sufficient
conditions and the corresponding necessary conditions in Theorem 5.2 is far wider
than the sufficiency gap in polyhedral subsets of Rn. This is true partly because coer-
civity is stronger than positive-definiteness in infinite-dimensional spaces, but mainly
because k strict complementarity requires that the distance from -VJ(u)(t) to the
relative boundary of A/’u (u()) in the subspace Nu (u(t)) is bounded away from 0 almost
everywhere on the interval [0, 1], and this condition typically can’t be met if u(.) and
VJ(u)(.) are continuous at some point - in [0, 1] where u(t) passes from the relative
interior of one face of the polyhedron U to the relative interior of a contiguous face.
Thus, k strict complementarity is a nonvacuous but very stringent hypothesis, and
the aim of the sufficiency analysis in 6 is to weaken this condition with no compen-
satory reinforcement of the k2 coercivity condition on T(u). Theorems 6.4 and 6.6
achieve this goal with a mild strengthening of the pointwise strict complementarity
condition

(8) -VJ(u)(t) ri

which may be viewed as a formal extension of the component-wise expression of strict
complementarity in k-fold Cartesian products fk U x x U in IRk’, i.e.,

(VJ(u)) riAfu(ti), 1,...,k

(cf. equations (6)). Reference [1] supplies the prototype for this analysis in the special
case U [0,
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5. Necessary conditions. The special product structure in ensures that sub-
spaces Tg(u) (analogues of the lineality) can be approximated from below by an in-
creasing sequence of subspaces T(1/n), each of which is contained in the cone of feasible
directions, even though T(u) itself is not contained in this cone. It follows that each
vector w in T(u) is the [_2 limit of a sequence of feasible direction vectors w for
which dlf(u;wn) 0 and d2f(u; w, w) _

O. Hence, for this specially structured
nonpolyhedral set ft it is possible to extend the inequality d2f (u; w, w)

_
0 from the

subspaces ril/n to T(u) when the directional derivative map w - d2J(u , w)
is k2 continuous. These points are developed in the following example, lemma, and
theorem.

Example 5.1 For m 1 and U [0 x), ft is the set of real-valued essentially
bounded and nonnegative measurable functions on [0 1]. Consider the fimction u in

defined by the rule

0, t [0,
t( 1].

Note that

{0},

and therefore

[span A/’u()] +/- {01}’ O,, >o,

Af(’u) {w L(0, 1) w(t) <_ 0 a.e. in [0, ] and w(t) 0 a.e. in (,

T(u) {w E L(0, 1) w(t) 0 a.e. in [0, ]}.
Fix h > 0 and put

{ 0, t
-h, t(,

The function wh lies in T(u) but is not a feasible direction vector, since u + sw has
negative values on the interval [1/2, + sh). Thus T(u) is not contained in the cone
of feasible directions at u. On the other hand, the subspaces

T(/,)(u) {w k(0, 1) w(t) 0 aoe. in [0, + ]}
are contained in T(u) and the cone of feasible directions at u, and converge to T(u)
in the sense that their union is dense in T(u), relative to the k2 norm.

The construction in Example 5.1 will now be generalized to show that the sub-
spaces T(u) are approximated from below in the k2 norm by subspaces of T(u)
lying in the cone of feasible directions at u G ft. With reference to [15], the polyhe-
dral convex set U has d distinct (polyhedral) faces the relative interiors of these
faces do not meet, and

d

(9) U U rifi’.
i--1
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Moreover, if () denotes the unique face in {-1,... ,.7"a} containing in its relative
interior, then the cones A/u(r) and the subspaces Nu(r/) and Tu(r/) are invariant for
r/E ri(), and + Tu() is the alefine hull of (.); i.e., for some
and {Ti}ia=l and for all E U and 1,..., d,
(10)

()v() 9vi) = (Afu() Aft, Nu() Ni, Tu() Ti, and aft c() + Ti ).

(These assertions are deduced in [15] from affine inequality representations for the
polyhedral set U and derived representations for the polyhedral cones Afu(); for
further details, see the proof of Lemma 6.5.) For in U, define

(11a) p(C) sup{p (0, 1] /3(c, p) 1 aft -(c) C ’(()},

where

(llb) B(, p)= {r/ R" I1- r/ll < P}.

Note that p() is the distance from to the relative boundary of the face c() when
p() < 1. For in U, u in ft, and (7 > 0, define the corresponding subspaces T(o)(at) C
Try(u) by the rule

(11c) T()(u) {w L(0, 1) "w(t) a. T()(u)(t)},

Tu(u(t)), p (at(t)) > (7,(lld) T()(u)(t) {0}, p (u(t)) < (7.

It can be seen that p() is positive and the associated restrictions p(-)lri= are con-
tinuous for 1,..., d. Moreover, ri-i is a Borel set for 1,..., d, and thus for
each it in ft, the partition (9) induces a corresponding family of d pairwise disjoint
Lebesgue measurable sets

(12a) ai(at) {t [0, 1]: u(t) E ri-i}

with

(12b) p [0,1] \ ai(u) O.

The continuity properties of p(.) therefore imply that for each u in f, the composite
function p(u(.)) is Lebesgue measurable and positive almost everywhere in [0, 1].

LEMMA 5.1. For all u in t2 and (7 > 0, the subspace T()(u) lies in the cone of
feasible directions at u, and the subspace UnZ=l T(1/n)(at is de7"tse ’i’t Ta(at) relative to
the k norm.

Proof. Fixuin ft and (7 > 0. Suppose that w T()(at). Ifw 0, thenw is
trivially a feasible direction vector at u. Suppose that w 0 and s [0, Ilwll ]" By
construction,

+ c u.

Thus, for all s,



1614 JOSEPH C. DUNN

and therefore w is a feasible direction vector at u.
Fix u in f and w in T(u). For n 1,2,..., let

0N {t e [0, 1]’p (u(t)) < -},

and construct

[0, \w (t) 0,

Since p(u(.)) is measurable and positive almost everywhere, it follows that 0n is
measurable with 0n D 0N+ for all n, and

=0.

Hence, wn E T(1/n)(u) and

lim Ilwn wl12 lim Ilwll2dt O.

Note 5.2. If u and Wh are defined as in Example 5.1, then wh cannot be approx-
irnated by feasible direction vectors with arbitrarily small error in the norm
Hence, there is no 1_ counterpart of Lemma 5.1.

Lemma 5.1 and elementary calculus now produce a basic representation-free
second-order necessary condition in the inner product space {km[0, 1], (., "}2,
Note that the structure/continuity conditions (2)-(3) are not invoked in this theorem.

TttEOREM 5.2. Let u be a local minimizer for the restriction of J Z) I to
any line in ft. In addition, suppose that J is twice directionally differentiable and that
the associated maps w -- d J(u; w) and w - d J(u; w, w) are continuous with respect
to the norm on k,(0, 1). Then

(13a) Vv ft d1J(u; v- u) >_ O,

(13b) Vw Try(u) dJ(u’w) 0 and dJ(u;w,w) > 0.

Proof. Fix v in 2. Since f is convex and u is an internal point of Z and a local
minimizer on lines, it follows that for all sutficiently small e, the vectors u + e(v u)
fall in ft P and therefore

0 < J (u + e(v u)) J(u) e.d J(u; v-- u) + o(e).

In the limit as e -- 0, this proves the well-known first-order necessary condition (13a).
Suppose that w lies in one of the subspaces T(t/)(u) of Lenma 5.1. Then w and
-w are feasible direction vectors at and hence dtJ(u; w) 0 and dJ(u;w, w) >_ O,
since u is a local minimizer on lines. Conditions (13b) now follow from the second
part of Lemma 5.1 and the k continuity of w --, d fl(u; w) and w

The next two theorems establish refinenents of the second-order necessary con-
ditions for twice Ggteaux differentiable functions that satisfy some or all of the struc-
ture/continuity hypotheses (2)--(3) for, 1 or 2. The proofs for these results are



SECOND-ORDER OPTIMALITY CONDITIONS 1615

closely modelled on the proofs for Theorems 2 and 3 in [1] and convert integral condi-
tions to pointwise conditions by arguments that are well established in optimal control
theory [18].

THEOaEM 5.3. Let u be a local rninirnizer for the restriction of 3 D R
to any line in f, and suppose that J has first and second differentials satisfying (2).
Then conditions (13) hold at u, and in addition,

(14a) -VJ(u)(t) e Afu (u(t)) a.e. in [0, 1]

and

(14b) (V Tu(u(t)), (,S(u)(t)} > 0)) a.e. in, [0, 1].

Proof. Conditions (2) imply that d1J(u;w) and d2J(u’w,w) are k2-continuous
in w on k(0, 1). By Theorem 5.2, conditions (13) then hold at u, and (13a) asserts
that

Vuf (VJ(u)(t), v(t) u(t)}dt >_ 0

and hence

(V U (VJ(u)(t),- u(t)} >_ O) a.e. in [0,

This proves (14a). Now let {ai(u)}id___l be the subsets of [0, 1] in (12), and for in
[0, 1] and > 0 define a corresponding family of sets (t, ) c [0, 1] by the rule

(5) t cti(u) =* (t, e) cti(u) N (t , + ).

Evidently, #[(t, e)] < 2e, and therefore

(16a) t((u)(, s)lledTds o(e).

Moreover, since almost every in ai(u) is a point of density for ai(u) [24], it follows
that

f
(16b) / S(u)(7)d-r 2eS(u)(t) + o(e) a.e. in [0, 1].

Choose any where the estimates in (16) hold. Suppose that E ai(u).
Ti Tu(u(t)), and for e > 0 construct w E Ta(u) by the rule

Fix in

e (t, ),- [0,1] \ (t, e).

Theorem 5.2, conditions (2), and the estimates (16) then yield

and hence

(, s()(t)) >_ o
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in the limit as e --. 0. Since can be any vector in T Tu(u(t)), this proves (14b).

THEOREM 5.4. Let u be an k2-1ocal minimizer of J D R in f f D, and
suppose that J has first and second Gdteaux differentials satisfying (2)---(3) with u 2.
Then conditions (13) and (14) hold at u, and in addition,

(17) inf ((VJ(u)(t) - u(t)) + (- u(t) S(u)(t) ( u(t)))) 0 a.e. in [0 1].
U

Proof. Conditions (13) and (14) follow at once from Theorems .2 and .3, since
every l_-local minimizer is also
and in U, and for > 0 construct v,, f/by the rule

(18) vt ,(’) u(r), r e [0, 1] \ (t e,t + e).

As in the proof of Theorem 5.3, it can be seen that for almost all t in [0, 1],

V,1 U Ilvt,e, ull 2ell u(t)ll e / o(e),

and therefore

v e u I1,,- 11 o().
In the present instance, conditions (2)-(3) imply (4) with u- 2; hence for almost all
t in [0, 1], all in U, and sufficiently small e > 0,

0 <_ J(vt,,)--J(u)
(VJ(u), vt,, u)2 + 5(vt,, u, d(u) (vt,, u))2 + o(e)

since u is an L2-1ocal minimizer. Moreover, for almost all in [0, 1],

v e u (vJ(), ,, ) (vJ()(t), (t)) + o()

and

V e U (vt,,. u, V2j(u)(vt,, u))2 2e( -u(t),S(u)(t)( u(t))) + o(e).

Condition (17) now follows in the limit as
Note 5.3. Assertion (17) in Theorem 5.4 remains true if the range set U in (lb)

is an arbitrary subset of IR. Condition (14a) in Theorem 5.3 is implied by (17) if U
is a convex set in Rm. Condition (14b) is implied by (17) if U is a polyhedral convex
set in IRm.

Note 5.4. For Bolza objective flmctions (5), the values of the quantities VJ(u)
and S(u) are given almost everywhere in [0, 1] by

VJ(u)(t) VuH (t, ,(t), x(t), u(t))

and

(19b) S(u)(t) VH2 (t, 2(t), x (t), u(t))

where H is the associated Hamiltonian

H(t, , x,u) (’,, f t, x,u) + f0 (t, x, u)
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and ,(.) solves the adjoint final value problem

dO(20b) d- -VH (t, b, z(t), u(t))

( Oc)

(See [13] for a discussion of the case m=l.) If u is an k2-1ocal minimizer of (5) in the
set (lb), then admissible perturbations of the form (18) cannot decrease J when e is
sufficiently small, and the Pontryagin minimum principle asserts that

(21) H (t, (t), x(t), u(t)) inf H (t, g,(t), x(t), ).

In this setting, conditions (14) in Theorem 5.3 are now seen as first- and second-order
necessary conditions for the finite-dimensional constrained minimization problems
(21); moreover, if (2) and (3) are to hold with u 2 for control problems, then
H Inust be quadratic in u for each fixed (t,2, x) (Note 3.1), and condition (17) in
Theorem 5.4 is equivalent to (21). On the other hand, the Pontryagin miifimum
principle need not hold at a local minimizer on lines, where (14a) and (14b) may be
viewed as extensions of the Euler and Legendre necessary conditions for weak local
minimizers in the calculus of variations.

Note 5.5. Theorems 5.2 and 5.3 contain their counterparts in [1]; in particular,
for m and g [0, ec), condition (17) implies that S(u)(t) >_ 0 almost everywhere
in [0, 1].

6. Sufficient conditions. A nonvacuous but stringent formal extension of the
sufficient conditions in polyhedra is obtained by replacing Ale(u) and Tc(u) in The-
orem 4.2 with N’n(u) and Ta(u) and requiring that Taylor’s formula (4) hold with
u oc at the point u in ft g D, that -VJ(u) lie in the k relative interior of Afn(u),
and that V2J(u) be k2-coercive on Tn(u). As noted in 4, the scope of this theorem is
severely limited by its k strict complementarity condition; however, the proof tech-
nique employed here also establishes the more flexible analytical tool in Lemma 6.2.
Lemma 6.2 is the key to the proof of the L-local optimality sufficient conditions in
Theorem 6.4 for objective functions J that satisfy the structure/continuity conditions
(2)-(3) with u oc. Theorem 6.4 postulates the natural !_2 coercivity condition on

Ta(u), but its strict complementarity condition derives from the pointwise condition
(8) and is much weaker than 1_ strict complementarity.

THEOREM 6.1. Let J be a real-valued function on. a domain D C k,[0, 1] that is
open relative to the norm I1" I1. Suppose that at some point u in there is a
vector VJ(u) in k(0, 1) and an k2 continuous linear operator VJ(u) on /(0, 1)
such that

d J(u; v) (VJ(u), v}2,

d2j(u; v, w) (v, V2J(u)w)2

for all v and w in k[0, 1], and

(23a) J(v) J(u) (VJ(u), v u)2 + 1/2iv u, V2J(u) (v u)>: + r(u; v),
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lirn
]r(u;v)l

0(ab)
It-,ll-,0 IIv- ll-2for all v in (C) near u. Suppose that the following k strict complementarity and k2

coercivity conditions also hold at u"

(24a) ::IcN> 0 Wv (w Nn(u) and IIli <_ -vJ(u) / w e JV’n(u))

and

(24b) -qCy > 0 Vw (w E Ta(’u) :=> <’w, g7J(,u)w) >_ c,:r, Iw I).
Then for each number c E (0, CT), there is a corresponding > 0 such that for all

(25)

Proof. Recall first that the subspaces N-(,u) and Ta(u) are pointwise orthogonal
and that !,(0, 1) is the direct sum of Na(u) and Ta(u). To prove the latter assertion,
fix w in I_(0, 1), and for tin [0, 1] put

Since the projection operators are nonexpansive and Nu(u(t)) and Tu(u)(t)) are con-
stant almost everywhere on each of the measurable sets ci(’u) in (12), it follows that
Wx and WT are measurable essentially bounded functions in Nn(,u) and Ta(u), with

(26a) w WN + WT

and

(26b) II(t)ll- IIwN(t)ll + Ilwr(t)ll a.e. in [0, 1].

Moreover, if w VN-L’VT for some VN E N(u) and Vr ff Ta(u), then the orthogonality
of Na(u) and Ta(u) ensures that vu wx and VT --’wT.

Now fix c in (0, CT) and v in f \ {u}, and let

(v ’) N

With-reference to (26), it can be seen that

CN

Hence (24a) implies that

0 >_ (-VJ(u) + w, v-.
CN-(Vd(u),v u)2 +
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and therefore

CN(27) Vv

Furthermore, conditions (23) and (24b) yield
(8)
(-, vJ()( )/ > rll(-)rllg-MIl(-)ll (11( )NII. + 11(

where

(28b) M= IlVeJ(u)ll de=f sup JVuJ(u)vll < o.

The estimates (23), (27), and (28) and a completion of the square in (28) show that
for all v in ft A 79,
(:)
J(v)- J(u)

( M M )-> IIv ulla 2 (cT ca) II(v u)Nll + (CT +4 C) II(V .U)TII + r(u; V)

(cf. the proof of Lemma 1 in [1]). Then assertion (25) holds if 6a is chosen so small
that

CNSx M M2

2 (T c) >- (T + c)

and

I(; v)l <0< [Iv-ull <5a =vE79and

The foregoing proof works equally well if the subspaces Na(u) and T(u) in
Theorem 6.1 are replaced by any complementary pointwise orthogonal subspaces l(u)
and J-(u)in L[0, 1], with (u) C No(u) and J-(u) D To(u). This observation
immediately produces the following extension of Theorem 6.1.

LEMMA 6.2. Let J be a real-valued function on a domain 79 C L,[0, 1] that
is open relative to the norm Ila, and suppose that hypotheses (22) and (23) in

Theorem 6.1 are satisfied. Let l(u) and (u) be pointwise orthogonal subspaces in

k(0, 1) such that (u) c Na(u), J-(u) D Ta(u), and k(0,1) is th,e direct sum of
](u) and -’(u). Assume that

(30a) c, > 0 Vw (w (u) and II’Wlla
_
cg : -VJ(u)+ w Afn(u))

and

(30b) c:f, > 0 Vw (w
Then for each number c. (0, c), there is a corresponding 6a > 0 such that for all
V

(31)
1 2v e f and I1 ll < 6 J(v)- J(u) >_ cll,- 11..
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In general, if l(u) is a proper subspace of N(u), then the strict complementarity
condition (30a) is weaker than (24a), and the L2 coercivity condition (30b) is corre-
spondingly stronger than (24b). However, when J satisfies the structure/continuity
conditions (2)--(3) and u meets certain additional regularity conditions, it is possible
to construct l(u) and J-(u) so that (30a) is implied by a variant of the pointwise
strict complementarity condition (8), while (30b) is obtained at no cost by a continu-
ous extension of (24b); in other words, the L strict complementarity condition can
be weakened substantially with no corresponding reinforcement of the L2 coercivity
condition. The relevant formal strict complementarity and coercivity conditions are
collected in the following equations:

(32a) -VJ(u)(t) A[u (u(t)) a.e. in [0, 1],

V[3 C Uia__l int ci(u) ([4 compact = cf > 0 A(u)(t) >_ c a.e. in ),

CT > 0 Vw (w T,(u) {w, V2J(u)w)2 _> CTllW
where A(u)(t) is the distance from -VJ(u)(t) to the relative boundary of Afu (u(t))
in the subspace Nu(u(t)) or, equivalently,
(32d)

A(u)(t) sup{A _> 0"Vc Nu(u(t)), Iill <_ A => -vJ(u)(t)-t-- A/u-(u(t))}.

While the strict complementarity conditions (30a)--(30b) are stronger than the
pointwise strict complementarity condition (8), they still permit

(33) lim ess inf ZX(u)(t) 0

at - in the frontier of c(u) and are therefore substantially weaker than (24a). When
(33) happens at frontier points of ci(u), example 1 of [1] shows that (32) alone is in
fact not sufficient for k-local optimality in ft, even for functionals J with differentials
satisfying (2)--.(3). On the other hand, theorem 4 in [1] shows that (32) may become
sutficient for k-local optimality when certain mild restrictions are imposed on the
sets ci(u) and the behavior of the function S(u)(.) near the frontiers of c.i(u). The
proof construction in [1] applies a restricted version of Lemma 6.2 for U [0, 1] to
pointwise orthogonal subspaces

(34a) fi(u) {w L[O, 1]’w(t) "
(34b) -[-(u) {to L,[0, 1] w(t) e. J-(u)(t)},

where (u)(t) C Nu(u(t)), J-(u)(t) D Tv(u(t)), and l(u)(t) and -(’u)(t) are essen-
tially constant on small neighborhoods of the frontier points of c,i(u), with range
in the collection of subspaces {Ni}iI and {Ti}a in (10) The same basic proofi=1

strategy used in [1] also works in the present wider context; however, certain new
complications arise from the vector-valuedness of u. More specifically, let

(35a) ()(t) {i.t e o()}

and

(35b) "7(u) {t e [0, 1] 7r(u)(t) - 0}.
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If condition (34)is to hold with (u) C Nf(u) and qg(u)(t) essentially constant near- E 7(u), the collection of normal spaces N corresponding to sets a(u) for which r is
a frontier point must have a minimal element, i.e., for all - in 7(u), there is an integer
u in r(u)(-) such that

(36) Vi E 7c(u)(-) N, C N{. (and therefore T, D Ti).

This requirement is trivially met for U C R1, since Ni is then always either {0} or

R1; however, (36) may not hold for vector-valued u, even in. the typical case where
7c(u)(-) contains just two elements at each - in 7(u). The following development of
an example of Tian [16] demonstrates what can happen when (36) is not satisfied.

Example 6.1. Let g { R2" >_ 0 and 2 >_ 0}. For v in k(0, 1), put

with

[0,1/21,
t(,

and

2

j=l

i= 1,2,

where

S

Note that

U ri $Cl U ri 2 U ri oP3 U ri 9v4

with

ri 1 {(0,2) 2 > 0},
ri {(0, 0)},
riCa= {(,0): >0},
ri c4 {(,2): 1 > 0,2 > 0},

-]fl {(#1,0): 1 < 0},
-/2 {(1,2): 1 0,2 0},

’ {(0,): = <_ 0},
/4 {(0, 0)},

and therefore

N1 span {(1,0)},
N2 R2,
N3 span {(0, 1) }
N4 { (0, O) },

T span {(0, 1)},
T {(0,0)},
T3 span {(1,0)},
T1 R2.

Now let

j’ (o,-(t)),u(t) (--(t), o),
e [o, 1/2],

(,1].
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By construction, u lies in FL, with

al(u)=[0,1/2), a2(u)= {1/2}, 3() (,

() { },

VJ(u)(t) (0,_(5 ),

(w, V2J(u)w)2 01 (w(t), S(u)(t)w(t)}dt,

t e [0,1/2),

J3, t E (2, 1],

T, e [0,.]),
Tu(u(t)) T, t= !

T3, (2, 1],

and

(1/2-t),
A(u)(t) 0,

(t- 1/2),

t e [0,1/2),
t=_

t (1/2,1.
Conditions (32) are seen to hold at u, and S(u)(.) is constant and therefore continuous
everywhere in [0, 1]; nevertheless, u is not an k-local minimizer of J in . To prove
this, construct ve by the rule

S (, ) + (t),,,
(t),

t e (1/2-,+),te [0,1]

fore e (0, 5), and observe that Ilv- ul[ v/2e and J(v) J(u) -e3

In Example 6.1, the sole frontier point for the sets al, c2, and c3 is z 5,
and every other E [0, 1] lies in the interior of one of these sets in [0, 1]. As t
approaches from the right or the left, A(u)(t) converges to 0 and hence the first-
order term in Taylor’s formula at u does not satisfy (27). Moreover, the second-
order term in Taylor’s formula cannot carry the resulting additional burden, since it
is not possible to extend coercivity of S(u)(t) on T1 forward beyond [0, 5) (where
Nu(u(t)) N T1) or to extend coercivity of S(u)(t) on T2 backward beyond
(1/2,1] (where Nu(u(t))= N1 T2), even though S(u)(.)is constant and therefore
continuous. Circumstances of this kind are ruled out in the present analysis when we
enforce the "minimal normal subspace" hypothesis (36) and require that

(37) VT" /(u) cl int c,. (u) D ct,. (u) D int c., (u) = 0.

The following lemma establishes key features of the set 7(u) under the aforementioned
conditions.
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LEMMa 6.3. For all u in ft the set 7(u) is closed. In addition, .if conditions (36)
and (37) hold at u, then

(38) #[O’(u)] 0

and

(39)

Proof. The set 7c(u)(r) is empty iff for some i, r lies in the interior of a(u) in
[0, 1]. Consequently, /(u) is open in [0, 1], and hence 7(u) is closed. If conditions
(36) and (37) hold, then

Vs- (u) r (cl int . (u)) \ int c,, (u)o

Therefore,

o < [()]
<_ p[U= (cl int ai(u)) \ int

d

-< Z #[(cl int ai(u)) \ int

O,

Moreover, for all r in /(u) and e > 0, the interval (r e, r .+ e) contains a nonempty
open interval in the interior of

Since the set (u) is closed and therefore compact, it follows that if

(40) lim essinf A(u)(t) > 0

at each r in 3’(), then A(u)(t) is essentially bounded away from 0 on some open
neighborhood of ,() in [0, 1.], and thus on all of [0, 1] when (32b) holds. Under these
circumstances, u satisfies the L strict complementarity condition (24a) in Theorem
6.1. Our concern now is with the less tractible but frequently encountered cases in
which (32), (33), (36), and (37) hold at r 7(u), but

(41a) lira essinf Ar(u)(t) > 0,

where

(41b) A-(u)(t) sup{A > 0"g N.., I1,11 _< zx -vj()(t)+ A& ((t))}.

Near r in [0, 1], condition (36)implies that N,, C Nu(u(t)) and therefore A.(u)(t) >
A(u)(t); thus (41) is always consistent with (aa). Moreover, the next. example demon-
strates why (41) is often satisfied when r is a point of continuity for u(.) and VJ(u)(.),
whereas (40) cannot hold at such points. (Also see the discussion following Theorem
6.4.)

Ezam#le 6.2. Let U, Yi, , Ni, and Ti be defined as in Example 6.1, and let

J(v) ( (t) + (st )(t) + ,(t)) dt
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for v in k. The functional J has a global minimizer in ft at

,(t) (0, ), t e [0, ),
(0, 0) [1/2, 1],

with

OZl(U [0, 1/2), (i2(It) ---[1/2, 1], c3(u) 0, o4(u) 0,

() { },

/21/2 1, N,I/2 N1 span {(1,0)},

v ((t)) , e [0,),
t E [1/2, 1],

and therefore

and

whereas

(1, 0), e [0, ),VJ(u)(t) (1,2t- 1), [1/2, 1],

1, [0,),

lim A(u)(t) 0,

Ai/2(u)(t) 1, [0, 1].

It is now possible to state and prove the following sufficient conditions for kC-local
optimality in f.

THEOREM 6.4. Let J be a twice directionally diffeerttiable real-valeted flmction
on a domain 79 C k,[0, 1] that is open relative to the norm I" I, and assume that
the structure/continuity conditions (2)-(3) hold with u oc. Suppose that the formal
sufficient conditions (32) are satisfied at some point u in fC79, along with (36), (37),
and (41) at each " in 7(u). In addition, assume that S(u)(.) is continuous on the set
3’(u) in (35). Then for each number c (0, cT) there is a corresponding 5, such,

that for all v,

(42) 2v ft and IIv- u < =v J(v).- J(u) >_ cllv- ull.
Proof. Conditions (22) and (23) follow at once from the hypotheses. Suppose

3’(u) . Then for some i, [0, 1] ai(u) int ai(u), in which case [0, 1] is a compact
set in int c(u), conditions (32a) (32b) imply the 1_ strict complementarity condition
(24a), and assertion (42) is established by Theorem 6.1. Suppose 7(u) . Then (42)
will follow from Lemma 6.2 if it can be shown that for each c2 (0, CT) the coercivity
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condition (32c) lifts to (30b) on a larger subspace (u) D T-(u), while (32a)-(32b) and
(41) imply the strict complementarity condition (30a) on the corresponding pointwise
orthogonal complement N(u)C

Fix c in (0, cT), and note first that by (38) in LeInma 6.3 there is an open set
(_9 in [0, 1], with (9 D /(u) and #[0] so small that

_t

(43) I]K(u)(t, s)ll2dtds <_ -(cr c.),

where Oc [0, 1] \ (9, (Oc x Oc)
that for all 1,...,d and all {,

[0, 1] [0, 1] \ ((.pc x Oc). Moreover, (32c) implies

e cTIl ll 2 in (-ti(u).

This can be proved in the same way that (14b) is established in the proof of Theorem
5.3. Since S(u)(.) is continuous on 7(u), it now follovs from (39) in Lemma 6.3 that
for all r and {,

(44) T E 7(U) and E T., :a (, S(u)(-)) .>_ c ll ll
By continuous extension, this implies that for each - E 7(,u) there is a such that

(T fi, r + 6-) rq [0, 1] C (.9,

and for all t in [0, 1] and all ,
2(45b) t E (- , - + ) rq [0, 1] and e T,, => (, S(u)(t)) >_ -(cr +   )lt ll

On the other hand, condition (41)implies that for each 7 in /(u), there are
positive numbers c- and (0, ] such that

>

and

and T,. D Tu(u(t))

for almost all in (T 5, T + 6) rq [0, 1] C (9. Since 7(u) is compact, this ensures
the existence of a finite set {q,..., r} /(u), a corresponding system of intervals
{271,..-,Zk} in [0, 1], and a positive number % such that the set

k

(46a) Z U :2z
/--I

is open in [0, 1], and for all and j and almost all in 27i,

(46b) T j =k zi rq Z O,

(46c)

(46d) A (u)(t) _> c’,,,
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(46e) N (::: Nv(u(t)) and T,.,., D Tu(u(t))M.r/,

and finally

(46f) "y(u) c2_ Z. C O.

The requisite subspaces 1() and J’(u) are now defined by (a4) and the following
rule: for all and t

(47) z ()(t) N.. nd i-()(t)

(47b) E 2 =* (u)(t) Ni((t)) and J-(u)(t) Tu(u(t)).

By construction, (u) C Nr(u), "i"(u) D Tf(’u), [q(u) and J-(u)are pointwise or-

thogonal, and the same argument used in the proof of Theorem 6.1 shows that
L,(0, 1) is the direct sum of N(u) and J-(u). Furthermore, since 27c is compact and
-c C "/(it) c uid=l int ai(u), conditions (32a)-(32b) and (46d)imply (30a)with
cA min{c, c} and/3 Z. To prove (30b), note that for all w in L(0, 1),

Hence, for all w in J-(u), conditions (32c) and (43)-(46)imply that

Theorem 6.4 has an immediate corollary for optimal control problems with Bolza
objective functions (5) and admissible control input sets

(48a)

where each gj is an. affine real function with values

(48b) gj(Cs) (a-,>-- bj.

Theorem 3 and lemmas 3-5 in [2] produce similar L sufficient conditions for a large
class of Bolza optimal control problems with C2 equality constraints on the terminal
state x(1) and admissible control input sets U C R prescribed by C inequality
constraints. Although the analysis in 4 of [2] is also rooted in the proof strategy of
[1], it proceeds from different assumptions and does not subsume Theorem 6.4 for the
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class of fixed-time free-endpoint Bolza problems with polyhedral control input sets U.
When U is given by (48), the Farkas lemma implies that at each in U, the normal
cone ,v() consists of all nonnegative linear combinations of the active constraint
gradients

(49a) Vgj(c) aj, j Ao(),

where

(49b) Ao(.) {j" gj() 0}.

Under these circumstances, the pointwise stationarity condition (14a) holds every-
where in [0, 1] iff there are Lagrange multipliers A(t) in R such that

VJ(u)(t) Aj(t)Vgj (u(t))
j=l

with

(50b) Aj(t) >_ O, j Ao (u(t))

(50c) Aj(t) O, j Ao (u(t)).

.In 4 of [2], the active constraint gradients in (49) are assumed to be linearly indepen-
dent at u(t) for E [0, 1], and the complementarity condition (50b) is strengthened
by requiring that

((51a) Vi 3 C int AD 3i compact => inf Ai(t) > 0
tE/3i

where

A) {t e [0, 1]" gi (u(t)) 0}.

It is further assumed in [2] that for all r,

(52a) r U OAJo => c > 0 V o(r),
j-1

where

(52b) v0( ) [{vg 

(5 c)
>0

and

(52d) S(7-) V,,H (r, b(r), x(r), u(r)).
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(See Note 5.4.) The following lemma and note explain how the strengthened coin-

plementarity condition (51) and the pointwise coercivity condition (52) are related to
the hypotheses in Theorem 6.4.

LEMMA 6.5. Let U be a polyhedral convex set with representation (48) in Rm.
Then for each face i in U, there is a unique subset .Ai of {1,..., l} such that

(53) ri Y { e U’Ao()= A}.

Suppose that

(54) uEL(0,1) and (Vte [0,1] u(t) U).

Then

(55) Vi int c(u) C N int A,
jEAi

(56)
j=l

and

w n
je()()

Furthermore, assume that (54) holds at u and, for each r in /(u), the collection of
index sets {Aj}je(u)() has a minimal element, i.e.,

(58)

Then for all in /(u),

(59a) Ao(’) A.,

(59b) j 7r(u)(-) N. C Nj,

and

(59c) T,,,. To(’r).

Finally, assume that (50), (54), and (58) hold at u and that the active constraint
gradients in (49) are also linearly independent at u(t) for all in [0, 1]. Then the
algebraic strict complementarity condition (51) is equivalent to the geometric strict
complementarity conditions

d

(60a) V c U int c(u ( compact inf A(u)(t) > 0)tg
i=1

(60b) W- e -y(u) lim inf A(u)(t) > O.
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Pro@ For each . E U,

jeAo()

where

(61b) R_ {A IR’ "Vj Aj _> 0}.

It follows from (48) and (61) that for all U the set

=() [ + a()--] v
is a polyhedral face in U, with

aff m() + ()-,

and

ri 9r() {r] U" Ao(l) Ao()},

for all r] 6 U [15].
distinct index sets Ai c {1,..., l} and d corresponding polyhedral faces 9ci C U such
that (53) holds, with

(62a)

Since A0(.) has range in the subsets of {1,... ,l}, there are d

(62b) r] ri 9ci => span N’u(r) N4, span {aj

(62c) ri 9ri Cl ri $cj

and

(62d) d
Ui= rif’i =U

for all r/ U and all i,j {1,...,1}.
Suppose that (54) holds. By (12a)and (53),

(63a) ai(u) {t e [0, 1]: Ao (u(t))

and

d

(63b) U ci(u) [0, 1].
i=1

If int ci(u) 0, then (55) holds trivially. Suppose that T 6 int cti(u). Then for some
> 0 and all t,

e (- 5, + 5) C [0, 1] =, Ao (u(t))
= Vj Ai gj (u(t)) O
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and therefore r E int A for all j E A. This proves (55).
Suppose that r E OA!o for some i. Then every neighborhood of r in [0, 1] contains

points t and s where gi (u(t)) 0 and g (u(s)) = 0, and hence Ao (u(t)) (= Ao (u(s)).
By (35), it follows that r E [tOi int a(u)] c

7(u). Conversely, suppose that
r tO=10A or, equivalently,

Vi r int A U int (A).
Then

5>0Vt(r-5, r+5) A[0,1] Ao(u(t))=Ao(u(r)),

in which case r int ai(u) for some and therefore r "y(u)". This proves (56).
Since A0(.) has finitely many values gi, it follows that for all t E [0, 1] there is a

at > 0 such that

Va (O, at] o(t) N Ao (u(s)).
sE(t-,t.+)[ol]

Moreover, if T 3’(u), then by (35) it is also true that

Vet e (0, a] A0 [(7 a, r + or) C [0, 1]] {Ay}jE()().

Assertion (57) is now proved, and (59) is an immediate consequence of (35), (52),
(57), (62b), and the hypothesis (58).

Suppose that (50), (58), and (60) hold at u and that the active constraint gradients
in (49) are linearly independent at { u(t) for t [0, 1]. Let /3q be a compact set
in intA for some q. Suppose that 3q A /(u) :/= {3. By Lemma 6.3, the set/3 7(u)
is compact. Hence there is a " > 0, a finite set {rl,...,rk} C /3 ’(u), and a
corresponding family of open intervals {271,... ,Zk} in [0, 1] such that

k

(64a) Z de__.f U i /q ["1

i--I

inf A,(u)(t) k 6,(64b)

(64c) Vi ri E Zi C int A,

(64d) Vi A0 [Zi] {Aj }ye.(..)(),

and thus

(64e) gt Zi q A,, C Ao (u(t))

in view of (58). Now note that

(65a) V), IR E .,j aj

j---1

<_ ]kla max [AAI
<j_<t
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with

(65 ) Ma Ilmll > o.

Since active constraint gradients are linearly independent, conditions (41b), (50), (58),
(62), (64), and (65)imply that

Vi inf q(t) >
tEZ .Ma

and hence

inf Aq(t) >
tfqc:Z A’Ia

Suppose that/3q2"c # 7). By (64a),/3qrG2?c is a compact set in /(u)
condition (60a) yields

dUi= int

inf A(u)(t) deU ’c > O,
13 C1Z

and therefore (32a), (50), (62), and (65)give

inf Aq(t) > 6c
t-qNIc ].[a > 0

since active constraint gradients are linearly independent and q

A D .LT. Finally, if 13q r-1 /(u) , then 7q is a compact set in
and a repetition of the preceding argument shows that Aq(t) is again bounded away
from 0 on/3q. This proves that (,51) is implied by (60).

Conversely, suppose that (50), (51), and (60) hold at u and that the active con-
straint gradients in (49) are linearly independent at u(t) for [0, 1]. The latter
condition ensures that

>_ ma max IAjl.
no(’(t))

dLet be a compact set in LJi: int ai(u). Since the sets int oh(u) are open in [0, 1]
and pairwise disjoint, the corresponding sets/3 =/3 rn int a{(u) are compact sets in
int ai(u), with 7 OJi% i. Therefore, by (55) and (51),

ViVjAi i compact andic intA,

and therefore

6 > 0 Vi inf min Aj (t) >_ 6> O.
t6/3 jAo(u(t))

It now follows from (12), (32d), (61), (62), and (66)that

Vi inf A(u)(t) _> 5ma > O,
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and therefore

inf A(u)(t) (rrta > O.
te

This proves (60a). Furthermore, suppose that (58) also holds at u. Then for each- E 7(u) there is a 5 > 0 such that for all t

A.. C Ao (u(t))
Vj A.. (’,(t)) 0.

Thus r E int A) for all j 6 A,,, and condition (51) ensures that

Vj M, lim inf j(t) >0.
t---

Assertion (60b)now follows from (41b), (50), (58), (62), and (66). B
Note 6.3. According to (56) and (59c), the pointwise coercivity condition (52)

reduces to

(67a)

(67b) S(’T) V,H (7-, 1b(7-), x(T), u(-r))

when the minimal index set restriction (58) is satisfied. In [2], condition (52) is taken
as a hypothesis. In the present analysis, the pointwise coercivity condition (67a) is de-
d,uced from (aa), (aT), and the coercivity condition (32c), and the relationship between
(32c) and second-order necessary conditions for kC-local optimality is established in
Theorems 5.2 and 5.3. On the other hand, the sufficient conditions in 4 of [2] impose
the linear independence qualification on active constraint gradients but do not assume
the existence of a minimal element in the family of index sets {Ai}ie()() for - in

7(); however, if the active constraint gradient sets in (49) are linearly independent
at u(t) for t E [0, 1] and (58) is not satisfied, then (52b), (57), and (62) imply that
T0(-) contains each subspace in the family {T}()() as a proper subset, and the
pointwise coercivity condition (52) cannot be inferred from the counterpart of (32c)
in [2]. To put this another way, when (58) does not hold in the setting of [2], the gap
between sufficient conditions and necessary conditions widens substantially.

In this connection, an extreme case of some interest occurs when u is a step
function with range in the vertex set of the polyhedron U (e.g., a bang-bang control).
Under these circumstances, it can be seen that for almost all in [0, 11 and - in

]m/(u) Nu(u(t))= Rm and Tu(u(t))= {0}; {Ni}i()= R’; N, A(u)(t)=
A(u)(t); card Ao (u(t)) m; {Ai}i(.)(-) has no minimal element; A0(-) is a proper
subset of A for all j 7r(u)(-); 1 _< dim T0(-) <_ m; condition (32c) is satisfied
trivially; conditions (51) can hold when conditions (60) do not, but condition (52)
is unrelated to the necessary condition (14b) and is not likely to hold for nonconvex
objective functions.

The stationary control in example 2 of [11 satisfies the k sufficient conditions
in Theorem 6.4 with u 2 but does not obey the necessary condition (17) for k-local
optimality in Theorem 5.4. Hence, the k sufficient conditions do not imply k-local
optimality, even if (2) and (3) hold with 2. On the other hand, it will now be
shown that k-local optimality is implied by (42) and a strengthened variant of (17)
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when (2) and (3) hold with u 2; this result and any sufficient conditions for (42)
immediately yield sufficient conditions for k2-1ocal optimality.

THEOREM 6.6. Let J be a twice directionally differentiable real-valued function
on a domain 79 C k,[0, 1] that is open relative to the norm I1" lI2, and suppose that the
structure/continuity conditions (2)-(3) hold with 2. Assume that u is a proper
kC-local minimizer of J in 79 satisfying (42). In addition, suppose that for some
cg > O, the condition

2(68)

holds for almost all t in [0, 1]. Then u is a proper’ k2-1ocal minimizer of J in f Cq 79,
and for each c2 in the interval 0 < c2 < min{cr, cp } there is a correspondin9 2 > 0
such that for all v

(69) and ]Iv 11 < . j(v) J(u) > cll, -.11 2’

Proof. Fix c2 in the interval 0 < c < min{cT, cp}, fix c in the interval
! (min{cT cp} + c2) < ca < min{cT, cp} and choose 6c > 0 so that (42) is sat-2
isfied. Note that if (2) and (3) are satisfied with 2, then Taylor’s formula (4)
holds with u 2 and u oc. Consequently, there is a p (0, 6c] such that for all v

(70a) (min{cT, Cp} --c2)]Iv- ull 2IIv ul12 <_ p = v 79 ft and Ir(u;v)l <_ g

and
(70b)

2(min{cT, Cp} + c2)I1,- 112_< p <vJ(), , ) + 1/2( , v-J()(, )) >_

Furthermore, there is an e (0, 1] such that for all measurable sets 0 C [0, 1]

(7) (min{cT, cp} c:).#[0] < e f f(oxo) IlK(u)(t, s)ll dtds <- -g

For each v E f, let

(72a) o. {t [0,1]" IIv(t)- (t)ll > p},

and define Wv f by the rule

(t), t 0,(72b) w(t) u(t), t e 0.

By construction, Ov is measurable, and for all v,

(73) v [ and IIv- ull2 <_ pe v e f c v, [Ov] < . and Ilwv -ul] <_ p.

Put 52 pc1/2. Then, in view of (70)-(73) and Taylor’s formula (4) with u 2, it now
follows that for all v Ft such that IIv- ull _<

(’w. u, VJ(u)(w. u))2J(v)- J(u) (VJ(u), w, @2 +

+/i [(VJ(u)(t),v(t) u(t)) + 1/2(v(t) u(t),S(u)(t) (v(t) u(t))}] dt
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f f
+ I I <v(t) -u(t),K(u)(t, s) (v(t) u(t)))dtds + r(u; v)

J .(o xo):

(min{cT,, cp} + c2)I1’,,-2 + cp IIv(t) (t)l

2(min{cr, Cp} c2)11 12

cllv- .
Note 6.4. Theorem 6.6 remains valid if the range set U in (lb) is an arbitrary

subset of R (cf. Note 5.3).
Note 6.5. Theorem 4 in [1] gives sufficient conditions for k-local optimality

and k-local optimality in the set of kp functions with range in U [0, ) c R.
For p , these results are contained in Theorems 6.4 and 6.6, since (36), (37),
and (41) hold trivially when U [0, ) and the set ((u) {t [0, ] u(t) 0}
is closed, condition (68) is easily verified when U [0, ) and S(u)(t) is essentially
bounded away from 0 on [0, 1], and the condition I1()1 < implies the weaker
requirement IIK()II2 < imposed here.

Note 6.6. If (2) and (3) hold with, 2 for Bolza objective functions (5), then
the Hamiltonian H is quadratic in u (see Note 5.4), and hypothesis (68) is equivalent
to the following strengthened version of the Pontryagin minimum principle: for some
cp > 0 and almost all in [0, 1],

2V U H(t,(t),z(t),) -H (t,(t),z(t),u(t)) 2 c,ll (t)ll

Note 6.7. For optimal control problems, coercivity conditions like (32c) can
be derived from disconjugacy conditions of the Jacobi type [9]; however, the latter
conditions are more stringent than the former and are further removed from the
second-order necessary conditions for optimality (cf. remarks preceding Theorem 5.2
in [9]).
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RENDEZVOUS SEARCH ON THE LINE WITH
INDISTINGUISHABLE PLAYERS*

EDWARD J. ANDERSON AND SKANDER ESSEGAIER

Abstract. Alpern introduced a problem in which two players are placed on the real line at a distance drawn
from a bounded distribution F known to both. They can move at maximum velocity one and wish to meet as soon as
possible. Neither knows the direction of the other, nor do they have a common notion of a positive direction on the line.
It is required to find the symmetric rendezvous value t:g (F), which is the minimum expected meeting time achievable
by players using the same mixed strategy. This corresponds to the case where the players are indistinguishable; they
both take directions from a controller who does not know their names. In this paper we give a mixed strategy which
has an expected meeting time of 1.78D //z/2, where D is the maximum of F and # its mean. This leads to an
upper bound FgS(F) <_ 1.78D / #/2 on the symmetric rendezvous value, which is better than the upper bound
/S(F) <_ 2D + #/2 obtained by Alpern.

Key words, search games, rendezvous search

AMS subject classifications. 90B40, 90D26

1. Introduction. The work on rendezvous problems in unbounded domains was initiated
by Alpern [Alp], who introduced the following problem. Two players are placed on the real
line. They can move at maximum velocity one and wish to meet as soon as possible. We
assume that the players know only the probability distribution F of the distance between them
at time 0 but not the direction of the other. This problem is related to the linear search problem;
see Gal [Gal80] and Beck and Beck [BB92].

The strategy space for both players is the set of paths with maximum speed one:

P {f: R+ --+ R, f(0) 0, If(s) f(t)l <_ Is
A player placed at point a who chooses strategy f will follow the trajectories a + f(t) and
a f (t) equiprobably.

Since the problem is translation invariant, we may assume that player I starts at point 0
and player II starts equiprobably at +x or -z, the initial distance z between the players being
drawn from the known cumulative probability distribution F. If player I chooses f E P and
player II chooses 9 E P, then the expected meeting time 2?(f, 9) is given by

c

2?(f, g) min{t f(t) ix + jg(t)} dF(x).
i,j=il

The ambiguity of the indicates the equiprobable placement of player II at /x or -x, and the
ambiguity of the j reflects the assumption that the players cannot tell left from right.

A mixed strategy f* is a regular Borel probability measure on P. The set of mixed
strategies will be denoted by P*. The payoff T* (f*, 9*) is the expected value of J in the
cross product measure f* 9*. The symmetric rendezvous value RS(F) is then defined as
the minimum expected meeting time achievable by players using the same mixed strategies:

Rs(F) min T*(f*, f*).
f*EP*

Alpern and Gal [AG] considered the asymmetric case, where the players are distinguish-
able. This is to say that they have previously agreed which of the roles each will take, and
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they are therefore allowed to use different strategies. The asymmetric case has some con-
nection with Beck’s work on the linear search problem (see [AG]). We are interested here in
the symmetric version, where players are indistinguishable. There is no prior agreement on
which of the roles each will take, and we therefore constrain the players to using the same
search strategy. This is essentially a one-person decision problem. However, randomization
over the set of available pure strategies is necessary in order to have a finite expected meeting
time, since there is a probability of at least 1/2 that players don’t meet if they use the same
pure strategy. A related problem in which rendezvous takes place on discrete locations is
considered by Anderson and Weber [AW90] and in [Tho92].

In the following, we consider the case where the probability distribution F is bounded; i.e.,
there is a maximal initial distance between the players. Let D DF min{z F(z) },
and let # #F, the mean initial distance. Alpern [Alp] obtained an upper bound R (F) <
2D + #/2 in terms of D and #.

In this paper, we describe how results for the symmetric case can be derived from those
of the asymmetric one [AG]. We then show how the method can be generalized to obtain
upper bounds significantly better than Alpern’s R*(F) < 2D + #/2. We actually give a
strategy which has an expected meeting time of 1.78D / #/2 and obtain the upper bound
R*(F) < 1.78D + #/2.

2. Relation with the asymmetric case. The asymmetric case, where the players are
distinguishable, has been analyzed by Alpern and Gal [AG]. In this case, the players have
previously agreed which of the two roles each will take, and they are therefore allowed to use
different strategies. The asymmetric rendezvous value R (F) is given by

Ra(F) min 7(f, g).
f,gGP

In their analysis, Alpern and Gal [AG] showed that if F has a point distribution, then an
optimal strategy pair (f, f2) is defined by the following formulae:

t if0_<t_<D, { t ifO<_t<_D/2,
f(t)- 2D-t ifD<t<3D, f2(t)= D-t ifD/2<_t<_2D,

t-3D if2D__t_<3D.

Furthermore, they showed that this strategy pair guarantees meeting by time 3D and that the
expected meeting time it achieves is J’(fl, f2) (4# / 9D)/8. This provides us with an
upper bound on the asymmetric rendezvous value R(F). In the case where F is a point
distribution (# D d), this upper bound is exactly the asymmetric rendezvous value
R 13d/8. It is therefore a good upper bound of the form cD +/3/,.

In the symmetric case, although players use the same mixed strategy, there is a positive
probability that they actually follow a different pure strategy. Suppose, for example, that the
players have two pure strategies, S and s2, and that they choose one or the other equiprobably.
Then there is a probability of 1/2 that one player is using Sl while the other is using s2; in
other words, there is one chance in two that players end up playing the asymmetric game with
the strategy pair (sl, 82).

Therefore, one approach to the symmetric problem would be to have the players random-
izing over a set of pure strategies carefully chosen to ensure that in the event where they are
actually using different pure strategies, their expected meeting time is the least possible. We
don’t expect to solve the symmetric problem in this way, but this approach enables us to make

good use of any result in the asymmetric case and to derive some general upper bounds on the
symmetric rendezvous value.
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Motivated by these remarks, we consider a mixed strategy where, for every period of 3D
units of time, the players randomize between the strategies fl and f2. More precisely, the
strategy proceeds as follows: once and for all, pick a number p in [0, ]; then, independently
every 3D cycle, pick either direction to call forward equiprobably, and over the 3D units of
time period of the cycle move forward by either using f with probability p or using f2 with
probability p. So p is picked once, and the forward direction is picked independently
every 3D cycle.

Suppose that player II is placed at a distance x from player I, where z is drawn from
the bounded distribution F. Let T* be the expected meeting time achieved by this strategy.
Because of the symmetry of the situation, we can carry out the calculations by assuming that
player II is initially placed at -z.

Let Ak represent the expected meeting time if players move in the same direction, with
player I using f and player II using fk. Because of the symmetry of the situation, we can
carry out the calculations by assuming that player I begins by moving to the left. We have that

T* +3DA= 5D/2 + x/2
D/2 + z/2 1
T* +3D J

Similarly, let Bz be the expected meeting time if the players move away from each other:

2D+z/2B= 3D/2 + z/2
3D/2 + z/2 1
D+z/2 J

Finally, it is clear that if players move toward each other, they meet in time x/2, and therefore

c

7(f, k) (x/2 + 2Az + B) dF(x).

Writing p p and p2 p, T* satisfies the equation

l<_k,l<_2

Solving for T* we obtain

6p2 5p @ 7
T*(p)= _4pZ+ap+zD+#/2 VpE [0,1].

This provides us with a general upper bound on the symmetric rendezvous value of the form
c(p)D + #/2. It is easy to see that for p E (1/2, 3/7), c,(p) is strictly less than 2, and
therefore one can find a general upper bound of the form cD //3# better than 2D + #/2.

The attractiveness of this approach lies in that it establishes a relation between the
symmetric and the asymmetric case. If we actually minimize c(p) over p, we find that

To*pt 1.99404D //,/2. Therefore, the improvement achieved here is not really substantial.
We leave for the next section the task of significantly improving Alpern’s general upper bound.

3. A better estimate.
PROPOSITION 1. For any bounded distribution F,

RS(F) <_ 1.78388D +/,/2.

Proof. The two trajectories considered in the previous section have the feature that if the
players don’t meet by time 3D, then their distance at time 3D is the same as the initial distance.



1640 EDWARD J. ANDERSON AND SKANDER ESSEGAIER

Suppose that we restrict ourselves to a set of strategies which have this feature, and let the
players randomize over this carefully chosen subset. The calculations can then be carried out
in the same way as in the above section.

We introduce the following trajectories, defined on [0, 3D]:

f 2F4B,
fa 1F3B2F,
f3- 1F2B1F2B,
f4- 131f3.

For example, 1F2B1F2B stands for one stepforward, two steps backward, one stepforward,
two steps backward: pick either direction to call forward equiprobably; go a distance D/2
forward at unit speed; then go a distance 2D/2 backward at unit speed; then go a distance

D/2 forward at unit speed; then go a distance 2D/2 backward at unit speed. More formally
we have, for example,

t if 0 _< t _< D/2,
D- t if D/2 <_ t <_ 3D/2,1F2B1F2B(t) t- 2D if3D/2<_t<_2D,
2D-t if2D<t<_3D.

Figure shows how the four trajectories appear when position as a function of time is
plotted. (Note that a change in the direction labelled forward corresponds to reflection with
respect to the horizontal axis.)

The set { fl, f2, f3, f4 } has the feature stated above, and we have that

T* + 3D D/2 + z/2 D/2 + x/2 D/2 + x/2
5D/2 + x/2 T* + 3D 5D/2 + x/2 5D/2 + x/2
T* + 3D 3D/2 + x/2 T* + 3D T* + 3D
T* + 3D D + x/2 D + x/2 T* + 3D

and

2D + x/2 3D + x/2 2D + x,/2 2D + x/2
3D/2 + x/2 D + x/2 D+x/2 3D2+x/2
2D + z/2 D + x/2 D + x/2 2D + x/2
2D + x/2 3D/Z + x/2 2D + x/2 2D + x/2

and therefore

(x/2 + 2A#,z + Bkz) dF(x)j(fk, fl)

Suppose that players choose a probability distribution (p, p2, P3, p4), and for each 3D
units of time, follow fi with probability pi. T* is then the solution of the equation

T* pkplt(fk, fl).

Solving for T* we obtain, for a given set of probabilities (pl, p2, P3, <k<3 Pk),

T* (]91, ])2, ])3) o(])1, ])2, p3)D -+- #/2,
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fl (2F4B)

f2 (1FaB2F)

t" (1F2B1F2B)

f4(1F1B1F3B)"

Flo. 1. Four trajectoriesfor the rendezvous search.

where

(1)
-8 q- 4pl 3pl2 -+- 6p2 4pip2 5p22 + 5p3 4pp3 4p2P3 5p32

2(-1 p + p2 2p2 + PP2 + 2p P3 + PP3 + P2P3 q-- p2)3

Taking p 0.227917, p2 0.404018, and P3 0.212053 and substituting these values
in (1), we find that a(p,p2,P3) 1.78388, and this proves the result. We actually used
Mathematica to minimize a(p, P2, P3) subject to the constraints 0 _< pi _< 1. The values of
the pi determine a (local) minimum, t3

A particular simple version of the rendezvous linear search problem is when the two
players know the initial distance (say, 1) between them but neither knows the direction of the
other. In this case F is a point distribution and DF #y 1, so the above estimate gives
R < 2.28388. This refutes a conjecture by Alpern [Alp] that the rendezvous value for this
problem is 5/2.
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OPTIMAL PROGRAMS ON INFINITE HORIZON 1"

A. J. ZASLAVSKI

Abstract. We consider the limit behavior, as N , of the expression -N__-I U(:Z, X/+I for programs
{xi }i=0 in a compact metric space K where v is a real-valued function defined on K K. We study the structure of
(v)-good programs and establish the existence of a G6 set F in C(K K) such that, for each u E F, all (u)-good
programs have the same limit points set and also, for every x E K, there exists a (u)-optimal program {xi}:0
satisfying xo x.

Key words, good program, minimal-energy configuration, overtaking optimality, (v)-weakly optimal program

AMS subject classification. 49J99

Introduction. In this paper we consider the infinite-horizon problem of minimizing the
N- (X Ci-Fexpression }-i=0 v as N grows to infinity, where {xi}0 is a sequence in a com-

pact metric space K and v is a continuous function defined on K K. This provides a
convenient setting for the study of various optimization problems, e.g., continuous-time con-
trol systems which are represented by ordinary differential equations whose cost integrand
contains a discounting factor ], the infinite-horizon deterministic control problem of mini-

mizing f? L(z, :i) dt as T oc [2], the analysis of a long slender bar of a polymeric material
under tension [3], and the analysis of an infinite discrete model for crystals which undergo
phase transitions [4], [5].

The continuous-time case can be reduced to this framework in the following manner. A
control system is operating on an infinite-time interval [0, oc). We choose a sampling time
interval, say, [0, T]. For any action that steers the state x E K at time t 0 to state /E K
at time t T, there is an associated cost. The value v(x, ]) is the minimal cost possible.
Any choice of a control generates a trajectory, say, x(t), and we will refer to zk x(lcT) as
a program. If the control action is chosen in an optimal way on finite intervals, the cost of the
program {zk} at time t= NT is y-01 v(z,z+,).

A hidden assumption is that v(x, y) is finitely defined on K x K, namely, a controllability-
type assumption. Another assumption is that v is time invariant; therefore, the original control
problem is, in general, either stationary or T-periodic. The continuity of v holds for many
problems. The same is true for the compactness assumption; namely, in many examples one
can show that all the reasonable solutions occur in a prescribed compact set.

Let K be a compact metric space, R be the Euclidean n-dimensional space, C(K x K)
be the space of all continuous functions v K x K ---, R with the topology of the uniform
convergence ([Iv[I sup{Iv(x Y)I x, y K}). Let C(K) be the space of all continuous
functions v K R with the topology of the uniform convergence (llvll
z K}) and B(K x K) be the set of all bounded and lower semicontinuous functions
v K x K -- R (i.e., v(lim(zk, yk)) _< lim inf v(z, y)).

Consider any v B(K x K). We are interested in the limit behavior as N
N--1of the expression -i=0 v(zi,zi+), where {zi}0 is an infinite sequence in K which

we call a program (or a configuration) (see [1], [4], [5]) and which occasionally will be
denoted by a boldface x. (Similarly {Yi}0 will be denoted by y, etc.) A finite sequence
{zi}=0 C K (N 0, 1,...) will be also called a program. We shall define three concepts
of optimality.

Received by the editors October 7, 1993; accepted for publication July 8, 1994. This research was supported in
part by a grant from the Israeli Ministry of Science and the MA-AGARA (a special project for the absorption of new
immigrants) in the Department of Mathematics, Technion.
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A program {xi}i=0c is a (v)-overtaking optimal program if for every program {zi }i=0
satisfying z0 x0 the following inequality holds:

N-1

lim sup Z [v(xi, :ci+l) v(zi, Zi+l)] 0.
N---x i=0

This notion, known as the overtaking optimality criterion, was introduced in the economic
literature by Gale [6] and von Weizsicker [7] and was employed to study the infinite-horizon
control problems [1], [8]-[10].

A program {x}0 is (v)-weakly optimal [1], [6], [7] if for every program {zi}__0
satisfying z0 x0 the following inequality holds:

N-1

liminf Z [v(zi,zi+,)- v(zi, zi+,)] < O.
i=0

A sequence {zi}_ C K is called a (v)-minimal energy configuration (program) if
for each N, M > 0 the inequality

holds for every sequence { Mzi}i=_g C K satisfying Z-N Z-N, :CM ZM [31-[5].
Of special interest is the minimal long-run average cost growth rate,

A program {zi)0 is called a (v)-good program [11 if the sequence {/N=I [V(Zi, Zi+l
#(v)]}’= is bounded. It was proved in [1] that for every program {zi}0 the sequence
{/N__. [V(Zi, Zi-t-1 #(V)]}__I either is bounded or diverges to infinity and that for every
initial value z there is a (v)-good program {zi}=0 satisfying z0 z. In [1] the following
representation formula valid for every v E C(K x K) was also established"

v) o (x. + (v) + (x) (x. e

whereTrv, 0v are continuous functions, 0" is nonnegative, andE(z) {y e K 0 (z, y)
0} is nonempty for every z E K. (Tr, 0" are calculated directly through v and #(v).)

In this paper we study the structure of (v)-good programs and establish for a generic
v E C(K x K), for every given z E K, the existence of (v)-optimal program {xi}__0
satisfying :co z. For the latter subject we should choose a proper optimality criterion. In
spite ofthe example v E C([- 1, 1] x [- 1, 1]) given in which demonstrates the nonexistence
of (v)-weakly optimal programs, the notion of (v)-weak optimality is the most suitable one to
meet our goal when we consider generic functions v E C(K x K).

We establish the existence of a set F c C(K x K) which is a countable intersection of
open everywhere dense sets in C(K x K) such that for every u E F the following propositions
hold:

a) There exist closed sets H(u) c K x K, Ho(u) C K such that for every (u)-good pro-
gram {x}0 the limit points set of {xi }__0 is Ho(u) and the limit points set of { (x,
is H(u).
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b) The set H(u) is approximated by finite periodic programs.
c) For every initial point z E K there exists a (u)-weakly optimal program {a:i}=0

satisfying xo x, O*(x, X+l) 0 (i 0, 1,...).
The paper is organized as follows. In 1 we give the necessary definitions and state

precisely our results. In 2 we prove the preliminary lemmas and develop the suitable technique
which is used in 3 to prove the theorems. Two examples are given in 4: one concerning
the nonexistence of a (v)-overtaking optimal program for each v belonging to some open set
D C C([0, 1] x [0, 1]) and the other showing the existence of a (v)-weakly optimal program
{x}0 for which the relation OV(x,xi+) 0 (i 0, 1,...) does not hold.

1. Definitions and theorems. Let K be a compact metric space, v B(K x K). We
define

(1.1) a(v) sup{v(x,y)’x,y K}, b(v) inf{v(z, /)" z,/

(1.2) #(v) inf liminf N-’ v(z,z+,)" {z}=ois a program
i=0

(1.3)

A(N,v) min N- v(zi Z+l)" { vz}=o c K, zo- z
=0

(N 1,2,...),

(1.4) p(N, v) min N-’ v(zi, zi+,)" {zi}/N_o C K (N 1,2,...).
i=0

The following two results established in are very useful in the study of infinite-horizon
control problems. They were mentioned and explained in the introduction, but we need their
exact formulations.

THEOREM [1]. 1. p(N, v) <_ #() <_ A(N, ), N(A(N, v,) p(N, )) <_ o,(3) b(v)
(N 1,2,...).

2. For every program {z }oci=0
N-I

i=0

(N 1,2,...).

3. For every program {zi}o the sequence {-/N=;1 [’U(Z/, Zint_l) (’U)]}=I either is
bounded or diverges to infinity.

4. For every initial value zo there is a program { zi }=o which satisfies

N

Z [/)(Z/, Ziq-l)
i=0

< 4la(v b(v)] (N 1,2,...).

THEOREM 2 [1]. Let v C(K x If), and define

r(z)- inf liminf [v(zi, zi+,)- #(v)] z C K, zo z
i=0
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(1.6) 0 (x, y) v(x, y) #(v) + re" (y) rc (x)

for x, y E If. Then rcv, 0 are continuousfunctions, 0 is nonnegative, and

(x) ( e C" 0(,) -0}

is nonemptyfor every x K.
In [1] these theorems were established when K was a compact in R’, but their proofs

remain in force also when K is a compact metric space.
For a program x we denote by co(x) the set of all points z K such that some subsequence

{Xik }kCXa=l converges to z and by f/(x) the set of all points (Zl, Z2) / X / such that some
subsequence {(xik, xk+l)}=l converges to (Zl, z2). Denoteby d(x, y) (x, y K)the metric
in K, and define the metric d on K x K by

dl((Xl,X2), (Yl, Y2)) d(xl,Yl) -{-- d(x2, Y2) (Xl,X2, yl,Y2 e If).

We denote d(x, B) inf{d(x, y)’y B} for x e B and

dl ((x, x2), A) inf {d ((x,, x2), (y,, y2))" (y,, y2) E A}

for (x,x2) K x K and A c K x K.
Denote the Hausdorff metric for two sets A c K and B c K by dist(A, B) and the

cardinality of a set A by Card(A).
A sequence {xi}_oc C K is called almost periodic if for every e > 0 there exists an

integer m _> such that the relation d(xi, Xi+p,) <_ g holds for any and any p.
A program {xi}i__0 is called asymptotic almost periodic if for every e > 0 there exist

integers k _> 1, m _> such that d(xi, xi+,) <_ e for any _> k and any j _> 1.
In this paper we prove the existence of a set F c C(K x K) which is a countable

intersection of open everywhere dense sets in C(K x K) and for which the following theorems
are valid.

THEOREM 3. 1. For every u F there are closed sets H(u) C K x K, Ho(u) C K
such thatfor every (u)-good program x we have

2. Let u F. Then every (u)-good program x is asymptotic almost periodic.
3. Let u F and 6 be a positive number. Then there is a neighborhood W(u) of

u in C(K x K) such that for every w e W(u)for every (w)-good program x we have
dist(H(u), f(x)) _< 6.

Assertion of Theorem 3 establishes that for u F all the sequences {(x/, x/+l)}i=0’
where {x}0 is a (u)-good program, have the same limit points set denoted by H(u).
Assertion 2 means that for u F every (u)-good program is asymptotic almost periodic, and
assertion 3 of Theorem 3 shows that for every w belonging to a small neighborhood of u, for
every (w)-good program x the set f(x) is close enough to H(u) in the Hausdorff metric (here
u F). If we think of H(u) as an analogue of a turnpike set (see [11], [12]), assertion 3
means stability of the turnpike phenomena.

THEOREM4. Letu F, {x}i=obeaprogramsuchthatOU(xi, xi+) O(i O, 1,...).
Then {xi}=0 is a (u)-weakly optimal program. Moreover, there exists a subsequence
{xi}= such thatfor every program {Yi}=0 satisfying yo xo the inequality

ik--1

liminf [u(yj,yj+l) u(xj,xj+l)] 0
j=O
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holds, and iffor some program {Yi }=o satisfying Yo xo,

ikl

liminf Z [u(yj,yj+) u(xj,xj+l) 0
j=O

o (j o, .).
Theorem 4 establishes that for every u E F, for every initial value x E K, there exists

a (u)-weakly optimal program {xi}0 satisfying xo x, O(xi,xi+) 0 (i O, 1,...).
This theorem also implies that if u F and {Yi}0 is a (u)-overtaking optimal program, then

In [1] an example of v C([-1, 1] [-1, 1]) which demonstrates the nonexistence
of (v)-weakly optimal programs was given. Here we will give an example of an open set
D C C([0, 1] [0, 1]) such that for every v D there is not any (v)-overtaking optimal
program. We will also give an example of v C([0, 1] [0, 1]) for which there exist a (v)-
weakly optimal program {xi}0 and a (v)-minimal energy configuration {yi)_ such that

sup{0"(xi,xi+,)" 0, 1,...} > 0, 0"(y0, y) > 0.

2. Preliminary lemmas.
LEMMA 1. Letu C(KxK), r > 0. Then there exist a nonnegativefunction O C(K

K),anintegerm >_ 1,andasequence {x}=0 C Ksuchthatxo x,, O(x,x+l) O(i-
0,...,m 1), ]Iv u]l <_ r, where v(x, y) #(u)

Proof The uniform continuity of 0u on K //" implies the existence of a number 5 > 0
such that ]O(xl,x2) O(yl, Y2)] _< 2-1r for each (x,x2) and (yl, Y2) K /( satis-
fying dl ((x, x2), (yl, y2)) _< 2(5. We consider a program {Yi}i=0 such that O(yi, Yi+I)
0 (i 0, 1,...). It is easy to see that there exist {0, 1,...} and m E {1,2,...} for which
d(yi, Yi+,) < 2-15. Without loss of generality, suppose that 0. There exists a continuous
function F K K -- [0, 1] such that F(ym-, Yo) O, F(y, z) for y, z K,satis-
fying d((y,z), (y-,yo)) > 3.4-1(5. We define O(x,y) O(x,y)F(x,y) (x,y e K),
xi yi (i 0,..., m 1), x, Y0. To complete the proof we should note only that

LEMMA 2. Let u C(/( /4"), r > 0. Then there are an integer m >_ 1, a sequence
{xi}=0 C K, and a nonnegativefunction 0 C(/( I() such that

1. for integers i, j satisfying 0 <_ < j <_ m the equality xi xj holds if and only if
O, j m;
2. for x, y e I the equality O(x, y) 0 holds ifand only if

3. IIv ull <_ r, where

(x,y

Proof. By Lemma 1, there exist a nonnegative function 01 C(/( /(), an integer
m _> 1, and a sequence {x}=0 C K such that xo x,, O(x,x+l) 0 (i 0,...,
m 1), II0 01 -< 2-r. Without loss of generality, we suppose that for integers i, j
satisfying 0 _< < j _< m the equality xi xj holds if and only if 0, j m. Define

m-I

i--0
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Choose 7 > 0 for which "), Ill 4-r, and set 0 01 + 7, v(x, y) #(u) + rc(x)
7r (y) + O(x, y) (x, y E K). The lemma is proved.

For a number r > 0 and a point x of some metric space we denote the open (closed) ball
in this space which has the center x and the radius r by/3 (x, r)(/3 (x, r)).

From now on in this section we consider a fixed function v E C(K x K) for which there
exist an integer m >_ 1, a sequence {x’ }=o C K, a number #, and functions - C(K), 0
C(K x K) such that

1. for integers i, j satisfying 0 _< < j <_ m, the equality x’ x holds if and only if
i=O,j=m;

2, II011 > o, 0 is nonnegative, and for each x and y K the equality O(x, y) 0 holds
ifand only if (x,y) {(x’,X+l)" 0,...,m- 1};. (x, ) + (x) (v) + O(x, ) (, e :).

We denote by E the set of all such functions v. Lemma 2 implies that the set E is dense
everywhere in C(K x K). We define x e K for e {0, +l,...}\{0,...,m} such that

x,+i* xi* (i 0, l .). For every number 6 > 0 we define

sup O(x,). (x,) e [((xT,xT+),)
i=0

(2.2) 62(6) inf O(x,y)" (x,y) (/( /()\ /3((x’,x’+,),5)
i=0

(2.3) C3(5) sup {Ire(x) rc(y)l" x, y K, d(x, y) <_ }.

We define

(2.4) Do- 8-1 inf{d(x,x)" i,j {0,...,m- 1}, < j}

(if m 1, then Do +oc).
LEMMA 3. Let 6 (0, Do), r (0, (48m)-1C2(5)), q5 C(/ /), IIqSII r, u

v + , X {1,2,...}, and { N
zi )i=o be a program such that for every program {yi )iN=o

satisfying Yo zo, YN ZN thefollowing relation holds"

N-1 N-1

Z u(z,z+) <_ 211011 + Z u(yi,yi+).
i=0 i=0

Let io,jo {1,2,...}, 0 < io < jo < N, jo io >_ 240[101[C2(5)-1m. Then there exists an

integer {io,..., jo 6m} for which d(zk+i, x’) <_ 5 (i 0,..., 3m).
Proof. Assume that there exists an integer k {io,..., jo 6m} for which

m-1

(z.z+.) e U ((x;.. .,,+. ). e)
p=0

(j=k,...,k+4m- 1).

Then for every integer j {k,..., k / 4m } there exists an integer p(j) {0,..., m }
such that

(, +,)
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Let j E {k,..., k + 4m 2}. It is easy to see that

d(z+,xp()+l) <_ dl((Z,Z+), (x(), x()+)) <_ ,
d(z+,x(+)) <_ d((z+,z+:), (x(+),Xp(+l)+l)) <_ ,

d(x()+l, xp(+)) <_ 25.

It follows from the definition of and Do (see (2.4) and the conditions of Lemma 3) that

Zp(j)+l Xp(j+l) for allj E {k,..., k + 4m 2}.

It follows from the definition of v-(see condition 1) that for every integer j {k,...,
k+4m-2}

p(j + =p(j) + ifp(j) < m-1
and

p(j + O ifp(j)=m-1.
1. kq-4m-Together with the definition of {x’}=_ and {P(J)Jj=k this implies that for every

{0,...,4m- 1} the number m-l[p(k + i)- p(k)- i] is an integer and

(Zk+i, Zk+i+l) B((Xp(k)wi,Xp(k)+i+l),).

To prove the lemma it remains now to show that there is an integer k
for which

m-l

[.J(Zj,Zj+l) e ((Xp, Xpw1), (j k,...,k /4m- 1).
p=O

Let us assume the opposite. Then for every k {io,...,jo 6m} there is j(k)
{k,..., k + 4m} such that

m-1

i=0

and by (2.2)

(2.5) O(zj(k), zj(a)+) >_ C:() (k {io,..., jo 6m}).

Consider a program {yi}/N=0 such that Yi zi (i {0,..., i0 } U {j0 / 1,..., N}),
yi x (i E [i0, j0]). It follows from the conditions of Lemma 3, the definition of v and
{yi}N and (2.2), (2.5) thati=0,

N-I N-I

-211011 <_ [u(yi, Yi+) u(zi, zi+l)] [(v + qS)(yi, Yi+,) (v + )(zi, zi+)]
i=0 i=0

N-1

[(o + (0 + )]
i=0

jo-I

[(0 + )(yi, Yi+, (0 + )(zi, z+,)] + 211011 + 411411
i=io
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2101
311ol
311Ol

j0--

+ 41ill + 211f5 I(Jo io) E O(zi, zi+l)
i=io

+ 2 11(2 / jo io) C2()(jo io 12m)(6m) -1

+ (2 11- C2(6)(12m)-l)(jo io)
(jo io)C2()(24m) -1 <_ -7110 I.

The contradiction obtained proves the lemma.
For an integer N > 1, E C(K K) we define

(2.6) g(,N)-inf E ( +0)(yi’yi+I)’{yi}N=oCK
i--0

LEMMA 4. Let 5 (0, Do). Then there exists a number r > 0 such that for every
C(K K), every integer N >_ and every program {y}r=o satisfying 11(911 <_ r,

N=l ( + 0)(y, Y+l _< g(, N) + r, there are integers k(1), k(2)for which thefollowing
relations hold:

(2.7)

dl((Yi, Vi+l), (X-NWk(1),X-N-+-k(1)+l))
__

(i IN- 3m, N 1] {0, 1,...}),

(2.8) dl((y,yi+l), (xi+a(2),xi+a(2)+l))

_
( (i [0, min{3m, N- 1}]).

Proof. We choose numbers (50 E (0, (5), r > 0 such that

8-’c:(5) >_ c,(5o), r < (4. 103mll01l) -1 C2(2-16o)C2(6o).

Let 0 E C(K K), tl r, N l, N{Yi }i=o C K, and

(2.9)
N-1

There are two cases"

1. N _< 500m1101tC2(2-15o)-’;
2. N > 500roll0 IC2(2-1(5o) -1.

Consider the first case. Our choice of r and (2.9) imply

N-1 N-1

E O(yi,Yi+l) E (-O)(Yi,Yi+l)-- Nr e(@,N)-(N -- 1)r
i=0 i=0

N-1

(N + l)p -+- E ((fi + 0)(x’ x-+-l) (2N + 1)r _< 2-’C2((5o),
i=0

(,v+,) ((i,i+,),o) (i-o,...,v-).
j--0

Now it is easy to see that in the first case the lemma is valid.
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Consider the second case. Applying Lemma 3 with 6 2-160 and r to the program
{Yi}=0 we can easily see that there exist integers i(1), i(2) E [0, N], q(1), and q(2) such
that

(2.10)
3m < i(1) _< 300m11011C2(2-16o) -1, d(yi()_p, Xq(1)_p) <_ 2-160 (p- 0,...,3m),

(2.11)
N- 3m > i(2) > N- 300mlt0llC2(2-1 (50) -1

d(yi(2)+p, Xq(2)+p 2-1 o (p 0,..., 3m).

Consider programs {i}/N=o {i}/N=0, where

(i 0,..., i(2) + 3m), fti--- Xi_i(2)+q(2
(i i(1) 3m,... ,N), yi xi_i(1)+q(1

(i i(2) + 3m + 1,...,N),
(i 0,...,i(1) 3m 1).

(2.9) implies

N-1

i=i(2)+3m

i(1)--3m--1

i=0

N-1

i=0

N-1

<- Z O(yi, Yi+,) + 2r(N i(2)) + C1 (6o),
i=i(2)+3m

O(y,y+,) <_ C,(6o) +

N-1

--T Z [( _qk_ O)(i, iq-1) ( - O)(yi, Yi+l)]
i=0

i(1)--3m--1

Z O(yi’Yi+l) / 2ri(1) /
i=o

O(yi, Yi+l) CI(0)+601mllOIIC2(2-’o)-lr.

By the choice of 60, r

m--1

j=0

(i e {i(2) + 3m,...,N 1} U {0,...,i(1) 3m- 1}).

The last relation and (2.10) and (2.1 l) imply the validity of the lemma.
LEMMA 5. Let 5 (0, Do). Then there exists a number r > 0 such that for every
C(K x If) satisfying I111 <- r, every integer N >_ 1, and every integer k there are

programs { Nzi}i=o, {ti}iN=ofor which zo xk,

d, _< 6 (i- 0,..., min{N- 1,3m- 1}),
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m-1

( ’,") U ((; "+),),j=O

(X*tg xk, dl((tN-i-l,tN-i), k-i-l,Xk-i))

(i 0,..., min{3m 1,N- 1}), (to, t) e /)((z, Z+l), ),
j=0

N-1

(2.12) sup Z ( + 0)(z, z+,), Z ( + 0)(ti,t+,) _< g(, N) + 2C,(6).
i=0 i=0

Proof. We choose a number r E (0, (16m)-1C1 (6)) such that Lemma 4 is valid for 6, r.
Let E C(K x K), IIqS[I _< r, N be a natural number, and k be an integer. There are two
cases: 1. N _< 4m; 2. N > 4m.

Consider the first case. Let q be an integer. We define y] Zq+i (i 0,..., N). It is
easy to see that

N-1

E ( + O)(y’Yq+ ’) <- g(, N) + 2rN <_ g(, N) +
i=0

Set z yki, ti yki-Y (i 0,..., N). For the first case the lemma is proved. Consider the
second case. There is a program {V0, VN } such that =’ ( + 0)(, yi+,) f(, N).
By Lemma 4 there are integers k(1) and k(2) such that relations (2.7) and (2.8) hold.

(i 2, ..). There existDefine Yi xk(2)+i (i -1,-2,...), Yi+N xk(1)+i
9, q {1,..., m} such that y_g Xk YN+q. We set Zi yi_g(i 0,..., N), t
Yi+q (i 0,..., N). To complete the proof we should only verify the validity of (2.12). By
our choice of r we have

N-!

[( + o)(, z+) ( + o)(, +,)]
i=0

g-1 N-1

E ( + O)(Y--9+i’ Y--g+i+’ Z (0 + )(Yi, Yi+l 2gr + C1
i-=0 i--N-g

Similarly

N-1

Z (0 + )(zi, zi+,) <__ g(, N) + 2C ().
i=0

N-1

[(0 + )(t,, t,+,) (0 + )(v, v+,)]
i=0

q+N-I q-I

Z (0 + )(y, y+,) E (0 + )(Yi, Yi+l) <_ 2qr + C, (),
i=N i--0

N-l

i=0
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The validity of relation (2.12) is proved. This completes the proof of the lemma.
LEMMA 6. Let E (0, Do). Then there exists _R > 0 such thatfor every 05 C(if x If)

satisfying I1tl <- _R, every integer N >_ 1, and every program {Yi}=o satisfying _’ (0 /
)(yi, y+l) _< g(, N) + _R there is an integer k such that dl((yi,y+), (x+, x++l)) <
(i- 0,...,X- 1).

Proof. Choose ro > 0 such that Lemma 4 holds with (5 , r to, and choose
(5o G (0, ) such that 8C ((50) < to. We choose R G (0, to) such that 16mR <_ C ((50) and
Lemma 5 holds with (5 (50, r R. Let C(K K), 114)11 < R, N be a natural number,
and {yi }=o be a program satisfying N-=o (0 + )(w, w+,) _< (, N) + .

We suppose that for 05, N, {yi}N=0 the lemma does not hold. Then there exists q
{0,... ,N 1} such that (Yq, Yq+l) tO_/)((x, X+l), e). Lemma 4 implies that N
3m > q > 3m,

(2.13)
q

(o + )(v, v+,) > g(,q + ) + o.
i=0

lq+ such thatLemma 5 implies the existence of programs {zi =o, {hi}N=q-

*=ho(2.14) Zq+ xo
q

(2.15) Z (0 + )(zi, zi+,) <_ g(, q + l) + 2C, (o),
i=0

N-q-2

(2.16) Z (0 + ch)(hi, hi+,) <_ g(O,X q 1) + 2C1(5o).
i=0

Consider a program {ti}/N=0, where ti zi (i 0,...,q + 1), ti
(i q + 2,..., N). Then using (2.13) and (2.15), (2.16) we have

N-1

-n _< [(o + )(t, t+,) (o + )(v, v+,)]
i=0

q

[(o + )(z, z+,) (o + )(, +,)]
i=0

N--q--2 N--I

+ Z (0+)(hi, hi+,)- Z (4 +0)(yi’yi+’) <g(,q+l)
i=o i=q+l

+ 2c1 (5o) (g(, q + ) + to) + (g(, N q ) + 2C (6o))
-g(,N- q- 1) _< 4C1 (5o)- to, ro _< / q-- 4C1 (5o) __. 5C1 (5o) < to.

The obtained contradiction proves the lemma.
LEMMA 7. Let (0, Do). Then there exists a number r > 0 such thatfor every integer

N >_ 1, every integer k, and every c/5 C(if If), satisfying IIll <- r there is a program
{zi }/N:o such that zo x’k, Zg x;+N,
(2.17)

(2.18)

g((z,z+), (x;+, x;++,)) <_ e (i o,... ,v ),
N-1

Z (05 q- O)(zi, zi+,) <_ g(qS, N) q- 6Cl ().
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Proof. We choose a number ro > 0 such that Lemma 6 holds for R ro and c. We
choose numbers 6 E (0, c), r E (0, ro) such that 8C1 (6) <_ to, 16mr <_ C (6), and Lemma 5
holds for r, 5. Let N be a natural number, k be an integer, C(K K), and 110511 _< r. The

{Y}=o such that yo xk,validity of Lemma 5 for r, 5 implies the existence of a program x

dl((y,y+,), (x.+, x++l)) _< 5 (i 0,..., min{N- 1, 3m- 1}),
m--I

j=0

N-I

(2.19) Z ( + 0)(y, y+, _< g(+, N) + 2C, (5) _< g(, N) + ro.
i=0

The validity of Lemma 6 for R ro and c implies that

d((y,y+l),(xk+,x++)) _< c for/=0,...,N-1.

Now to complete the proof of the lemma we should only set z y (i 0,..., N 1),
ZN X’N+ and note (see (2.19)) that

N-I N-I

Z ( + O)(z, z+,) <_ Z ( + O)(y, y+,) + 2r + C,
i=0 i=0

_< g(, N) + 2C () + 2r + C, (c) _< g(, N) + 6C, (c).

LEMMA 8. Let co (0, Do). Then there exists a number r > 0 such that for every
u C(K K) satisfying Ilu vii <_ r and every (u)-good program {z}=o there are an

integer N > and an integer k such that

< eo 0,

Proof. Choose a number ro > 0 such that Lemma 6 holds with c co and R to,

and choose 5 (0, co) and r E (0, ro) such that 8C () <_ ro, 16mr _< C (5), and Lemma
7holdswithc = handr. Letu e C(K /(), ]lu-v] <_ r, and{z}obea(u)-good
program. We define u v. Suppose that the lemma doesn’t hold for u, {z}o. Then

oo such thati >8m, >8m:there exists a sequence of integers {, }= ik+

2.20) (Zk’Zk+) U /((x’x+1)’c) (k- 1,2,...).
j=0

Set io -1. Let k {0, 1,...}. Consider a program {z" ik + 1,...,i+ + 1}.
By (2.20) and Lemma 6, which holds for c co and R to, we have

ik+
(2.21) Z (+O)(z,z+.) > g(,i+-ik)+ro.

i=ik+l

Using Lemma 7 with r and c 5 we obtain a program {Y}=o such that Yk+l {X" j
o,

(2.22) Z (O+)(y,y+,) <_g(,i+, -i)+6C,(5) (k=0,1,...).
i=ik+l
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Relations (2.21) and (2.22) and Theorem imply

iN

i=0

iN

>_ -4]111 4- [(4, 4- O)(z, z+,) (0 + )(y, y+,)]
i=0

N-I ik+

-41lll + [( + O)(z, z+,) (o + )(y, y+,)]
k=O i=ik +

-41111 + N(r0- 6c, (5)) , N ,
iN

i=0

iN iN

[(, +,) (v, ,+,)] + [(v, v+,) ,()]
i=0 i=0

> -4[lrll + N(ro 6C, ()) + b(u) a(u) --+ c, X --, oc

But {zi}0 is a (u)-good program. The obtained contradiction proves the lemma.

3. Proof ofTheorems 3 and 4. We consider the set E of all functions v E C(K x K) for
which there exist an integer re(v) > 1; a sequence {x’(v)}i=0 C K; continuous functions
Try K -- R 0v" K x K -- R’, and a number #, such that the following conditions hold.

1. for i, j E {0,..., re(v)} satisfying < j the equality x’(v) x(v) holds if and
only if 0, j re(v);

2. v(x, y) # + 7r,(x) Try(y) + O,(x, y)(x, y e K);
3. ]10l] > 0, the function 0 is nonnegative, and O(x, y) 0 if and only if

( v) e {( () *+,()). 0,...,,(v)- }.

At the beginning of 2 we already noted that E is everywhere dense in C(K x K) by Lemma
2. It is easy to see that #(v) #.(v E), and for every v E we can apply Lemmas
3-8. For every v e E and every E {0, 5:1,...}\{0,...,re(v)} define x’(v) K such that

x+m(v)(v x(v)(i 0, +1,...). Let v E. We set

(3.1) D(v) 8-1 inf{d(x(v),x(v))’i,j e {0,...,re(v) 1}, # j}.

If re(v) 1, then D(v)
Let p { 1,2,...}. We define

(3.2) 6(v, p) inf {2- D(v), p-’ }.

It is easy to see that there exist numbers P(v,p) E (0, 6(v, p)), d(v,p) (0, P(v,p)) such
that Lemma 8 holds for

o r(,v), d(,v), x x() ( o,.=,...).

Now we define F f’l= .JveE B(v, d(v, p)). For this set F we will prove the theorems.
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ProofofTheorem 3. First we will prove that assertion of Theorem 3 holds. Let u E F,
x,y be (u)-good programs, p E {1,2,...}. There is v E such that u B(v,d(v,p)). It
follows from the definition of d(v, p) and F(v, p) and Lemma 8 that

dist((x), {(x(v),z+,(v))" i=O,...,m(v)- 1})_< V(v,p),
dist(f(y), {(x(v),x*+,(v))’i= O,...,m(v)- 1}) < F(v,p),

dist(co(x), {x(v)" O,...,m(v) 1)) <_ r(v,p),
dist(co(y), {x(v).i--O,...,m(v)- 1}) _< P(v,p),
dist(f(x), f(y)) _< 2p-’, dist(co(x),co(y)) <_ 2p-’.

This completes the proof of assertion 1.
Let us prove assertion 2. Let u F, g > 0, and {x}%0 be a (u)-good program. Choose

anintegerp _> 1, v E such that4p- < g, u B(v,d(v,p)). Now the validity of assertion
2 follows from the definition of d(v, p), F(v, p) and Lemma 8.

Now we will prove assertion 3. Let u F, 5 > 0. There is an integer p _> 1, v E
such that 4p- < , u B(v, d(v, p)). Set W(u) B(v, d(v, p)). The validity of assertion
3 follows from the definition of d(v, p), F(v, p) and Lemma 8.

We have the following result.
PROPOSITION 1. 1. sup{rc*(z) x e Ho(u)} 0 (u e F).
2. Let u F, 5 be a positive number. Then there are an integer m >_ and a sequence

{x’ )=0 such that

X0 X

theni=O,j-m;if O <_ < j <_ m, xi xj,

dist(H(u), {(X,Xi*q_l) 0,... ,?Tb 1}) _< min{&8-1d(xi,xj) (0 <_ < j <_ m 1)}.

Proof. It is easy to see that assertion of Proposition follows from Assertion of
Theorem 3. Let us prove Assertion 2. Let t5 > 0, u F. Choose an integer p > satisfying
8p-1 < 5. There is v E such that u B(v,d(v,p)). By Lemma 8, assertion of Theorem
3, and our choice of 5(v, p), F(v, p) we have

p(v,p) < 6(v,p) <_ 16-’ inf{d(xT(v),x(v))" i,j {0,...,re(v)- 1}, i# j},

dist(H(u), {(x(v),xi*+(v))’i-O,...,m(v)- 1}) _< r(v,p).

The validity of assertion 2 follows easily from these relations.
Assertion 2 of Proposition establishes that for u F the set H(u) is approximated by

finite periodic programs.
ProofofTheorem 4. We will prove the following lemma first.
LEMMA 9. Assume that u C(if x If) and there is a closed set Ho(u) C If such

thatfor every (u)-good program {xi}=o we have co({xi}o) Ho(u). Then the following
assertions hold:

1. Let {xi}o be a program satisfying O*(xi,xi+l) O(i O, 1,...). Then {xi}o
is a (u)-weakly optimal program and there is a subsequence {xik}= such that for every
program {Yi}o satisfying Yo xo, the relation

ik--1

liminf Z [u(yj,yj+l) U(Xj,Xj+I)]

_
0

j=O
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holds, and moreover, ifwe have an equality

--1
liminf [u(yj,yj+l) U(Xj,Xj+l)] O,

j=O

then O(y, y+,) 0 (i 0, 1,...).
2. Let {x}=0 be a program. Then the relation

N-I

7r(xo) lim inf [u(x, x+)- #(u)]
i=0

holds ifand only ifO(x, x+l) 0 (i 0, 1,...).
Proof. First let us prove assertion 1. There is x* E Ho(u) satisfying 7r(x*)

sup{Tr’(y)" y E H0(u)}. To prove the assertion we should only note that there exists a
subsequence {x }-l satisfying

Next we will prove assertion 2. There is x* Ho(u) satisfying 7r(x*)
sup{TrY(y)" y E H0(u)}. To prove assertion 2 we should only note that for every (u)-good
program {x}0 the following relation holds"

(3.3) lim inf [u(xi,xi+) #(u)] OU(xi,Xi+l) - 7fU(xo) 7fU(x*).
i=0 i=0

Theorem 3 and Lemma 9 imply the validity of Theorem 4.

4. Examples. We will give an example of an open set D C (7([0, 1] x [0, 1]) such that
for every v D there is not any (v)-overtaking optimal program.

Example 1. Let K [0,1],0 < x < x]" < 1, Tr: [0,1] Rl, and 0: [0,1] x
[0, 1] R be continuous functions such that 0 is nonnegative, O(x, y) 0 if and only
if (x, y) { (x, x ), (xT x }, 7r(x 7r(x O(x x) > O. Set v(x, y) 7r(x)

+ O(x, e [o,
Choose numbers

(4.1) e (0, 14-’ [Tr(x) 7r(x) O(x,x)]),

6 e (0, 8-1lx) x’l) such that

(4.2)
sup{ ITI’(Zl) 71"(Z2)[, IO(yl, Y2) 0(Y3, Y4)I" Z, Z2, y, Y2, Y3, Y4

6 [0, 1], Izl z21 (, ]Yl Y3[ __< (, lYe Y41 <- 6} _< ,
and choose r E (0, e) such that Lemma 8 holds for e0 6, r, and v.

Letu C([0,1] x [0,1]), [lu-v[I _< r, and u-v. We prove that there is no
(u)-overtaking optimal program.

Suppose that {x}=0 is a (u)-overtaking optimal program. By Lemma 8 there exists an
integer N > such that

(4.3) IXN+2-xl <_6, IXN+2+l--x[ <_5 (i=0,1,...).

Consider a program {yi} where Yi xi (i O, N) yi+ xi (i N, N +i--0’

For every integer k >_ by (4.1)- (4.3) we have
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We thus arrive at a contradiction. Hence, there is no (u)-overtaking optimal program for
)(, ).
Next we will give an example of v E C([0, 1] x [0, 1]) for which there exist a (v)-

weakly optimal program {zi}0 and a (v)-minimal energy configuration {W}-o such
that sup{0(xi,:ei+l): 0, 1,...} > 0, sup{0’(yi,w+l): i=0, +/-1,...} > 0.

Example 2. LetK=[0,1],0<:e0 <:e, < 1,0<e<8 l]:e0-:e1],and

,): :] ,):O(x,y) min{1,64e-4[(x X0 -- (y- Xl) [(X X -- (y- XO)2]}
(X, y e [0, 1]).

Let 7r: [0, 1] R be a continuous function such that

(4.4) 7r(x;) -(x’) > 1,
(, V) (x) () + O(x, ) (x, y [0, 1]).

We define x" for all integers {0, } so that Xi*+2 :e (i 0, +/- 1,...). It is easy to see
that #(v) 0. By Lemma 8 w(x) {:e), x]" } for every (v)-good configuration x. It is easy
to verify that

(;) o, (;) (x) (x;), O(x,v) o(:,v)(x,v e {x,}).

Fix an integer k >_ 0 and consider a program yk {y)}i=0, where

(4.5) y/k (i 0 ]’g), -1x0 y x.* (iis an integer, > k + 1).

We shall show that {y}0 is a (v)-weakly overtaking program.
Let z be a (v)-good program, z0 x). It is easy to see that f(z) { (x, x]’), (x], x))}.

Hence, there exists an integer Q >_ such that

(4.6) IzQ+i xl <_ 4-1e (i 0, 1,...).
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There are two cases: 1. Q 2i / for some integer i; 2. Q 2i for some integer i. Clearly,

(4.7)
2N

k > + 1).
i--0

Consider case 1. There exists an integer q >_ 0 such that Q 2q / 1. By (4.6)

(4.8)

Suppose that

e U
j=O

(i 0,... ,2q).

This relation implies that Izi xl < c (i 0,..., 2q + 1) and we obtained a contradiction
(see (4.8)). Hence, there exists p E {0,..., 2q} such that

j=O

It follows from the definition of 0 that O(zp, Zp+l) 1. Together with (4.7) the relation
f(z) { (z), z]), (z’, z;) } implies that

(4.9)

Consider case 2. Relation (4.6) implies that Z2i --+ 3go Z2i+l ---> X as ---, oc,

2N

liminf [V(Zi, Zi+I) )(yk Yi+I)]
i=0

_> liminf [-(z;) r(z2N+l) 1] -(z) 7r(x) 1,

and by (4.4) relation (4.9) holds also for case 2. We have proved that {y}=0 is a (v)-weakly
overtaking program. For an integer < 0 we set y zi. It is easy to see that {y}_ is
a (v)-minimal energy configuration.

Aeknow|edgments. The author thanks Dr. Arie Leizarowitz for fruitful discussions.
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of (v)-weakly optimal programs and establish a turnpike theorem for a generic continuous function v. We also prove
the existence of an almost periodic (v)-optimal program for a generic continuous function v.
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Introduction. The study of optimization problems defined on infinite intervals has re-
cently been a rapidly growing area of research. In this paper we are concerned with the

N-"nfinite-horizon problem of minimizing the expression y’= v(x, x+t) as N grows to

infinity, where (x}=0 is a sequence in a compact metric space K and v is a continuous func-
tion defined on K K. The interest in this discrete-time infinite-horizon problem stems from
the recent study of various optimization problems which can be reduced to this framework,
e.g., continuous-time control systems which are represented by ordinary differential equations
whose cost integrand contains a discounting factor ], the infinite-horizon deterministic con-

trol problem of minimizing f? L(z, ,) dt as T oc [2], and the analysis of a long slender
bar of a polymeric material under tension [3].

Let K be a compact metric space, R be the Euclidean n-dimensional space, C(K x K)
be the space of all continuous functions v K K -- R with the topology of the uniform
convergence (llvll sup {Iv(x, y)] x, y E K}). Let C(K) be the space of all continuous
functions v K R with the topology of the uniform convergence ([Iv[I sup {Iv(z)l
z E K}) and B(K x K) be the set of all bounded and lower semicontinuous functions
v:K x K R (i.e., v(lim (zk, yk)) _< lim inf v(z, y)).

Consider any v B(K x K). We are interested in the limit behavior as N ec
N- (Xi Xi+

oof the expression ’i=0 v ), where (x}i=o is an infinite sequence in K which
we call a program (or a configuration) (see [1], [4], [5]) and which occasionally will be
denoted by a boldface x. (Similarly {Yi}=o will be denoted by y, etc.) A finite sequence
{xi}/N=0 C K (N 0, 1,...) will be also called a program. We shall define three concepts
of optimality.

A program {xi}o is a (v)-overtaking optimal program if for every program {zi}=o
satisfying zo xo the following inequality holds:

N-1

limsup Z [v(xi, xi+,) v(zi, zi+)] <_ O.
N--oc i=0

This notion known as the overtaking optimality criterion was introduced in the economic
literature by Gale [6] and von Weizsicker [7] and was employed to study infinite-horizon
control problems ], [8]-[ 10].

A program {x}=0 is (v)-weakly optimal [1], [6], [7] if for every program {z}=0
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satisfying z0 :Co the following inequality holds"

N-l

liminf [v(:Ci,:Ci+,) v(zi, zi+l)] <_ O.
N--o

i=0

A sequence {:Ci}0 C K is called a (v)-minimal energy configuration (program) if for
each N, M > 0 the inequality

i=-N i=-N

holds for every sequence {zi}/M___N C K satisfying :C-N Z-N, :CM ZM [3]-[5].
Of special interest is the minimal long-run average cost growth rate,

#(v)- inf liminf N-1 1 v(zi )" {zi}=0is a program}N---oc zi+
i=0

N-1A program {zi}0 is called a (v)-good program [1] if the sequence {Ei=0 [v(zi, zi+)
#(v)]}_

_
is bounded. It was proved in [1] that for every program {zi}0 the sequence

N-1i=0 [v(zi, zi+) #(v)]}=l either is bounded or diverges to infinity and that for every
initial value z there is a (v)-good program {zi}0 satisfying z0 z. In [1] the following
representation formula valid for every v E C(K x K) was also established:

(, ) 0 (x, ) + ,() () + (x) (x, y K),

where 7rv and 0" are continuous functions,

7r
v (x) -inf lim inf [v(zi, Zi_t_ 1) (V)] Z C K, z0 x

i=0

0 is nonnegative, and E(x) {y E K 0 (x, y) 0} is nonempty for every x e K.
In [13] we studied the structure of (v)-good programs and proved for a generic v

C(K x K), for every given x K, the existence of a (v)-weakly optimal program {xi}0
satisfying x0 x. We established the existence of a set F0 C C(K x K) which is a countable
intersection of open and everywhere dense sets in C(K x K) such that for every u F0 the
following propositions hold:

a) there are closed sets H(u) c K x K, Ho(u) c K such that for every (u)-good pro-
gram {xi}=o the limit points set of {xi}=0 is Ho(u) and the limit points set of { (xi, Xi+l )}0
is H(u);

b) the set H(u) is approximated by finite periodic programs;
c) for every initial point x E K there is a (u)-weakly optimal program {xi}0 satisfying

X0 X, OU(xi, Xi+ l) O(i O, 1,...).
By proposition c), programs {xi}=0 satisfying O(xi, Xi+l) 0 (i 0, 1,...) are of

great interest. The existence of such a program for any initial value x0 follows from the
properties of 0. In this paper we will establish the existence of a set F c F0 which is a
countable intersection of sets dense open and everywhere in C(K x K) such that for every
u F the following propositions hold:

d) u is a continuity point of the mapping v ---, (#(v), 7r) R x C(K);
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e) given any e > 0, there exists > 0 such that for every program {xi}=0 sat-

isfying O(xi,xi+) 0(i 0, 1...) the sequence {(xi,xi+l)}0 is contained in an
e-neighborhood of H(u) if x0 belongs to a -neighborhood of Ho(u) (stability condition);

f) all the sequences {(x, xi+)}0 C K x K satisfying O(xi, xi+l) 0 (i O, 1,...)
converge uniformity to H(u);

g) every sequence {xi}=_ C K satisfying O(xi, xi+) 0 (i 0, +/-l,...)is almost
periodic.

One can see that the set H(u) (u F) is an analogue of a turnpike set [11], [12], and we
prove for it a weak turnpike theorem.

The paper is organized as follows. In t we give the necessary definitions and state
precisely our main results. Necessary auxiliary results obtained in [13] are stated in 2. In
3 and 4 we prove the preliminary lemmas and develop the suitable technique which is used
in 5 to prove the theorems.

1. Definitions and theorems. Let K be a compact metric space, v C(K K). We
define

(1.1)

(1.2) 7r’(x) inf lim inf [v(zi, zi+,) #(v)] z C K, zo x

for x, y K. It was proved in that 7r and 0 are continuous functions, 0 is nonnegative,
and E(x) {1 K:O’(x, y) 0} is nonempty for every x K.

In this result was established when/< was a compact in R, but its proof also remains
in force when K is a compact metric space.

For a program x we denote by c(x) the set of all points z K such that some subse-
quence {xk}__ converges to z and by fZ(x) the set of all points (z, Z2) f X /’ such
that some subsequence {(xik,xi+)}__ converges to (z, z2). Denote the metric in K by
d(x, y) (x, y B2), and define the metric d on K x K by

We denote d(z, B) -inf{d(z, y)’/C/3} for z K, B C K, and

d,((x,,x2), .A_) -inf{dl((X,,X2), (Y,,Y2)) (Y,,Y2) A}

for(xl,x2) KKandACKK.
Denote the Hausdorff metric for two sets A C K and/3 C K by dist(A,/3) and the

cardinality of a set A by Card(A).
A sequence {xi}_ C K is called almost periodic if for every e > 0 there exists an

integer m >_ such that the relation d(xi, xi+p) < holds for any and any p.
A program {xi}0 is called asymptotic almost periodic if for every e > 0 there exist

integers/c >_ 1, m > 1, such that d(xi, zi+j) <_ e for any >_ k and any j >_ 1.
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For every u E C(K x K), every number A > 0, and every integer N >_ we define

A(u, N, A) { {yi }N=0 C K" for every sequence {zi}0 C K satisfying

z0 Y0, ZN YN the following inequality holds:

[(Yi, Yi+l) (Zi, Zi+l)]
i=0

In 13] we proved the existence of a set F,0 C C(K x K), which is a countable intersection
of open everywhere dense sets in C(K x K) and such that every u E F0 satisfies assertions
a), b), and c) stated in the introduction. In this paper we will establish the existence of a set
F C F0 which is a countable intersection of open everywhere dense sets in C(K x K) and
for which the following theorems are valid.

THEOREM 1. We define L:C(K x K) -- R x C(K) x C(K x K) by

L(v) --(#(v), r’, O)(v C(K x K)).

Then the set ofcontinuity points of the operator L contains F.
By assertion a), for every u F0 there exist compact sets H(u) c KxK and H0(u) C K

such that f(x) H(u), z(x) Ho(u) for every (u)-good program x. Theorem 2 is an
analogue of the weak turnpike theorem [9], [11], [12], showing that for u F, for every
"nice" finite program {zi}0, the number of integers {0,... N- 1} such that (xi, xi+l)
does not belong to a fixed neighborhood of H(u) is bounded by some constant which depends
on the neighborhood and does not depend on N.

THEOREM 2. Let u F and (5 be a positive number. Then there are a neighborhood
W(u) of u in C(if x If) and positive numbers Q1, Q2 such that for every w W(u),for
every integer N >_ 1, for every number M > 0 and every program N{Yi}i=o A(w, N, M)
thefollowing relation holds:

Card{/ {0,...,N- 1} dl((yi,yi+),H(u)) > (5} <_ Q1 + MQ2.

Let u F. Theorem 3 establishes that for every w belonging to some small neighborhood
of u in C(K x K), for every program {xi}i0 satisfying O(xi,xi+) O(i O, 1,...),
the elements of the sequence { (xi, Xi+l)}=0 belong to a small neighborhood of H(u) for all
integers >_ N, where N is a constant which depends on the neighborhoods and does not
depend either on w or on x0. In addition, for every w belonging to some small neighborhood of
u in C(K x K), for every program {x}0 satisfying 0 (x, Xi+l) 0, (i 0, 1,...) whose
initial value belongs to some small neighborhood of Ho(u), the sequence {(x, z+)}0 is
contained in a small neighborhood of H(u).

Theorem 4 implies that for w F every sequence {Yi}_--o satisfying OW(y, y+)
0 (i 0, +1,...) is almost periodic and shows that having any e we can choose rn (see
the definition of an almost periodic program) uniformly for all w belonging to some small
neighborhood of u E F.

THEOREM 3. 1. Let u F and c be a positive number. Then there exist a neigh-
borhood W(u) of u in C(If x If) and 5 > 0 such that for every w W(u), for every
program {xi}0 satisfying OW(xi,Xi+l) O (i O, 1,...), d(xo, Ho(u)) <_ 5, the relation
d((xi,xi+),H(u)) <_ holdsfori O, 1,

2. Let u F, e be a positive number. Then there exist a neighborhood W(u) of u
in C(If x If) and an integer N >_ such that for every w W(u), for every pro-
gram {xi}i0 satisfying OW(xi,xi+) O(i O, 1,...), the following relation holds:
d((xi,xi+l),H(u)) <_ (i isaninteger, >_ N).
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COROLLARY 1. Let u F, {x}_ be a program such that O(x,x+l) 0
(i 0,+1,...). Then (zi,zi+,) H(u) (i 0,1,...).

COROLLARY 2. Let u F, > O. Then there exists a neighborhood W(u) of
in C(K x ) such that for eve w W(), for eve program {zi}_ satising
O(zi, zi+) 0 (i 0,1,...), the following relation holds" d,((zi,zi+,),H())

THEOREM 4. Let F. Then eve sequence {yi}_ satising 0(9i, Yi+l) 0 (i
O, 1 ...) is almost periodic. Moreover, for eve >. 0 there exist a neighborhood W()
ofu in C(K x K) and an integer such thatfor eve w W(u),for eve program
{i}_ satisfying O(Vi,9i+l O(i 0,1,...), the relation d(yi,yi+p) holds

for any integers and p.

2. Auxiliary results. We have the following result.
PROPOSITION Ill. Let v

A(N,v)-min N-’ v(zi,zi+,)’{zi}0CK,z0-z:v
i--0

Then p(N, v) 5 #(v) < A(N, v), N(A(N, v) p(N, v)) < 21111 (N 1,2,...), andfor
every program {z }=o the sequence { N-1}-=0 Iv(z, z+l) #(v)]}=l either is bounded or

diverges to infinity.
For a number r > 0 and a point z of some metric space we denote by B(z, r) (/(z, r))

the open (closed) ball in this space which has the center z and the radius r.

From here on in gg2-4 we consider a fixed function v C(K K) for which there
exist an integer m > 1, a sequence {z’}’o C K, a number #, and functions 7r C(K),
0 C(K x K) such that

1. for integers i, j satisfying 0 _< < j _< m the equality a:" z. holds if and only if
0, j m;
2. II011 > o, 0 is nonnegative and for each c and / N the equality O(z, 1) 0 holds if

and only if (z,y) {(z,;C+l) 0,... ,m- 1};
3. v(x, y) # + 7r(x) 7r(y) + O(x, y)(x, y K).
We denote by E the set of all such functions v. Lemma 2 in [13] implies that the set E

is dense everywhere in C(K K). We define x /( for {0, +1,...}\{0,... m} such
that x+i x’ (i 0, +l,...). For every number 6 > 0 we define

(2.1) CI(( -sup O(z,y)’(z, gl) B((x<,xTq_l),(5)
i--o

(2.2) C2(6)-inf O(x,y) (x,y) (K x K)\ B((x,xT+,),6
i=0

We define

(2.4)

C3(g) sup {17r(x)

Do-S-’inf{d(x x*.)’i j{O m- 1} i<j}
(ifm 1, then Do
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In order to establish Theorems -4 we need the following results, which were proved
in [13].

LEMMA [13, Lem. 3]. Let 5 E (0, Do), r E (0, (48m)-1C2((5)), (p C(K x K),
]](Pl] -< r,u v + , N {1,2,...}, and {zi}o be aprogram such that for eve

N-1
program {i}o satising o ZO, N ZN, the relation i=o (z,zi+)
210 + N-1i=o u(yi,yi+l)holds. Letio, jo {1,2,...},0 < io < jo < N, jo-
2400C2()-1m. Then there exists an integer {io,...,jo- 6m} for which
d(+, x) ( o,..., 3).

For an integer N 1, O C(K K) we define

LEMMA 2 [13, Lem. 6]. Let e (0, Do). Then there exists > 0 such that for
each C(K x K) satisfying I11 < , each integer N > and each program i=0

satisfying i=o (O+O)(yi, Yi+, g(O, N)+ there is an integer k such that d
(x+i,x+i+)) (i- 0,...,N- 1).

LEMMA 3 [13, Lem. 7]. Let (0, Do). Then there is a number r > 0 such that for
each integer N 1, each integer k, and each C(K K) satising r there is a

program {zi)o such that zo xa, zN x+N,, ((, +), (+, x++)) (i o,... ,N ),
N--1

( + 0)(Z, Z+,) g(, N) + 6C, ().

LEMMA 4 [13, Lem. 8]. Let o (0, Do). Then there exists a number r > 0 such that

for eve u C(K K) satising []u v[] r, for eve (u)-good program {zi}o there
are an integer N > and an integer k such that

a((+,++,), (+,++)) o (i- o, ,...).

3. Preliminary lemmas for Theorem 2. LEMMA 5. Let (0, Do). Then there exist
a number r(A) > 0 and a integer Q(A) such thatfor eve u C(K K) satising
u v] r(A), for every integer N 1, and eve program {Yi}i=oN A(u, N, 20])the

following relation holds"

Card i {0,...,N- 1}’(i,i+,) B((z,z+,),) ().
j=o

Pro@ We choose positive numbers to, , and r() such that ro < 1, Lemma 2 holds
with and to, 16, (0,), 32C1(2,) o, 8() (0, min{ll011, o})"
Lemma holds with and v r()(r() < (48m)-C()); and Lemma 3 holds
with e g, r r(). Set

@() -inf{i {1,2,...}’i > (1 + Iloll)mlloll(2(,)o)-’ 14,

Let C(K x K), I1 vl < r(), N be an integer, N _> 1, X
A(, N, 2 0), and v. By Lemma 1, for each integers io and jo such that 0 <
io < No < X, jo- io 24011011()-1m, there exists {io,... ,jo- 6m} such that
(+,) , (i o,..., ).
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ForY {y }i:o C K define G(Y) k,

P(Y) =Card iE{0,...,k- 1}’(yi,yi+,) [3((z],zj+),A)
j--O

a(Y/ has a property (A) if for each integers io andWe shall say that a program Y
jo such that 0 < io < jo < G(Y), jo- io > 2401[011C2(6)-m, there exists an integer
k e (io,...,jo- 3m} for which d(yk+i,x) _< 6 (i 0,...,3m).

.a(Y) which has the property (A) and for which there is anConsider a program Y {yi ji=o
integer p _> such that

800mllOllC2(t)-’ < p < G(Y) 800m110[IC2(

(3.1) m-I

(,,,+,) U ((xi,i+,),/x).
j--0

The property (A) which holds for Y implies the existence of integers 9 and q such that

[g,g + 3m] c[p+ ,p+ 250m11011C2(,)-],
[q,q + 3m] C [p-250mllOIICz(6,)-’,p- ],
d(y9+i,x") < 6, d(vq+i,z) < 5 (i 0,...,3m).

G(F(Y))Consider a program F(Y) {t} where G(F(Y)) G(Y) 9 + q + 3m, tii=0

yi (i 0,...,q + 3m), ti Yi+o-q-3, (i q + 3m + 1,...,G(F(Y)). Then

(3.2) G(Y) > G(r(Y)) G(Y) 500m[[0llC2(61) -, P(r(Y)) < P(Y),

and the program 1-’(Y) has the property (A). We have

(3.3)

a(r(Y))-I

i=0 i=0
g-l

Z (0 + O)(Yi,Yi+,) + 2r(A) + C1(26,).
i=q+3m

By (3.1) and Lemma 2, which holds with e A and R to, we have

9-1

i=q+3m

(o + )(y, y+) >_ e(, o q 3m) + o

e(, a(z) a(r(z))) + ,o,

and by (3.3)

(3.4)
G(F(Y))-I

i=0

[u(ti, ti+l) #(u)] _< [u(Yi,Yi+l)-#(u)l
i=0

-e(, a(y) a(r(y))) ro + 2r(A) + G (2el).
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Consider again the program X {zi}/N=0 If there is no integer p >_ satisfying (3.1)
with Y X, then P(X) _< 2. 103m 1011c2( ,)-’ and for X the lemma holds. Assume that
there is an integer p >_ satisfying (3.1) with Y X. We set X X. The program X
has the property (A), and we define X 1-’(X). Clearly, X has the property (A). By
induction we define a sequence of programs {Xi}. Suppose that we have already defined
X (i 0,..., k) such that for 0,..., k the following conditions hold:

1. Xi has the property (A);
2. there exists an integer p >_ such that relation (3.1) holds with Y Xi;
3. Xi+l F(Xi).
If there is no integer p _> such that for Y Xk relation. (3.1) holds, then Xk is

the last element of the sequence and its construction is completed. Otherwise, we define
Xk+l F(Xk). By (3.2), the construction of the sequence will be completed in a finite
number of steps. Let Xq be the last element of the sequence. It is easy to see that

G(Xq) 103mll011C2(l)-’, P(zq) <_ 2. lO3mllOIIC2(es) -’.

We define 9 G(x) G(xi) (i 0,..., q), Xq {Xiq}Gi=(OXq). Lemma 3, which
holds for e (5 and r (51, implies the existence of a program {zi 0,..., gq } such that

gs+l-

Z (0 + )(Zi, Zi+l)

_
e(, gs+l gs) - 661(1)

i=gs

<_ g(, G(Xs) G(XS+’)) -+- 661((51) (s--O,...,q- 1).

By this inequality, relation (3.4), and the choice of r0, r(A), and 61,

(3.6)

( + O)(zi, Zi+l 2-1 qro.



OPTIMAL PROGRAMS ON INFINITE HORIZON 2 1669

Consider a program (fo,..., fa(x)), where f Ziq (i 0,..., G(Xq) 1), fa(xq)+i
Zi+l (i 0,..., G(X) G(Xq) 1), fG(X) ZG(X). Evidently, fo :co, ZG(xq),q
:ca(x). Relation (3.6) implies that

G(X)-I a(X)-I

[u(x,x+,) p(u)] 211011 <_
i=o i=o

G(Xq)-2

i=0

+ Z(Z(a(Xq)-l)q, 7,1 ,(11,)

i=I

+ u(za(x-a(xl, za(x) #()
G(xq)-i

i=0

G(X)-G(Xq)-I

+ (+O)(z,/,)
i=0

nt- [Zt(:c(a(Xq)-l)q, Zl) Z(:C(G(Xq)-I)q, ZG(Xq)q)]
(4 + O)(zo, z,) + 7r(z)

+ (0 + )(za(x-a(x,
+ r(Za(x)-a(x)) 7r(xa(x))
G(xq)-I

[U(Xiq’X(i-l-1)q) --#(U)]
i=0

G(X)-G(Xq)-I

+ (9 + O)(z, z/) + 811oll + 8r(zX)
i=0

[(f, f+)

G(X)-I

i=0

[u(xi, xi+,) #(u)] qro2- + 811011

2-qro lOl[Oll + 8r(z), q (2411011)-’.

Relations (3.2) and (3.5) imply that

P(X) <_ P(Xq) + G(X) G(Xq) +
qS00mll01lz(,)- + 2. lO3mllO112()- +

< m[101[C2(6 )-1(2 103 + 12. 103[10[[r 1) -+- < Q(A).

The lemma is proved.
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LEMMA 6. Let A E (0, Do). Then there existpositive numbers r(A), Q1 (A), and Qz(A)
such thatfor every natural number N,for every positive number M,for every u E C(K x K)
satisfying lu vii <_ r(A), and for every program (!/i}N=0 E A(u,N,M), the following
relation holds:

Card E {0,..., N 1}" (yi,yi+,) /)((x;,x+
j=O

), A) } <_ Q1 (A) + Q2(A)M.

Proof We choose an integer Q(A) _> and a positive number r(A) such that for
A, Q(A), and r(A) Lemma 5 holds, and define Ql(A) + Q(A), Qz(A) (1 +
Q(A))(2110 I)-l. Let N be an integer, N > 1, M > 0, u C(K x K), Ilu-vll _<
r(A), {Y}=o A(u,N,M). if M < 21[01 then Lemma 6 follows from Lemma 5.
Consider the case m > 211011. By induction we obtain a sequence of integers {p" }p=ok such
that io 0 < < ip < < ik N; for everyp {0,...,k- 1} the relation

q A(u, -iv 2 1011) (i < q < ip+l)(3.7) {YJ }j=ip q

holds; and for every integer p satisfying 0 _< p _< k 2 the relation

{,’+’ ip 211o11),=, A(u, iv+

holds. This relation implies that (k 1)211011 < M. It is easy to see that ip+l v >_ 2
for every integer p satisfying 0 _< p <_ k 2. Relation (3.7) and Lemma 5, which holds for
A, Q(A), and r(A), imply that

Card i {0,...,N- 1} (!/i,yi+l) /)((X,Xq_l),/
j=O

<_ ( + (zx)) _< ( + M(211011)-)( + (zX)) <_ el(ZX)+ M(ZX).

The lemma is proved.

4. Preliminary lemmas for proof of Theorems 1, 3, and 4.
LEMMA 7. Let (0, Do). Then there exists a number r > 0 such that for every

E C(K x I() satisfying I111 <_ andfor every integer k there is a program {zi}=ofor
which thefollowing relations hold:

ZO X, dl((Zi, Zi+l), (X*k+i,x+i+l))

_
(i O, 1,...),

q-1

Z(O-)(Zi, Zi+l) <_g(,q-p)+ 18C1(2e) (p, qareintegers, O<_p< q).
i=p

Proof. Choose r (0, C1 (e)) such that Lemma 3 holds for e, r. Let k be an integer,
c(; x N), I111 -< r. By Lemma 3, for any integer N >_ there exists a program

{zi(N) }=o such that zo(N) z, zN(N) z*+N,

(4.1)

x* (i 0,... ,N 1),dl((zi(N),zi+l(N)), (xk+i, k-+-i+l)) -- ff

N-1

Z ( + O)(zi(N), Zi+l (X))

_
e(, N) nt- 661 ().

i=o
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We fix an integer N >_ 1, and let p and q be integers satisfying 0 <_ p < q < N. We will
show that

q--I

(4.2) E ( + O)(zi(N), zi+l (N)) < g(qb, q p) + 18C, (2c).
i--p

By Lemma 3 there is a program {Y}q-P=o such that Yo xk+p, Yq-p xk+q,
q--p--I

(4.3) Z (q5 + 0)(y, y+,) _< g(qS, q p) + 6C (c),
i=0

dl((yi, yi+,),(xi*+t+p, Xi*+k+p+,)) <_ (i--O,...,q-p-1).

Consider a program {ti}N where ti zi(X)(i E {0, p} U {q, N}) ti yi_pi=0’

(p < < q). By (4.1) and (4.3)
N-1

6C,(e) > [(+O)(z(N),zi+,(N))- (+O)(ti,ti+,)]
i=0

q-I

E [(b
i=p

q--1 q--p--1.. (+O)(t,t+) < (+0)(,y+l)+4r + 2C1(2e)
i=p i=0

_< g(b, q p) + 12C1 (2),
q-1 q-1

E [(q5 4- O)(zi(N), zi+ (N))] _< 6el (e) 4- Z (q5 4- O)(ti, ti+l)
i=-p i=p

_< g(qS, q p) + 18C (2e).
Relation (4.2) is proved. It is easy to see that there is a sequence of integers {N.}_ such
that <_ N < < Nj < Nj+I < .-., and for every integeri >_ 0the sequence
zi(Nj) zi K as j + oc. By (4.1) and (4.2)the program {z}=o satisfies the lemma
conditions. The lemma is proved.

From now on we assume that

(4.4) 7r(x;) sup{Tr(x)" 0,..., rnI.
Letx K, u C(K x K), c > 0, Q {1,2,...}. Set

Ho(z) {(zi}=o C K’zo- x},
H,(z, , ()= {{z}o Ho(m)" {z}--o A(, (,211011)},
H2 (z, Q, e) { {zi}o Ho(z)" there exists an integer 9 E {0,..., Q}

such thatd(z,x,_) <_
H3(x, u, Q,e) {{zi}io Hz(x, Q,e)" {zi}=o is a (u)-good program}.

LEMMA 8. Let ( (0, Do), r (0, (48m)-1C2((5)), Q be an integer, and Q >_
400m110[IC2(6) -. Thenfor every u C(K x K) satisfying Ilu vii <_ r, for every z K,
thefollowing relation holds:

7r(x)=inf{liminfl[u(z’z+’)-#(u)]’{zi}=H3(x’u’Q’6)}"=o
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Proof. Let u E C(K x K), Ilu- vll <_ r, z E K, 0 u- v. Then

(z) inf lim inf [(zi, zi+,) ()] {zi}o H, (z, , Q)
i=0

By Lemma 1, Hi (z, , ) C H2(z, , ) C Ho(z). This relation implies that

(z) inf lim inf [(zi, zi+,) ()] {zi}o H(z, Q, )
i=0

The lemma now follows from Proposition and the definition of a ()-good program.
LEMMA 9. Let e (0, Do). Then there exists a number r > 0 such that for eve

0 C(K x K) satising I11 r thefollowing conditions hold:

(0 + ) + (0 + 0);

there is a (0 + v)-good program {z}o such that

(4.5) zg =zo*, d((z, ZL1 ), (Z, Z*i+I)) e (i 0, 1,...),

(4.6)

q-1

(O+O)(zg, zg+) <_ g(O,q-p)+ 18C,(2e)
i=p

(p and q are integers, 0 <_ p < q),

(4.7)
N-I

N#(O + O) Z (0 + O)(z, z+,)
i=0

_< 30Cl(2e) (N 1,2,...),

N-l

(4.8) lim inf Z [(05 + v)(z,z+,) #(0 + v)] _< C3(e) + 30C,(2e).
i=0

Proof. We choose a number r (0, (2m)-lC (e)) such that Lemma 7 holds for e, r. Let

b C(K x K), 110511 _< r. By Lemma 7 there is a program {z}0 for which zg x; and
relations (4.5) and (4.6) hold. It is easy to see that g(, N) Np(N, + O) (N 1,2,...)

qm(see Proposition and (2.5)). Let q be an integer, q 1, and {Yi}i=0 be a program such that

It is easy to see thatyi z (i O, qm -1), yq xo.

i=0

qm-1

+ + o(g, g+, + 2 + Cl (2>
i=0

(4.9) 2r + C1 (2e) + g(, qm) + 18C1 (2e)

2r + 19C1 (2e) + qmp(qm, 0 + 0),
qm--1

qm(qm, + O) 3C,(2e) ( + O)(z,zL1
i=0

18C1 (2e) + qmp(qm, + 0).
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Let N be an integer, N > m. There is an integer p >_ such that pm <_ N < pm + m. We
have by (4.6), Proposition 1, and (4.9)

N-I

Z (q5 + O)(z,zL, <_ 18C1(2e) + g(ch, N) <_ 18C, (2e) + N#(q5 + 0),
i=0

(p + 1)m#(q5 + 0) (p + 1)mA((p + 1)m, q5 + 0)

(p+

i=0

(q + O)(zCi ,zCi+,) + 3C, (2e)

N-I

< ( + O)(z.,z+) + 3C (2e) + g(qS, (p + 1)m N) + 18Cl(2e),

N-I

i=0

_> (p + 1)m#(q + 0) 21C, (2e) g(q, (p + 1)m N)

>_ -21C1 (2e) + N#(q5 + 0).
Now it is easy to see that (4.7) holds for every N > m.

Consider the case with N < m. We have

Ip(O / O,N)I- {p(4 / O,N)- p(O,N)I < 114ll < r, Ig(4, N)I < mr,

I( + 0)l I( + 0) (0)l _< IIll _< r,

and thus the validity of (4.7) for N follows from these relations, from relation (4.6), and from
the inequality 2mr < C (e). Thus, we have proved that (4.7) holds for every integer N >_ 1.

We will show that {z/}i__0 is a (q5 + v)-good program. Assume the contrary. Then by
Proposition

N-I

[(0 + v)(z[,zLl)- #( + v)]--+ +ec as N --,

i=0

Let { ti }i_-0 be a ( + v)-good program. Then

N-1

On the other hand, relation (4.6) implies that

N-I

i=0

N-I

Z [(-O)(zCi’ZCi+ I) --(-O)(Yi’Yi+l)] + 411rII
i=0

< 18C,(2) + 411"rrll (N 1,2,...).
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The contradiction obtained proves that {z)=0 is a (0 + v)-good program. Then relation
(4.7) implies that

N-I

#(0+v) lim N-’ Z (0+v)(zOi z,)
i=0

N-I

=#+ lim N-’ Z(O+O)(z z+,)=#+#(4)+O).
N--,x

i=0

Now, to complete the proof, we should only prove (4.8). We have for N 1,2,... using
(4.5), (4.7), and (2.3),

N-I

i=0

N-l

+ + + o)],
i=0

N-I

i=0

< C3(e) + 30C1 (2e).

This relation and (4.4) imply that (4.8) holds. The lemma is proved.
LEMMA 10. Let A E (0, Do). Then there is h > 0 such thatfor every u C(K K)

satisfying Ilu vll <_ h the relation 117r 7rvll <_ A holds.

Proof Choose 6o (0, A) satisfying 4(220C1 (250) + 4C3(25o)) < A, an integer Q >
400m110[IC2(6o) -1, and h (0, (48m)-’C2(5o)) such that (Q + 4)8h _< A, Lemma 9 holds
for e 60, r h, Lemma 4 holds for e0 5o, and r h. Let C(K K), I11[ <
h, u v + , and x K. Lemma 8 implies that

Lemma 9, which holds for e 60, r h, implies the existence of a (4) + v)-good pro-
gram {z}o such that zg x; and relations (4.5)-(4.8) hold for e 50. By H4 de-
note the set of all programs {zi}__o such that zo x, d(zg,Zn_) _< 6o, zg+i z_
(i 1,2,...) for some 9 E {0,..., Q}. It is easy to see that H4 c H3(x, u, Q, io). Let
{Yi}o E H3(x, u, Q,6o). It is a (u)-good program, and there is q E {0,..., Q} satisfy-
ing d(yq, Xn_l) _< 5o.. Consider a program {ai}i=o, where ai yi(i 0, q), ai

zOi_q_l(i >_ q + 1). it is easy to see that {ai}i=o E H4. So {Yi}io is a (u)-good program.
By Lemma 4, which is valid for eo io, r h, there exists an integer N >_ such that

(4.10) dl ((YN+i, YN+i+I ), (X, X* <_ 60 (i

We suppose, without loss of generality, that N _> 4q / 4. There is an integer p _> 0 such that
q + + pra < N < q + + (p + l)m. Forg=0,1,...defines(9) (p + l)m+ 9. Fix
integer 9 >- 0. Lemma 9, which holds for e (5o, r h, implies that #(u) #(0 + 0) + #,
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(4. )

N+9-1 q+s(g)

Z [u(yi, Yi+l) #(u)] Z [u(ai, ai+l) #(u)]
i:0 i:0

N+g-! qWs(9)

Z [u(y,y+,)-#(u)]- E [u(a,a+,)-#(u)]
i=q i--q

N+g-I q+s(g)

E [( + O)(y, y+,) #( + 0)] Z [( + O)(a, a+,) #( + 0)1
i=q i=q

+ (z)) (y+)
NWg--I

E [(5 + 0)(yi, yi+,) ( + O)(ai, ai+,)]
i=q

Z [( + 0)(ai, ai+) #( + 0)1 + 7r(z(g)) 7r(yN+9).
i=N+g

We will estimate the last expression and each of its terms. By (4.5), which holds for
60, and (4.10) we have

(4.12) d(Z(g), Xg) < (50, d(yN+g, Xg)

_
60, I(z(9)) (YN+) C3(26o).

It follows from the definition of {a}=o and (4.7) which holds for 5o, that

(4.13)

q+s()

Z [( + O)(ai, a+,) #( + 0)]
i--N+9

(.)-1

i=N+9-q-1

[(, + o)(, z+,) ,( + o)]

s(.q)-,

[( + o)(, z?+,) (, + o)1
i=0

N+g-q-2

i=O

_< 60C, (26o).

It follows from the definition of {a}o and {z}o and relation (4.6), which holds for
50, that
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N+g-I

[( + o)(, +) ( + o)(, a+,)]
i=q

(4.14)

N+g-1

i=q+l

[( + O)(y, y+, ( + 0)(a, a+)] 2h C ((0)

>_ -2h C(o) + e(,N + g q 1)
N+9-q-2

E (-O)(zi ’ZCi+l)
i=0

>_ -2h 19C1 (25o).
Relations (4.11) (4.14) imply that

N+g-1 q+s(9)

E [t(Yi’ Yi+l) ()] E [u(ai, ai+,) #(u)]
i=0 i=0

> -2h 19C1 (260) 60C (2o) C3(2o) (g 0, 1,...).

This relation implies

S-1 S-1

liminf E [u(ai,ai+,) #(u)] _< liminf E [u(yi,yi+l) #(u)]
i=0 i=0

+ 2h + 80C (260) + C3(25o).

Since {a}o H4 C H3(x, u, Q, (50) and {Y}o is an arbitrary element of H3(x, u, Q, (50)

TrY(x) < inf liminf [u(zi, zi+l)- #(u)] {zi}io H4
S---,

i=0(4.15)
_< -(x) + 2h + 80C, (2(5o) + C3(25o).

Denote by Hs(x) the set of all programs {zi} q (q {0, Q}) such that zo xi=0

d(zq,Z_) <_ 50. There exists a mapping P H5(z) -+ H4, where

qP({}=o) {a}o, ( o,...,q), a L-, ( >- q + )

forq e {0, Q} {zi}q
i=o E Hs(x).

It is easy to see thatP(Hs(x)) H4 Letq E {0,.. Q} {z q}i=o Hs(x), {ai}i=o
P({zi}qi=o)" Relation (4.8), which holds for e o, implies

q--1 N-1

u(z,x) #(u) + E [u(zi, z+,) #(u)] liminf E [u(ai,ai+,) #(u)]
i=o i=o

N-1

lim inf E [u(ai, ai+,) (u)]
i=q+l

N-I

liminf E [u(z zS’)- #(u)]
i=0

< C3(60 --1"- 30C1 (260).
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This relation implies that

-inf Z[u(zi, zi+) #(u)] + U(Zq,X))- #(u)" {zi}q__o E Hs(x), 0 _< q _< Q
i=0

< c3( o) + 30G

This relation and (4.15) imply that

(4.16)

TrY(x) inf E[u(z, zi+,) #(u)] +U(Zq,Xo)* #(u)’{z q}i=o E Hs(x)
i=0

_< 2h + l0C (26o) + 2C3(26o).

(4.16) holds for every x K and for every u C(K K) satisfying ]lu vii _< h. Let
x e K, w e C(K K), and IIw vii < h. By Proposition I#(w) #(v)] < h. It is easy
to see that It(v) #. It follows from the choice of 6o and h and relation (4.16), which holds
for u w and for u v, that

This completes the proof of the lemma.
LEMMA 11. #(V) t.t, TrY(x’g) 7r(X*g) 7r(x))(g 0,...,m 1).
Proof The equality #(v) # follows from the definition of #(v) (see (1.1)). Let

g e {0,...,m l} and yi Xg+i (i 0, 1,...). Then

(4.17)

N-I

lim inf E [v(yi, Yi+I )- #] 7r(x*9) 7r(x),
i=0

_<

(4.18)

(v)-good program, Yo xo7rV(x) inf liminf [v(y,y+l) #] {yi}=ois a
N---c



1678 A.J. ZASLAVSKI

Let {Y}o be a (v)-good program, Yo x;, and e E (0, Do). Lemma 4 implies the existence
of an integer Q _> such that

(4.19) dl((yQ+i,yQ++), (z.,x.+l)) <_ e (i 0, 1,...).

Relation (4.19) implies that for every integer j > 0

Q-+-j--

[(w, W+l) ] (x) (v+) (4) (x) c()
i=0

(x) (x) c().

This relation and (4.18)imply that (x) (x:) (x). The lemma then follows from
this inequality and (4.17).

For every number e > 0 we set

(4.20) C4() sup {lV(z,) (z2)l Zl,Z2 , d(zl,z2) }.

LEMMA 12. Let A (0, Do). Then there exists a number R() (0, ) such thatfor
eve u C(K x K) satising llu -v]] R(),for eveu integer 9 {0,..., m 1}, and
for eveprogram {Y}o satising d(yo x*) < R() OU(y Y+l) 0 (i 0 .) the
following relation holds" dl((y{,Y{+l), (Xg+{,Xg+{+)) A (i O, 1,...).

Proofl We choose ro (0, A) such that Lemma 2 holds for R to, A. We choose
6o (0, to) satisfying

50C (26o) + 2C4(6o) + 2C3(6o) 4-ro
and choose R() (0, o) such that Lemma 4 holds for eo o, r R(), Lemma 9 holds
for e o, r R(), and the following relation is fulfilled:

I1 " 4-o ( e c( ), I1- 1 ())

(see Lemma 10). Let u C(K x K), I1- 11 (), {0,..., m- }, {>}o be
a program satisfying d(o, my) 5 R(), and 0(,+) 0 (i 0, 1,...). By Lemma 4,
which holds for eo 6o, r R(), there is an integer Q such that

(4.21) d((yO+, yO++,), (, m+)) o (i 0, 1,...).

Set u v. For every integer j 0

Lemma 11 and relation (4.21) imply

O+j-

=0
O+j-

(4.22)
=0

"(vo) "(vo+) ((*;) (*))

211 "11 + 2c4(eo) (j o, ,...).
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It follows from Lemma 9 and the choice of 50, R(A) that

(4.23) #(q5 + v) # + #(q5 + 0),
(4.24) g(qS, N) <_ N/z(q5 + 0) <_ g(qS, N) + 50C (25o) (N 1,2,...).

For every integer j _> 0 using (4.21)- (4.23) we have

Q+j-1

[(, w+,) ()]
i--0

Q+j-I

7C(yo) 7r(yQ+j) @ E [(0 -- )(Yi, Yi+l) t( -i=o

Q+j--1

E [(0 + )(Yi, Yi+l) t( "- 0)]
i=0

Q+j-1

[(w, +) .()] ((o) (+))
i=0

<_ Ir(x;) r(xS) (r(yo) r(y+j))l / 211< <11 / 2C4(o)
_< 211v 11 / 2c4((o) -k- 2c3((5o) (j 0, 1,...),

N-1

[(o + )(v, v,+,) .( + o)]
i--0

-< 211 Try 11 + 2C4((5o) -+- 2C3((5o) (N Q, Q + 1,...).

The last relation, relation (4.24), and our choice of R(A) and 6o imply that

N-1

(0 + )(y, y+) 211 l[ + 2C4(5o) + 2C3(5o) + g(, N)
i=0

+ 50C (26o) e(, N) + ro (N Q, Q + 1,...).

The validity of the lemma follows from Lemma 2, which holds for e A, R ro.
LEMMA 13. Let (0, Do). Then there exist R (0, ), an integer Q such

that for eve u C(K x K) satising I[u v R, for eve program {Yi}io saris-
ing O(yi, yi+ 0 (i O, 1,...), there is q { 1,..., Q} such that d ((Yq+i, yq+i+ ),
(, X+l)) ( o, ,...).

Pro@ There exists R(A) (0, A) such that Lemma 12 holds for A, R(A). We choose
R (0, R(A)) satisfying R (48m)-C2(R(A)) and an integer Q
4oollOllC2(R())-am. Let u C(K x K), []u vii and {Yi}o be a program
satisfying O(yi, yi+l) 0 (i 0, 1,...). By Lemma 1, which holds for 5 R(A), there is
q {1,..., Q} satisfying d(yq,X;) R(A). The lemma now follows from Lemma 12 and
the definition of R(A).

LEMMA 14. Let m = 1, > O. Then there exist Ro (0, ) and an integer Q such
thatfor eve u C(K x K) satising lu vii o,for eve integer N 2Q, andfor
eveprogram {Yi}=o A(u, N, Ro) the relationd(yi,x;) holdsfori Q, N-Q.

Moreover, if d(yo, x; Ro, then d(yi, x; 5for 0,..., N Q.
Proof. We choose R (0, min{6, II011}) such that Lemma 2 holds for e 5 and R. We

choose 5o (0, 8-1R) satisfying 64C(45o) R and choose Ro (0, 5o)such that Ro 5
(48m)-C2(5o) and Lemma 3 holds for e 5o, r Ro. We set Q 4oo1101[C2(o)-’m.
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Let u E C(K x K), Ilu- vii integer N _> 2Q, and {yi}/N=o E A(u,N, no).
Lemma l, which holds for 6 o, u v, and {yi}N=o by the choice of Ro, implies the
existenceofintegerspandqsuchthat0 < p < q < N, Q >_ p, N-q <_ Q, d(yp_l,X) <_ 60,
and d(yq+l,x)) < 60. If d(x),yo) < Ro, then we assume that p 1. By Lemma 3, which

{ai}i=o such that ao aq_p XO,holds for e 6o, r Ro, there exists a program q-P

(4.25)
q--p--1

Z ( + O)(a, a+) <_ g(, q p) + 6C (60).
i=0

Z NConsider a program { }=o, where zi Yi (i {0,...,p 1} U {q + 1,...,N}), zi

ai_p (i p,..., q). The relation {yi}N=0 E A(u, N, Ro) and our choice ofp and q imply that

N-I N-1

I0 ?A(Yi,Yi+I) ?A(Zi,Zi+l)
i--0 i=0

q

Z [(0 "1- )(Yi, Yi+’ (0 + O)(Zi, Zi+l )]
i=p--

q--I q--p--l

>_ (0 + O)(Yi, Yi+I) Z (0 + O)(ai, ai+l) --4Ro 2C1 (60).
i=p i=0

It follows from this relation, relation (4.25), and the choice of Ro and 6o that

q-I

Z (0 + )(Yi, Yi+l e(, q p) + 5/0 + 8C ((o) R + e(, q p).
i=p

By Lemma 2, which holds for 6 and R, we have d(yp+i,x) <_ 60 (i 0,... ,q p).
The lemma is proved.

5. Proof of theorems. We consider the set E of all functions v C(K x K) for

which there exist an integer re(v) >_ 1, a sequence {z’ (v)}=(g) C K, continuous functions
Try K -- R Ov K x K -. R and a number #, such that the following conditions hold:

1. For i, j {0,..., re(v)} satisfying < j the equality x’(v) z (v) holds if and
only if 0, j re(v);

2. v(x, y) #, + rv(X) 7r,(y) + O,(x, y)(x, y e K);
3. II011 > 0, the function Ov is nonnegative, O,(x, y) 0 if and only if

(x,y) e {(x(v), x+(v))’i 0,... ,re(v)- 1}.

At the beginning of 2 we already noted that E is dense everywhere in C(K x K). It is
easy to see that #(v) #,(v E E), and for every v E E we can apply Lemmas 1-14.
For every v E E and every E {0,+l,...}\{0,...,m(v)} define x(v) K such that

x+,(v (v) x’ (v)(i 0, +1,...). Let v E E. We set

(5.1) D(v) 8-1 inf{d(x(v),x(v))’i, j e {0,... ,re(v) 1}, =/: j}.

If re(v) 1, then D(v)
Let p { 1,2,...}. We define

(5.2) 6(v, p) inf {2-’ D(v), p-’ }.
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It is easy to see that there exist numbers F(v, p) E (0, 6(v, p)), d(v, p) E (0, F(v, p)), positive
numbers QI (v, p), Q2(v, p), and an integer Q3(v, p) > such that the following conditions
hold"

a) If m(v) 1, then Lemma 14 holds for 6 5(v,p), R0 4F(v,p), Q Q3(v,p),
o o();

b) Lemma 12 holds for A 6(v,p), R(A) 4F(v,p), m re(v), z" x(v)
(i- 0, 4-1,...);

c) Lemma 13 holds for A 5(v, p), R 4r(v, p), Q Q(v, p), z’ z (v)
(i 0, 4-1,...);

d) Lemma 4 holds for e0 r(v,p), r d(v,p), x x(v) (i 0, +,...);
e) Lemma 6 holds for ZX I’(v,p), r(ZX) d(v,p), Q (A) QI (v,p), Q2(AX)

Q(, p), . (), x ()(i o, +,...);
f) Lemma lO holds for A F(v p), h d(v p).

oo U B(v, d(v, p)) It follows from the construction of FNow, we define F Cqp= ,eE

that Theorems 3 and 4 of [13] are valid for F. For the set F we will prove Theorems 1-4 of
this paper.

It is easy to see that Theorem follows from Lemma 10 and the definition of F (see
condition f).

Proof of Theorem 2. Let u F, 8 > 0. Choose an integer p _> satisfying 4p- < 6.
There exists v E for which u B(v, d(v, p)). We define

(5.3) W(u) B(v,d(v,p)), Q Q(v,p), Q2 Q(v,p).

By condition d) we have

(5.4) dist(H(u), {(xT(v),xT+l(V))’i-.-.O,...,7(v)- 1}) _< r(v,p).

By condition e) Lemma 6 holds for A F(v,p), r(A) d(v,p), Qi(A) Qi (i
*()(i o + ..).1,2),m ra(v) xi x

Let w W(u), N be an integer, N _> 1, M > 0, and {yi}N_0 E A(w, N, M). Then, by
Lemma 6

(5.5)

Card i{0,...,N-1}’(yi,yi+,) U [3((zJ(v)’zJ+ l(v))’F(v’p)) <_Q,+MQ2.
j=0

This relation and relation (5.4) imply

Card{/ {0,...,N- 1} d,((yi,yi+,),H(u)) > 4r(v,p)} <_ Q, + MQ2.

This completes the proof of the theorem.
We have the following result.
PROPOSITION 2. getu F, (zo, z) H(u). Thenthere existsasequence {z}_oo C

K such that (zi,zi+) H(u), O(xi,zi+,) 0(i 0,4-1,...).
Z ooProof. Let { i}i=0 be a (u)-good program. For an integer p _> 0 denote by Zp a

{zi }i=_p, where zf Zi+p (i -p, -p + 1,...). It is easy to see that there existssequence p oo

a subsequence {Zpk }X=l such that

PkZ k--+oc Xi I( (i 0,4-1,...).

Clearly, {xi}_oo is the required sequence.
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ProofofTheorem 3. Let u E F, e > 0. We choose an integer p >_ satisfying 4p- < e.
There exists v E E such that u E B(v, d(v, p)). By condition d) and Lemma 4 we have

(5.6) dist(Ho(u), {x (v)" 0,..., re(v) )) <_ F(v, p),

(5.7) dist(H(u), {(x(v),x+,(v))" i= 0,... ,re(v)- 1}) <_ r(v,p).

We define

(5.8) W(u) B(v,d(v,p)), F(v,p).

Let w W(u) and {xi}o be a program such that O(xi,xi+) 0 (i O, 1,...),
d(xo, Ho(u)) <_ . Then, by (5.6), (5.8)

d(xo, {x(v) 0,... ,re(v) 1}) 2r(v,p),

and by condition b) and Lemma 12

d,((xi,xi+,), {(3g(v),xi*+l(V))’i 0,... ,Tl(v) 1}) <_ 6(v,p)

for 0, 1, By (5.7) and by our choice of p

d((xi,xi+),H(u)) <_ 26(v,p)

__
2p-1 < e 0,

Assertion is proved.
Let us prove assertion 2. Let u F, e > 0. We choose an integer p >_ satisfying

4 < pe. There exists v E such that u B(v,d(v,p)). By condition d) and Lemma 4 we
have

(5.9) dist(H(u) { (x (v) x*i+,(v))" i= O,...,m(v)- 1}) _< F(v,p).

We define

(5.10) W(u) B(v,d(v,p)), N Q3(v,p).

Let w e W(u) and {Yi}o be a program satisfying OW(yi,yi+) 0(i 0, 1,...). Then,
by condition c), Lemma 13, and relation (5.9)

dl((Yi+N,Yi+N+I), {(X(V),X+I(V)) 0,... ,re(v) 1}) <_ (v,p) (i 0, 1,...),
d((y,yi+),H(u)) <_ 26(v,p) < e (i >_ N).

Hence, Assertion 2 is proved.
ProofofTheorem 4. Let u E F, e > 0. We choose an integer p >_ satisfying 4p-

There exists v E E such that u B(v, d(v,p)). By condition d) and Lemma 4 we have

(5.11) dist(H(u), {(xT(v),xi*+l(V))’i 0,... ,re(v) 1}) <_ F(v,p).

By corollary 2 of Theorem 3 there exists a neighborhood W(u) of u in C(K x K) such
that W(u) C B(v,d(v,p)), and for every w W(u), for every program {xi}_ sat-

isfying O(xi,xi+l) 0(i 0,:t:1,...) the relation dl((xi,xi+),H(u)) <_ F(v,p)(i
0, :t: 1,...) holds.
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Letw E W(u) and{yi}i=_ beaprogramsatisfyingOW(yi,yi+) =0(i =0 zkl .)
By (5.11)

(v)-

(Yi, Yi+I) B((x(v),xj+(v)), 2F(v,p)) (i--0,+/-1,...),
j=O

and there is an integer k such that

d((y, y+), (x+(v),x++,(v))) <_ 2r(v,p) (i 0,+,...).

Now it is easy to see that for all integers i, j the relation d(yi, yi+y()) <_ 4F(v, p) < e
holds. Theorem 4 is proved.

We will prove the following result.
THEOREM 5. 1. Letu E F, {x}0 be a (u)-goodprogram, Then there exists aprogram

{y } such that

OU(y, y+l) 0 (i 0, :[:1,...), lim d(x, yi) O.

2. Let u F, {xi}=_ be a (u)- minimal energy configuration. Then there exist

programs {y}=_, {z}_ such that

o"(v, +,) o, O(z, z+) o (i o, +, .),
lim d(xi, yi) 0, lim d(xi, zi) O.

i--*+cx)

Proof First we will prove assertion 1. Let u F, {x}0 be a (u)-good program. By
[13, Thm. 3] the program x is asymptotic almost periodic. Therefore for every integer p _>
there exist integers k(p) > 2, re(p) >_ 2 such that

(5.12) d(xi, Xi+m(p)j) p-1 (i k(p), j

_
1).

pFor every integer p >_ 0 let us denote by Xp a sequence (xP}_p, where xi x+p
(i -p,-p + 1,...). We define

p

M(p)-IX re(i) (p 1,2,...).
i--I

Let Q be an integer, Q >_ 1, and let us consider a program XM(Q) _/r_{X,(Q)}ic=_M(Q).
Let p E {1,..., Q} and be an integer satisfying > k(p). By (5.12) and the definition

of M(Q) we have d(xi,xM(Q)) d(xi,xi+M(Q)) <_ p-. We have proved that for every
integer Q >_ the following relation holds:

(5.3) d(, xg()) _< (i is an integer, >_ k(p)), (p { 1,..., Q}).

There exists a subsequence {XM(Qj) }= such that

M(Qj)
X j--,cxz Yi K for every integer i.

Assertion now follows from (5.13).
Now we will prove assertion 2. Let u E F and {x}=_ be a (u)-minimal energy

configuration. The existence of configuration {y}=_ follows from Assertion 1, which
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holds for the (u)-good program {zi }=0. Let us prove the existence of the program { zi }_.
Fix an integer p _> 1. There exists v E E for which u B(v,d(v,p)). By condition d) and
Lemma 4 we have

(5.14) dist(H(u), {(X(V),X+I(V))’i O,...,?Tt(V)- 1}) < F(v,p).

By Theorem 2 there exists an integer Q(p) > such that for all integers Nl and N2 satisfying
N1 < N2 the following relation holds:

Card{/e {N,...,N2- 1}’d,((xi,xi+l),H(u)) > 2-1((v,p)- r(v,p))} _< Q(p).

By this relation and by (5.14) there exists an integer k(p) > such that

(5.15)
d,((xi,xi+l),H(u)) <_ 2-1((v,p)- r(v,p)) (i <_ -k(p)),
dl((xi,xi+l), {(x(v),x+(v)) 0,... ,re(v) 1})

< 2-1((v,p)+ r(v,p)) (i < -k(p)).

We have (5(v,p) <_ 16-1 inf{d(x(v),(x.(v))’i, j e {0,...,re(v)- 1, < j}; hence,
there exists an integer G such that

(5.16) dl((X-k(p)+i,X-k(p)+i+l), (X*G+i(V),X*G+i+I(V))) <_ 2-1((5(v,P)+
(i 0,-1, -2,...).

Set N(p) re(v). Relation (5.16) implies

(5.17) d(xi,xi+jN(p)) <_ 2p-1 ( <_ -(p), j <_ ).

For an integer p >_ we define M(p) 2p PHi=I N(i) and denote by Xp a sequence
P where p (i 0, -t- ..).{} , =x_
Let Q >_ be an integer, p e {1,... Q}, and be an integer satisfying <_ -k(p). It

follows from (5.17) and the definition of M(Q) that

d(xi,xM(Q)) d(xi,xi_M(Q)) <_ 2p-l ( <_

We have proved that for every integer Q _> the following relation holds"

(5.18) d(xi,xiM(Q)) <_ 2p-’ (i <_ -k(p)), (p {1,...Q}).

There exists a subsequence {XM(Qj) }= such that

x,/M(Q.J) j__, z E K for every integer i.

Assertion 2 then follows from (5.15) and (5.18). Theorem 5 is proved.
We define C(K x K) {v C(K x K)’#(v) max{v(z,z)’z K}}. It is easy

to see that (K x K) is a closed subspace of C(K x K). The space C(K x K) has also the
topology of the uniform convergence. We reenforce the previous theorems for u II(K x K)
and prove the existence of a set F0 C F N (K~x K) which is a countable intersection of
subsets of 0(K x K) open everywhere dense in C(K x K) and for which Theorem 6 holds.
This theorem shows that for every u F0 and every z E K there is a (u)-overtaking optimal
program {zi}0 satisfying :Co z and establishes an analogue of the strong turnpike theorem
for u F0.
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THEOREM 6. 1. Card (Ho (u)) (u E Fo).
2. Let u Fo and be a positive number. Then there exists a neighborhood W(u) ofu

in C(K x K) such thatfor every w W(u),for every (w)-good program z the following
relation holds: dist (a(x), (Ho(u) x Ho(u))) _< ft.

3. Let u Fo and {xi}=o be a program for which OU(x,x+l) O(i O, 1,...).
Then {xi}o is a (u)-overtaking optimal program, and moreover, if {Y}o is a program
such that Yo xo,

N-1

lim inf Z [u(yi, yi+) u(xi, xi+)] 0
i=0

then OU(yi, yi+) O(i O, 1,...).
4. Let u Fo, e > O. Then there exist a neighborhood W(u) of u in C(if x If), an

integer Q >_ 1, and eo (0, e) such thatfor every w W(u), every integer N >_ 2Q, and
every program {yi}N=o A(w, N, co) the following relation holds: d(yi, Ho(u)) <_ e(i
Q, N Q) and if d(yo, Ho(u)) <_ co, then d(yi, Ho(u)) <_ e(i {0,..., N Q}).

Proof. We define

Eo {v e E" m(v) 1}, Fo N U (, e(’, )).
p=l vGEo

It is easy to see that Eo is dense everywhere in I(K x If), Fo C F N (K x If). Condition
d) and Lemma 4 imply the validity of assertion 1. Assertion 2 follows from Assertion 3 of 13,
Thm. 3] and the relation Card {Ho(u)} l(u Fo). This relation also implies assertion 3.

Let us prove assertion 4. Let u E Fo, e > 0. Choose an integer p >_ such that 4p-1 < e.
There is v Eo for which u B(v,d(v,p)). We define W(u) B(v,d(v,p)), Q
Q3(v, p), eo r(v, p). By condition d) and Lemma 4

(5.19) d(Ho(), ;()) _< r(,p).

Let w e W(u), N >_ 2Q, and {yi}/N=o e A(w, N, o). Then, by condition a) and by Lemma
14 the following conditions hold:

d(, z, (v)) <_ (, p) (i E {Q,...,N- Q});

if d(yo, x;(v)) <_ 4r(v,p), then d(yi,x;(v)) <_ 6(v,p)(i {0,... ,N Q}). By these
conditions and (5.19) we have

d(yi, Ho(u)) < 26(v,p) < 2p- < e (i e {Q,..., N Q}),

and ifd(yo, Ho(u)) _< eo r’(v,p), then d(yo, x(v)) <_ 2r’(v,p),

d(,x;(v)) < (,p) ( e {0,... ,X- Q}),
d(y,Ho(u)) <_ 26(v,p) < 2p- < e (i 0,...,N- Q).

Theorem 6 is proved.

Acknowledgments. The author thanks Dr. Arie Leizarowitz for fruitful discussions.
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COCOLOG: A CONDITIONAL OBSERVER AND CONTROLLER LOGIC
FOR FINITE MACHINES*

PETER E. CAINES AND SUNING WANG

Abstract. The problem of observation and control for partially observed input-state-output machines is
formulated in terms of a tree of first-order logical theories. A set of first-order languages for the description of
the controlled evolution and state estimation of any given machine .M is specified; further, extralogical conditional
control rules are formulated so that closed loop control actions occur when extralogically specified past observation
dependent conditions are fulfilled. In particular, conditional control rules may include commands that steer the system
state from a current partially observed state (estimate) to a target state if such a sequence of controls can be proven
to exist. Starting from a general theory of A//at the initial instant, observations on the input-output behaviour of the
system at each later instant are accepted by the system as new axioms; these are then used together with the previously
generated theory to generate the current theory. The acronym COCOLOG is used to denote the family of first-order
conditional observer and controller logics for any given input-state-output system. A semantics is supplied for each
COCOLOG system in terms of interpretations of controlled transitions on a tree indexed by the possible sequences of
input-output observations. Extralogical rules, including the conditional control rules, relating members of the family
of theories of a COCOLOG system are presented in the form of a set of metalevel rules. Following the complete
definition of a COCOLOG system, the consistency and completeness of the first-order theories in a COCOLOG
system are established, decidability is obtained using a unique model property, and examples of the operation of a
COCOLOG logic control system are given.

Key words, discrete event systems, finite machines, logic control

AMS subject classifications. 93, 68, 03

1. Introduction. In this paper we introduce certain partially ordered sets of first-order
logical theories which we call conditional observer and controller logics, or COCOLOG
systems for short. A COCOLOG system provides a logical system for (i) describing and
reasoning about the state estimation and control of a given finite input-state-output machine
Ad and (ii) acting upon AA via a closed-loop logic regulator carrying the corresponding
COCOLOG system.

A particular subset of the formulas in each of the constituent logical languages of a
COCOLOG system is called the set of conditional control rules (CCRs); these are formulated
so that a certain control action is specified at an instant k when a certain set of past measurable
(i.e., past observations-dependent) conditions Ck are fulfilled. In COCOLOG this translates
precisely into the existence of a proof, in the corresponding first-order logical theory, of
a formula describing the conditions Ck. Conditional control statements may include, for
example, control commands that will steer the current system state or its estimate to a given
target state xX; such commands would be implemented whenever a sequence of controls
achieving this objective can be proven to exist, with the uniqueness of the selected control
ensured via a prescribed arrangement of the CCRs.

The conceptualization of a feedback regulator system adopted in this paper is qualitatively
different from the usual notion of a feedback system. In the customary formulation, a feedback
regulator, which shall be denoted by 7, is an input-output dynamical system whose inputs
are typically the measured outputs of the controlled system .Ad and whose outputs are the
controlled inputs to .AA. Hence the system and the regulator are objects of the same type,
namely input(-state)-output dynamical systems. However, in our formulation, when A//is in
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a feedback loop with a logic regulator , the situation is quite different and we now give a
sketch of the operation of the system (.A//, ).

At each discrete time instant k, the previous input uk- and output Yk of the system .A//,
taking the values u and yJ in the finite sets U and Y, are mapped extralogically into formulas
called observation axioms, which are accepted by the regulator 7Z. In the present case, is
conceived of as a dynamical logical system mapping theories to theories (see the papers of
Caines, Greiner, and Wang 1988], 1991 ]) and emitting outputs via a second extralogical map.
Let the theory carried by 7 at the instant k be denoted Th(o- ), where o- denotes the
sequence of observations over [1,/c 1]. At the instant k the equality predicates relating the
constant symbols U(/ 1) and Y(k) at k to the observed quantities u and yJ are accepted
as new information into the theory Th(o1-1 ). By this we mean that these equality predicates
are taken as new axioms to be added to Th(o-). In addition, the state estimation axioms
indexed by k are also accepted as new axioms. The theory carried by is then transformed
into the deductive closure of (i) Th(o-l), (ii) the observation axioms, and (iii) the state
estimation axioms, and this is relabeled as Th(o). By their design, the conditional control
rules yield a unique, deducible, constant symbol for the input, U(k), to Ad at k. The predicate
defining this value is then mapped by the second extralogical transformation referred to above
into the quantity which forms the input, lying in the finite set U, to .AA at the instant k, and this
predicate is also handed on to the subsequent axiom set as an observation axiom. The system
A//now performs another dynamical evolution step to generate the observed output yk+eY
at the instant k / 1, and this completes the dynamics-to-logical theory cycle .A// .

The process above is initiated with the system in its initial state x0 and the regulator
carrying only Tho Th(o) (where denotes "denotes"), where Th(o) consists of the

deductive closure of the dynamical axioms of A// (i.e., those describing the state transition
and output maps) together with the logical axioms, the axioms for equality, the axioms for the
reachability predicates, and the axioms for a simple arithmetic.

(It is evident that the j/ 7 --+ .A// feedback loop may be generalized to a loop
7 --, , where 12 is itself a dynamical logical system, but the investigation of this is left

for future work.)
The exposition in this paper is in terms of finite state machines solely to establish the

theory of COCOLOG systems in its simplest context. There is no obstruction, in principle,
to extending the theory to machines in continuous time, extended state machines (Ostroff
1989]), and the automata of Ramadge-Wonham discrete events systems theory (Ramadge
and Wonham 1987], 1989]).

The development ofCOCOLOG for dynamical control systems has a twofold motivation"
first, the hierarchical nature of contemporary computer controlled systems may be better
understood and enhanced by a study ofregulator systems conceptualized at the logico-linguistic
level. A notable example in this context is the capacity of reasoning systems to accept and
operate on existential assertions, something a classical dynamical regulator is incapable of
doing. Second, a control objective in COCOLOG, such as steering the system state to some
state xx, may be modified at any instant in the controlled machine’s operation by conditions
which are expressed via conjunctions and disjunctions of predicates; such conditions will be
accepted by a COCOLOG regulator as new CCRs on the basis of which new control laws
will be deduced. By their nature, conventional dynamical regulators cannot easily accept
significantly modified objectives but must be redesigned to fit a new task. (We note that this
is in contradistinction to the ability of conventional regulators with fixed control objectives to
adapt to changing system dynamics.) It would also appear that information concerning system
dynamics and objectives involving combinations of rules, necessary conditions, and sets of
alternatives is best expressed logically, and hence a logic-based controller is most suitable for
operating in this domain. (See Dyck and Caines [1995].)
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Previous work on the formulation of the theory presented here and its ramifications has
appeared in papers by Caines, Greiner, and Wang, [1991 ]; Caines, Wang, and Greiner [1988];
Caines and Wang [1989a], [1989b]; Wang and Caines [1991]; and, in particular, by Caines
and Wang [1990] and in the thesis by Wang [1991 ], on which the exposition in this paper is
based in part.

Other works which are analogous to, but different from, that presented here are the situated
automaton work of Rosenschein and Kaebling [1987] and the situation calculus work of
Reiter 1991 ]; these fall within the long-standing program of research in artificial intelligence
to create logical decision-making systems which can predict and analyse the properties of
formally specified systems (see, e.g., McCarthy and Hayes [1969] and Green [1969]) and
which could, in principle, interact with them as they evolve in time.

Further, there is the line of research of Thistle and Wonham [1986], Ostroff [1987],
[1989], and Ostroff and Wonham [1985]. In this work a fully elaborated temporal logic
framework is presented to verify the correctness of feedback control algorithms for extended
state machines. More recently, Kohn [1988], [1991] has devised a formulation of the logic
control problem in which equational axiom systems describe the dynamical properties of
continuous time systems and the declarative language of the system expresses optimization
goals and constraints. Automatic automata-based procedures then create what is called a
declarative control architecture. A more distantly related line of work is the use of temporal
logic to study the evolution of programmed computational processes (see Harrel [1979] and
Goldblatt 1987]).

We conclude this introduction with a briefremark about computational implementation. In
its most direct implementation, a COCOLOG controller requires the real-time implementation
of automatic theorem-proving (ATP) programs. The status of automatic theorem proving might
be thought to indicate that this would be a formidable task. However, the restrictive nature of
the system dynamical axioms and the option of defining restricted but nontrivial sets of control
rules suggest the possibility of an efficient implementation via some type of ATP program.
Current ATP software development in the context ofCOCOLOG applications (see, e.g., Wang
and Caines 1991], 1992]; Dyck and Caines [1995]; and Caines, Mackling, and Wei 1992])
appears to confirm this conjecture.

2. Finite state machines. In this section we formally introduce our finite machine setup
and define the notions of observation and control which will be required in subsequent sections
of this paper.

DEFINITION 2.1. A (partially observed) finite (input-state-output) machine is a quintuple
AA (U,X,Y,,z/), where U is a (finite) set of inputs, X is a (finite) set of states, Y is a

(finite) set ofoutputs, X x U -- X is a total transition function, and X --+ Y is a total
output function.

Concerning notation, we shall sometimes write u for the (n + )-element sequence
[lli, 114,+1,11i+2, Ilr], where ujeU denotes the input at the time instance jei::]+ (where uj is
identified with lug l) and e will denote the empty input string. We shall use the notion that for
all sequences u e whenever > n.

The dynamical evolution of a finite machine A// (U,X,Y,@,r/) can be displayed by
taking U* to be the set of all finite sequence of inputs and by extending @ X x U + X to

X x U* -- X, where for all i, ne:,+, for all ueU*, and for all xeX, is recursively
defined by

(2.1)
,I,(x, x,

u?)
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The initial (respectively, current) state dynamical observer problem for a finite machine
AA is to estimate A/l’s initial (respectively, current) state from observations on its inputs and
outputs over a finite time period. An initial (respectively, current) state dynamical observer
takes as input the observed behaviour of a system, i.e., a sequence of input-output pairs,
and generates as output a sequence of estimates of the initial (respectively, current) state of
the system. The notion of estimate is made precise in set theoretic terms in the following
definitions.

DEFINITION 2.2. The N-element state sequence xN XN is an N-consistent state se-
quence with respect to the input-output sequence o [(y), (ul,Y2),...,/uN-, YN)]
O AY x (U y)N-I ifxN satisfies

(2.2) x (I)(x,, U-’) and y r/(x) for allk [1,..., N].

The set ofall N-element state sequences with respect to oN is denoted CSS(oN).
We shall denote the projection operator from oN onto the ruth u-coordinate, _< ra _<

N 1, by u(.) and that which projects onto the nth y-coordinate, < n _< N, by Yn(’).
(Note that ur,, (oN) u.(o’) for _< m _< N _< N’ and y(o) yn (o’) for
<_n_<N_N’.)

DEFINITION 2.3. An initial state estimate set, with respect to the N-element observation
sequence, oN, written { )(oN), is the set of initial elements of consistent state sequences
corresponding to oN, i.e.,

(2.3) {,}(o) {xeX; x P,(x)for somexN

where P1 (’) denotes projection on thefirst component ofthe argument. Analogously, a current
state estimate set, with respect to the N-element observation sequenceo written {N }(0
is the set offinal elements ofconsistent state sequences with respect to o, i.e.,

(2.4)

where PN(’) denotes projection on the Nth component of the argument.
DEFINITION 2.4. A finite machine Sk4 (U, X, Y, (I), /) is said to be initial (respectively,

current) state observable ifthere exists a K + such thatfor all N >_ K and all UNeUN the
initial (respectively, current)state estimate {I } (oN) (respectively, {N } (01N)) is a singleton.

Consider any finite machine AA (U, X, Y, (I), ). Then for any observation sequence,
oeON, the following equations hold:

(2.5)

{1} (OU+1 {1)(O1) N (I)-’ (B-’ (YN+I), uN)
N+I

n (I)-l(/-l(Yk)’Ulk-l)’
k:l

(2.6) N
N-- n (I)("--I (Ya)’ u N /- (YN+,),

with equality in (2.6) if (I)(., u) is one to one for each ueU. In (2.5) and (2.6), (I) has been
extended to take sets of states in its first argument: (I) 79(X) U* 79(X), where 79(S)
denotes the power set of the set S; this is done by setting (I)(A, u) {xeX; x (I)(x’, u])
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U1

FIG. 1. A three-state machine.

for some x’eA}. (I)-1 denotes the inverse I,-’ 72(X) U* -+ 72(X), given by @- (A,u]’)
{xeX;I,(x,u’)eA} and similarly for -. Finally, {0}(o) is defined to be X. (See the
papers by Caines, Greiner, and Wang [1988], [1991].) We note that these equations possess
the predictor-corrector form of many recursive algorithms in systems and control theory.

The corresponding partially ordered sets of initial and current state estimate sets will be
referred to as the initial and current observer trees, respectively (for the given machine). Ob-
serve that although the state estimate sets may be identical for distinct input-output sequences,
such distinct sequences uniquely define a directed acyclic graph with no confluences of edges.
So at the cost of some redundancy, we shall label current state observation processes by the
branches of the tree of input-output sequences and shall do the same for a COCOLOG family
of theories.

Example 2.1. The following is an elementary example illustrating the notions introduced
above. The finite machine M3 (U,X,Y,@,) is given in Fig. 1, where the input, state, and
output sets are, respectively, U {u, uZ},X {x,xZ, x3}, and Y {y,yZ}; the output
function is given by (x) q(x) y, (x) y2, and @ is given explicitly by the graph
in the figure.

The notion of an N-consistent state sequence with respect to an input-output sequence
is illustrated by the sequence of observations

(y,), (u2, yl), (u’,

which gives the corresponding 1-, 2-, and 3-consistent state sequences

{(XI}, (X2}}, {(X1,X2), (X2,x2)},{(X1,x2,x3), (X2,x2,X3}}
and hence the sequence of initial state estimate sets

{X1,X2}, {X1,x2}, {X1,x2}
and the sequence of current state estimate sets

{x’,
We denote that the machine is current state observable but not initial state observable.
DEFINITION 2.5. Afinite machine is said to be controllable iffor all x,x’eX there exists

x’) n(x,x’) x equivalently, (ffor all x,xex there existsa sequence u(x’ such that (x, u or,
n(x,x’) such x’ is r a ha lefrom x s eps.
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By inspection, the machine in Example 2.1 is controllable.
The papers by Caines and Wang [1989] and Caines, Greiner, and Wang [1988], [1991]

contain results concerning the combinatoric properties of initial and current state observer trees
and give the following elementary dynamic programming theorem for the partially observed
control problem: consider the problem of steering any unknown initial condition to an arbitrary
target state :eT; then for current state observable and controllable finite state machines there
exists a controller whose feedback control law is a function only of x7 and the sequence of
current state estimate sets and which steers any initial unknown state to :e7.

3. COCOLOG: Syntax and semantics.

3.1. Syntax of COCOLOG L. The COCOLOG language consists of a set of symbols
5’(L) and specified formation rules (or syntax). The subject of a COCOLOG language L is
some given finite machine .A/[ (U,X,Y,,r/), where U is the set of inputs, X is the set of
states, Y is the set of outputs, is a state transition function X U -- X, and r/is a state

output function /: X --+ Y. It will be evident that we could construct a language L without
reference to a finite machine, but this case will not be of interest to us in this paper.

We first define 5’(L) for the machine JA as

5’(L) ConsL U VarL U Fun t Apr Qua Lco U {2_ }.

The component sets of 5’(L) are defined as follows.
Constant symbols. The constant symbols fall into the following typed subsets:

Co {’,...,} U {’,... ,x} U {V’,... ,} U {0, ,... ,(N),(N) + },

where h(N) is an integer symbol and where the symbols 1,... ,;:e,... ,:ev; and
y,..., yP denote the individual elements of the input set U, the state set X, and the out-

put set Y, respectively.
Variable symbols. The variable symbols fall into the following typed subsets:

VarL {u,u’,u",...} U {x,x’,x",...} U {y,y’,y",...} U {1,1’,l",...},

where the variables will be taken to be varying over different domains, u, u/, u’,.., will be
interpreted to represent elements in the set of inputs U; the variables x, x, x’, elements
in the set of states X; the variables y, y, y’, elements in the set of outputs Y; and the
variables l, , l’, elements in the set of numbers Ik(N) see 3.2 below.

Function symbols.

Terms. The elements of the set TermL are defined by the following:
(i) Each constant and variable symbol is a term; i.e., COnSLU VarL C_ TermL.
(ii) If t,... ,t are terms and f is a function symbol of arity n, then f(t,... ,t,) is a

term.
(iii) The elements of TermL are constructed only by steps (i) and (ii) above.
Atomic predicate symbols. AprL {Eq(., .), Rbl(.,., .)}.
Sorting constraints. The predicate and function symbols are taken to satisfy the follow-

ing sorting constraints on their arguments, where all admissible symbol strings are of finite
length:

Eq(,/3)" and/ are terms of the same type.
Eq((a, b), c)" a and c are symbols in {:e,... ,:e :v } or in {:e, :e’,...) or are symbols of

the form ,,(a, b), and b is a symbol in {ul,..., u } or in {u, u’,...}.
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Eq(l(a), d)" a is a symbol as described above, and d is a symbol in (jl, /2,..., yp} or
in {y, y’, y",...} or is a symbol of the form /(a).

Eq(+L(i,j),k) and Eq(-L(i,j),k)" i,j, and k are symbols in {0,1,2,...,k(N),
k(N) + 1} or in {1,1’,...} or are of the form +z(i,j) or -z(i,j), where j is of the same
type as .

Rbl(a, a’, i)" a and a are symbols of the same type as the symbol a described above, and
is a symbol as described above.

Quantifiers. Qua- {V}.
Logical connectives. Lco {- }.
Logical constants. { +/- }.
Any well-formedformula of L is given by the Backus-Naur syntactic rule (see Goldblatt

[19871)"

A ":= (t,..., t) Al - A21 +/- IV vA1,
where (.,., .) e AprL; A1 and A2 are well-formed formulas; and t,..., tne TermL, in
the sense that a well-formed formula is an expression that parses according to these rules until
after a finite sequence of steps one halts at a set consisting only of elements of S(L). The set
of such formulas will be denoted Final or L.

The other logical connectives , V, A, and and the quantifier are defined as follows,
where the parentheses and are used whenever they clarify the meaning of a formula:

-A A -+ _L,
A1 A A2 z (AI A2),

A1 +----4 A2 (A1 --+ A2) A (A2 ---+ AI),
A1 V A2A A A2,

vAzX -(V v-A).

3.2. Semantics ofCOCOLOG L. In the following discussion we shall distinguish sym-
bols used in the specification of a (set-theoretic) finite machine A4 and those used in a
COCOLOG language L; this is achieved by the convention that COCOLOG symbols will
be the lightface versions of the boldface symbols denoting the constants, variables, and func-
tions (in this case also with an overbar) of the machine A//. Following standard terminology
(see, e.g., Goldblatt 1987]), an L-structure Ht, (D, I), or an interpretation I (with domain
D), is a pair where, first, D U U X U Y U IkN), where U, X, and Y are the sets appearing
in the specification of some arbitrary finite machine A/[ as specified in 2 (which is not neces-
sarily the machine which defined the language L) and Ik(N) {0, 1, 2,..., k(N), k(N) + 1}
is the set of integers between 0 and k(N) 4- 1, inclusive, and, second, I is an interpretation
function which respects the typing of L and which in COCOLOG is defined as follows:

() x ux,
.r() x - Y,

I(4-L) 4-k(N) Ik(N) X Ik(N) --+ Ik(N),
I(--L) --k(N) Ik(N) X lk(N) ---+ Ik(N)

I(C) e D, where c e Consc,
I(Eq) {(t,t’); t,t’ eD,t t’}

_
D,

I(Rbl) C_ X2 Ik(N).
Note that without further conditions being imposed, I(.) may be a many-to-one function on

Consr.
Here k(N) is taken to be an arbitrary number greater than IXI2; this is motivated by the fact

that (see Caines, Greiner, and Wang 1991 ]), counting from the root, a current state observer
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tree can have at most IXl 2 layers at which there is a reduction in size of some nonsingleton
node.

Addition +k(N) and subtraction --k(N) in the arithmetic Ak(N) over the finite set of integers
{0,1,2 k(N), k(N) + 1}, where k(N) + 1 plays the role of infinity, are defined by the
following expressions, where we follow the convention that +k(N) and --k(N) denote the
addition and subtraction in the L-structure Hc and -t- and denote the standard integer
arithmetical operations:

b
a + b

a -I-k(N) k(i) + 1

b
a b

a
k(N) + 1

ira / b _< k(N),
ifa + b > k(N),
ifa- b >_ 0 and a =/= k(N) + 1 and b - k(N) + 1,
ira- b < 0or ifa k(N) + 1.

These finite-integer arithmetical operations are chosen to express the dynamical properties
of .A/[ over a bounded integral number of steps or discrete time instants.

In COCOLOG, a He-valuation (i.e., I-valuation) is a function V "Varc -- D satisfying

X
Y

V(v) U
Ik(N)

which can be extended to V TermL ---+ D by

z(t)v(t) I(f)(v(t,), v(t2),..., v(tn))

ift eVarL,
ifteCOnSL,
if t f (tl, t2,..., tn) and f e FunL is a

function of arity n.

We take V , V to mean that V and V are identical except in the value they assign to
v and

V(v/d) V’ iff V ,",.,,, V’ and V’ (v) d.

HL A[V] stands for the property that a structure b/L (or interpretation I) satisfies a
formula A under the valuation V; this is defined recursively by

blL Eq(t, t’)[V] iff V(t)= V(t’),
blL Rbl(x,x’,k)[V] iff(V(x),V(x’),V(k))eI(Rbl),
HL (Al -- Az)[V] iffHL Al[V] impliesb/L Az[V],
HL L[V] iffnotLlL +/-[V],
HL V vA[V] iff for all d e D, it is the case that HL A[V(v/d)].

The property that the formula A is true in the structure Hc, written Hc A, or equiva-
lently that I (on the domain D) is a model for A, is defined by

(L A iff for all V it is the case that /L A[V];

and A isfalse in HL, written HL A, or I (on the domain D) is not a model for A, is defined
by

HL g A iff for some V it is the case that blL g A[V], i.e., HL -A[V].
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In standard terminology, a formula A is called valid if it is true in all structures HL (i.e.,
all interpretations I), which is the case if and only if for all HL, HL A. A formula A is

satisfiable if there exists some structure b/L and some valuation V such that the satisfaction
relation blL A[V] holds. Obviously a formula A is valid if and only if --,A is unsatisfiable.
Unless we relativize to a set of interpretations, the only valid formulas in a theory are those
given by the logical axiom schemata given below. This is because these must hold for any
set theoretic interpretation. Other formulas, in particular the special axioms of a particular
theory, may not be true under some interpretation.

The constant symbols, variable symbols, and function symbols, and hence the terms of
a COCOLOG language, are typed because the constant and variable symbols are sorted as
indicated in 3.1; furthermore, all interpretation functions I together with their associated
valuations respect this sorting as specified above. As a result, the term model used in this
paper is the same as that used in conventional typed logic (see, e.g., Goldblatt [1987]).

3.3. Axiomatic theory of Tho. The formal logical theory Tho of the language L for
A//consists of a set of axioms, that is to say, a set of formulas from Final which shall be
required to hold in the intended models (in particular for Ad), and the set of inference rules
operating on FinaL; these are taken together with the concepts of proof and theoremhood.

In this subsection we first present the axiomatic COCOLOG theory Tho corresponding
to the information at the root node of the observer tree for a given finite machine A4. Further
specializations of this theory to Th(@) are obtained as observations are collected (as time
proceeds) on the input-output behaviour of Ad. This development is presented in the next
subsection. Note that since the dynamics of A4 are known, the incomplete information aspect
of Th(ol is due solely to the partial observation nature of the problem.

Tho has a set of logical axioms, a set of equality axioms, a set of arithmetic axioms, and
a set of special axioms which specify facts concerning the subject that the logic describes (in
at least one of its interpretations). Correspondingly, Th(ok is a logical theory that has the
observation axioms and the state estimation axioms (all defined below) added to the logical
theory Tho.

The first two sets of axiom schemata below are relatively standard (see, e.g., Mendelson
[1964]).

Logical axiom schemata. For all A, B, C e FinaL, t TermL, and v e VarL,

(i) A---+ (B A)
(ii) (A --, (/3 --, C)) ((A --,/3) --+ (A C));

(AXMlg) (iii) (B -A) ((-B --+ A) --, B);
(iv) V v A(v) A(t);
(v) V v(A --+ t3) --+ (A -- V vB), v not free in A.

Any formula having the same form as one of these logical axiom schemata shall be called a
logical axiom.

Equality axiom schemata. In the following equality axiom schemata, t, t, t" e Termn, f
FunL, and P e AprL:

(AXMq(L))

(i)
(ii)
(iii)
(iv)
(v)

Eq(t, t’) --, Eq(t’, t);
Eq(t, t") A Eq(t’, t") Eq(t, t’);
Eq(t, t’) Eq(f (t), f (t’));
Eq(t,t’) (P(t)--+ P(t’)).

Arithmetic axiom schemata. For any constant symbols l, t, l" with corresponding el-
ements 1,1, 1" e Ik(N), if +k(N) 1", or --k(N) 1’ ’I, respectively, then the following
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axioms for the arithmetic Ak(N) hold respectively:

(AXMarith (L)) Eq(1 +c l’, l"), Eq(1 --L l’, l").

Finite machine axiom schemata. The special axioms for a given finite machine A/[ are
as follows: for any pair of constant symbols x, xJ and constant symbol u, if x @(xi, ul)
holds for A/l, then the following dynamic axiom holds"

(AXMdyn (L)) Eq(((xi, u), xJ).

Further, for any pair of constant symbols xi, yJ such that/](xi) yJ holds for M, the
following output axiom holds:

(AXMOUt (L)) Eq((xi), yi).

Reachability axioms. We recursively define the reachabilitypredicate Rbl (.,., .) by the
following axioms"

(AXMRb (L))

O. VxVx’,Eq(x,x’) Rbl(x,x’,O),
1. VxVx’,(u, Eq(g2(x,u),x’)) Rbl(x,x’, 1),
2. V x V x" V l, Eq(1, k(N) + 1) V [{x’u, Rbl(x’, x", l)

AEq((x, u)x’)} Rbl(x, x", +L 1)].

The reachability axioms specify the/-step reachability relation Rbl(x, x’, l) between any
pair of states x, x, with axioms 0 and having obvious interpretations. Axiom 2 first excludes
consideration of the infinity case and then characterizes reachability on the finite numbers in
the arithmetic; specifically it states that either equals k(N) + or x" is reachable from x in
/ steps if and only if there is an intermediate state x such that state x" is reachable in

steps and x is reachable from x in one step. We note that if k(N), i.e., the predecessor of
k(N) + 1, then z" is reachable from x in k(N) + steps if and only if x" is reachable from
some x in k(N) steps, where x is reachable from x in one step. We further note this does
not necessarily make all states mutually reachable in k(N) + steps.

Rules of inference. R1. Modus ponens (MP):

R2. Generalization:

A,AB
B

where A, B e FinaL.

A
VvA

where v VarL, A FinaL.

DEFINITION 3.1. Let 12 denote the set of special axioms of ./M expressed in L, i.e., 12
{AXMarith (L), AXMdyn (L), AXMUt(L), AXMRbt (L) }. Then 12 is said to be the axiom set
for the finite machine 3//.

A proofin L is a sequence of formulas A1,... ,Ak in FinaL where A, _< < k, is
either an axiom or a direct consequence of previous formulas via R1 or R2. The last formula
A in the sequence is called a theorem, and A1,..., A-l is a proof of the theorem Ak. A
formula A is a theorem of a first-order theory with equality, written - A, if, in a proof of A,
only logical axioms and equality axioms have been involved; A is called a consequence (or
theorem) of 12, written 12 - A, if, in a proof of A, only logical axioms, equality axioms, and
axioms in 12 are involved. For brevity we write Tho Tho(L) for the set of theorems of 12;
hence we have Tho {A }2 A} and we use the standard notation Tho - A, which is
customarily read as A is a theorem of, or is provable (derivable) in, the theory Tho.
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A structure b/r (i.e., an interpretation I on a domain D) is called a model of the theory
Tho if and only if all the axioms E of Tho are interpreted true in He, i.e., if and only if I is a
model for each axiom of Tho.

Example 3.1. An illustration of the construction of a model of the COCOLOG theory
Tho may be given in terms of the simple machine A,4 3.

Let L3 denote the first-order COCOLOG language whose constant symbols are taken
to be

ConsL3 {zl,u2} to {z’,zz,z3} tO {/t,/z} tO {0, 1,...,9,9 + 1}.

For L3 let the variable symbols, function symbols, atomic predicate symbols, sorting
constraints, quantifiers, logical connectives, and logical constants be taken to be exactly as
specified in 3.1 above. The first-order COCOLOG theory Tho of the first-order language L3 is
taken to consist of the general logical axioms, the equality axioms, the axioms of reachability,
and the rules of inference as given in 3.3 above. The special machine axioms are taken to be
as follows:

(AXMdyn (L3))
Eq( (cc z ), :;c ),
Eq()(x3, z2), x3),

(AXMUt(L3)) Eq(/(x’), !/’) Eq(](z2), pl) Eq(](ce3), p2).

The axioms AXMarith(L3) of the finite arithmetic A9 of the theory Tho shall be taken
to be those satisfied by the following finite arithmetic model A9, where here k(N) 9. Let
19 {0, 1,2,... ,9 + 1}; then A9 (19, +9,-9) is given by the following addition and
subtraction operations"

a+b
a+9b 9+ 1

a-b
a-9b= 9+1

ifa+b _<9,
ifa+b > 9,

ifa- b > Oanda 9 + landb : 9 + 1,
ifa- b < Oor ifa 9 + 1.

We denote the special axioms AXMarith (L3), AXMdyn (L3), AXMUt(L3), andAXMRt (L3)
collectively by (L3).

Next consider the input-state-output machine AA3, with (two-element) input set U
{u u2}; (three-element) state set X {xl, xZ, x3); (two-element) output set Y {yl, y2};
state transition function X U --, X given by

I)(g U1) X3

,I,(x uz) xz
I(x3 U1) X

,I,(x3 u) x3.

and state output function r/ X --, Y given by

(X1) yl, r/(X2) yl, r/(y3) X2.

We claim that a model (in the sense of 3.2) for Tho is given by (D, I), where D A U tO
X t2 Y tO I9 and where I, the interpretation function defined in 3.2, is specified as follows: I
maps from the language symbols c e ConsL in L3 to the corresponding elements of D. The
function symbols (., .) and /(.) map, respectively, to I() , the function from X U
to X denoted by the equations above, and I(f/) r/, the function from X to Y denoted by the
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equations above. The binary arithmetic function symbols +L and L map to I(+z) +9
and I(-) -9, whose values on 19 x 19 are given above.

Depending upon the /-valuation V(.) given by the particular interpretation
I, ve {u, u, u",...} maps to some V(v)eU C D, a variable ve{x,x,x",...} maps to some
V(v) eX C D, and, similarly, v e{y, y’, y’,...} to some V(v)eY C D, and v e{l, l’, l",...}
to some V(v) E 19eD.

The predicate symbols Eq(., .) and Rbl(.,.,.) are mapped to the relations on D D and
on X X I9 C D D D as specified in 3.2.

The claim that this definition of (D, I) provides a model for AXM’g

E(L3) is established by inspection, namely by the explicit verification that the function rela-
tions above for (I) and /satisfy the machine axioms and that the interpretation of the equality
and reachability predicates satisfy the axioms given in E(L3). The corresponding verification
of AXMarith(L3) for A9 is immediate by virtue of its construction in terms of

The set of theorems of Tho(L3) is exactly the set of formulas which are true in all models
satisfying the axioms (L3); this is guaranteed by the completeness result proved below
in 4.

To illustrate logical deduction in COCOLOG we shall give a proof of the theorem
Rbl(z,z3, 2) in theory Tho; this theorem asserts that the state z is controllable to the
state 33 in two steps. The logical truth of (i.e., satisfaction of) Rbl(z X3 2) in the model
/gL3 X (D, 1) of the axioms E(L3) can be verified from the model in Fig. 1. In standard nota-
tion we have L/z3 - Rbl(z 33 2), which reads that the relation corresponding to the formula
Rbl(x x3, 2) holds in the model /L3"

ProofofRbl(x,x3,2). 1. Eq((x2,ul),x3) AXMdyn(L3).
2. u, Eq()(x2, u), x3)" 1, AXMlg(iv), and definition of 2.
3. Rbl(x2,x3, 1)" 2, AXMg(iv), AXMbZ(L3)(1), and MP.
4. Eq()(x 1, u2), x2) AXMdyn(L3).
5. Eu,Eq(Jb(x 1, u), x2)" 4, AXMIg(iv), and definition of .
6. Eq(1,9 4- 1)" AXMarith(L3).
7. Exu, Rbl(x, x3, 1)/x Eq()(x u), x)" Rbl(x x3, +L 1), 6, MP, and instan-

tiation of AXMbZ(2).
8. Rbl(x2, x3, 1)/ u,Eq(J(x 1, u), x2) 3 and 5.
9. 2xtEu, Rbl(x’, x3, 1)/ Eq((x u), x) 8 and definition of 2.

10. Rbl(x,x3,1+L 1)" 7, 9, andMP.
11. Eq(2, 4-L 1)" Arithmetic axiom.
12. Rbl(x, x3, 2)" 10, 11, and AxMeq(L3)(v).

3.4. The COCOLOG language L(o)" Syntax and semantics. The language LkA
L(o) is an extension of the language L obtained by adding new constant symbols and atomic
predicates in the following way:

S(L1) S(L) U COnSL U AprL’
j= j=

where Aprj {CSEj(.)}, j >_ 1; Const, {Y(1)}; andConsc {U(j-1),Y(j)),j >_
2, where U(j 1), 2 _< j _< k, Y(j), <_ j <_ k, are constant names equal, respectively, to a
sequence of names of input set elements u-’ and output set elements y in l; this sequence
names the set (Yl, (tll, Y2),..., {u/c-l, Y/c}) indexing the language L L(o). Here
we maintain the convention that lightface subscripts and superscripts on boldface symbols
denote time indices. The sort of each new constant symbol in L is given by

U(j) is a symbol of type {//,1, ,//’rn } and Y(j) is a symbol of type {/,..., tp }.
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Set L FmaLo =--- FinaL; then the set of well-formed formulas L j FmaL, j > 1,
is defined as the set formulas which parse according to

A ":= (t,, t,)ICSEk(x)IBIA’ - A"I V vA’,

where e AprL tl, tne TermL.J, x e Termj is of state type, B e FmaL-., and A/,
A" e FmaL.J.

Let I be the mapping associated with the L-structure HL (D, I). An Lk-structure
4/Lk (D, ik) is a pair where the interpretation function I is an extension of the mapping I
into an arbitrary machine f14 as given by

I(U(j 1)) U, where the image is the input string element uj_ (o), <_ j <_ k, lying
in U;

I(Y(j)) eY, where the image is the output string element yj(oj), < j <_ k, lying
in Y;

(CSE)

_
X, <_ j <_ .

The satisfaction relation HLk A[V] is the extension of Hc 1= A[V] obtained by adding
the following definitions:

blLk -- CSE(x)[V] iffV(x)eIk(CSE),
lgL B[V] iffHL-, B[V] for any Be FmaL-,,
blL V vA[V] iff for allx e D, it is the case thatHck A[V](v/x) for any A e FmaL,
b/L (A, Az)[V] iff HL, A,[V] impliesHL Az[V].

The properties true and false for a formula A in a structure JL or, equivalently, the
existence of a model for a formula A, are defined as for a structure HL in 3.2.

3.5. Axiomatic theory of Th(ol ). We shall refer to a sequence Ol, k >_ 1, which satisfies
the input-output relation of a machine A//for some initial condition, as a sequence generated
by the machine A/l, without reference to any initial condition for the machine

At the instant k 1, the system generates some observed system output y and this is
recorded in theory Th(ol) via the axiom Eq(Y(1), ,), where y (o), the constant symbol
in the language L denoting y. Similarly, at each successive instant k > 2, the axiom set
of the theory Th(o) is augmented with the axioms Eq(U(k 1), ,), where uk-l(o),
and Eq(Y(k), ,), where y(o), to record the fact that the input u_ and output Yk
generated by the system .A/[ have been received as observations. We express this formally by
the following set of axioms, which we shall term the observation axioms corresponding to o.

Observation axiom schemata (o).

1. Eq(Y(1),,), where, yl(Ol)eCOnSL, k 1,
(AXMb(L)) 2. Eq(U(k --L 1),,), where, uk_l(o)eCOnSL,

3. Eq(Y(k),,), where, yk(o)eCOnSL, k > 2.

State estimation axioms. The following axioms express the recursive formulas (2.6) for
the current state estimate sets.

In casek= 1"

(AXMeSt(Ll))
Eq((x’), Y(1)) CSEI(X),

Eq(O(xN), Y( )) ,--- CSE (xN).
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In case k > 2:

(AXMeSt (L:))
Bz, CSE_,(z) A Eq((z, U(k -L 1)),’)AEq(7(z’),Y(k)) +--+ CSEk(xI),

Ex, CSE_,(z) A Eq(c(x, U(k --S 1)),zN) A Eq((zN), Y(h)) +---+ CSE(xN).

We extend Definition 3.1 in the following way.
DEFINITION 3.2. The axiom set E, k >_ 0, for the finite machine 3,4 and the (input-

output) sequence o k >_ O, is defined as the union ofthe axiom set for the machine JM, the
observation axiom sets indexed by j, <_ j <_ k, corresponding to the sequence o, and the
estimation axioms, i.e.,

(3.1) E E U U {AMXbS(LJ)’AMXeSt(LJ)}’ k >_ 1.
j--I

A structure b/Lk (D, I) is called a model of the theory Th if and only if all the axioms
E ofTh are interpreted true in b/rk, i.e., if and only if I is a model for each axiom of The.

We observe that if a language L and a set of axioms EL are given a priori, one may
obviously construct a set theoretic machine A// which satisfies EL and for which IUI
m, IXI N, and IYI p. However, in general, given a priori some axiom system E
corresponding to a symbol sequence o, k _> 1, it is not the case that such a set theoretic
machine .Ad will form part of a model b/L for E. In fact, it may happen that the only
machine in a model HL is the trivial machine with singleton sets of inputs, states, and
outputs, respectively.

3.6, Extralogieal conditional control rules and theory transitions.
Conditional Control Rules. The following is the general form of a set of CCRs at the

instant k > 1, where Cj is a conditional controlformula expressed in FrrzaL, which we note
contains no appearance of U(k)"

IF C, THEN Eq(U(k), %1),
IFC, A C2 THEN Eq(U(k:),u2),

(CCR(L)) -’

j=!

j=l

where is an arbitrary element of {’ 2 P}
The sets of rules CCR(L}), } I, are central to the construction of COCOLOG. The

function of any given set CCR(L}) in the feedback control of has the following spec-
ification: if the condition C is true (and hence provable) in the decidable theory Th(o)
generated by the axiom set }, specified in 4, then, invoking the first rule, we obtain the
dened constant value l as the value of the control constant U(}); if not, but if C2 is true
(and hence can be proved), then the second axiom gives the defined value 2 to the control
constant U(}); and so on. If none of the conditions C, C2,..., Cm hold at the instant }, then
the last rule sets the control constant U(}) equal to the arbitrary constant e {’,..., P}.
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FIG. 2. A COCOLOG tree of logical theories.

This procedure uniquely determines the value of U(k). It is proven in 4 that each theory
Th(Ol), k _> 1, is decidable. Hence an effective procedure to establish the value of U(k) is to
run in parallel a set of procedures each of which will effectively decide the truth of a distinct
conjunction of control formulas associated with a distinct IF statement.

Extralogical theory transitions. When k k + 1, we make the extralogical step of
passing to the theory Th(o+), carrying along all the previous axioms and adding axioms
recording the observation of the input uk u and the resulting output yk+ yJ for some

u e U,yJe Y (see Fig. 2). This is formally enforced by the definition of the axiom set

generating Th(o+ 1). Hence, in the new theory Th(o+l), the observed control action symbol
U(k) and the constant symbol u determined via Th(Ol) satisfy an equality predicate.

Example 3.2. Consider a machine A/[ (U,X,Y,,r/) for which Y X and r/is the
identity map, together with the control objective" if x7 is reachable from all the current state
estimates (i.e., all states satisfying the CSE(.) predicate at the current instant k) starting
with the application of some common control, then steer towards x7 and apply some specified
control when the current state estimate equals x7, or else apply u*.

An example of the operation of the state estimation axioms, AXMeSt(L/), in this case is
the following:

k 1" Let the initial state ofthe system AA be xJ; then y yJ xJ. Hence Eq(Y(1),)
and it must be the case that Eq((:),/), hence, by use of AXMeSt(L), CSE,(c) is
derivable in The.

k 2: Let u u and assume (xJ,us) xI. Then Y2 yl x1. Hence,
Eq((z us), z) and Eq(/(:t), Vz) are formulas in Tho. But the axiom set of Th includes
the observation axioms

Eq(U(1),u) and Eq(Y(2),/)

in AXMbS(L2). So taking u as u, t as /, and :e as :eJ, it follows that the following formula
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is deducible in Th2"

CSE (zj) A Eq((zj uS), zl) A Eq(U(1), us) A Eq(f/(xl), yt) A Eq(Y(2), y),

and hence, by use of AXMeq(L)(v),

X CS/l (x) A gq(t)(x, U(1)), z) A Eq(f/(x), Y(2))

is derivable in Th2. So by AXMeSt(L

CSEz(x) and =CSEz(x), m 7 l, <_ m <_ N,

are derivable in Th2, where the negated predicates are obtained by deducing a negation of a
disjunction of the negations of the literals on the left-hand sides of the corresponding lines of
AXMeSt(L1).

For the control problem in this example we may set

and arrange these conditional control rules into the schemata CCR(Lk).
If the jth condition Cj is derivable in Thk, then for any instantiation x+ of the variable

x, either
first, the current state estimate predicate CSE does not hold at x+, or,
second, x+ is equal to the target state xT, or,
third, there exists a path of length l* + (where l* instantiates l, and is greater than or

equal to zero) from the current state x+, via the intermediate state x* (where x* instantiates
xt), to the target state xT (since the reachability predicate Rbl(x+,xT, l*) holds), and the
control uj either steers the state x+ to xr in one step or is an initial control of a sequence
(of length greater than one) which steers the state x+ to xT. (Note that the case of a path of
length one corresponds to x* equal to xT and equal to 0.)

The corresponding CCR states that Ck holds for no control index k strictly less than j but
Cj itself holds. We observe that if the m + 1-th control option is used at the instant k by this
COCOLOG controller, this indicates that for every control u there is some x+ that satisfies
CSEk(.) and which is such that, first, x+ is not equal to xT and, second, xT is not reachable
from x+ by the application of a sequence of controls starting with u.

Further inspection of the CCRs shows that they allow the possibility, for certain machines,
that the system would maintain itself in a sequence of states from which xT was reachable in
a fixed number of steps (l greater than or equal to 1) without ever actually converging to xT.
Such apparently perverse behaviour may be prevented by the following elaboration of C] for
<j<m:

C Vx{CSEk(x) V Eq(x,xT) V [Bx’BlV s, Eq(J(x, uJ),x’) A Rbl(x’,xT,1)
A {Eq(8, k(N) -+- 1) V Eq(s --L (1 -+-L 1), k(N) / 1) V bl(x, xT, ’3)}]}.

This conditional control formula C] states that for all instantiations of the variable x,
the conditions stated in Cj above hold and, in addition, xT is not reachable from each such
instantiation of x in strictly less than + steps, where depends upon x.
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4. Consistency, completeness, and decidability of COCOLOG theories. The consis-
tency and completeness of the axiomatic theories presented in 3 can be established by a simple
application of classical results on the consistency and completeness of first-order theories with
equality; these results depend upon demonstrations of the existence of a model for any given
theory.

THEOREM 4.1 (model existence and soundness for E). Consider a finite machine
then there exists a model for the axiom set E for .AA, andfor any model of E andfor
anyformula A eFmar it is the case that

E- A /dr A.

Proof By definition, the axioms in E are true formulas in any model/dr of E. It is
immediate from the definition of a valuation V of a model/dr that the rules of inference
preserve satisfaction under V and hence truthfulness. It follows that all theorems deducible
from the axioms will be true in any model of the axioms.

To establish the theorem it remains to show that there exists at least one model/dr for
the axiom set E. We do this by the completely natural choice of the machine AA for/dr that
defined S(L) and the axioms E. That is to say, we now choose the particular domain and
interpretation function I (and hence structure/dr) given by D, I() , I(f) , where
D,, and are defined in the specification of AA. I shall be chosen to map constant names
to the constants themselves in D and to map the teachability predicate to the reachability set
relation.

We observe that any structure/dr of the form specified in 3.2 is a structure for L subject
to the restriction that it is typed. Hence, if it is verified that/dr I-- E, then a model of E has
been shown to exist. This is the case for each of the axioms as is shown in the following way:

AXMdYn(L) Each of the axioms has the form Eq((:ei, u), :eJ), where :e and :eJ lie in

{:el,...’ :v} and u lies in {ul,..., u} and where any such axiom falls in this set if and
only if it is the case for the machine AA that O(xi, ut) xj.

AXMUt(L) The second subset has the form Eq(/(:e), j), where :e
and jt lies in {t,..., jP) and where any such axiom falls in this set if and only if it is the
case for AA that /(xi)

Now/dr Eq((:e, u),xj) if and only if the equality relation
holds, i.e., if and only if I(C)(I(c),I(u)) I(:eJ), i.e., if and only if O(xi, u/) xJ, which
is the case since this equality holds for AA.

A similar evaluation of I(Eq((:e), /t)) as the equality relation I((:e)) /t) shows
that b/r I-- Eq((:e), V) if and only if I(/((:e)) I(/), i.e., if and only if r/(xi) yt,
which is the case since this equality holds for AA. The verification that/dr is a model for E is

straightforward for AXMith(L); here we shall only carry out the verification of/Jr E for
the reachability axioms.

AXM (L)" Let us denote the three lines of the reachability axioms by AXMt(L) (0),
AXM (L) ), and AXM (L) (2). Then we may proceed case by case.

(i) /dr AXMU (L) (0).
This holds if and only if for each V

b/r I-- Eq(:e, :e’)[V] implies and is implied by (denoted

/dr Rbl(x, c’, 0)[V],

i.e., if and only if

Ul)=
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but by definition, (x,u) (x, e) x, and so the right-hand equality is true if and only
if V(x) V(x). Consequently the left-hand side of equation implies and is implied by the
right-hand side, demonstrating that AXMR6t (L) (0) is satisfied by L/L.

(ii) L/L AXMR6t(L)(1).
This holds if and only if for each V

blL 3u, Eq((b(z,u),z’))[V] blL Rbl(x,x/, 1)[V],

i.e., if and only if

blL V= ’uEq(3p(x, u)x’)[V] (V(x), V(x’), V(1)) eI(Rbl),

i.e., if and only if

{it does not hold that for all u’ e {ul,..., um }
HL Eq(cI’(x, u),

3u e {u,..., um} such that (V(x), u) V(x’).

i.e., if and only if

{it does not hold that for all u e {u,..., um }
it is not the case that#(V(x), u) V(x’)}

U e {ul,..., tl
m } such that (V(x), u) V(x’),

i.e., if and only if

{it is the case that for some u e (u1, ti
m }

(V(x), u)
Eu e {u,..., um) such that (V(x), u) V(x’).

But this is the case, demonstrating that/aCL AXMRbZ(L)(1).
(iii) btn AXMR6t(L)(2).
This holds if and only if ’L Eq(1, k(N) + l) implies

blL Ex’, u, Rbl(x’, x", l)/ Eq((x, u),
blL Rbl(x, x", +n l) (rule for b/L A V B)

i.e., if and only if for each V, if V(1) V(k(N) + 1), then

{for somedeD, it is the case that L/L Rbl(x’,x",l)[V(x’/d)]
and for somec eD, it is the case thatb/L Eq((x, u),x’)[V(u/c,x’/d)]}

(V(x),V(x"),V(1 +L 1))eI(Rbl),

i.e., if and only if for each V, if k(N) + 1, then

{for somedeD, (d, V(x"), V(1))I(Rbl)and for someceD, (V(x),c) d}
{1.1/1"+-1 eD/+1 for <l < k(N)such that,(V(x),ut+l) V(x")},

i.e., if and only if for each V, if :/: k(N) + 1, then

{for somedeD, Utl eD, < <_ k(N), such that,I(d,UZl)= V(z")
and for someceD, @(V(z), c) d}

{uZ+ e Dz+ for <l < k(N)such that(V(x), UZl+) V(x")}.
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But this is the case, demonstrating that/JL AXMR’bz (2). This completes all three cases
for AXM/b and hence completes the proof of the theorem. []

THEOREM 4.2 (model existence and soundness for k). Consider any input-output se-

quence o, k >_ 1, generated by a finite machine AA; then there exists a model/jr, for the
axiom set , l >_ 1, for JM and the sequence o, and for any model Lick for and any
formula A eFmar, it is the case that

Proof. A structure/JL, defined as an extension of a structure b/L in 3.4, is specified
by the interpretation function I mapping (1) the constant symbols U(j 1), 2 _< j _< k,
and Y(j), < j _< /, into elements of U and Y so as to satisfy the observation axioms
(3.5.1); and (2) the consistent state estimate predicates CSEj(.), <_ j < k, into sub-
sets of X so as to satisfy the state estimation axioms (3.5.2) and (3.5.3). The elements of
U and Y we select so as to satisfy the first condition are those given by the sequence o,
and the subsets of X we select to satisfy the second condition are those generated by the
formula (2.6).

In order to establish the soundness of the first-order rules of inference in Th(ol) we must
verify that they preserve satisfaction under any valuation V of any model/gL of . Since
it is evident that satisfaction is preserved by MP and generalization for any given V for any
model/JL, it is sufficient to demonstrate that there exists at least one model/JL for the axiom
set .

Because we have verified the existence of a model for the axioms E C E, and because
the structure/jLk contains b/r as a subset, it is sufficient to verify that a model b/L satisfies
the axioms AMXb’(LJ), <_ j _< /, and AMXe’t(Lj), _< j _< k. As in Theorem 4.1, we
do this by using the natural and obvious choice of the machine A//that defined the axioms
and generated the input-output sequence o.

We begin with the observation axiom schemata for the observation sequences
o’,, o2,... ,o.

AXMb’(L1)(1)" For/ 1,/JL’ 1= Eq(Y(1), *), where * Yl (O]), if and only if the
equality Ii(Y(1)) I,(*) holds, where * t,(ol). But this is the case since/I(Y(1))
Y I1 (*) by the definition of I1 in 3.4 and the definition of the observation axiom in the
axiom set 1 in 3.5.

aXMb’(Lk)(2) For. k _> 2 we need to verify that, for 2 <_ j <_ /c,/jr, Eq(U.(j -r
1), *), where * nj_ (o), if and only if I(U(j -r 1)) I(*), where * j_ (o). But
this is the case since I(U(j --L 1)) I(*) by the definition of I in 3.4 and the definition
of the observation axiom schemata in the axiom system j, 2 _< j _</, in 3.5.

AXMbS(L/)(3)" Similarly for 2 _< j _< k, we may verify/jr Eq(Y(j),,), where, 9j(o), and this shows that the third set of observation axiom schemata are satisfied
by

Next, we consider the state estimation axioms.

AXMeSt(LI)" Taking/ first, we have/jc. AXMeSt(L1)(1) if and only if, for each
valuation

/JL’ Eq(/(z’), Y(1)) -4===/JL

lJL, Eq((7(xN), Y(1)) /Jr’ CSE,(xN),
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i.e., if and only if

i.e., if and only if

{r/(x’) yl(ol) } x’e {x;xer/-’(y(ol))}

{(XTM) Yl(Ol)} xN6.

which is the case.
AXMeSt(L2)" We now verify that the model HL satisfies the estimation axioms in the

case k E 2. For k 2, we have HL AXMeSt(L2) if and only if for each HL valuation V

U2 (, CSE,(z) A Eq((x, U(I)), ’) A Eq((l), Y(2)))[V]
UL, CSE2(I)[V],

ULZ (x, CSNI() A Eq((, U(1)),N) A Eq((u), Y(2)))[V]

i.e., if and only if for each V

, (z, CSE(z) AEq((z,g()),z’))[V]

, b (csz,() z(}(, u()),))[v]
anat., Z((), Y(e))[V]

i.e., if and only if for each V

for ome,O, , cs,()z((,u()),’)[v(/)]

fo ome,O, , b cs,() z(}(, u()),)[v(/)]
an, ((), z(z))[v]
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if and only if for each V

for somed eD, d e I2(CSEI)and (I)(d,Ul) x

and r/(d) Yl

for somedeD, deIz(CSEI) and,I,(d,ul) xN

and r/(d) y
xN I2(CSE2),

i.e., if and only if

for some d e D,

i.e., if and only if

for some d e D, r/(d) y
and (I)(d,Ul) x

and O(x1) Y2
XI {2}(O12)

for somedeD, r/(d) y
and (I)(d,ut) xN

and 0(xN) Y2
XN {’2}(O12),

r/(d) Yl and I’(d,ul) x and r/(x) Y2

== x e {x e X; r/(x) Y2 and there exists

x’e X such thatx (I)(x’, ul) and r/(x’)

for some d e D,
r/(d) Yl and (I)(d,ul) xN and r/(xN) Y2

xN e {x e X; r/(x) Y2 and there exists

x’ eX such thatx (x’, ul) and r/(x’) y),

which is evidently the case.
To verify that HLk AXMeSt(Lk) for any k > 2 we need to establish that for any HLk

and valuation V

LtL (Sx, CSEc_,(x) A Eq((x, U(k 1)), x’) A Eq(f/(x’), Y(k)))[V]
=u b CSE(’)[V],

lgL b (z, CSE_,(x) A Eq(((z, U(k 1)),xN) A Eq(/(xN), Y(k)))[V]
LtL C,Ek(xN)[v].
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Arguing in a parallel manner to the case/ 2, the implications above will hold if and only if

{for somed eDand somexl
-2 (x1,..., xk_2) eD-2,

u-2 (ul,...,u-2)eD-2,
it is the case that

xj- (x,u 1),je[1,...,k-- 2]
y O(xj),je [1,..., 2],
d (x_2, u_2),

and
x (d,u_ with y ,(xl) }
x {}(o),

{fo omdDand somex- (Xl,..., x_)D-,
u- (u,,..., u_)D-,

it is the case that

x e(x,,u ),[,...,- 2],
y ,(x),j [1,...,
d (x_, u_2)

and
xx (d,u_ l) with y (x) }
x

which is the case. This completes the proof of the theorem. []

THEOREM 4.3 (consistency). is consistent with respect to the first-order theory with
equality, i.e., /_k for all k >_ O.

Proof. This follows in the standard way from the existence of the model/ELk for the set
of axioms . Take any formula A e. Then we have b/Lk -A. By Theorems 4.1 and
4.2, this implies 2 /-A. But by AXMIg( ), ? _1_-- (A --+_L), that is to say - +/- -- A, for
any formula A; consequently _i_, and hence is consistent. []

THEOREM 4.4 (completeness). Let Ol k >_ O, be any input-output sequence generated
by afinite machine JM. Then anyformula A Fmac is true in every model 12 ofthe axiom
set , Ic > O, for ./M and the input-output sequence o, ifand only if A is a consequence of, i.e.,

for all "I]Lk ]]L A - A.

Proof. We prove only the completeness part here, as soundness follows from Theorems
4.1 and 4.2.

Suppose A; then it is sufficient to show there exists a model ]2Lk such that lZL, A.
t2 {A} is consistent since iE is consistent and the assumption is that A. Now

Henkin’s theorem (see, e.g., Mendelson [1964]) states that every consistent set of first-order
formulas has a model. The standard proof of this theorem applied to the present case gives a
model "I;L for k {-A}. But the model ))L is also a model for , and clearly I)L - A,
as required. []

We note that in the case above the domain produced by the proof method in the gen-
eral uninterpreted symbol case is collapsed by the replacements of the classes of cosets of
interpretations of the equality and binary arithmetic symbols.
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Next, we establish the unique model property for Ek, k >_ 0, and from this we shall obtain
the decidability of COCOLOG theories.

As previously stated, we can get a unique model for a theory Tho by adding additional
axioms to specify the sizes of U, X, and Y. Otherwise, there can be infinitely many different
models. For example, any finite machine A/[’ (U X Y’ ’ rf) satisfying U c U’
X c_ X’, and Y C_ Y’ and such that and rf are compatible with and r/on U, X, and Y
can be used to construct a model of the given machine axioms. This property is analogous to
that displayed by nonminimal realizations of input-state-output systems. We conclude that
the machine axioms alone cannot uniquely characterize a given finite machine. In fact, even
with the addition of further axioms, the most one can achieve by axiomatization is a set of
equivalent models up to isomorphism, and consequently uniqueness is used only in this sense.

Suppose Ixl N, IUI m, and IY] p. We first consider the state space size axioms
for A4.

Size axioms XM.

(1) XNA4" Eq(37 z2) / --,Eq(371,373) / --,Eq(371,374)/.../ Eq(37’, 37N)
AEq(372,x3) A Eq(372,374) A... A Eq(372,37N)

A Eq(373, 374) A... A Eq(37 37N),

(AXMsize (L))
A --Eq(xN- 37N ),

The formula XNM expresses the statement that there are at least N distinct constant elements
in the state space X of the finite machine At, i.e., IX[ >_ N, and the statement that there are
at most N elements in X, i.e., IXl _< N, is expressed by the formula --XN+t.

Adding XNM and XNM+ to the originally proposed machine axioms ensures that all
models of the axioms will have exactly N distinct states.

Size axioms Ua. These are analogous to the size axioms Xa and specify IuI m.
Size axioms Y. These are analogous to the size axioms X and specify IYI p.
In the following we let .M and A/[ denote finite machines and D and W denote the sets

D U U X U Y and D’ U’ U X U Y.
DEFINITION 4.1. Let .All and All’ be two finite machines in the models HL and Lt,

respectively; then a map h from .M,Ik(N) to A4’,I(N) is a homomorphism if for all
u U, x e X, 1,1’ e Ik(N), it is the case that

h(O(x, u)) h(O)(h(x), h(u)),
h(o(x)) h(,)(h(x)),

h(+k(N)(l,l’)) h(+k(N))(h(l), h(l’)),
h(--k(N)(l,l’)) h(--k(N))(h(l), h(l’)).

h is an isomorphism ifthere exists a homomorphism h from D to D such that the composition
h o h ofh and h is the identity on D.

If two L-structures HL,HL for Th0 are such that .M Ik(N) and A/[ Ik(N) are isomorphic,
we say LIL, blL have isomorphic preinterpretations. If the sets in the products of the domains
corresponding respectively to (i) the predicates Rbl(.,., .) and (ii) the predicates expressing
the axiom schemata AXMb(L) and AXMe’t(L) are also isomorphic, we say the interpre-
tations, or models, are isomorphic. (We note that the standard interpretation for the equality
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predicate has been taken as a fixed interpretation in all models b/z,.) Define

Y Ie JM Ek U XN
JM U XN_t_ U U, U U,,+ U -pJM U YpJ+

as the set of axioms for the given finite machine A/l, at the instant k > 0.
THEOREM 4.5 (unique model property). The logical theory generated by the axiom set

Ek,M k >_ O, for the finite machine A/[ and the input-output sequence o k 3> 1, generated
by JM has a unique model up to isomorphism.

Remark. In the proof of the following theorem it should be noted that there is an a priori
restriction on any model b/k of Ek. Recall from 3.2 and 3.4 that the constant symbol sets

Consz,o and Consz,k {u u U(1) U(2) U(k 1)" 2:1 2:N. /1 /p

Y(1),Y(2),...,Y(k)}, h 1,

in the languages L, k _> 0, map under any interpretation I, k _> 0, to the corresponding
constants in a the set theoretic model domain D’ for some machine. All the axiom systems
Y;0, El, E2, are axiomatizations of the behaviour (at successive time instants along a system
trajectory) of the given set theoretic machine .M defining the language L and the axioms E;
by definition, this machine jr4 has the input, state, and output elements {ul,..., um} U,
{xl,..., xr } X, and {yl,..., yO} y. Consequently, whether or not the size axioms are
in force, the images of the elements of Consz, under the mapping I of a structure b/, k >_ 0,
must be isomorphic to a subset of the union of the sets U,X, and Y appearing in the definition
of .M. In particular, we shall see that when the size axioms are in force, then under any I
the images of U(1), U(2),... Y(1), Y(2),... must be in one-to-one correspondence with
the occurrences of the inputs and outputs u,y, k >_ 1, along the given trajectory of the
original machine jt4 generating these observations; this is the case since the constant names
U ), U(2),... Y ), Y(2),... appear in the observation axiom schemata AXMbs (L),
k > 1, as the left arguments of equality predicates whose corresponding right arguments have
as images under I the elements of the trajectory of the model/a’, k >_ 1.

Proof. First we establish that all preinterpretations are isomorphic by showing the exis-
tence of a homomorphic mapping between any given pair of models of E0 E.

Now consider the model b/z, constructed in Theorems 4.1 and 4.2 and any other model
b/. By the size axioms we have XI= X’ =N, Yl=lY’l=p, and Ul-lU’l=m, and
by the machine axioms we have’XxUXandl"X xU--,X’,r/’XYand
r//. X y.

Let L denote the set of symbols of the theory for the machine .L4 generated by the axioms
Ek,M, and let ! L D and I L -- D be the interpretation functions corresponding to
the domains D and D, respectively. Each of the maps may be seen to be bijective by invoking
the size axioms and the definition of an interpretation function. Define h D -- D such that
the following relation is satisfied"

h(m) I’(I-l(m)) for anymeD.

The relations among L, D,D’ and the mappings of I, I’, and h are shown as follows"

L

D h D’

It is straightforward to show that h is a bijective mapping: first, to establish h is onto,
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take any m’ eD’, then we have I’-1 (m’) for some leL and I(1) In for some meD.
This in is obviously the preimage of In under h because

h(m) I’(I-’(m)) I’(1) I’(I’-(m’)) m’.

Similarly, the one-to-one property is immediately obtained from

h(ml) h(m2) iffI’(I-l (in, )) I’(I-l(in2)) iffin In2.

Now let us write h(in) In for any In e D and corresponding In e D and take some
dynamical axiom formula Eq(8(zi, uz), zJ) from the language L. Since b/c is a model, the
interpretation I will map this formula to I(()(I(zi), I(uZ)) I(zJ), which is the equality
(I)(xi,ut) xJ, and the interpretation I’ will map the formula to I’()(I’(zi),I’(u))
I’(zg), which is (I)’(x’i, u’t) x/j. Then since h(in) i,(i-1 (in)) we have the following
relationship between the two models"

I)(x U Xj iff (I; (X/i U/l) Xtj

Similarly, reference to the output axioms AXMUt(L) yields

r/(xi) ym iffr/,(x,i) y,m.
For the finite arithmetic of Tho things are yet simpler since the properties of /L,--L were
defined in terms of the fixed interpretation of +k(h),--k(N) on the fixed interpretation of a
fragment Ik(N) of the integers. Hence

/k(N) (1,1’) 1" iff /(N) (1,1’) 1",

--k(N) (1,|/) l/, iff --(N) (l,l’)

Consequently, defining h((I)) to be the functional relation from X U to X given by (I)/
and h(/) to be that from X to Y/given by f, it follows that k,M has a unique preinterpretation
up to isomorphism.

For the interpretations of the predicate Rbl(x, x/, k), the interpretation functions I and
I give, respectively, the relational sets { (x, x, k); x, x , X, k e Ik(h), such that there exists

u eU and k Ik(i) such that (I)(x, u) x’}, and the same expression with the substitutions
X for X, U for U, and Ik(i) for Ik(N), etc. But it follows from the isomorphism of the
preinterpretations that the corresponding relational sets are isomorphic, as required.

To establish the isomorphic nature of the interpretations of the observation and estimation
axioms we proceed as follows.

For the first observation axiom schemata, in the case k l, we have Eq(Y(1), *), where
* y! (Ol) e COnSL.

Let us consider the particular case where y (o) y e Y. In that case we must treat the
particular axiom for Th given by Eq(Y(1), yl ).

Under I and I’, respectively, this formula maps to the relations

I(Eq(Y(1),y’)), i.e., {I(Y(1))=

and

ff(Eq(Y(1),y’)), i.e., (if(Y(1)) y/l}

for some y/lY’. But then the isomorphism h I o I- gives the isomorphism of the
relational sets in b/c, and b/, corresponding to the single observation axiom schemata in this
case.
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Moreover, the same assertion holds in each of the alternative cases

yl (Oll) yJeY, 2_<j_<p.

Similar arguments hold for the observation axiom schemata (2) and (3) in the case k _> 2.
It follows that the isomorphism 1’(I-1(.)) maps the images of the constant names

{Y(1),Y(2),...,Y(k);U(1),U(2),...,U(k- 1)} in the model Hzk bijectively to the
images of these constant names in Hk and that the relational sets corresponding to the
observation axiom schemata are also isomorphic.

Finally, we see that the relations given by the images of the state estimation axioms
AXMeSt(Lk), k _> 1, under an interpretation I are isomorphic to their images under I’ by the
isomorphism I o 1-1 This is the case since all of the set elements, function mappings, and
set relations given by the interpretation of these axioms have been shown to be isomorphic to
the image of these axioms under I via the isomorphism I o 1-l []

DEFINITION 4.2 (proper formula). A closedformula P is a proper formula with respect
to a set offormulas [’ if P contains neither any constant, variable, predicate symbols nor

function symbols which do not appear in anyformulas in F.
DEFINITION 4.3 (complete axiomatization). A set of formulas 1-’ is said to be complete tf

either P or P is a consequence of [’ for any proper formula P with respect to [’, and an
axiomatization F is said to be complete if the set offormulas F is complete. A theory Th
is said to be complete if it is consistent and for every closed formula A either Th A or

Th - -A.
THEOREM 4.6. The axiomatization defined by Ek,v, k >_ O, for the finite machine

and the input-output sequence ok k >_ O, generated by .A/, is a complete axiomatization.

Proof. To prove that Ek,. is a complete axiomatization, we need to show that for any
formula AeL either E, - A or E, - -A. We know E, is consistent by the
existence of a model for Ek,. By Lindenbaum’s lemma (see Mendelson [1964]) if
is a consistent first-order theory, then there is a consistent complete extension of ,. But
since E, has a unique model, the complete extension of E,M is Ek,.. Hence Ek, is
complete. []

THEOREM 4.7 (decidable theoremhood). The logical theory Th generated by,for
thefinite machine JA and the input-output sequence o1, >_ O, generated by All, is recursively
decidable.

Proof. It is known that any axiomatizable complete theory is recursively decidable (Bell
and Machover [1977, Thm. 11.5, p. 355]). Now the theory Th generated by , is
(finitely) axiomatizable since it is generated by the set of postulates k,. Furthermore,
Theorem 4.6 gives the completeness of the theory Th generated by E,; hence the result
follows. []

5. Extralogical transitions between logical theories. We recall that a COCOLOG con-
trol system operates via a cyclical interaction between a controlled dynamical system, rep-
resented by the mathematical system AA, and a logic controller carrying the sequence of
COCOLOG theories {Th(o ), k >_ 0}.

At any instant k > 0, E,M contains axioms specifying the observed system input uk_
and output Yk- The deductive closure Th(o) of Ek,, is then generated and the controller
selects the control input uk by the metalogical step of finding the unique IF...THEN...
element of the list CCR for which the antecedent formula lies in Th(o).

The equality predicate specifying (in the precise sense given in 3.5) the input Uk to .h//and
the equality predicate specifying the resulting observed output Y+I of A//are then adjoined
as new axioms to E,, along with the estimation axioms corresponding to the instant k / 1,
to form the axiom set Ek+, in the extended language L+,,.
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UUU .[
--[ (U,X,Y,Oal)

(Uk. 1= uJ,Yk= y

n..te..a...c_e B_.ee...en_ P_Ia._nt..an_d_.Lo_g i_c C_o_n r...o I...er

Eq(U(k),u
The’

Eq(Y(k)’Yi)

| Th, "1 A )q(U(k-1),uJ)
,rL-- Regulator

Fo. 3. A closed-loop logic control system.

World of
Mathematical

Models

World of
Logical
Theories

With respect to the modelling of the relation between the evolution of the sequence of
COCOLOG theories and the controlled system AA, it has been assumed that there are no
errors in the observations or in the communication of control inputs and that the control
inputs generated by the logic controller are implemented instantaneously with respect to the
discrete time indices of the system .A4. Hence there is no inconsistency between the values
of system inputs and outputs as given by the axiom sets 2, and the evolution of the model
.AA. Furthermore, it has been assumed that the entire deductive closure Th(ol of the axioms
N, is instantaneously generated in the logic regulator 7 at each discrete time instant k, thus
permitting the instantaneous selection of the appropriate conditional control rule determining
the subsequent control input.

These requirements constitute restrictions on the transitions between logical theories
which cannot be represented within these theories themselves and which have consequently
been expressed in the description of the overall system.

In this setting we evidently obtain the following statement concerning the evolution of a
sequence of COCOLOG theories.

THEOREM 5.1 (nesting of theories). Let AA (U, X, Y, , r/) be a finite machine in an
initial state x0, and let {CCR, k >_ } be a sequence ofCCRsformulated in the sequence of
languages {L, k >_ }. Assume that the input sequence to the machine JM is such that at the
instant k the inputu U is that determined by the associatedCCR. Then (up to isomorphism)
the observation axioms {AXMbS(L), k _> 1} of the COCOLOG theories {Th(o), k >_ 1}
generated by {, k >_ } satisfy the interpretation constraint expressed by

I(U(k- 1)) u_,(o), I(Y(h)) y(o),

and the sequence of COCOLOG theories {Th(o), k >_ O} generated by {,, k >_ O}
satisfies

c y (ol) c... c_ c_ rh(o ,+,) c_...,

A representation of a COCOLOG closed-loop control system is displayed in Fig. 3.

6. Conclusion. Several problems concerning COCOLOG systems may be posed at this
point.
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(i) There is the problem of the definition of a tractable, analysable fragment of CO-
COLOG obtained by suitably restricting the COCOLOG languages {Lk;/ >_ 0}, the associ-
ated axioms, or the class of CCRs. This has been undertaken in Wei and Caines 1992], where
the notion of the Markovian fragments of a COCOLOG system is defined and analysed.

(ii) The issue of implementability of COCOLOG for real-time systems leads to the
question of automatic theorem proving in COCOLOG. As remarked in the introduction, current
experiments using the FE-resolution extension ofthe GTP automatic theorem-proving software
of Newborn [1987] (proposed by the authors and developed by Q.-X. Yu) are encouraging
(see Wang and Caines [1991], [1992]), as are the results in Caines, Mackling, and Wei [1992],
which employs the Blitzensturm theorem-proving software ofMackling 1993]. A complexity
analysis of such algorithms would be of great value.

(iii) A realization of a COCOLOG system is a sequence of first-order theories generated
by a given sequence of input-output observations corresponding to a path in a COCOLOG
tree structure (see Fig. 2). The true formulas at the nodes of this tree can be captured by
a possible-worlds interpretation of a model logic (see Goldblatt [1987]), and a study of the
mathematical properties of such an overall modal logic formulation of COCOLOG merits
attention.

Aeknowledgrnentso The authors gratefully acknowledge conversations concerning this
paper with Tom Mackling, Michael Makkai, and Yuan-Jun Wei and the valuable comments
of anonymous referees; they also wish to thank David Delchamps for suggesting the name
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REMARKS ON NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS: AN APPLICATION OF THE SPLITTING-UP METHOD*

NORIAKI NAGASE

Abstract. The objective of this article is to apply the splitting-up method to the existence theorem for nonlinear
stochastic partial differential equations. With use of this method an approximating sequence is constructed. By the
compactness argument a convergent subsequence can be extracted, and this fact provides the solution.

Key words, splitting-up method, stochastic partial differential equation
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1. Introduction. We consider in this article the existence of solutions for the following
nonlinear stochastic partial differential equation derived by white noise:

(1.1) dy(t) + A(t)y(t)dt f(t, y(t))at + g(t, y(t))dW(t),

where A(t) is a second-order elliptic differential operator, f(t, .) and 9(t, ") are continuous
operators from L2(].d) to itself, and W(t) is an m-dimensional Brownian motion. A solution
y(t) of the problem is sought in the space of Sobolev type H (,’.J). (For the precise definition,
see Definition 2.1.)

When f(t, .) and 9(t, ") satisfy the Lipschitz condition, Pardoux [4] and Walsh [5] proved
the existence and uniqueness of the solutions for (1.1) by Picard’s method of successive
approximation. But if f(t, .) and 9(t, .) are merely continuous, Picard’s method is not effective.

Recently Bensoussan has given a new result for stochastic partial differential equations
for Leray-Lions operators on a compact subset of d. The main idea is to use the splitting-up
method, considering A(t)y(t) dt-f(t, y(t)) dt-g(t, y(t)) dW(t) as the sum oftwo operators.
According to Bensoussan’s idea, we shall show the existence of solutions for the nonlinear
stochastic partial differential equation (1.1) on whole space :d. (See also [2].)

This paper is formulated as follows. In 2 we state our problem, and in 3 we state the
main theorem. In 4 we construct an approximating sequence of the equation (1.1) by the
splitting-up method and show some estimates for this sequence. In 5 we show the fundamental
lemma which is the whole-space Id version of Bensoussan’s compactness results. By this
lemma, we can apply an argument similar to that of Bensoussan ]. Section 6 is devoted to
the proof of the main theorem.

2. Setting of the problem.

2.1. Notations and assumptions. We denote by L27, 7 _> 0, the space of real-valued

Borel functions on ]d with the norm defined by

I1 I( + ]xl2)’/2u(x)l 2 dx
,d

Clearly L2 becomes a Hilbert space with the inner product
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Letus setL02= L2, [’[0 [’l, (’,’)0 (’,’) (7 0), frsimplicity, if nO cOnfusiOn Occurs.

H H (]d) denotes the Sobolev space W1,2(a) with its norm 1[. |.
We shall consider second-order uniformly elliptic operators of the form

A(t)u(x) aiy (t, x)-x
i,j-’l
d

+ +
i--I

where aij bi(i, j 1,..., d), and c are bounded Borel functions on (0, T) ]d satisfying
the conditions

i) ai(t, x) aji(t, x), i,j= 1,...,d,

(A.1) d

ii) aj(t,x)jll
i,j=l

where a > 0.
It is easy to check that the operator A(t) satisfies the property

(2.2) 2(A(t)u, u) + Alul2 > o11112 v e H’

for some ,k E I, where (., .) denotes the duality pairing between H- (the dual space of H
under identifying L2 with its dual) and H

Next we shall consider maps f(t, u), g(t, u) (gl (t, u),..., g,(t, u)) such that

(A.2)
i) f’(0, T) x L2 L2 measurable,

ii) a.e.t, f (t, .)" L2 - L2 continuous,

iii) If(t, u)l

i) gj :(0, T) x L2 L2 continuous,
m

(A.3) ii) Ig(t, u)l- [g(t, u)l _< K(1 +
j=l

iii) Igj(t, u)- g(s, )1e _< o(It- sl)( / lu12)

With o(h) monotonic increasing, o(h) 0 as h 0.

2.2. The problem. We consider the following equation:

(2.3)
@(t) + A(t)(t) dt f(t, (t)) dt + 9(t, (t)) dW(t),

j=l

where W(t) (W (t),..., Wm(t)) is an m-dimensional Brownian motion.
DEFINITION 2.1. By a solution of the equation (2.3), we mean an H-valued process

y (y(t)) defined on a probability space (,9v, P) with a referencefamily (.T,) such that
(I) there exists an m-dimensional (.T,)-Brownian motion W(t) (Wl(t),..., W,(t))

with W(0) 0;
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(II) y (y(t)) is adapted to (f’t) and

LloTE Ilu(t)ll2dt

(III) for any E C(Na) (C-function on Nd with compact support) and almost all
t [o, T]

(2.4)
(y(t), ) + (A(s)y(s), } ds

(Yo, ) + (/(s, y(s)), ) ds + (gy(s, y(s)), ) dWj(s)

holds.
To emphasize the particular role of (.T’t)-Brownian motion W(t), sometimes we call the

pair (W, y) itself a solution of (2.3).

3. Existence of the solution. Besides (A.1)-(A.3), we assume the following condi-
tions.

(A.4) For some 7 > 0, the restrictions of f(t, .) and 9j(t, ") on L2 operate to itself and
satisfy the linear growth condition. Namely, there exists a constant K such that

(3.1) Ih(t u)l 2 < K(1 + lu] 2 2. .) VuE L.,

where h f, gj (j 1,...,m).
(A.5) Y0 L, where 7 is the same number as in (A.4).
THEOREM 3.1. Under the assumptions (A.1)-(A.5), the equation (2.3) has a solution in

the sense ofDefinition 2.1.

4. The splitting-up approximation scheme.
T4.1. The algorithm. Let k be a positive integer which will tend to +oc, and set k+ l"

For each w(.) (Wl(’),...,Wm(’)) C(0, T;rn), we shall define a process zk(t)
depending on k and w(.). Consider an interval [rS, (r + 1)), r 0, 1,..., k; then z is
defined on this interval by the relation

(4.1)
dz(t) + A(t)z(t) O,

dt

z(r)

where

z+l z((r + 1)5-0)+ f(t, zk(t))dt
Jr6

+ g(rS, Y.) (w((r + 1)5) w(rS)),
z Yo,

and

-r z(t) dt.Zk " d r6
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By (2.2), (4.1) has a unique solution in L2(r, (r + 1)6;H 1) N C(rg, (r + 1)5;L2)
once z(E L2) is given. So (4.1) completely defines z on [0, T). We set for completeness
z(T) za+l and note that za is discontinuous at points r (r 1, k + 1) and has
left-hand-side limits.

Hence we can define a map a C(0, T; R") LZ(O,T;H1) by

k(W) Zk the solution of (4.1) corresponding tow E C(0, T; R).

It is easy to see that is a continuous map from C(O,T;m) to L2(O,T;H1), where
C(0, T; m) is equipped with the uniform topology and L2 (0, T; H with the strong topology.

Let/3 (B1,..., B,) be an m-dimensional standard Brownian motion defined on a
probability space (gt, ’, P), and put z (B).

4.2. Estimations. According to Bensoussan [1], we shall prove the following a priori
estimates.

LEMMA 4.1. There is a constant C > 0 such that

(4.2) E Ilz(t)ll 2dr C,

(4.3) sup E[lz(t) ] _< C,
0<t<T

(4.4) sup E[Izk(t)l4] <_ C
0<t<T

for any k 1,2,
Remark 4.1. Hereafter we denote by C a constant independent of k 1,2,... and

r =0,1,...,k+ 1.

Proof From the energy equality related to (4.1), we get

r12 [7", ((4.5) [z(t)la + 2 (A(s)zk(s), zk(s)) ds I% t e + ))
6

Using (2.2), we have

(4.6) [zk(t)l 2 + c Ilzk()ll 2 d8 . Iz;I 2 + I1 IZ(S)]2 ds.

Gronwall’s inequality derives

(4.7) [z(t)[ 2 _< e Ixt(t-6) ]Z] 2 t [r5, (r + 1)5).

It follows that

(+1)6

(4.8) c z(t)ll 2 dt _< e11 Iz/I 2
dr6

and

(4.9) I%
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Define the process k by

(4.10)
5k(t) zk((r + 1)6--0) + f(s, zk(s))ds

6

+(, ;). (B(t) B())

fort e Jr6, (r + 1)6), r 0, 1,...,k.
It follows from It6’s formula that

(4.11)
dlk(t)l2 2(f(t, zk(t)), k(t)) dt

+ 2(g(r6, 2), 5k(t)) dB(t) + Ig(r, 2)[2 dt

for t e Jr6, (r + 1)), r 0, 1,...,k.
Using (A.2), (A.3), (4.7), and (4.9), we get

(4.12)

So Gronwall’s inequality derives

(4.13)

which yields

(4.14)
Elz 12 _< (1 + C6)r { Iol 2 + }

( CT ) +’_< l+k+i {ly[2/l)

for any r 0, 1,..., k + 1. Hence we obtain

(4,15) EIzl 2 <_ C

for any k 1,2,... and r 0, 1,...,k + 1.
Combining (4.15) with (4.7) and (4.8), we get (4.2) and (4.3). For the proof (4.4), we

note that from (4.7)

(4.16) ]zk(t)14 e2lAl(t--r6)]Zkr[4,

Applying It6’s formula to (4.11), we get

(4.17)

t e [r6, (r + 1)6).

dl(t)l4

2ls(t)le{2(f(t, zk(t)), k(t)) + Ig(r& 2;)12} dt

+ 41(t)12(g(r, ), 5 (t)) riB(t)
/ 41(g(r, Z), (t)) e dt

for t e [r6, (r + 1)6), r O, 1,..., k.
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By the same argument as above, we get

1+’ 1(( + )- 0)
(4.18)

which yields

(4.19) /IZI4 C

for any k 1,2,... and r 0, 1,..., k + 1.
This implies (4.4).
Remark 4.2. Combining (4.12) and (4.15), we can easily see that

(4.20) sup ElS(t)l 2 < C Vk- 1,2,
0<t<T

Similarly it follows from (4.17) and (4.19) that

(4.21) sup E ,h(t)[ 4 C VIe- 1,2,
o<t<T

LEMMA 4.2. There is a constant C > 0 such that

(4.22) E[o<t<Tsup ]z(t) 21 _<C

for any k l, 2,
Proof. Using (4.7), we have

sup Iz(t)12<_e Ix16 max Izl 2

(4.23) 0<t<T 0<r<k+l

_<_eIxlT max zl.
O<v<k+l

Consider next the process defined in the proof of Lemma 4.1. Combining (4.6) with (4.11),
we get

(4.24)

Adding these relations, we deduce

(4.25)
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where .0(t) 9(r& Y), t E [r5, (r + 1)),
From (4.3) and (4.20), we deduce

E max z
Ork+l

(4.26)
c + sup

OtT

Using the Burkholder-Gundy inequality, we have

E sup (O(s), a(s)) dB(s)
LotT

C ((8), k(8))2 d8

C E I(t)l2 dt + E
r=0 J r6

(4.27)
<_ C E [Sk(t)l2dr

[I[(’+’)’s [("+’)Iz(t)l 2 dt
r---0

1/2

{ If0T ] If0T 1 If0T I } ./2

C E ]k(t)] 2 dt + E tz(t)l4 dt + E IN(t)l4 dt

<_ C by (4.4), (4.20), and (4.21).

From (4.23), the desired result (4.22) follows.
LEMMA 4.3. There is a constant C > 0 such that

(4.28) E sup IIz(t + O)- z(t)ll2, dt <_ Crl
IO1<,

for any 0 < r <_ 1, k 1,2, where zk is extended by 0 outside of [0, T] and t1" It, is the
norm of the dual space H-1 (HI) *.

Proof. Assume 0 > 0. A similar calculation is done whenever 0 < 0. We write

(4.29) I sup Ilz(t + O) z(t)ll, dt <_ Z + h,
o<_o<_v

where

and

sup Ilz(t +.0) z,(t)ll, dt

/2 E sup Ilz(t + 0) z(t)ll2, dt
o<o<v r-v



NONLINEAR STOCHASTIC PDEs 1723

From (4.22), we can see

(4.30) /2 <_ Cr/.

Now we deal with Il. Using (4.1) and (4.10), we have

(4.31)

O()dB()

for t E [0, T r/] and 0 <_ 0 <_ r/, where is the process defined in (4.25) and It] denotes the
integral part of t.

Next we have

(4.32)

+0

A(s)Zk(s)ds ot +
<_ }lA(s)z(s)ll, ds

<_ 0 ./2 IlA(s)z(s)lt, ds
Using (4.2), we get

E sup
o<o<r

(4.33)
< r/E If0T-/
_< C.

t+O 2 ]A(s)z(s)ds dt
Jt

A(s)()

For the first term of the right-hand side of (4.31), we have

(4.34)

[(t+o)/e]e 2

sup f(s, zk(s))ds
0<0<rt J[t/616

(1 + IZk(S)l)d
J[t/e]6

Using (4.22), we get

(4.35)

E sup
o<0<r

<_ CE sup (1 .qt_ [Zk(8)[) 2
LO<s<T

< C.

f(s, zk(s))ds dt

dt
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Finally, using the Burkholder-Gundy inequality and (4.3), we have

E sup .O(s) dB(s) dt

_< E sup O(s)dB(s)

C fo I I](S) 2ds dt

< Cry.

Combining (4.33), (4.35), and (4.36) with (4.31), we obtain I1 _< C7, and this completes the
proof.

LEMMA 4.4. There is a constant C > 0 such that

(4.37) sup E z(t)[2.r <_ C
0<t<r

for any k 1,2,..., where " is the same number as in (A.4).
Pro@ We define the operator A(t) by

i,j=l

+ e(t, ,)(,),
where

and

Then {A(t)(Ru),p} (A(t)u, Rp) for any u H and C(>:d) where R(z)
(1 + Iz12) "r/2. Hence q(t) Rz(t) satisfies the following equation"

(4.39)
dq(t)

dt + A(t)q (t) 0,

t It(5, (r + 1)(5),
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where

r+
qk qk((r + 1)- O)+ nf(t, zk(t))dt

Jr6

+(, ;). (B(( + )) B())

and

qO Ryo.

By virtue of assumptions (A.4) and (A.5), we can repeat an argument similar to (4.5)- (4.15)
and obtain

(4.40) sup Elq(t)] z C.
0<t<T

This yields (4.37) and completes the proof.

5. Tightness property. Now we introduce the fundamental lemma which is the whole-
space ]d version of Bensoussan’s compactness result (see Bensoussan [1, Prop. 3.1]). We
consider a subset Z of L2(0, T; H(]d)) depending on three constants, K, L, and M, and
two sequences, #, and u,, with #,, v, > 0 and #n, u, ---. 0 as n 0. The set Z is defined
as follows:

Z u e L2(0, T; H’ (d)); Ilu(t)l] 2 dt <_ K, ]u(t)l.

and sup It(t + O) (t)ll, dt < uM Vn >

where u is extended by 0 outside of [0, T].
LEMMA 5.1. The set Z is a compact subset of L2(O, T; L2(]d)).
Proof. Let {Uk} be a sequence in Z. By the first condition of Z, we can extract a

subsequence, still denoted by {uk }, such that

(5.2) uk U inLZ(O,T;Hl)weakly.

Clearly the limit u satisfies the first and third conditions of Z. Put

Dp {x e ]d; Ix] < p}, p= 1,2,

First we shall prove that

(5.3) Uk U inL2((0, T) Dp) strongly.

Since the injection H (Dp)(-- WI,2(Dp)) into L2(Dp) is compact, for any e > 0 there is a
constant C(e) such that

(5.4)

where [. IDp and II" IIz)p are the norm of L2(Dp) and H (Dp), respectively. (Apply Proposition
4.1 of Lions [3, p. 59] to the triplet (HI(Dp),L2(Dp), (HI (a))*).)
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Hence

0

(5.5) <-

Therefore, to prove (5.3), it is suNcient to prove that

(5.6) u(t) u(t)ll2, dt O.

Consider a function C() with O, f_ (t)dt 1, supp() [-1, 1], and the
mollifier

-1

Put g u. Since and satisfy the third condition of Z, we see

dt

(5.7) IIk(t- ,s) gk(t)[[2, dt (s)ds
-1

4uM.

Now, from (5.2), we have

,I(5.8)

in HI(Dp) weakly for any n 1, t [0, T].
Recalling that for the triplet (HI(Dp),LZ(Dp), (HI(Rd)) *) the injection H(Dp) into

L2 (Dp) is compact, we have

(5.9) Cu ,g(t) 0 ask in(Hl(ad)) strongly.

Since

T

I1. * (t)l12. c() II(t)ll 2 dt <_ 4C(n)K,

we get

(5.10) * gk 0 ask ---, oc inL2(0, T; (H(Ra)) *) strongly.

(5.7) and (5.10) imply (5.6). Hence we obtain (5.3). From (5.3), it is easy to see that u satisfies
the second condition of Z and thus u E Z.
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Finally

(5.11)

Therefore we deduce from (5.3) that

(5.12) u} u inL2(O,T;L2(a)) strongly,

and this completes the proof.
Put S’ C(0, T; I") x L)-(0, T; Le(Na)). We denote by 7r} the image measure of

(B, zk) (B, (B)) on S. By virtue of the above compactness result, we can prove the
following tightness property.

LEMMA 5.2. Thefamily {Trk}>l is uniformly tight.
Proof. Put

WE {w E C(0, T;Im); sup w(t)l <-qE and sup
O<_t<_T It-sl<T/n

and ZE the set defined by (5.1) for constants KE, LE, and ME, and sequences un , #n, where qs, rE, KE, LE, and Ms are constants to be chosen later, depending on a given e > 0.
From Ascoli-Arzelt’s theorem and Lemma 5.1, Ws x ZE is a compact subset of S.

Then

((w z))

<_ P sup IB(t)l > q. + P sup IB(t)- B(s)l >
\O<t<T n=l It-st<T/n6 n

(/o ) )2dt>L+ P IIz(t)ll 2 dt > Ks + P Iz(t)[

+ e sup II(t + 0)- (t)ll 2, t > .v
(5.13)

<_ 1__ E[ sup IB(t)l]
qE 0<t<T
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By Lemmas 4.1, 4.3, and 4.4, we have

(5.14)

for a convenient choice of qs, rs, Ks, Ls, and Ms.
This completes the proof.

6. Proof of Theorem 3.1. By Prokhorov’s theorem, {rk}k2 is relatively compact.
Hence there is a subsequence, still denoted by {Trk}k>, and a probability measure 7r on
S such that {Trk }k>_l converges to 7r weakly. Moreover, by Skorokhod’s theorem, there exist
S-valued random variables (Wk, Yk) and (W, y) on a suitable probability space (, ,/5)
such that

(6.1) the probability law of (Wk, Yk) 7rk,

(6.2) the probability law of (W, y)

and with probability 1,

(6.3) Wk -- W uniformly on [0, T],

(6.4) Yk Y in L2 (0, T; L2 (]d)) strongly.

By the same argument as in the proof of Theorem 1.1 in Bensoussan [1 ], we can see that

(6.5) Yk k(Wk) a.s.

and

(6.6) W(t) is an.Tt a{(W(s), y(s)); s < t}-Brownian motion.

From (6.5), Lemmas 4.1 and 4.2 hold for Yk. Therefore, by extracting a new subsequence,
still denoted by Yk, we have

(6.7)
Yk "+ Y inL2((2; L2(O, T; H)) weakly,

in LZ(fi; L (0, T; L2 (]d)))weak star,

in L (0, T; L4 (fi; L2 (]d))) weak star.

From this and Lemmas 4.1 and 4.2, we see that

(6.8) IIv(t)ll dt

(6.9) sup [y(t)14 <_ C,
0<t<T
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(6.10) E sup ly(t)l 2] _<C.
0<t<T

Combining (6.4) with (4.4) and (6.9), we have

(6.11) yk --* Y inLZ(fi x (O,T);LZ(Rd)),

and thus by extracting a new subsequence, we obtain

(6.12) yk(t) --+ y(t) in L2(Rd) for almost all (&, t).

By the assumption (A.2) and estimates (4.4) and (6.9), we have

(6.13) f(., y(.)) --+ f(., y(.)) in L2(fi x (0, T); L2(Nd)).

Put

yk(s) as, tE [r5,(r+l)6), r--0,1,...,k,

and

(t)

Then, by (6.11) we have

(6.14)
J7 lYk (t) y(t)12 dt --+ 0

On the other hand, by Lebesgue’s theorem

(6.15) (k)(t) -+ y(t) in L2(fi x >d) for almost allt.

From this and (6.9), it follows that

(6.16) (/) --+ ?4 in L2(fi (0, T); L2(]d)),

which yields

(6.17) 9k --+ Y inL2() (O, T); L2(ad))

Moreover, by extracting a new subsequence, we obtain

(6.18) 9k(t) -- y(t) in L2(Nd) for almost all (&, t).

By assumption (A.3) and estimates (4.4) and (6.9), we have

inL2(h (O, T); L2(d)).
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By the same argument as in Bensoussan [1], we can deduce from (6.3) and (6.19) that

(6.20)

tle]e s )) dWk(s) 9(s y(s))dW(s)

in L2(; L2(]d)) weakly.

Since Yk satisfies (4.1), we have

(6.21)

Using (6.7), (6.13), and (6.20), we can pass to the limit and obtain

(6.22)
]0y(t) + A(s)y(s) ds Yo + f(s, y(s)) ds

+ 9(s,y(s))dW(s).

Hence (W, y) is a solution of (2.3). This completes the proof of Theorem 3.1.

Aeknowledgrnents. The author would like to thank the referees, who read the manuscript
carefully and gave him helpful comments.
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SOLUTION OF OPTIMAL CONTROL PROBLEMS BY A
POINTWISE PROJECTED NEWTON METHOD*
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Abstract. In the context of optimal control of ordinary differential equations, we prove local
superlinear convergence and constraint identification results for an extension of the projected Newton
method of Bertsekas. The estimates are also valid for discretized versions of the method-problem
pair.

Key words, projected Newton iteration, optimal control
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1. Introduction. In many areas of optimal control the problems are formulated
with simple constraints on the control. For these problems, the gradient projection
type algorithms have proven to be quite successful, because they are able to take into
account the structure of the underlying optimization problem. Another interesting
feature of these methods is that they often can be formulated in infinite-dimensional
spaces, which is important for the application to optimal control problems.

In general, let H denote a Hilbert space and for some closed convex subset U E H
consider the optimization problem

(1.1) Minimize (u) subject to u e U.

If 7) H - U denotes the projection onto the feasible set, then the gradient projection
method iterates are given by

where c > 0 is determined by a step-size rule. In Hilbert space, this algorithm has
been formulated and investigated by Goldstein [10] and Levitin and Polyak [13]. The
books [4] and [3] discussed the convergence properties of gradient projection methods.
In [7] a thorough convergence analysis of the gradient projection method was presented
which yields various convergence rates of the algorithm under various assumptions.

Since the gradient projection method as presented in (1.2) is based on and iden-
tical for U H with the steepest descent method, its convergence properties exhibit
locally a rather slow rate. This was the motivation to extend Newton’s method to a
projection method. There are basically two routes by which this goal can be achieved.

If one considers in the unconstrained case a Newton step as the solution of the
minimization of a quadratic approximation of at the current iterates uc, then for a
problem of the type (1.1) one would have to solve

1
(u V2(1.3)Minimize (V(uc), u uc) + u, (uc)(u u)) subject to u e U.
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This algorithm has been analyzed in [13] and [6]. The disadvantage of the method
(1.3) is that at each step a quadratic problem with constraints needs to be solved. The
simplicity of the constraints cannot be used in a direct way through the projection P
except in solving the quadratic problem.

The other route to extend Newton’s method to the constrained case is as follows.
Instead of projecting the steepest descent direction onto the feasible set, one projects
the Newton direction onto the feasible set:

This method utilizes again the simple projection but has the drawback that it does not
always produce a descent in the objective function. Bertsekas [1] and [2] introduced for
the finite-dimensional case with simple constraints, such as upper and lower bounds
on the variables, a projected Newton method which alleviated this problem. For
H R let

u+ P(uc ccD-lV(u)),

where D is a properly chosen matrix such that descent in the objective function is
ensured. Let Ca denote the map that sets the components which lie in J of a vector
u E R to zero. Then Bertsekas suggested that

D CV2(u)Cj + CICj,

where J contains the components of uc which are active and the corresponding com-
ponents of V(u) point outside the feasible set. J denotes the complement of J in
the index set. This algorithm combined with a proper step-size rule can be shown
to converge locally at a quadratic rate since it identifies all active constraints after
finitely many steps and becomes Newton’s method for an unconstrained problem.
The assumptions required for superlinear convergence of the method proposed in this
paper include assumptions of the type of second-order sufficiency (2.4) and of nonde-
generacy (2.3). The latter assumption might not be needed in an approach similar to
(1.3), but a larger problem has to be solved at each step.

Since optimal control problems are problems formulated in function space, an
analysis of the projected Newton method in this framework would give some insight
for the case of fine discretizations. As shown in [16], this issue is important because
the identification of finite indices is only mesh independent if proper measures are
taken. The goal of this paper is to extend the algorithm to the infinite-dimensional
setting of optimal control problems.

The class of problems we seek to solve is

minimize f0
T

L(x(t), u(t), t)dt

over u E U such that x W/[0, T] solves

it(t) f(x(t), u(t), t), x(O) xo, t (0, T).

Heref:RNxRx[O,T]--*RN andL:RNxRx [O,T]-Randfort [O,T] we let
U be given by

U(t) {u L[0, T] lumin(t <_ u(t) <_ Urnax(t)}
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with Umin and Umax in L[0, T].
The projection P is the map on L[0, T] given by

tmin(t),
P()(t) (t),

Umax(t),

if u(t) <_ tmin(t),
if Umin(t)

_
U(t)

_
if u(t) >_ tmax(t).

We use the notation

L[0, T] L([O,T];RN), W/[0, T] WI’([O,T];RN)

for the spaces of RN valued functions on [0, T] having components in L[0, T] and
WI’[0, T], respectively. If w [0, T] --. RN has components wi, the norms on

L [0, T] and W’ [0, T] are given by

N N

IIWlIL[O,T] IIwIIL[O,TI and
i=1 i=1

The L and W’ are defined by

IlUlIL[O,TI ess-supte[O,T] lu(t)] and

We will work in the spaces

X I/vl’oe [0 T] w’ [0, T] L[0, T] and Y L[0, T] (R) L[0, T] L [0, T]."N ’"N

For the unconstrained case, the first-order necessary conditions for optimality can
be defined in terms of the Hamiltonian function H RN RN R x R --. R

H(p, x, u, t) fT (x, u, t) p + L(x, u, t), (p, x, u, t) E R2N+2.

Usually, p E W[0, T] denotes the solution of the adjoint equation

_/ T Tf p + Lx p(T) O.

For simplicity we will also use the notation for the Hamiltonian

H(p, x, u)(t) := H(p(t), x(t), u(t), t), t c: [0, T]

and likewise for the partial derivatives of H.
The first-order necessary conditions for the unconstrained case can be expressed

as the system of nonlinear equations

F(z) F(p, x, u) + Hx (p, x, u) 0
H(p,, ) 0

for z (p,x, u)T X and F: X -- Y. The advantage of solving the system (1.7) over
applying a Newton-like method directly to Vf H 0 is that the linear equations
for the Newton steps in (1.7) can be expressed as linear equations for the new iterates,
without solving a nonlinear differential equation.



1734 C. T. KELLEY AND E. W. SACHS

For the constrained case, the third equation in (1.7) must be modified to take the
constraints into account. The system of nonlinear equations we consider here is

(1.8) .7"(z) .7"(p, x, u) i5 + Hx(p,x, u) 0
u-P(u-Hu(p,x,u)) 0

To formulate the algorithm we introduce some more notation: For I C [0, T],
A [0, T] \ I, and z E X define

Qiz (p, x, iu)T,

Note that in the definition of 9vi, QIF and not QI9v is used. This is important not
only to make $’ well defined but also for the success of the algorithm described in 4.

9i can be regarded as a map from

l/l/’l’c [0, T] W[0, T] @ L[I].Xi N

to

Y L[0, T] (R) L[0, T] (R) L[I].

If the third component of is understood to be identically zero on A, we may
also regard $’ as a map from X to Y. We will use I as both a theoretical and
computational tool. When used in computation we must have knowledge of u* on A.
This is analogous to identification of the active set in finite-dimensional problems [1],
[2]. In the infinite-dimensional setting considered in this paper, complete identification
of A* is not possible. However, as we will show in 4, a useful subset of A* can be
identified.

The authors extended in [12] Bertsekas’ gradient projection method to constrained
compact fixed-point problems. It was combined with a multilevel algorithm of Atkin-
son and Brakhage and applied to a parabolic boundary control problem with simple
bound constraints on the control. In this paper, we do not assume any compactness
of the nonlinear map and analyze the resulting algorithm in infinite dimensions. As
we will see in 4, relaxing the assumptions with regard to the compactness gives rise
to an additional smoothing step in the algorithm so that a proper identification of the
active set can be done at the subsequent iteration.

Section 3 contains a series of lemmas that are rather technical but lead to an
important estimate in Theorem 3.5 in which the norm of the residual $" can be
used in an upper bound on the distance of the current iterate to the solution in
the strong X-norm. The transfer from a projection-based method, which has its
natural formulation in a Hilbert space like L2, to an L-type norm in X poses in
the analysis of the convergence various difficulties. In another context this aspect
has been the focus of other research activities, see, e.g., [9], [8]. The estimate in
Theorem 3.5 enables us to show a result on the identification of the set of active
indices. It estimates the measure of the set on which the active set at the current
iterate differs from the active set of the solution by the distance of the iterate from
the solution in the X-norm. This result is the key for the convergence analysis of the
algorithm.
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In the following algorithm we set uc u* on A, which is a well-defined step by
Lemma 3.7, and then apply a projected Newton iteration with A(zc) as the active
set. This yields an intermediate iterate (x1/2,pl/.) for the state and costate. Then a
smoothing step for x and p is added which properly determines the set A(z+) at the
next iterate. The iteration is formally given by the following algorithm.

ALGORITHM proj_newt(., Zc, z+). Choose/5 (1/2, 1)
1. Compute

2. Set uc u* on A(z).
3. Compute the projected Newton step

s -QI.(z)-QiF(z).
4. Set zl/2 [:)(z + s) and u+ u/2, where

P= 0 I 0
0 0 P

5. Compute

x+(t) f(x/2(s), u+(s), s) ds + xo,

p+(t) H(p/2(s),z/2(s), +(s)) ds.

Apart from the smoothing step, this algorithm differs from the gradient projection
method given by Bertsekas even in the finite-dimensional case. To clarify this point
consider a optimal control problem where in step (1.5) the new state z+ in Bertsekas’
algorithm has to be computed by solving the nonlinear system equation. In Algorithm
projmewt the correction for the new state is computed from a linearied version of
the system equation, see, e.g., (6.6).

In 4 we prove the local convergence of the iterates of the algorithm to the solution
which is superlinear. The order of the rate of convergence is dependent on how
stringently the identification of the active set is carried out. The convergence is of
q-order 2p depending on the choice of/5 > 1/2 in A(z) in the algorithm. The norm
which we use in the convergence statement is the X-norm which is stronger than the
Y-norm.

The contents of 5 relate the assumptions of the lemmas and theorems to other
assumptions which have been used in the literature. In particular, the relation to
second-order sufficiency conditions is clarified. Also, the role of the growth conditions
in [6] is indicated in our context.

Section 6 contains comments on the implementation of the algorithm. Purther-
more, we present for an example numbers illustrating the convergence rate estimates
of the convergence theorem. In particular, the dependence on i can be observed.. Notation. In this section we introduce some more notation, assumptions, and
immediate consequences of these.

Since U is given by

U(t) {u E L[0, T] Umin(t)

_
U(t)

_
Umax(t)}
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we define the 2-point set

OU(t) {Umin(t), tmax(t)}.

We assume the existence of a solution to the first-order necessary conditions.
ASSUMPTION 2.1. There exists z* (p*,x*, u*) such that Y:(z*) O.
Since z* E X, its range is contained in the bounded set

n { e Rg Rg R I111 < IIz*llx}.

Also (x, u) E 741 C RN R where

{C e RN R IICII _< IIz*llx},

ASSUMPTION 2.2. There is an open set To D T1 such that f, L and their first and
second partial derivatives with respect to x and u are uniformly Lipschitz continuous
on o [0, T].

Lemma 2.1 is an immediate consequence of Assumption 2.2 and the fact that for
z, w X, F’(z) F’(w) is a multiplication operator and not a differential operator.

In the rest of the paper we denote function space norms by I1" and norms in Rk

by

Ixl max {Ixyl j- 1, ...,k}.

LEMMA 2.1. There are a*,LF, MF > 0 such that for all z,w Af {v
x lily- z*llz < *} and t e [0, T],

(2.1) IF(z)(t)- F(w)(t)l < MFIz(t)- w(t)l,

(2.2)
IIF’(z) F’(w)llz:(x,y) <_ LFIIz wily and

liF’(z) F’(w)ll(y,y)

_
LFIIz wilY.

We define active and inactive sets for u by

(2.3) A(u) {t]u(t) e OU(t)} and I(u) [0, T] \ A(u) {t]u(t) e int(U)(t)}.

In (2.3)int(U)(t)is defined to be the interval

int(U)(t) (Umin(t), Umax(t)).

We let

A* A(u*) and I* I(u*).

If S c Rk for some k and t Rk we denote the distance from t to S by

dist(t, S) inf{s e Slit- sl}.

As in [12] we make structural assumptions on the active set at the solution.
ASSUMPTION 2.3. There is (0, 1) such that Umax(t) _> Umin(t) + for all

t E [0, T]. A* is the closure of a finite union of open sets. On each component of A*
either u Umax or u tmin.
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Moreover, there is cl such that

IHu(p*,x*,u*)(t)l>_ cldist(t, OA*) for all t E A* and
(2.4)

dist(t, A*)_< cldist(u*(t),OU(t)) for all t I*.

This assumption is a condition on the slope of the function Hu, which is also
called switching function in the control context. In 5 we relate Assumption 2.3
to the growth condition in [7]. We also give a connection to a similar condition in

[16] which has been used for the finite identification of active indices in the gradient
projection method.

The fact that we consider problems of dimension 1 with regard to the control
together with the assumption on the structure of A* yields the following lemma,
which we give without proof.

LEMMA 2.2. There is co > 0 such that for all 5 > 0 the sets

E {t e R ldist(t, OA*) < }

are uniformly bounded in measure by

(2.5) (Ee) < c05.

We define projections P1 and P2 for z (p, x, u)T Y by

PlZ (p, x, 0)v, P2z (0, O, u)T.

The observations that PF P19c and QjR1 P1QJ P1 for any J c [0, T] lead to
the following result.

PROPOSITION 2.3. Let Assumptions 2.1 and 2.2 hold. If I c I* then Ut(z*) 0
and for all t [0, T]

IP.z(z)(t)l IIP-(z)llY / MI(r -z)(z- z*)(t)l.

Proof. Since

PUi(z) PIQIF(QIz + (I Q)z*)

and

PQI(z) PQIF(z)

we have the result by Lemma 2.1.
Nonsingularity assumptions are also complicated by the constraints.
ASSUMPTION 2.4. There are Kn and l > 0 such that if

(2.6) I {tl IH(p*,x*,u*)(t)l <

then U’i(z*) is a nonsingular map from XI to Y. Moreover,

(2.7) [IJtI Z* )- ll(Yl ,X
and for any measurable set S c [0, T]

(2.8) IIr:r’z(z*)-(I
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There is & such that

H(p*,x*, *)(t) >_

for all t E I.
This assumption is related to second-order sufficiency conditions for optimal con-

trol problems. Details are discussed in 5.
3. Identification of the active set. We begin by summarizing the definitions

of the many projections that will be used in the following sections. Beginning with
the definition of :P in (1.6) as the projection of u onto the feasible set, we define/5
z (p, x, u)T Y by

p(z) (,x, ,()).

For a measurable set I [0, T] we define

Q(z) (p, x, xu)T

where XI is the characteristic function of the set I. Finally we define P1 and P2,
which decompose z into the state-costate and control parts by

P (z) (, x, o), Pz (o, o, ).

For z X we let

e (ep, ex, eu)T Z Z*.

We want to show that provided Ilellx is sufficiently small, it can be estimated by a
constant multiple of II$’lly. This estimate is important in that it allows us to identify
a subset of A*. We will require a sequence of lemmas.

LEMMA 3.1. Assume that Assumptions 2.1-2.4 hold. Then there are Bo, c2,
and To > 0 such that if z P(z) X is such that Ilellx <_ o, then for S(z)
{t u(t H(p,x, u)(t) U(t)} N I* I(u),

where

Ig2Ji()i.(z)(t)l Bo(ll=(z)llg +

Proof. We assume that T0 < min(a*, ), where a* is the diameter of the set Af in
Lemma 2.1. We set J I* I(u) in this proof and set Ilelly a < I!e[Ix.

Observe that

p:r() (o, o, xH(p,x, + *)) (0, O, xH(p,x,))
and therefore

(3.1) P2iTZg(z) (0, 0, (1 Xs())xjH(p,x, u) + XS(z)H(p,x, u)(t))T.

On S(z) we have H(p*, x*, u*)= 0, since S(z) c J c I*. Hence for t e S(z)

(3.2) I(z)U(p,x, u)(t)l I(z)(U(p,x, u) U(p*,x*,
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For t e S(z) we have u- H(p,x, u) e U and

(1 XS(z))(O,O,H(p,x,u))T (1 Xs(z))P2Z(z);
hence

This proves the first part of the assertion with B0 max {1, MF}.
We now complete the proof with an estimate of the measure of S(z). Let t E S(z).

The estimate (3.2) and H(p*,x*, u*)(t) 0 yield

IIs(z)(* Hu(p*,x*, u*)- (u- H(p,x, u)))lloo (1 + MF)a.

Since u- H(p, x, u) U(t) we must have

dist(u*(t),OU(t)) <_ (1 + Mg)a.

Hence, by Assumption 2.3,

dist(t, A*) _< c-1(1 + MF)a

for any t S(z). Therefore

S(z) c {tldist(t, OA* <_ ci-1(1 + MF)a},

and, further, by Lemma 2.2,

#(S(z)) <_ coci-l(1 + MF)a.

This completes the proof with C2 C0C-I(1 + MF).
COROLLARY 3.2. Assume that Assumptions 2.1-2.4 hold. Then if Ilel]x <_ TO

(3.3) IlP:()ci.(z*)-lP2I()mz*(z)llY < B(ll:(z)llY +

Proof. The result follows directly from Assumption 2.4 and Lemma 3.1 with

B1 KBo(1 + c2).
LEMMA 3.3. Assume that Assumptions 2.1-2.4 hold. Then there are B5 and

T1 > 0 such that if z P(z) X is such that [[ellx < ’, then

(3.4) IlPl’()m,.(z*)-Pi()mz.(z)llY < B(ll:(z)llY / Ilell).

Proof. We assume that -1 <_ TO with TO chosen as in Lemma 3.1. We set I I(u)
and A A(u) in this proof. We let IIllY < Ilellx < nd II:(z)lly . We et
J=I*NI.

By Proposition 2.3

IPj(z)l <_ + MF(1 Xj)leul r5 + MFXSv levi,

for all t [0, T], where Su is the support of (1 xj)e. Our next task is to study Su.
Assumption 2.3 implies that if we choose T < then u u* on E A(u) V) A*.

Hence (1 Xg)eu is nonzero only in the set

E ([0, T] \ (E t_J J)) (I* N A) t2 (I g) A*)
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and hence Su c El. We consider three cases. First, ift E (I*CA) then Hu(p*,x*, u*)
0. Ift e (INA*) and u-Hu(p,x,u) e int(U), then IHu(p,x,u)(t)l IP22(z)(t)l <
and therefore

IH(p*,x*,u*)(t)l < + MFa.

If we now let

E2 {t e E1 ]u H(p, x, u) e int(U)} U (I* C A)

then for all t E2 and B2 1 + MF

IH(p*,x*, u*)(t)l < B2(5 + ).

We must consider a third case"

t e E3 {t e I C A*lu H(p,x, u) int(U)}.

Since

(3.6) I:P(u- Hu(p,x, u)) u* IP(u- H(p,x, u)) P(u* Hu(p*,x*, u*))
< (1 +MF)a

for all t [0, T], we may reduce T1 if needed so that (1 + MF)7"I < P to conclude that
if a < -1 and if t E3 then

u* "P(u Hu(p,x, u));

hence

P.r() (o, o, p(, H(p, x, ))) (o, o, ,,).
This implies that

At this point we have

IPi’j(z)l <_ 5 + MR(1 J)ll- + MXE. levi / MXEleI
<_ (1 + MF)5 + MFXE.IeI.

The Banach lemma, Assumption 2.4, and Lemma 2.1 imply that if a < a* then

Hence, reducing T1 if needed so that 71ME < 1/2, we have

(3.9) II(j)-XPlj(z)llY 2K((1 + MF)5 + MFcr#(E2)).

We now estimate the measure of E2. Using (2.4) we see that if t E2 then either
t I fl A* and from (3.5)

dist(t, OA*) < clB2(a + )
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or t E I* A A and

dist(t, OA*) <_ cldist(u*(t),OU(t)) <_ cllu(t) u*(t)l <_ cla.
Hence, setting B3 c-1 max(B2, 1)

dist(t, OA*) <_ clB3(a + ) for all t E E2.

Then Lemma 2.2 implies that

(3.10) #(E2)

_
B4((7 + (),

where B4 B3coc1. If we reduce T1 if needed so that MFB4T1

_
1 and set B5

2K(2 / MF + MFBa), then the proof is complete. []

LEMMA 3.4. Assume that Assumptions 2.1-2.4 hold. Then there are B9 and
T2 > 0 such that if z P(z) e X is such that Ilellz <_ T2, then

(3.11)

Proof. We assume that T2 <_ rl with -1 from Lemma 3.3. Let p p- p*,
e x x*, and eu u u*. We set I I(u) and A A(u) in this proof. We let
Ilel[y (7

_
Ilellx

_
7"1, IlPlelly , and IlJZ(z)lly 6. We let J I* N I.

We define a set $ by

s {tl H(p,x, ) e U(t)}.

Note that if t S then the third component of $’(z) is Hu. Therefore IHu(p,x, u)] _< 5
for all t $. Therefore, since Hu (p*, x*, u*) 0 on I*, both H(p*, x*, u*) 0 and
H(p, x, u) 0(5) on the set N I*. Hence, for all t $ I* we have

0 Hu(p*,x*, u*) Hu(p,x, u*) + 0(3)

H(p, z, ) H(p*, x*, *)e + O(: +

The bound away from 0 of Huu implies that there is B6 such that

On S A A*, IHu(p,x, u)l <_ 5 and hence

H(p*,x*, u*) + H(p*,x*, u*)eu 0(5 + a2 + 3).

As for Hu (p*, x*, u*) we know that

H(p*, x*, u*)(u u*) >_ O.

Umax, say, then eu <_ 0 and therefore H(p*,x*,u*) < 0. Hence

0 <_ -Hu(p*,x*, u*) Hu(p*,x*, u*)e + 0(5 + (7 + 3).

Since eu _< 0 we must have [e[ 0(,5 + + fl). Applying a similar argument to the
case where u Umin implies that
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We must now estimate levi on Sc- [0, T] \S. If t e Sc we have u-H(p,x,u)
U(t) and therefore P(u- H(p,x,u)) e OU(t). On A* AS, u* P(u- H(p,x,u))
if a0 is sufficiently small by (3.6). Therefore (3.7) holds and so

On I* Sc, 0 H(p*,x*, u*). Since 7)(u- H(p,x, u)) e OU(t), either P(u-
Hu(p,x, u)) Umax or 7a(u- Hu(p,x, u)) Umin. If (t- Hu(p,x, u)) Umax, say,
then

(3.12) lu (u H(p,x, u))] lu Umxl 5.

Hence

Umax -- c Hu (p, x, u)

_
u Hu (p, x, u) _Umax

and therefore H(p,x, u) <_ 5. Similarly if P(u-H(p,x, u)) itmin, H(p,x, u) >_ -5.
Now, if P(u- H(p, x, u)) Umx then H(p, x, u)

_
5 and therefore

(3.13) (

_
U i:(it Hu (p, x, u)) it itmax

_
it- it*.

Hence e= >_ -5. Also,

(3.14)
0 H(p*,x*, u*) H(p,x, u) Huu(p*,x*, u*)eu + 0( + a2 +

<_ -H(p*, x*, u*)eu + + 0( + a2 +
-Huu (p*, x*, u*)e + O(5 + a2 + f).

Since H _> 5 on I* by Assumption 2.4, (3.14) implies

(3.15) e <_ -10(5 + a2 + ) 0( + a2 + 3).

We may use (3.13) and (3.15) to conclude that

_< _< +

and therefore e= 0(5 + a2 + 3). The estimate is exactly the same if u Umin.
Hence there is B8 such that

This completes the proof with B9 max{B6, BT, B8}.
THEOREM 3.5. Assume that Assumptions 2.1-2.4 hold. Then there are Kx, ao >

0 such that if z P(z) E X satisfies IIz- z*llx < ao then

(3.16) llz-z*llx <_

Proof. We assume that cro < T1 with T by Lemma 3.3. We let Ilel[y cr <
ll llx < ll (z)llY let J I* f3 I(it). By Proposition 2.3, j(z*) O.

(3.17)
JZj(z) j(z* + Jzj(z* + tQje)Qje dt

o

j(z*)Qje + (j(z* + tQge) j(z*))Qjedt.
o
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We now have, using (3.17),

(3.18) Qje .T’j(z*)- .T’g(z)
o
(’j(z* + tQae) ’j(z*))Qjedt)

By Lemma 2.1 the integral term satisfies

(3.19) (j(z* + tQje) Jzj(z*))Qjedt

where LF is the bound in Lemma 2.1 and hence with (2.7)

I[(3.20) YZ’g(Z*)-i (Yz’j(z* + tQae) ’j(z*))Qgedt
o

It remains to estimate ’(z*)-lJZj(z)"
By Lemma 3.3 and Corollary 3.2 we have

(3.21) IlPl’j(z*)-lj(z)lly B10( + o’2),

where B10 B1 + B5. At this point we can estimate (3.18) using (3.20), (3.21), and

Ilxll. < Ilxll eor x e z s eonows:

(3.22) IIPIIIY IIPx QJIIY < Bll (6 -f- O’2),

where Bll B10 -+- KILF.
By the definition of P2, Lemma 3.4, and Assumption 2.4 we have

(3.23) IIPllx IIPellY B9(1 + Bll)( + 02).

From this we conclude with (3.22) that

where B12 Bll + B9(1 + Bll). Hence, reducing a0 if necessary so that B123 <_
B123o <_ 1/2,

(3.24) and a2 <_ 32B125 <_ 5.

To obtain an estimate for Ilellx, not IlellY, we use (3.23) and the second two parts
of (3.24)"

(3.25)

We estimate IIPxQJIIx in two parts based on (3.18). Lemma 3.1 and Proposition 2.3
together with (3.24) imply that

[I.j(z)llY IIP(z)llY + MII(/-- QJ)IIY + Bo(ll.(z)llY + IIllY)
_< (1 + Bo)5 + (MF + Bo)llellY < B135,

where

B13 (1 -4- 2MFB12) -4- Bo(1 + 2B12).
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Therefore by Assumption 2.4

(3.26) II  j(z*)-  j(z)llx K, II: g(z)llY

Hence we can conclude the proof by estimating (3.25) further with (3.18), (3.26),
(3.20), and (3.24) to obtain (3.16) with Kx Kn(B13 / LF)+ 2B9(1 / BI). [:l

As a consequence we have a result on identification of the active set A*.
THEOREM 3.6. Assume that Assumptions 2.1-2.4 hold. For all i E (0, 1) there

is a such that if IIz- z*llz < a, z z* and

then A(z) c A* and there is ct, such that

#(A* \ (z)) <_ c, llz- z*ll x
Proof. Let a < a0 as in Theorem 3.5, so that the consequences of Theorem 3.5

hold. Let I[$’(z)lly 5 and I[z- z*l[x a. Let LH denote the Lipschitz constant of
H. For t A(z) we have

IH.(z*)(t)l >_ IH.(z)(t)} LHa >_ 5p LHa >_ (Kla) LHa > 0

Hence if

O"

__
(KP/LH)1/(1-),

then t A(z) implies that Hu(z*)(t) > 0 and therefore that t A*. We now set

a min(a0, (KP/LH)I/(1-P)).
If t A* \ A then, using (2.4) from Assumption 2.3,

cdist(t, OA*) <_ IH.(z*)(t)l <_ IH.(z*)(t) H.(z)l + IH.(z)] < LHa + 5

(3.29) <_ Lua + Ma.
This implies that t E where

+

Hence

#(A* \ A(z)) <_ #(E) <_ co.
If we set

the proof is complete. D
The final result in this section is that if z is sufficiently near z* then u can be set

to u* on A(z) in a well-defined way.
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LEMMA 3.7. Assume that Assumptions 2.1-2.4 hold. Then for all E (0, 1) there
is a2 such that if IIz z*l z < cry, z z* and t e t(z) then

for all w u*, w(t) e OU(t). Therefore the assignment of u to min or Itmax,
whichever is closer to u, on is well defined and decreases the X-norm of z- z*.

Proof. Let a2 _< (:rl SO that the conclusions of Theorem 3.6 hold. If t (z) c A*
then either u*(t) Umax(t) or u* (t) Umin(t). Without loss of generality we assume
that u*(t) Umx(t). Letting IIz- z*l]x a we have lu(t) Umx(t)]

_
(7 and

where is from Assumption 2.3. This completes the proof if a2 < /2. [:]

4. The algorithm. Let z be such that the conclusions of Theorem 3.5 hold and
let 1[gV(z)lly 5. Let f (0, 1) and let .(z) be given by (3.27). Let fi.c [0, T]\fi.

Note that if v Qiz + (I Qi)(z .T(z)) then v u* on A(z) and hence
can be computed since the value of z* on A is known.

The variant of the projected Newton algorithm that we propose here makes the
transition from a current iterate Zc to a new point z+ by setting uc u* on A,
which is a well-defined step by Lemma 3.7, and then applying a projected Newton
iteration with A(z) as the active set. The iteration is formally given by the following
algorithm.

ALGORITHM 4.1. Algorithm proj _newt ($’, z, z+)
1. Compute

t(z) {tl lH(z)(t)l >_ II’(zc)lly}.

2. Set u u* on .(z).
3. Compute the projected Newton step

(4.1)
s -(I Qi).(z) QI.(z)-Qi.T[(z)

-Qi(z)-QtF(z)
-(QiF’(z)Qi)-QiF(z).

4. Set zl/2 P(z + s) and u+ ul/2, where

5. Compute

I 0 O)0 I 0
0 0 7)

’o
x+(t) f(xl/2(s), u+(s), s) ds + x0,

p+(t)-- Hx(Pl/2(s),xl/2(s),u+(s)) ds.

Remark. The term (I- Qi)JZ(zc) in the right side of (4.1) in step 3 of Algo-
rithm 4.1 vanishes because of the change in u on A in step 2 in the algorithm. We
include it in the first line of (4.1) to emphasize the similarity of the algorithm we
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propose with the projected Newton algorithm in [2]. Hence after the overwriting of
uc with u* on A in step 2 we need only compute the step on I. Another effect of step
2 is the relation

Q:() QF(z),

which follows from u u* on .
The convergence behavior of the iteration is given by the following theorem.
THEOREM 4.1. Let the assumptions of Theorem 3.5 hold. There are KN > 0 and

a3 > 0 such that if Ilecllx < a3 and z+ is given by Algorithm 4.1 then

(4.2) 2II+llx KNIlecllx

Proof. First let a3 <_ a2 so that the conclusions of our previous results are valid.
The proof begins by estimating IIPle+llx in terms of IlecllX and IIP2e+ll. This first
step reduces the proof to an estimate of IIP:e+llx in terms of Ilecl], which only involves
the u-component of the error.

Step 5 of Algorithm 4.1 serves as a smoothing step. By definition we have
lie+ I]x =]]e+ IIY -- tt Pie+ I]Y" Assumption 2.2 yields with a constant B14 > 0

IIf(xx/e, u+) f(x*, u*)llL + I]H(pl/,x/2, u+) H(p*,x*,

< BII/211Y.
Similarly,

(4.3)
ex+(t) (f(xl/(s), u+(s)) f(x*(s), u*(s)))ds and

ep+(t) Hx(p1/2(8),Xl/2(8), u+(8)) Hx(p*(s),x*(8), u*(s)))d8.

Hence there is B15 such that

Therefore

II+llx (B14 -t-Bx)ll/llY.

Step 2 of Algorithm 4.1 forces u u* on A c A* by Theorem 3.6. Qis can be
viewed as a perturbation of the Newton step $ for the map Qi(.T’I(z) .T’i(z*)) from
the point z. We have

-Q[(z)-Q[(.(z) $)(z*))

and 21/2 Zc -t- satisfies

(4.4) IIQl/.l[x < Bx61lQe=ll 2
X

Here, for this proof,

B16 K,LF/2
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as is standard for Newton’s method.
Now,

(4.5) Qie/2 Q[1/2 -- "(Zc)-l.[(z*)To estimate .(z)-JZi(z* we note that because c A*, I* c L .Ti(z*) vanishes
on I*. i(z*) also vanishes on C A* by definition. Therefore

( o )i(z*) P2i(z*)= 0
Xi*H(p*, x*, u*

Hence, in (3.9), we may require a3 to be small enough so that

(4.6) IPlf(zc)-f(z*)ly 2Knlli(z*)ly#([ I*).

We my estimate ]]i(z*)l], by using the fact that

i(z*) P2l(z*)

and the definition of A to find

lz(z*)ll. 5 llz(z*) yz(z)llyz().
< MFIlelx + Mllelf

y

(M{- + M)II.
The fact that i I* A* and Theorem 3.6 imply

om (4.5), (4.6), (4.7)we obtain

(a.8) IlP/ll llPQz/:I IPQze/:I. + lPlf()-z(*)ll
2< BIiliiB6l[e[ + Kvc,(MFa-f + M)e[z x,

where

B17 B16a22-2 + c.Kv(MFal- + MF).
This gives

(4.9) 2p

We must now consider the equation for the third component P2z+ of the projected
Newton iterate. If t E A c A* then u+ uc u* and the third components of the
step, the current error, and the new error vanish.

By (4.1), on i we have

fu(xc,pc, u)sp + Hux(xc,pc, u)sx + H(pc, x,u)s -H(pc, x,u).

By Taylor’s theorem and the fact that f Hup we have

H(,x,,) -(H(pc, X,) + H,(p, :,) + H,(p, :,))
-Hu(Pl/2,Xl/2, Uc) /kl,
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where

/oAI= (Hup(pc + tSp, Xc + tsx,uc) Hup(Pc, Xc, Uc))Sp
+(Hux(Pc + tSp, Xc + tsx, Uc) gux(p,xc, uc))sx dt.

By Assumption 2.2

where MH is an upper bound for the Lipschitz constants of fu Hup, Hu, and Huu.
Now,

U(pc, Xc, u)s -H(p*,x*, u) + A2,

Since

where

and (4.8) implies

2pIIH,(pl/2, Xl/2, u) H,(p*,x*,u)ll <_ LHIIPIel/2I]Y <_ LHB7]IeIIx,

we have that A2 can be bounded by

where

C2 1.2 ,2-- 216B18 2MHFuO -[- LHB17.

We expand Hu(p*, x*, uc) about u* and apply Taylor’s theorem again to obtain

Hu(p*,x*, u) gu(p*,x*, u*) + Huu(p*,x*, u*)e + o(11 11 )
and hence

(4.10) Huu(Pc, Xc, uc)su -H(p*,x*, u*) Huu(p*,x*, u*)e + A3,

where

2Ilzall B1911ellx,

for some B19 > 0.
Let 5+ u + s,. Equation (4.10) may be rewritten as

(4.11) t+ u* (Huu(Pc, Xc, Uc))-lHu(p*,x*, u*)
-[1 (Huu(pc, xc, Uc))-lHuu(p*,x*, u*)]eu + A3.

Since

(1 Hu,(p,xc, u))-H,,(p*,x*, u*))e, o(11  11 )
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we have, for all t E ,
+ u* (Huu(pc, xc, uc))-lH,(p*,x*, u*) +

where

for some S20 > 0.
Since Huu(pc, Xc, Uc) > & for all t e i we have that

for all t I. Therefore

+ "(’+) "P(Vl,* (Huu(Pc, Xc, lZc))-lHu(p*,x*, *)+ A4)

u* +

where

satisfies

2Ilaa[l ll4lloo

Hence

(4.13) 2IIP2e+llx B2ollellx,

We combine this with (4.9) to obtain

2<_ B15Brl]ec]lx +

2<_ (B15B17 + 2B.o)llellx.

Setting KN B15Blr + 2B20 completes the proof.

5. Assumptions. In this section we review the assumptions posed in 2 and
relate them to other conditions used in the context of optimal control problems with
ordinary differential equations.

Since the theory developed uses an L-framework in contrast to L2, there is
no problem in establishing the proper differentiability assumptions of the mappings.
Recall that -’I ZI YI for some measurable set I C [0, T] with A [0, T] \ I is
defined by

.TI(z) QF ( _f(x, xIu+XAU,,t )+ H(z, x,u + XAU*, t)
xI(Hu(x, XIU + XAu*,t))
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for z E XI. Therefore the derivative is given by

(5.2) $’(z)() QIF’ x ir + fT r + Hxx + HxXI
Xllt -- XAt* X1p xz(f +H+

where (, , ,) e Z. In (5.2) we have omitted the arguments for the derivatives
of the functions.

The regularity assumptions in Assumption 2.4 are related to second-order suffi-
ciency conditions in optimal control. In the papers [15] and [14] second-order suffi-
ciency conditions of the following type are used. A strengthened Legendre-Clebsch
condition is posed with the existence of a solution to a Riccati equation, both ap-
propriately altered to the case of control constraints. We assume the existence of a
solution Z(t) Rnxn on [0,T] of the Riccati equation

(5.3) 2 Zf + fZ +H (H + Zf)H(H + fZ), Z(T) 0,

where H is defined as

LEMMA 5.1. Let z* (p*,x*, u*) X be given. Assume that for I given by (2.6)
there exists a solution Z e W’xn [0, T] of (5.3) and for some > 0

(5.4) H(t) 5 a.e. on I.

Then (2.7) and (2.8) of Assumption 2.4 hold.
Proof. For given (a, b, c)T Y let be the solution of the initial value problem

(5.5) - (-f + HxHf)7 b- HHc- Z(a + fuHc), 7(T) O.

With 7 known, denote by the solution of

+ T + H+ T(5.6) + (fHAffZ f + fHgL ) a + fHc- f ], (0) O.

Define by

(5.7) +
and on I by

(5.8) , H:,(c- f- H,),

which can be defined also as a function on [0, T] by extension with 0.
Then one can verify that (, , )T XI solve the system

(5.9) (z*)(,,-)T (a,b,c)T,

which proves the surjectivity of (z*). The continuous dependence of solutions of
initial value problems on the right-hand side of the differentiM equation allows us
to deduce from (5.5) with (5.4) that ]]7[w. depends continuously on ]](a, b, c)]]y.
Using this fact one obtains the same statement from (5.6) for . Finally, one estimates
the L-norm of by (5.8) and this altogether yields the estimate
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for some positive number B21. This proves (2.7).
To show (2.8), let S be a measurable subset of [0, T] and let (a, b, c)T e yoo.

Then

(I Qsc)(a, b, c)T (0, 0, Xsc)

and let (r, , )T E Xz be the solution of

(5.11) -(z*)(r,, )T (O,O, xsc)T (I-Qsc)(a,b,c)T.

We define and as solutions of (5.5) and (5.6), respectively, with (a, b, c) replaced
by (0, 0, Xsc). Then we obtain from the modified (5.5) that for some constant B22 we
have

and a similar estimate follows from modified (5.6) for I1 11 . Hence we obtain with

Qs)(a, b, c)l[Y, [[P (rr, g, ) Ily, I[(rr, g, O)[IY, <_ .B23/*(S)[llloo

which implies (2.8). []

The last condition in Assumption 2.4 is a trivial consequence of the assumption
on the strengthened Legendre-Clebsch condition (5.4) in Lemma 5.1 if we choose I
properly. We can relax the second-order sufficiency conditions to hold only on I*
under a proper smoothness assumption on the control.

LEMMA 5.2. Let z* (p*,x*,u*) X be given such that u* C[0, T] and let
Assumption 2.3 hold. Assume that for I* we have for some > 0

(5.12) H(t) >_ a.e. on I*

and that there exists a solution Z e Wnn[O,T of (5.3) with H+ x,.H(zuX,..
Then (2.7) and (2.8) of Assumption 2.4 hold.

Proof. Note that p*, x* are continuous as solutions of differential equations. With
the assumption on u* we have H C[0, T]. Furthermore, Assumption 2.3 yields
that for small p

I {t e [O,T] lg(p*,x*,u*)l < p}

and we have that

lim #(Ip \ I*) 0.
p--,0

Since by (5.12) the continuous function H is greater or equal to 5 > 0 on I*, we
can choose p # > 0 small enough so that for an appropriately small &

Huu(t) _> & > 0 on Ia.

We have assumed the existence of a solution of the Riccati equation where H+ has
support only on I*. If & is small enough then the Riccati equation with H+ and
support on Ia also has a bounded solution on [0, T]. This completes the proof. []

Next we discuss the statements in Assumption 2.3. For the finite-dimensional case,
a typical nondegeneracy condition would require that each component ofH(p*, x*, u*)i
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is nonzero if the corresponding component u of the optimal control lies in the active
set A*. The additional difficulty occurring for the infinite-dimensional problem is that
Hu can approach zero in different ways. Here we had to impose a requirement that
IHu] grows at a similar rate as the distance from the boundary of the active set when
moving away from the boundary. Obviously, this condition reduces to the previously
mentioned nondegeneracy condition in finite dimensions.

We can relate (2.4) to a condition on the zeroes of the switching function Hu. A
similar condition was used in [5, Thin. 6.2] and also in [16, (2.14)]. To state this more
precisely we prove the following lemma.

LEMMA 5.3. Assume that for 0 < tl <_... < t2r+l < T

(5.13) {t e [O,T] H(x*,p*,u*)(t =0} 6[t2,t2+l]
i=0

and that the function g(t) := IHu(x*,p*,u*)(t)l is continuous and has one-sided
derivatives with

(t2i+l)>0 fori=l r.’(t),+

Then the first line of (2.4) in Assumption 2.3 holds.
Proof. The assumption (5.13) yields that A* consists of finitely many subintervals.

Let A [t2-l,t2] denote such an interval. Then (5.14) implies that there are
e, m > 0 such that

g(t) >_ mlt-t2-l on [t2-,t2- + e] and g(t) >_ mlt-t2[ on [t2- e, t2].

By definition g is positive on (t2i-1, t2i). Therefore, we can choose e > 0 so small that

With m* min {m, 2e/(t2i t2i-)} we obtain

g(t) >_ m[t-t_l on [t_, (t2_+t2)/2] and g(t) >_ mlt-tl on [(t2_+t2)/2,t2],

i.e., g(t)
To reconsider the second line of (2.4), we need more information about H which

vanishes identically on I*. The following lemma addresses a class of problems where
the objective function contains a quadratic control term as is the case in many appli-
cations.

LEMMA 5.4. Suppose that the objective function contains a quadratic control term

(
u2L(x, u) L(x, u) + -with some ( > O. If the function fu (x*, u*)Tp + (x*, u*) has a nonzero slope when

entering and leaving the active set, then the second line of (2.4) is also true.
The form of L implies Hu fTp + L + au* and

u*
1
(fu(x* u*)Tp + u(x* U*)) on I*

The proof of this lemma is similar to the one given for Lemma 5.3.
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6. Implementation. In this section we want to touch upon some of the details
of the implementation of the algorithm. The unconstrained version of the algorithm
presented in the previous sections can be given as the following system of nonlinear
equations:

F(p, x,

f(x, t) 0

[9+ Hz(p,x,u) 0

0

for z (p, x, u)T which satisfy the boundary conditions x(0) x0 and p(T) O.
The Fr6chet derivative of F is given by

(6.2) F’(p,x,u)

with D and all other components as multiplication operators.
If one considers the constrained optimal control problem with the corresponding

system of nonlinear equations 9r(z) 0, then the projected Newton step requires a
decision on the set of active indices. In the implementation we used the rule

fi(z) {t e [O,T] lHu(z)(t)l > 11.55"(z)11 }.

Then the projected Newton step is computed by solving for (Tr, , u) with 7r(T)
=0

QxF’(p,x, u)Qx

(6.3)

-QIF(p,x,u)
-c + f(x, u, t)

fzp-L-[9 T

T-xz(fp+L)

where

I- {t [O,T] ln(t)l <

The new control is then computed as

U+ )(U -- XIl]- XAHu).

The intermediate new state and adjoint variable are given by

(Pl/2, Xl/2) (P, X)-+-(Tr, ).

If one observes that in (6.3) 7r and appear with derivatives, we can derive a dif-
ferential equation for the sum xl/2 z + and likewise for Pl/2. Hence, a more
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efficient way to compute (Pl/2, Xl/2) is to solve the following differential equations (all
unsubscripted quantities are evaluated along the current values (Pc,

51/2 fxXl/2----fxX
T91/2 + fx Pl/2 + Hxx/2 Hxx- L HxuXI

with boundary conditions x/2(O) xo,p/2(T) 0. In addition, if we use the
invertibility of xxHxI for all t E I, then can be expressed in terms of x/2, Pl/2, x, p
as follows:

T
Xx’ -(HI)+(f P/2 + Hux(x/2 x)+ Lu),

where we substitute

(Hluu)+ (x.Huux)-l(t) if (xIHuuxI)(t) :fi 0,

( 0 if (xHx)(t) O.

Hence a linear 2-point boundary value problem needs to be solved at each iteration.
Solve for Pl/2, xl/2 with pl/2(T) 0, Xl/2(0) 0

(6.6)

I + T;1/2 "-[- (-f + fu(Hu) H)xl/2 + fu(H)+f
:HI +H )x + f- fu(HI)+L,

+ +
(H Hx(HIu)+Hu)X- n + H(H)+L.

At the end of each iteration a smoothing step has to be carried out as follows:

(6.7)
x+(t) f f(x/2(s), u+(s), s) ds + xo,

p+(t) ftT Hx(p/2(s),x/2(s), u+(s)) ds.

Termination and the identification of the active set is based on the size of the residual
which can be computed as follows:

(6.8)
5c+ f(x+, u+, t)

[9+ + Hx(p+,x+, u+)

u+ "P(u+ H(p+, x+, u+))

f(x/2, u+, t) f(x+, u+, t)

Hx(p+,x+, u+) Hx(pl/2,Xl/2, u+)

u+ P(u+ H(p+, x+, u+))

We also list the size of the step []z+ zcl]x which we calculate by (the intermediate
iterate x/2 has a corresponding iterate in the previous step denoted by x_/2)
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TABLE 6.1
/5=0.6.

k Pk Pt/P-I P/P-I a
1 0.8669D+00 0.867 0.867 0.3308D+01
2 0.1746D+00 0.201 0.207 0.1331D+01
3 0.1054D+00 0.604 0.856 0.1656D+00
4 0.7004D-01 0.664 1.042 0.1706D+00
5 0.3290D-01 0.470 0.799 0.1463D+00
6 0.9885D-02 0.300 0.595 0.8485D-01
7 0.1604D-02 0.162 0.409 0.2830D-01
8 0.1328D-03 0.083 0.300 0.4816D-02
9 0.3456D-05 0.026 0.155 0.4380D-03

(6.9)
Ilz+ zllx

ma{llx+ xll + I1+ 11, lip+ pll + I1+ ll,

lip+ pll + Iln(p/2,x/2, u+) nx(p-/2,x_x/2,

We use the next example to illustrate the results. Let

1 u2L(x,u) -(x + x22 + ),

and T 3, x(0)= (0, 1)T. Furthermore let

o < u(t) <_ o.8,

and starting data x0 -= (0, 1)T, P0 (0, 0)T, U0 0.
In Tables 6.1, 6.2, and 6.3 we tabulate, for different values of f, the progress of

the iteration for the example above. The 2-point boundary value problem (6.4) was
solved with the trapezoid rule extrapolation approach used in [11] and the integration
in (4.3) was done with the trapezoid rule. A uniform mesh of 1400 points was used.

For each iterate k we tabulate the norm of the nonlinear residual

p II(& f,p + Hz, u- P(u- H))II

the ratio Pc+I/p, and the norm of the step
We see from the tables that the convergence follows the predictions of Theorem 4.1

until the residual can be reduced no further as a result of truncation error effects. In
several numerical experiments with different numbers of mesh points, a sharp increase
in pk+l/pPk seemed to be an indicator that truncation error effects were dominating
the computation.

With Table 6.4 we want to illustrate the effect of Assumption 2.3 on the rate of
convergence. If this assumption does not hold we are no longer guaranteed a local
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TABLE 6.2
p 0.75.

1 0.8669D+00 0.867 0.867 0.2135D+01
2 0.1746D+00 0.201 0.216 0.1331D+01
3 0.7894D-01 0.452 1.083 0.2370D+00
4 0.3058D-01 0.387 1.379 0.2007D+00
5 0.5309D-02 0.174 0.993 0.9241D-01
6 0.2431D-03 0.046 0.629 0.1671D-01

7 0.1638D-05 0.007 0.432 0.7524D-03
8 0.1691D-05 1.033 806.927 0.9862D-06
9 0.1691D-05 1.000 769.034 0.5488D-12

TABLE 6.3
p= 0.9.

2k Pk Pk/Pk-1 Pk/Pk_
1 0.8669D+00 0.867 0.867 0.2135D+01
2 0.1746D+00 0.201 0.226 0.1331D+01
3 0.6306D-01 0.361 1.460 0.3048D+00
4 0.1512D-01 0.240 2.187 0.1895D+00
5 0.9063D-03 0.060 1.715 0.4991D-01

6 0.3483D-05 0.004 1.044 0.2929D-02
7 0.1691D-05 0.485 11287.238 0.9399D-05

8 0.1691D-05 1.000 41449.044 0.3974D-II
9 0.1691D-05 1.000 41448.895 0.8188D-13

TABLE 6.4
5 0.6.

Umax=0.95 Umax=0.8
k Pk Pk/Pk-1 Pk Pk/Pk-1
1 0.9107D+00 0.9107D+00
2 0.1799D+00 0.198 0.2503D+00 0.275

3 0.6510D-02 0.036 0.1936D+00 0.774

4 0.4760D-02 0.731 0.1215D+00 0.628

5 0.2568D-02 0.540 0.5380D-01 0.443

6 0.9994D-03 0.389 0.1357D-01 0.252

7 0.2761D-03 0.276 0.1707D-02 0.126

8 0.5716D-04 0.207 0.1279D-03 0.075

9 0.9666D-05 0.169 0.8496D-05 0.066

10 0.2229D-05 0.231 0.4072D-05 0.479

superlinear rate of convergence as in Theorem 4.1. In Lemma 5.4 we give a sufficient
condition for Assumption 2.3 to be true. For the example under consideration we
have

fu(x*, u*)Tp* + L,(X* u*) p*,l

which looks like a parabola -(t- 2) 2 + 1 with negative curvature. Here we impose
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only upper bounds on the controls. If the upper bound is relatively high, like 0.95,
the slope of p at the boundary of the active set is small. The assumption in Lemma
5.4 is still satisfied but we can see a slower rate of convergence locally compared to an
example where the Upper bound on the control is set to 0.8, yielding a steeper slope
of p at the boundary of the active set.

We have 1400 discretization points and select i- 0.6.

Acknowledgments. The authors appreciate the work of the two very careful
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ON THE ADAPTIVE CONTROL OF JUMP PARAMETER SYSTEMS
VIA NONLINEAR FILTERING*
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Abstract. In this paper we first present an error analysis for the process of estimates generated
by the Wonham filter when it is used for the estimation of the (finite set-valued) jump-Markov
parameters of a random parameter linear stochastic system and further give bounds on certain
functions of these estimates. We then consider a certainty equivalence adaptive linear-quadratic
Gaussian feedback control law using the estimates generated by the nonlinear filter and demonstrate
the global existence of solutions to the resulting closed-loop system. A stochastic Lyapunov analysis
establishes that the certainty equivalence law stabilizes the Markov jump parameter linear system
in the mean square average sense. The conditions for this result are that certain products of (i)
the parameter process jump rate and (ii) the solution of the control Riccati equation and its second
derivatives should be less than certain given bounds. An example is given where the controlled linear
system has state dimension 2. Finally, the stabilizing properties of certainty equivalence laws which
depend on (i) the maximum likelihood estimate of the parameter value and (ii) a modified version
of this estimate are established under certain conditions.

Key words, jump parameter, nonlinear filter, adaptive control, stochastic systems, maximum
likelihood
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1. Introduction. The hybrid system considered in this work is taken to have
the following form:

(1.1) dxt [A(Ot)xt + B(0t)ut]dt + dwt,

where xt E :t and ut ’ are the state and input of the system, {wt, .T’t} is a
standard Wiener process in n with respect to a probability space (gt, P, 9v), and
Ot {1, 2,..., N} is the N-state jump-Markov parameter process subject to

(1.2) (I)t (I)0 + H (sds -- mr.Here, (I)t [J{0t--1}, J{0t--2},..., J]-{Ot--N}] T is the indicator process for Or, H is the
transition probability rate matrix, rnt is a zero-mean L2 martingale, measurable with
respect to an increasing a-field 9t. (I)o is So-measurable and E(I)o Po.

For 0 i, A(O) Ai, and B(O) Bi, where the Ai’s and Bi’s are, respectively,
/nn and nm matrices such that IIAi- Aj[ + IIBi- Bjl 0 for j. Here and

hereafter, IIXII [Amax(XX)] 1/2, where Amax(A) denotes the largest eigenvalue of a
matrix A.

The model (1.1), (1.2) is particularly appropriate for the analysis of the control
of time varying systems, since (1.1) has a variable structure. As indicated by the
dependence of all matrix parameters on the indicator process (I)t, it can be used as
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a model for systems subject to random failures and structural changes. Moreover,
(1.2) is a general model for jump-Markov parameter processes (see, e.g., Liptser and
Shiryaev (1977)).

Control problems for such systems in a nonadaptive setting have been the subject
of considerable theoretical research for the past two decades and Sworder and Chou
(1985) and Ezzine and Haddad (1989) have given surveys of previous work on this
topic.

Generally speaking, the previous works can be classified into three groups: one
group (see, e.g., Sworder and Chou (1985); Ezzine and Haddad (1989); Mariton and
Bertrand (1985); Mariton (1986); Ji and Chizeck (1990); Feng, Loparo, Ji, and Chizeck
(1992)) deals with the case where the system state process x and the jump param-
eter process can be observed completely at any time instant. The second group
(see, e.g., Wonham (1965), Rishel (98), Caines and Chen (1985), Chen and Caines
(1989), Helmes and Rishel (990), Caines and Nassiri-Toussi (1991)) is concerned with
the adaptive case where the system state process x can be observed, but the jump
parameter process q) cannot be directly observed and is consequently estimated. This
may, for instance, be carried out by an application of the Wonham filter (see, e.g.,
Caines and Chen (1985), Chen and Caines (1989), Caines and Nassiri-Toussi (1991)).
The third group (see, e.g., Sworder (1991)) discusses the adaptive case where neither
the system state process x nor the jump parameter process q) can be observed.

Among the first group, it is worth mentioning that Ji and Chizeck (1990) and
Feng, Loparo, Ji, and Chizeck (1992) examine the relationship between appropriately
defined controllability and stabilizability properties, and establish necessary and suffi-
cient conditions for (i) system stabilization and (ii) infinite time jump linear quadratic
(JLQ) optimal controls to exist. However, in most situations, direct observation of sys-
tem parameters is impossible and this leads to the use of adaptive control. Caines and
Chen (1985) used the Wonham filter and a dynamic programming approach to obtain
a finite-horizon adaptive optimal control law for a general jump-Markov system. In
a continuation of this work, Caines and Nassiri-Toussi (1991) and Nassiri-Toussi and
Caines (1991) carried out a stochastic Lyapunov analysis of a certainty equivalence
stabilizing control law and gave an analysis of the resulting ergodic behavior of the sys-
tem. It is shown that, under rather strong conditions on the magnitude of the jumps
of the parameters and the rate of the jump parameter process, a certainty equivalence
linear feedback regulator (using the parameter estimates generated by the Wonham
filter) gives rise to stable ergodic behavior of the system (1.1), (1.2). In some special
cases, where the system is deterministic or where indirect observations of the parame-
ter are available, special solutions to this problem have also been given in Sworder and
Chou (1985), while the general adaptive control problem for stochastic jump-Markov
parameter systems is addressed in Rishel (1981), Caines and Chen (1985), Chen and
Caines (1989), Helmes and Rishel (1990), Sworder (1991), Caines and Nassiri-Toussi
(1991), Nassiri-Toussi and Caines (1991), and Dufour and Bertrand (1993). It should
be remarked that Rishel (1981) was the first to use the Wonham filter to find the
equations of the optimal linear quadratic Gaussian (LQG) controller for a system
depending upon a (constant in time) unobserved finite set-valued random variable.
More recently, Helmes and Rishel (1990) have given an explicit solution to this prob-
lem for the case of minimizing the expectation of the quadratic state deviation at a
final time plus the integrated square of the control action. Sworder (1991) presents
an approximation to the quadratic-optimal regulator problem for a situation in which
there is an unconventional measurement architecture; the solution is in a form quite
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similar to that obtained in the complete observation case, but the gain equation is
made more complicated by the presence of noise. Finally, in a recent paper, Dufour
and Bertrand (1993) responded to an announcement (Caines and Zhang (1992)) of
the results of the present paper by giving a form of averaged control law (with respect
to the conditional densities) that adaptively stabilizes the jump parameter system in
question whenever it satisfies a simple set of algebraic sufficient conditions.

The object of this paper is to establish the existence of stabilizing adaptive feed-
back controllers for jump parameter systems under relatively weak conditions.

in 2 of this paper, the Wonham filter for estimating the indicator process
from observations on x and u is presented, and the error behavior of the filter is
analyzed. Theorem 2.1 gives a formula for the mean square estimation error of and
Corollaries 2.1 and 2.2 give bounds for the expectation of certain weighted integrals
of the estimates; these are required in the subsequent stability analysis. Section 3
contains the principal adaptive control result of the paper. By use of a stochastic
Lyapunov technique it is shown that an adaptive LQG certainty equivalence feedback
control law, which employs parameter estimates generated by the nonlinear filter,
stabilizes the system in an average mean square sense. This result is subject to the
condition that (i) the rate of the jump process of the system and (ii) the magnitude
of the solution to the control Riccati equation and its second derivative are such
that two products of these quantities fall below specified bounds (see (3.8)). It is to
be noted that there is no condition on the size of the jumps of the parameters. In
4, a nontrivial example of this theory is given concerning the adaptive control of a
two-dimensional linear system with jump-Markov system matrices {A, 1 <_ _< N}.
Finally, in 5, the stabilizing properties of certainty equivalence laws which depend
on (i) the maximum likelihood estimate of the parameter value and (ii) a modified
version of this estimate are established under certain conditions.

2. The nonlinear filter and preliminary results. Suppose that (i) A and
B are known for i 1,..., N, (ii) EIIx0][ 2 < cx), (iii) the cross quadratic variation of

m and w, i.e., d(m, w}t/dt O, and (iv) ut is an m-dimensional $- __A a{xs, s <_ t}-
measurable control process. Set

(2.1) t [t(1),..., t(N)] _A_ E(t[’), Vt _> 0,

(2.2) Ht [Alxt + But,... ,Agxt + Bgut],

and

(2.3) DiagOt "..
0 t(N)

Then the nonlinear Wonham filter for the values of the parameter indicator process
t is given by (see, e.g., Chen and Caines (1989))

(2.4) d’t IIOtdt + (DiagOt Ot’t )H[d-t,

where {t, } is the Wiener process of innovations defined by the innovation rep-
resentation of xt"

dt dxt HtOtdt.
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THEOREM 2.1. The conditional mean square estimation error of the filter (2.4)
for the system (1.1) satisfies

Elltll 2 EIloll 2 + 2E IIsds- 2E on(sds

where t A= t t, and Tr(X) denotes the trace of matrix X.
Proof. By (e.e), (.) be rewritten as

dxt Httdt + dwt,

which together with (2.5) results in

t Httdt + dwt.

Therefore, by (1.2) and (2.4), we have

d Hdt +[ Diag]H/ + dm
Htdt + [tO Diagt]H[Httdt

+[tO: DiagOt]H[dwt + dmt,

which combined with Ito’s formula (see, e.g., Schwartz (1984)) leads to

+

Since t, as a solution of (2.4), is continuous, ( _) _. om this
we see that

o<st o<st

where & is the number of the jump points of in [0, t].
Substituting (2.8) into (2.7) and taking expectations on both sides, we see that

t E0 + 2as +t
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From (1.2) and Ito’s formula it follows that

[( ’o + 2 (H(ds + 2 dm + 2Jr,

which, together with (I)(I)t- (I)(I)o 1, implies

(2.10) EJt -E 2II(ds.

Notice that

TE(t(PI) E((tt

Then, by (2.9) and (2.10), we can conclude that

/o-E Tr

i.e., (2.6) holds.
COROLLARY 2.1. (2.6) implies that

N

(2.11) E/_ E[(i)]21[Ax +Bu Aix Bull2ds <_ 1 + 4[lIIllt,
Jo i:1

where (I)t and (t(i) are defined in (2.1), and

N N

(2.12) A$ E (i)Ai, B$ E (i)Bi.
i=1 i=1

Pro@ Let

(2.13) Ht,i Aixt + Biut

Then, by (2.1)-(2.3), we have

and Ht,t Atxt A- Btut.

(2.14)

Ht[(t( Diag(I)t] [Ht, $Ot(1), Ht, $t(n)] HtDiagt

[(H, H,)(),..., (H, H,,)e(N)].

Thus, by (2.13) and (2.6) we get
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where we have used the fact that EllOtll 2 1 EllOtll 2 < 1 and ]lotll 2 1 for t > 0
in order to get the last inequality.

This completes the proof of Corollary 2.1.
COROLLARY 2.2. For any constant > O, we have

T NI"

E l Ilxtll2 [t(i)]211A$, xs + B,us Aixt Biut[]2dt
0 i=1

EI]x0[[ 2 + ( + 2IHII)E IIxtll2dt + 2E [xHttldt

+ 41 n  T)+ NT.

Proof. om Ito’s formula and (2.4) it follows that

and from (2.5),

d(x{xt) 2xHttdt + 2xd@t + Ndt.

Therefore, by Ito’s formula we have

d[(1 :)x xt]

-2x;x:Hdt + 2(1 t t)x:Httdt + g(1 t t)dt

-4: (Diag- t:) H[xdt + 2(1 :)x:t

Taking expectations of both sides, and noticing 0 < t 1, (1- t)zzt 0,
and 4ab 4-la + b (for all a, b 0, > 0) we get that for any fixed constant

>0

ET ]]X]]2 [(Diag- t) H:Ht (Diagt t:)] dt

E[[x01[ 2 + 2[IHI]E I]xt[[2dt + 2E [xH[dt + NT

Ellxol + (v + 2IInll)E Ilxtll2dt

+2E Ix;HtOt Idt + NT

+4-1ExT [(Diagt t:)H[Ht (Diagt- t:)] dr,
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which, together with (2.14), leads to

<_ EIIxoll 2 / ( / 211nll)E xtll2dt + 2E Ix[Httldt

i.e., (2.15) holds.

3. Quadratic index-based adaptive control. The following lemma is to be
found in Caines and Nassiri-Toussi (1991).

LEMMA 3.1. Let the Markov process Xt satisfy the following regular Ito stochastic

differential equation:

(3.1) dXt bt(Xt)dt + Gt(Xt)dwt.

Furthermore, assume that there exist a Cl(+) x C2(n) nonnegative function (.),
a positive real number o, and a nonnegative function kt, such that

O(x) + A(x) -011xll + , Vx e , vt 0,ot

where is the infinitesimal generator of (3.1).
Then, if

1lotlim suPt_o-E kds < cx3

(3.2)

and E[Vo(Xo)] <

limsupt_,oolEfo 1 fott IIXsII2ds <- limsuPtotE ksds <

Proof. By (3.1) and Ito’s formula, we know that dVt(Xt) satisfies the following
equality:

) oy(x)
C(X)d.dVt(Xt) OVt(X)ot F .AVt(x) dt + Ox

With the assumptions on Vt (Xt), this results in

v(x) <_ Vo(Xo) -o IIXlld + d + 0x

Taking the expectation of both sides of this inequality we get

E[(Xt)] E[Vo(Xo)] -oE IIXll2ds + E sds.

This, combined with the positiveness of , gives the desired result (3.2).
It is well known that if (A,B) is controllable and (A, C) is observable (with

CC Q), then for all S > 0 the following Riccati equation has a unique, positive
definite solution P:

(3.3) PA + A;P PBS-IB;p + O.
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LEMMA 3.2. Suppose that (As, Ba) is controllable and (As, C) is observable (with
CC Q). If As and Ba are continuous or i-times differentiable with respect to a
in an interval [a,, a*], then so is the solution Pa.

Proof. From Martensson (1971) we see that the solution Pa can actually be
expressed in the following form:

P=YX1, for all aE[a,,a*]

where the columns of the composed matrix ix.y. are eigenvectors or generalized eigen-
vectors of matrix

As -BS-B ]
-Q -A J

Now, the eigenvectors (respectively, generalized eigenvectors) of a matrix are (re-
spectively, may be chosen to be) continuous functions of its elements. Thus, if
and Ba are continuous with respect to a, then Y, X, and hence P are continuous
with respect to

Similarly, if Am and B are/-times differentiable with respect to a, then Pa is
/-times differentiable with respect to

We define the adaptive control law via the certainty equivalence principle and the
following quadratic index:

lim
1 f0t--, - (xiQx8 + uSus)ds.

Hence, we will use the following adaptive control law:

where Ot is a solution of (2.4), and Pst is a solution of (3.3) with As and Ba replaced
by At and B, respectively.

Let II(i) denote the ith row of matrix II and

(3.6)

(3.7)

sup max
i,j= g Ot(i)Ot(j)

c sup {IJA$- BS-BP$[]}

c2 sup max= N

where

7) A---- t O <_ t(i) <_1, i= l,...,N with t(i) l
i--1

In other words, t ranges over the closed unit simplex 7) in N.
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The closed-loop system referred to in the statement of the main result below is
given by the system and parameter process equations (1.1), (1.2), the filter equations
(2.4), (2.5), and the Riccati and feedback equations (3.3), (3.4).

THEOREM 3.1. Suppose that (A$,B$) is controllable for all Ot in the closed
unit simplex T) and that for some appropriate positive matrix S, the unique solution

P$ to (3.3) combined with the matrix II in (1.2) satisfies

N
1 1

(3.8) IlHIl + eCl < 4N’ c2 E I]H(i)ll < "i--1

Then, under the adaptive control law (3.4) with (t a solution of (2.4), the closed-loop
system has a unique strong solution {xt, Or, t >_ 0}, and is stabilized in the following
average sense:

lim sup
1 j0

T- E (llxll + llll)dt < .
To prove Theorem 3.1, we introduce some notation following Guo (1993). For

any fixed positive number K, denote by C:+N the space of ’+N-valued continuous
functions on the interval [0, K]. When g {gt}o<t<g is a C+N process, we set
IIg][ [O,K] maxo<<K Ilgt II.

Proof. First of all, we show that the closed-loop system has a solution {x, t, t >
0}. Let

(3.9)

Zt

(3.10)

a(zt)

(3.11)

Then from (1.1), (2.4), and (3.4) the closed-loop system can be rewritten in the
following form:

(3.12) dzt a(zt)dt + b(zt)dwt.

Obviously, it follows from (2.12) that A$ and B$ are differentiable with respect

to each component of Or. This combined with Lemma 3.2 implies that P$ is con-

tinuous and bounded on :D, since :D is a compact set. Thus, by (3.9)-(3.11), we can
conclude that for any fixed A > 0, there exists a constant L(x) such that

[lla(gt) a(ht)ll 2 -4-IIb(gt) b(ht)ll 2] (llgltto,<, Ilhll:o,<} < L()llgt htll
and

[lla(g)ll 2 + IIb(g)ll 2] {llgllO,K<> < L(A)( 1 + IIgl12),



ADAPTIVE CONTROL OF JUMP PARAMETER SYSTEMS 1767

where 11 {.} is the indicator function of the set {.}.
Therefore, by Lemma 2.2 of Guo (1993) we know that there is an 9rt-time aK > 0

such that (3.12) has a unique strong solution zt(w) on {w, t" t <: aK(W)}, and

(.) sup I1,()11
t<K()

a.s. on { A_ {w" aK(w) < K}.

We now prove aK(W)= K a.s., i.e., P({I)= 0.
Substituting (3.4) into (1.1) results in

dxt [A(Ot) B(Ot)S-1B P]xtdt + dwt,

which together with Ito’s formula leads to

(3.14)

( )x [A(0s)- B(Os)S-1BsP8] + [A(08)- B(Os)S-1Bcs P$] xsds

+llx011 + 2 xdws + nt.

Notice that, by Lemma 3.2, O Pll
a.s., and that by Lemma 4 of Christopeit (1986) there is a random constant
a2(w) < oc a.s. such that

XdWs

_
() IIxllds / ,(), Vt>0.

By (3.14) we get

IIxll
_

(llxoll + t / ()) / ( + ()) Ilxlld.

Thus, by the Bellman-Grownwall lemma (see e.g., Desoer and Vidyasagar (1975)) we
have

(3.15)

Ilxtll = < Ilx0ll = + nt + a2(w) + (OZl + o2(o2)) ([Ix01l 2 -- r-

(llx011 + t + ())(+()), vt 0.

If P({) > 0, then by (3.15) and the fact that I111 <_ we see that

a.s. on ,
contradicting (3.13) and P({) > 0.

Noting that K can be any positive number, we see that the closed-loop system
(3.12) has a unique strong solution zt(w) on any finite time interval.

We now prove the stability of the closed-loop system.
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Let $ A$ B$S-1BZP and A(i) A- BS-IBeP$," Then from

(2.5) and (2.12) it follows that

(3.16) dxt Httdt +t A$,xtdt + t.
Applying the general Ito formula to V(xt) x[P$,xt, and employing (3.3), (2.4),

and (2.5), we have the following inequalities (see, e.g., Caines and Nassiri-Toussi
(1991))"

Av(z) -x:z x:P,,B,S-BaOtPtxt

+xH(i)t xt +
= Ot(i)

+ () ( ())x
i=1 Ot(i)
N

1

i=1

N

-xrx + c2 IIH(i)llllxll 2 + p,
i=1

N

i=1

[5+llxll2 ,(i)ll(, A,,
i=1

2 [In(i)ll IIxll 2 +P
i=1

N

+4NcN [(i)]211<, ,(i))xll =
i=1

NNe
+V IIxll 2 [(i)1II(, A,, <i)>xll 2,

i=1

where we have used the sum of squares bound 2ab 1/4a2 + 4b2 and a standard sum
of squares bound to obtain the last inequality above and where e and c2 are given by
(3.5) and (3.7), respectively.

By the second inequality of condition (3.8), we see

N

3 1

i=1
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and hence, by Lemma 3.1, we get

limsup
1 .T

< lim sup 1 TrP$ dt

+limsup4NC2 f
T N

T --E0 [t(i)]211(]$ ]*(i))xtl]dt

Ne T N

(a.17) + imsu, lx]
i=1

By (3.4), i.e., ut -S-B P$xt, we have

[A$ A$ (i)]xt A$xt + B$ut Axt But.

Thus, from (3.17) and Corollaries 2.1 and 2.2 it follows that for any fixed > 0,

lim sup
1 ITT E

< lim sup 1 P$dt

+ { 16Y]H[[Z-c + Ne(16[[H]- + N)(2Z) -1}
g(, + ]l)

limsuPT 2ZT
E
o

[xtll2dt+

(3.18) + lim sup
T E ]x:Httldt.

It is easy to see that

(a.l) lx:H x:Z,x xll,
where Cl is defined in (3.6).

Substituting (3.19) into (3.18) we get that for all > 0,

lim sup
1

_< limTsup E P$dt
+ {laNlnll-c + N(la[lnll- + N)(2) -1 }

N(V + 2llnll)e + 2Nec fT
limSuPT 2ZT

E Jo Ixtldt"+

Notice that (3.8) implies
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So we can fix a constant r/> 0 at such a value that

(3.21) N( + 211IIII)e + 2Necl < 1.

Recalling that P, is bounded on :D, we get

lim sup
r--*cx

and hence, by (a.21) and (3.20) we have

lim sup
1 fo

r

which together with (3.4) results in

lira sup
1 T

Therefore, Theorem 3.1 is true.

4. An example. In this section, we present an example to demonstrate that the
conditions of Theorem 3.1 are verifiable in certain nontrivial cases.

EXAMPLE 4.1. If system (1.1) is such that n 2, m 1, B B2 BN
[0b] with

b#0 and Ai= [ 00 -ail]
for a distinct, i 1,..., N, then (i) (As,, B$,) is controllable for all Ot in the closed
unit simplex, and (ii) condition (3.8) and the conclusion of Theorem 3.1 are true when
the parameter S in the control Riccati equation (4.2) for P$, is sufficiently small.

Proof. The truth of (i) is evident. Concerning (ii) set

P, (I, I)P, (I, 2)
(4.1) as, Et(i)a and P$, p$,(1,2) P,,(2 2)

i=0

Then the algebraic Riccati equation (3.3) becomes

P$, (1, 2) P$, (2, 2) 0 -as, -as, P$, (1 2) P$, (2 2)

P$, (1, 2) P$, (2, 2) 0 S-lb2 P$, (1, 2) P$, (2, 2) + I 0,

which is equivalent to

0 1- S-1b2p2 (1 2)

0 P,(1, 1)- S-1b2p,, (1,2)P,, (2,2)

o (e,e)- +
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Solving this set of equations we get

(4.3)

(4.4)

(4.5)

Hence, when S is small enough,

+

[a2 152 1/2] 1/2
-Sb-2a^* + ([b[ -1 + Sb-2) ., + S- + 2IbiS-
o(s),

where O(S) denotes a function of S satisfying limsups_0 Is)l < oo.
From this it follows that

lim sup
1 f0

T

T---o -E TrP$ dt <

]1/2a2 +#Let # S-lb2 + 2Ibis-1/2 and 75, , Then it is easy to see that

(4.6)
0 (as,) [a, + #]-1/2

where 1,...,N.
Furthermore,

(4.7)

Ot(i)OOt(j) [a, nt-#] -1/2

aiaj, i, j l, N.

aaj

From (4.3)-(4.6) it follows that for i= 1,..., or N,

aa$ [b]-ls1/2

[at + S_162 + 2Ibis_l/2] 1/2

aa$Sb-2

[a., + S-lb2 + 2Ibis-1/2] 1/2 Sb-2a

which implies that for S sufficiently small

(4.8) c2 --- c2(S) <_ c3S,

where C3 is a constant depending on ai and b only.
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Since

Oqh(i)Oqh(j)

(4.3)-(4.5) and (4.7)yield

Ot(i)OOt(j) 0

aiai(2 + Ibis-1/2)
/ /

Prom this we obtain that as S -- 0,

Ot(i)OOt(j)

which implies that as S 0,

(4.9) max
i,j=l,...,N

From (4.3)-(4.5)it follows that

[00 a b ] [0

Then we get

aiaj(1 + 2lbl-ls1/2)

laiaylSb-2 (1 + 0(S/2)),

laiajlb-2 (1 + 0(S/2))

b] [Psi(l, 1) P(1, 2) ]P,, (1, ) P (, )

=[ 0 1 ]2az a + S-lb2 + 2Ibis-1/2

IIA,- s-1B- B P,ll < 2S-1/2lbl (1 + O(Sl/2))
which implies that

C 2S-1/2[b] (1 + O(1/2))
From this and (4.8), (4.9) we see that for some sufficiently small S, condition (3.8),
and hence the results of Theorem 3.1, are true. []

5. Maximum likelihood-based adaptive control. Intuitively, if Ot is a good
estimate of t, in some sense, then AS, andB are good estimates of A(Ot) and B(Ot).
Therefore, in the last two sections, we discuss the stabilization problem of the filtered
system (2.5):

dxt A$,xtdt + Butdt + d-t by (2.1), (2.2), and (2.12),

rather than that of system (1.1).
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Let it be defined by

(5.1) it arg max {Or(i)} t > 0.
i=l,...,N

Again, if Ot is a good estimate of Or, in some sense, then A(it) and B(it) should also
be good estimates of A(Ot) and B(Ot). In this case, it is natural to ask whether we
could find an adaptive stabilization control law for system (1.1) by only discussing
the following system:

dxt A(it)xtdt + B(it)utdt + cl-t.

This section, as an application of Corollary 2.1, will answer this problem. By using
the notion of a maximum likelihood estimate, we present some sufficient conditions for
stabilization control of the system (i.i)-(1.2). These sufficient conditions are different
from those used in 3, but similar to those introduced in Ezzine and Haddad (1989).

For simplicity of notation, for a matrix A, let

#(A) Amax (A + A" )2

THEOREM 5.1. Suppose there is a matrix K(i) (i- 1,... ,N) such that

(5.2) u max # (A(i)- B(i)K(i)) > O.
i=l,...,N

Then, under the adaptive control law ut -K(it)xt, the closed-loop system has
a solution {xt, ut, t

_
0}, and the input and output of the closed-loop system are

bounded in the following average sense:

(5.3) sup E (I]xll 2 + ]]us]12)ds < x.
t>0 t + 1

Proof. Similar to the argument of Theorem 3:1, we see that the closed-loop system
has a solution {xt, Or, t >_ 0}. So, here we only need prove (5.3).

From (2.5) and (2.12) it follows that

(5.4)

dxt Httdt + dt A$,xtdt + B$,utdt + d-t
A(it)xtdt + B(it)utdt

+[Axt + But A(it)xt B(it)ut]dt + d-t,

where it is given in (5.1)
Substituting ut -K(it)xt into (5.4) we get

dxt [A(it)- B(it)K(it)]xtdt

+[A$xt + B$ut A(it)xt B(it)ut]dt + dt,

which together with Ito’s formula and (5.2) implies that for the given by (5.2)

Ilxt[I 2 IIx0[I 2 + x ([A(is)- B(is)K(i)] + [A(i)- B(i)K(i)])xsds
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+t + 2 xcl-8 + 2 x[A$x8 + B$u A(i)x B(i)us]ds

< Ilxoll2-2 IIxll2ds/2 xd /t

(5.6) +2 x2[A,sx + B$u A(i)x B(is)ulds.

Notice that

2 x[Ax + B$u A(i)xs B(i)us]ds

by (.6) we get

IIell I1oll- lllld+ +t

which implies

I111d - II+B-()
(5.7) +-lE[[xoll + -t.

By (2.1) we see that Or(i) 0 for 1,..., N and t k 0; further, since

N

$(i) 1,
i=1

we have t(it) . Thus, by Corollary 2.1 we get

(.8)

N

[()IIIA +B A(i) B(i)lle (since i {1,..., N})
i=1

N2(2 + 6llHllt).

Substituting this into (5.7) leads to the desired result, (5.3).
Dom the definition (5.1) of it and ut -K(it)xt it follows that ut may jump at

any time instant t. In order to get a piecewise continuous control ut, that is, one that
has with probability 1 no accumulation points of switching times on the time axis,
one can modify the definition (5.1) of it as follows"

Vt ITk_l Tk), V 1, 2,(.9) ,_,,
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where

(5.10) t arg max {Or(i)} Vt > 0,
i=l,...,N

(5.11) ’k inf {t > Tk_ t(i,k_l) < (3’N) -1}
with TO 0, 3’ > 1, and k 1, 2,... being positive integers.

Since the trajectories of are continuous and 3’ > 1 it is evident that K(.) and
hence u has the required piecewise continuous property.

THEOREM 5.2. If {it; t > 0} and {Tk; k 1,2,...} are generated from (5.9)-
(5.11) and ut E J:, then limk_ Tk x3 a.s. and it is piecewise constant a.s.
Furthermore, if condition (5.2) of Theorem 5.1 is true and the adaptive control law is
chosen to be ut -K(it)xt, then ut is piecewise continuous and the input and output
of the closed-loop system are bounded in the average sense (5.3).

Proof. First, we show limk-_,o ’k x a.s. Noticing that

max ,{t(i)} > g-1

i=l,...,N

and every component of t is a continuous function of t, by " > 1 we see that- > T_. Thus, limk--, ’ exists a.s.

If the sample set S {w" lim_ Tk < } had positive probability, i.e., P(S) >
0, then there would exist a deterministic constant T < such that S {w
limk- Tk < T} with positive probability, i.e., P(SI) > O.

Notice that for any constant t > 0,

{w" O < TIsl <t}={w" O < Tk < t} 3 {W Is =I}E’,
where

1, if ,d

Ia 0, if W 81.

By I1+ kl[2 > N-2(1 3’-1)2 > 0, (2.4), and (2.14) we have

E N-2(1- 3’-)2P($)< EIs EI].,+I- 1]2

k=0 k=0

< 2[[HII2EI, E(Tk+I Tk) 2 -4- 2EIs E (Diags sO)H:d-
k=0 k=0 \J T

_< 2IIIIIIeTEIs (Tk+l -k) + 2EE (Diag O)Hs^^7

k=0 k=0 d -k

T

<_ 211IIIleT2P(S)+ 2E II (Diag ’^")HI
< 21]II[12T2p(s)+ 2(2 + 6]IHIIT < x.

2

d8

This contradiction means that limk_, -k cx a.s. Thus, from Tk > --1 and (5.9)
it follows that it is piecewise constant a.s.

As in Theorem 5.1, with condition (5.2) we can prove that the under-control law
ut -K(it)xt, with it given by (5.9)-(5.11), the closed-loop system has a solution
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{xt, t >_ 0} a.s. and is stabilized in the average sense of (5.3); this is because the only
difference between the proofs is due to (5.8), which now becomes

E IIA.sxs + B8us A(is)xs B(is)usll2ds <_ (/N)2(2 +

since, in this case, t(it) >_ (’)’N) -1 for all t _> 0.

Noticing that limk_, Tk OC a.s. and that it is piecewise constant a.s., we see
that the control ut -K(it)xt is almost surely defined for all t _> 0 and is a piecewise
continuous function of t.

Remark 5.1. Although it is hard to say whether or not condition (5.2) is true in
general cases, there exist specific situations where it is readily verified; for instance,
(i) the case where A(i) and B(i) are scalar and (A(i),B(i)) is stabilizable for every
i 1,..., N, and (ii) that where B(i) is invertible for 1,..., N, and there exists
K(i) such that (5.2) holds.

In fact, for case (i), g(i) can be chosen as

[B(i)]-I[1 + A(i)], if B(i) O,K(i)= 0, ifB(i)=0,

and the constant u in (5.2) may be taken equal to the following positive quantity:

-max{u/, i 1,..., N},

where

-1, if B(i) O,
ui A(i), ifB(i)=0.

For case (ii), K(i) can be chosen as K(i) [B(i)]-l[I + A(i)], which results in
u--lo

Remark 5.2. We now revisit the example given by Dufour and Bertrand (1993).
In (1.1), they set n 2, m 1,

In this case the conditions of Theorem 3.1 above do not hold, but the conditions of
the theorem of Dufour and Bertrand are valid.

However, for this example, the adaptive control law described in Theorem 5.1
or 5.2 is applicable, and can stabilize the closed-loop system. This is because for
K(1) [0, 4] and g(2) [0, -1] we get u 3-v > 0 by a straightforward2
manipulation. This implies that condition (5.2), and hence the conclusion of Theorems
5.1 and 5.2, are true.

Acknowledgments. The authors gratefully acknowledge conversations with L.
Guo concerning this work.
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PERIODIC STABILITY OF NONLINEAR FLEXIBLE SYSTEMS
WITH DAMPING*
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Abstract, We study periodic stability of solutions of nonlinear elastic systems with damping
under periodic perturbations. Investigating the sufficient conditions for the stability, we find some
inequality relations between the system parameters of its linear term and those of its nonlinear term.
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1. Introduction. Let Ft be a bounded domain in a finite-dimensional Euclidean
space. We consider the class of flexible systems that can be described by the following
second-order damped evolution equation in X :- L2(Ft) with a nonlinear forcing term
under a periodic perturbation:

(1.1)

(1.2)

We assume that A is a self-adjoint positive definite operator with dense domain D(A)
in L2(t), and that A-1 exists and is compact. It is well known that there exist
eigenvalues A and corresponding eigenfunctions i,j(x) of the operator A satisfying
the following conditions:

0<A1 <A2<...<Ai<..., lim A=c,

Aj=Aj, j=l,...,m, i=1,2,...,

{j(.)} forms a complete orthonormal system in n2(t).

For each constant 0 _< a <_ 1, the domain D(A) of the fractional power A, denoted
by X, is topologized by the norm

oo mi

(1.3) Ix12 := IA xl )  X 2 l(x, 2, x
i=J. j=J.

where I" 10 denotes the norm of X. We also assume that the perturbation function
w(t) R+ X is locally HSlder continuous and uniformly bounded and we denote
its usual supremum norm by

]wl "= sup{lw(t)lx t R+}.

We consider the following conditions on the nonlinear function F for a given fixed
constant " 0 < < 1. F is locally Lipschitz continuous from XZ to X and there
exists a constant k(c) > 0 such that

(1.4) Fx-Fylo<-k(c)lx-ylz for]xlz, lylz_<c.
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There exists a positive constant K0 such that

(.5) IF(x)lo < K0(1 + Ixlz), x E xz.
The formulation (1.1) includes vibrations in mechanically flexible systems, e.g.,

flexible arms of industrial robots or flexible structures such as antennas of spacecrafts
(el. [1], [10]-[12] in linear systems: F 0). In this paper we treat the case with
nonlinear forcing, which is determined not only by the displacement u(t, x), but also
by the bending force uxx(t,x). Our main objective is to show sufficient conditions
for periodicity and stability of solutions under periodic perturbations w(t). We in-
troduce some inequality relations between system parameters, the eigenvalues of the
linear term, and the growth rate or the (locally) Lipschitz constant of the nonlinear
term. While it should be considered that the first eigenvalue of the linear operator
A essentially determines these relations, we find that the eigenvalues Ah, Ah+l which
satisfy

1
0 < A <... < A < < A+I <.-.

have some significant properties for the stability of this system. If the values A1,/k+l
(1/a2), (1/c2) Ah are sufficiently large, we can show the asymptotic behavior of
solutions, the existence of a global attractor, and periodicity or asymptotic periodicity
of solutions under periodic perturbations. Also, we estimate some essential relations
among the system parameters A1, Ah, Ah+l, c, and K0, k(.), considering the equation
of motion of a one-dimensional nonlinear flexible beam.

Our formulation depends on the method by Sakawa [10] in linear flexible systems
and we use spectral properties of analytic semigroups. To analyze nonlinear systems
we apply a variation of the Gronwall inequality, which was introduced in [5] (see also
[8]). As for the other methods to show periodic stability of nonlinear systems, we can
refer to [4], [6], and [7], which mainly depend on the monotone operator theory.

In 2 we give the formulation and state the main theorems: stability, periodicity,
and asymptotic periodicity of solutions. We prepare some lemmas on analytic semi-
groups in 3 and prove the main results in 4. In 5 we investigate a one-dimensional
nonlinear flexible beam system to derive sufficient conditions, described by its system
parameters, for stability and periodic stability.

2. Formulation and main theorems. Following the formulation by Sakawa
[10] in the linear part, we assume that

and that a > 0 is so small that

1
(2.1) O/1 < 2--"
Define a complex-valued function g by

Then, since A is self-adjoint, we can define an operator g(A) by

(::x:)

i=1 j=l
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D(g(A)) u E L2() EE Ig(Ai)(u,ij)2 < oc
i=1 j--1

Note that D(g(A)) D(A) and define the following two operators by

A+’=aA-g(A), A- :=aA+g(A).

Then for each u E D(A),
X3 mi

+/- (- ())(.)
i=1 j=l

and the eigenvalues and the eigenfunctions of A+ are given by. (). , + ().
A+u ’iij, A-u #icpij, j l, mi, i-1,2,

It follows from (2.1) that there is an integer h _> 1 such that

a < 0, a:),+ + > 0.

In this paper we can show that the three eigenvalues )1,/h,/h-F1 are the most essential
parameters in the sufficient conditions for periodic stability.

Since the operators -A+, -A- generate analytic semigroups $1 (t), S2(t), respec-
tively (cf. Lemma 3.1 in [10]), and especially since A+ is a bounded operator, we can
consider the following system of the semilinear equations:

2

2

which can be described by

(2.4) (t) + A(t) ((t)) + w(t),

where

(t) A-(t)- v(t) 0 0]

((t)) w(t)--[ g-l(A)w(t) ]_g-l(A)w(t

and g-l(A) is the inverse operator of g(A), that is,

oo

g-(A)u EE(g(’i))-l(u’ iJ)iJ"
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Thus, using (2.12), we have

(2.15) i -aAg-l(A)it- Ag-l(A)u + g-(A)(F(u) + w).

PERIODIC STABILITY OF NONLINEAR FLEXIBLE SYSTEMS

Also, their mild forms are described as follows"

f0(2.5) (t) S (t)o + $1 (t s)g- (A) F ..+ (s) + w(s) ds,
2

1 )(2.6) r/(t) S2(t)/o S2(t s)g-I(A) F rl (s) + w(s) ds.

Under the conditions (1.4), (1.5) for a fixed constant 0 < /3 < 1, we can admit the
(classical) solution (cf. Appendix 2)

(2.7) [(t),/(t)] e C(O,T" D(dz) D(AZ))CI(O,T n2(t) L2(Ft))
for each initial condition [0, r/0] E D(Az) D(Az) and for an arbitrarily fixed constant
T>0.

Furthermore, we can estimate the regularity of the solutions as follows: if [o, r/o] E
D(A) D(A1+) for some constant a" 0 < Z <: a < 1, then by multiplying A2 and

A to the spectral expansions of (2.5) and (2.6), respectively, and applying the
direct estimation, such as (1.3), we have

(2.8) e C(O,T" D(A)), 1 e C(O,T" D(A+)).
Then it follows from (2.2) and (2.3) that

(2.9) e C(O,T" D(A)), il e C(O,T" D(A)).

Now, define the functions u, v by

u := + :=
2 2

Then from (2.8) and (2.9) it follows that

(2.11) u,v e C(O,T" D(A))VC(O,T D(A)).

Hereafter, we consider the case a ft. From (2.2) and (2.3) we have

it + i + (cA g(A))(u + v) g-(A)(F(u) + w),
it- i + (cA + g(A))(u- v) -g-(A)(F(u) + w),

and then the difference and the sum of the above equations give

(2.12) it -aAu + g(A)v,
(2.13) i g(A)u + aAv g-(A)(F(u) + w).

By modifying the argument in [10] without the assumption it D(A), we have

(2.14) ) g(A)u aAv + g- (A)(F(u) + w)
g2(A)g(A)-u aAg-(A)g(A)v + g-l(A)(F(u) + w)
(a2A A)g-l(A)u- aAg-(A)g(A)v + g-(A)(F(u) + w)
aA(g-(A)aAu- g-(A)g(A)v) Ag-(A)u + g-(A)(F(u) + w).
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Also, we note that (2.13) and (2.15) give

(2.16) aAv g(A)u aAg-l(A)it + Ag-(A)u.

Obviously, by differentiating (2.12) under the assumption that it E D(A) and
using (2.15), we can obtain the evolution equation (1.1). On the other hand, without
the assumption it E D(A), consider an initial condition

[u(0), it(0)] [u0, Ul] e D(A) x D(AZ).

Then, since (2.12) yields

v(O) g-(A)(u + aAuo) e D(A),

we have

(0) u(O) + v(O) e D(A).

And also, since (2.12) yields

g(A)u- g(A)v -it- (aAu- g(A)u)
-it- A+u,

we have

,(0) u(0)
A+uo) e D(AI+Z).

Thus, by applying the previous argument with (2.17) and (2.18), we can admit the
solution u ( + q)/2 in the mild sense such that

[u, it] e C(O,T" D(A)) x C(O,T" D(A)).
Before stating the stability of solutions, we introduce some notations. Define

(2.19)

A() min{V/, All-Z},

Mh=max X/1--a2Ah’ a2Ah+-I

Ch=max 1-aAh’ Ah+l-1

Furthermore, for a given constant 6" 0 < 6 < aA1, define

(2.20) MZ Mh 1 +- e-Z

THEOREM 2.1. Under hypotheses (1.4), (1.5), let [o, o] D(A) x D(A1+) and
assume that system parameters, 6, a, fl, A1, Ah, Ah+, Ko, satisfy the following inequal-
ity conditions: 0 < 6 < aA, 0 < fl

__
1/2, and

5>o:= (MzKoF())2i(Z)
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where/3 1- . Then the estimate

]A(t)lo + ]A-,(t)l K (t)(lAolo / IA-,olz)+ K2lwl + K3

holds for some positive constants K2, K3, and

e-(5-o)t
(2.23) K1 (t)

Consequently, the solution [u(t),/t(t)], given by u ( + /)/2, has a global attractor
in X x X/3: {Ix, y] e Xl x X/3: Ixll + ]Yl/ -< Kp(K2lw] + K3)} for some Kp > O.

Remark 2.1. In case 1/2 < 3 < 1 the assertion of Theorem 2.1 holds if one
substitutes the constant F(/) by F’() := F()/(sin) (cf. Appendix 1).

Remark 2.2. Obviously, if the constant K0 is sufficiently small, then (2.21) must
be satisfied. In 5, investigating a flexible beam model, we will derive an essential
relation, described by its system parameters, from (2.21).

For convenience we give the following estimation of the constants:

K- 1+max
aAl,aAl_

(.4’ er (e_ /+ e
K3 K2Ko,

+ (6e)-(1-) (1 -/3)-F(/) + 2.]
where

(2.25) F1- s-Ze-SSds, F2= s-Ze-OSds.

Next, let w(t) be a periodic function. Then we consider periodicity of solution
[u(t),/t(t)]. As in Theorem 2.1, we also use the pair of functions [(t), (t)] E X1
XI+. Define the norm II[x,y]lll, by

I1[, v]ll, :--IAxlo +

which is equivalent to the X1 Xl+z-norm. Then we can show the periodicity or the
asymptotic periodicity of [u(t),/t(t)] in X1 X3 by estimating

THEOREM 2.2. Let w(t) be periodic: w(t) w(t + T) and assume the same
hypotheses as Theorem 2.1. For a given constant d > 0 which satisfies

(2.26) d > Kr +

where r Iwl and K2, K3 are the constants in (2.24), assume that

> ’ :=
2()

where k(.) is the locally Lipschitz coefficient in (1.4).
T-periodic solution [(t), /(t)] such that

Then there exists a unique

(2.28) I[[(t),/(t)]lll, < d, t > 0,
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and consequently, there exists a unique T-periodic solution [u,/o]"

[u(t)l + Io(t)l _< Kpd, t >_ O.

THEOREM 2.3. Assume the same hypotheses as Theorem 2.2 and let w(t) be
asymptotically periodic:

I() ()1o - o a

for some T-periodic function wo lwo[ <_ r. Then the solution [u(t w),/t(t w)],
starting with any initial state In0, Ul] E X1 x XZ, converges to the T-periodic solution
[u(t wo),/to(t wo)] under the periodic perturbation wo"

(2.29) lu(t’w) uoo(t’w)ll + I/(t’ w) (t. w)l

3. Fundamental lemmas. In order to prove the main results we need the es-
timate of the norm of In(t),/t(t)] using the norm of [(t), (t)]. First, we show the
equivalence of the norms lu(t)l + lit(t)lz and

LEMMA 3.1. For the solutions of (2.5)-(2.6),

e CI(O,T’D(A))N C(O, T’D(A)),
r/e CI(0, T D(A)) C(0, T D(AI+)),

and u ( + I)/2, there exist constants N, Nh > 0 such that

(3.1) N(lu(t)lz / I/(t)l) _< IA+(t)lz / IA-(t)l _< Nh(lU(t)l / I/t(t)l).

Proof. From the definition of the operators A+, A- and (2.12), we have

(3.2) IA+I / IA-I > I(A g(A))(u + v)
21aAu- g(A)vlz

Also, (2.16) yields

(3.3) IA/I / IA-I > I(A- g(A))(u + v) (aA + g(A))(u- v)l
21aAv g(A)ul
21aAg- (A)it + Ag-1

Now we estimate the operator norm of Ag-(A) by using the eigenvalues.
If _< h, we have

and if >__ h + 1, we have

A _> 1

Put

N(a, A1) "= min
1 O2zl 1}



PERIODIC STABILITY OF NONLINEAR FLEXIBLE SYSTEMS 1785

Then we can estimate

(3.4) IAg-(A)(a’h + u)12Z EE )z)lg-(A)12l(ait + u, j)l2

= j=

2> N(, )lae +.
On the other hand, it follows from (3.2) that

(3.5) [A+[Z + A-vlZ a]z 2N(, A)Iz.

Combining (3.3), (3.4), and (3.5), and taking the 8urn with (3.2), we have

(3.6) IA+Iz + IA-I _> min {1, N(,A)2 } (lu(t)lz + I(t)lz).

Since it follows from (2.1) that

N(,I) ,
we obtain the left-hand side estimate in (3.1) by putting

N :=min 1,
To show the converse relation we also need to estimate 119-1()11. If h,

i 2 2 2

and if _> h + 1,

Thus we have

lg-l()l2 2 < 1

A+

(3.7) AIg-I(A)I _< max
1- a2Ah’ c2Ah- 1

Since the relations (2.12) and (2.16) yield

<_ I(Au- g(A)v) / (cAv g(A)u)lz- + (aAg-(A) + Ag-l(A)u) + -- (aAg-(A) + Ag-(A)u)[,

we can estimate

]A+[Z + ]A-q[Z 2
Thus we can complete the proof by putting

(3.8) Nh 2 max{ 1 + aCh, Ch }.
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We prepare some inequality relations.
LEMMA 3.2. For the operators A, A+, A-, the following inequalities hold:

(.)
(3.1o)
(3.11)
(a.:)
(3.13)

Proof. By the following spectral expansions"

cx mi

[Axl EE Al(x’
i--1 j=l

i= j=

mi

i=l j=l

we have (3.9), since

(:x) mi

i=1 j=l

(1--) I(X, ij)12
= =

and, for (3.10), (3.11), it is sucient to estimate the eigenvalues u, follows. or
u, if h,

I I- 9(x) + (x-

and, if >_ h + 1,
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and, if >_ h + 1,

A + aA

For (3.12), consider the estimate

2

Then (3.13) is an easy consequence of the estimate Ivil 2 _< (l/a) 2. [:]

Given Lemma 3.1 and Lemma 3.2, we can estimate lu(t)ll + lit(t)l by the norm

LEMMA 3.3. There exists a constant Kp > 0 such that

(3.15) [u(t)ll + [it(t)lz < Kp(IA(t)lo +

where Kp is given in (2.24).
Proof. From Lemma 3.2 we have

The estimate (3.2) and the above inequality relations yield (3.15). Cl

Since the definitions (2.19) and (2.20) imply that aCh <_ Mh, the estimate

e- < M(3.16) (MhAI -}- Ch)
0/

holds. Now we prepare the estimate, which corresponds to the well-known estimate
of the operator norm of an analytic semigroup and its generator.

LEMMA 3.4. For a given constant 5 0 < 5 < aA1, we have the following estimate:

(3.17) IASl(t)9-(A)y]o + [A-AZS2(t)9-(A)ylo <_ Me-stt-ZIY[o, y e L2(gt).

Proof. By using spectral expansion we have
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If <_ h,

O2 2

A 2 2-a A +1)< 1
1 o2/h’

and, if >_ h + 1,

I(A + g(A))g-l(A)] 2

V/a2A Ai
+ 1 _< +1

O2A_bl Ah+

Furthermore, since we can easily see from elementary calculations that each term

Aze-2(Re[ml-)tt2 takes its maximal value at t=/3/(Re[#i]- 5), we have

[A-AZS2(t)g-I(A)y[ <_ M Ee-2 AiZ 2

i--1 j--1
Re[#i] 5

-2tt-213"

Since

if i<h,
if i> h+l

we obtain

(3.18) IA-A S2(t)g- (A)y[

i=1 j-----1

On the other hand, applying the same argument as above, we have

(3.19) IASl(t)g-(A)y]

EE A[g-l(Ai)12e-2(Re[l-5)tt2Zl(Y’ ij)[2 e-2tt-2
i=1 j=l

Ae-2]g-l(Ai)[2 [2 e-25tt-2
= j=

R[a] I(v,)

Since, if i >_ h + 1,

e[.] 9(A)

1
2a

we have

Re[ui] 5 Ot) 6



PERIODIC STABILITY OF NONLINEAR FLEXIBLE SYSTEMS 1789

for every i. It follows from (3.7) that

Thus, combining (3.18) with (3.20) and using (3.16), we obtain the conclusion.

4. Proofs of main theorems. In this section we give the proofs of our main
theorems.

Proof of Theorem 2.1. From (2.5) and (2.6) we have

{( ) }IA(t)lo < ]S(t)Ao[o + AS(t- s)g-(A) F + w(s) ds,
2 o

2
ds.

o

Summing up and using Lemma 3.2, Lemma 3.4, and (1.5), we obtain

Multiplying each term by e5t and putting

in the Gronwall inequality, introduced in Appendix 1, we obtain the following esti-
mate:

where, as we can see in Appendix 1 also

znl[r(Z)]/z, E(z).=
=0 r(n + 1)’ E(z) <_ -- + F(/), z >_ 0.
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Thus, we have the following sequence of estimation:

where F1,F. are the constants, given in (2.25). Hence, we can estimate

(4.1) IA (t)l / IA-l(t)l K(t)(lAolo / IA- olz) / gelwl / K3

using the constants K2, K3, defined in (2.24). Thus we can complete the proof by
using Lemma 3.3. Vl

Proof of Theorem 2.2. From Theorem 2.1 we can assume that there exists a
solution [, ] with an initial condition [o, /o] in X1 Xx+Z"

[lie(t), r/(t)]lll, _< d, t >_ 0.

Then we show that [n(t), r/n(t)] [(t + nT), (t + nT)] converges to a T-periodic
solution [(t), r/ (t)] as n oc.

By using (2.5) and (2.6), we have

ds.
o
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It follows from Lemma 3.4, (1.4), and Lemma 3.2 that

Thus the Gronwall inequality and the same argument as in Theorem 2.1 give

Hence the sequence [n(t), r/n(t)] is a Catchy sequence in BC(R+’X1 Xl+fi), the
space of uniformly bounded, continuous, and X1 Xl+z-valued functions. So there
exists [(t), r/ (t)] such that

[n(t), r/n(t)] --* [, r/c] in BC(R+" X X+z).

By taking the limit n c of the mild formulas:

(t + nT) $1 (t)(nT) + $1 (t s)g- (d) F (s + nT) + w(s) ds
2

r/(t + nT) S2(t)r/(nT) S2(t s)g- (A) F (s + nT) + w(s) ds,
2

we can show that [(t), r/(t)] satisfies the mild formulas (2.5), (2.6) with the initial
state [(0), r/ (0)].

Furthermore, T-periodicity of [(t), r/(t)] holds, since

As for the uniqueness of the T-periodic solution, since we have the following estimate
for a sufficiently large N:

we can complete the proof.
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Proof of Theorem 2.3. Instead of estimating the solution u(." w), it is sufficient
to show the convergence of the pair of functions [(t), r(t)] to a pair of T-periodic
functions [, r] in X1 Xl+-norm. Here we can also assume that

Let N be a large integer which satisfies

e-(5-’)NT
+ F()e-xlNT < 1

and define the following sequences:

w, (t) w(t + rnNT),
m(t) (t + raNT),
m(t) (t + raNT), rn O, 1, 2,

Then, applying the same argument as that in the proof of Theorem 2.2 to the difference
of the solutions

[(t + (m + 1)NT), (t + (m + 1)NT)]- [(t + (m + 1)NT), r(t + (m + 1)NT)],

which start with the initial values

[(t + raNT), (t + raNT)I, [(t + raNT), (t + raNT)I,

respectively, we have

Put

and for a small constant > 0, take a large number m0 "m :> m0 ==
1 F,,), F2

x Msup{Iw(s w(s)l" t + raNT <_ s <_ t + (m + 1)NT} < 6.

Then we have

1 Km
flm <_ Km-1 + S <_"" <_ Kmao + 1-
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Since 0 I1[(- )(t), (7- r)(t)]l]l,Z -< 2d, we can show that for every small
e > 0, there exists a large number ml "m ml

II[(t + raNT), (t + mNT)] [(t + raNT), (t + rnNT)]lll, <

for every t E [0, NT], that is,

Ilia(t), (t)] [(t), (t)]lll,, <

for every t >_ miNT. Estimating lu(t) u(t)ll and I/t(t) -/t(t)lz according to the
argument in (3.2) and Lemma 3.3, we have

I-(t)--(t)ll + le(t)- e(t)lz < K.lI[(t),v(t)]- ICe(t), (t)]lll,Z,

which completes the proof.

5. Flexible beam. We consider the equation of motion of slender and flexi-
ble structures with internal viscous damping and nonlinear forcing, determined by
displacement u(t,x) and bending force uxz(t,x), under a periodic perturbation:

(5.1) 02u(t’x) 05u(t’x) 04u(t’x) ( 02u(t’x))Ot2 -- 2o OtOx -- Ox4 f x, it(t, x), Ox2
-}- w(t, x),

where 0 < x < L. The beam is clamped at one end, x 0, and at the free end, x L,
the bending moment and the shearing force vanish. Then the boundary conditions
and the initial conditions are given by

(.) (t, o) o.(t, o)
Ox O,

02u(t, L) 03u(t L)+ 2a
Ox2 Ox20t

O3u(t,L) 04u(t,L)+ 2a
Ox3 Ox30t

(5.3) (o, ) o(x) o(o, x)
Ot

and the periodic perturbation satisfies w(t + T) w(t). We define an operator A in
L2(0, L) by

D(A) {u E H4(0, L)’u(0) ux(O) O, u(L) uz(L) 0},
04u

Au--
x4

Let 3‘i be the solutions of

cosh 3’ cos 3‘ + 1 0

such that 0 < 3‘ < 2 < Then the eigenvalues of A are given by

3‘i)4Ai= - i--1,2,...

(cf. [10]).
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We assume that the nonlinear function f(x, u, v) R x R x R --, R satisfies the
growth condition

If(x,u,v)l <_ ko(lul + lvl) for someko>0

and the following Lipschitz and locally Lipschitz continuity: there exists positive
constants k0(c), k such that

If(x, u, v) f(x, u’, v’)l <_ ko(c)lu u’l + klv v’l for lul, lu’l _< c, v, v’ e R.

Define a nonlinear mapping F" D(A-}) --. L2(0, L) by

F(u)(x) f(x, u(x),

Then, since the injections

D(A-} H(0, L) -, C(0, L)

are continuous, the conditions (1.4) and (1.5) hold for the constant fl 1/2 and some
constants Ko, k(c).

Now we investigate the inequality conditions in the case where fl 1/2. Our
purpose is to find some relations among the constants A1, Ah, Ah+l, a, K0, k(d), where
d > K2r + K3 and K2, K3 are given in (2.24). Let := a1/2. Then we can describe
(2.19) by

(5.4) M1/2 Mh VI + --a - e-

and it follows that
2

=M 1+-c a, 4e

Thus the condition al/2 > ) can be described by

a2A >2M l+a 4e

Taking the square root yields

(5.5) a()3 Ko Mh Ko Mh-- > O.

Hence we can admit the first eigenvalue 0 < 1 < 1/(2), which satisfies the
condition 6 > 0, if

(5.6) o
/c

It follows that

(.7)

1 eM
1

Ko -eMhxo Ko h--o >0.

ctMh <
(x/ + 1)Kov"
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Hereafter, we use the notations

(x/ + 1)Ko2V,
’= (x/ + 1)k(d)v.

Considering the definition of Mh and (5.7), we have

(5.8)
v/i a < -,

(5.9) a
O2_h+ + 1 < --.

By (5.8) we can derive the conditions on/h, o, t"

1
t
2(5.10) Ah< Z aa<l

and, assuming a < 1/2, from (5.9) we obtain

1 t2

(5.11) Ah+l > -5 + 1 2a

We note that as the values

1 1
2 Ah, Ah+l 2

become sufficiently large, Mh . 2.
When (5.10) and (5.11) are satisfied, the first eigenvalue A1 can be estimated as

follows. The third-order algebraic inequality

b
(5.12) ax3-bx >0, a,b > O

a

admits a solution

x
b / b3 b2 /3a 2--+ -2--+4

+ + -27a3.+a4

in the positive real x > 0. For sufficiently small a > 0, a rough estimation,

i 4abb3 b2 b
1-273 + 4a- 2a2 27

b
2a2

gives a sufficient condition for (5.12)

b- b1/2
x> _-----

3a a’
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where we take a positive real value of each fractional power 1/3. Considering the case

a o, b- ieKoMh
with c sufficiently small, we can then estimate A1, which satisfies our inequality
conditions, as follows:

(1 +

For sufficiently small c > 0, it follows that

C1
O2 < AI <

20Z2

for some constant C1 > 0. Furthermore, if the values 1/a2 -/h and "h-F1 1/o2 are
sufficiently large, for instance,

1 K

1 K
Ah+

O2 O2

for some large K > 0, we have

1
Mhl+ 1H-.

Then we can estimate the stability condition for the first eigenvalue:

(5.14) C2 < /1 < 2o2

for some constant C2 > 0.
For the condition 5 > )’, we can derive a similar estimate as (5.14), substituting

K0 with k(d) and with ’. Using a sufficiently small constant a, we can roughly
estimate the first eigenvalue A as follows. Assume that 5- 5 aA. Then it
follows from (2.24) that we can estimate the order of the constants K2, K3 M5-/.
Thus, when the perturbation of w is comparatively smM1, r << a-, we may assume

that d M5-/. Since we can roughly estimate Mz a-3/2A/2 from (5.4) it

follows that d a-2A. For instance, assume that k(d) kd. Then from (5.14),
substituting K0 with k(d), we have

> Ca-[a-], C > 0.

It follows that the periodic stability condition is possibly satisfied if the value A1 has
the order between a- and c-2.

Remark 5.1. As another main example for (1.1) we can consider the following a

strongly damped wave equation:

utt 2cAut Au- f(x, u, gradu)+ w(t),
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where A denotes the Laplacian on a bounded domain gt in a finite-dimensional Eu-
clidean space with a sufficiently smooth boundary F. For a homogeneous Dirichlet
boundary condition we can define a operator A

D(A) H2 (t) f H
Au -Au,

which has the positive discrete eigenvalues:

O<A1

Under suitable conditions on the nonlinear function f we can treat the case as 1/2,
using the well-known fact

D(A-} H(f)

(el. [3]), and then we can follow the same estimate as above.
Remark 5.2. In Theorem 2.2 and Theorem 2.3, instead of hypothesis (1.5) it is

sufficient to assume the uniform boundedness of solutions

e x +e x xe, > 0,

since this boundedness assumption yields the uniform boundedness [{(t),r/(t)] in

Xl+fl x Xl+fi (cf. (2.10) and (2.12)) and, consequently, in X1 x Xl+fi.
6. Appendix 1. In [5] the following Gronwall’s inequality was proved: Suppose

b _> 0, fl > 0 and a(t) is a nonnegative function locally integrable on 0 _< t < +oo, and
suppose that y(t) is nonnegative and locally integrable on 0 5 t < +oo with

on this interval. Then

where

y(t) <_ a(t) + b (t s)-ly(s)ds

y(t) <_ a(t) + t9 E’(zg(t- s))a(s)ds,

oo znfl
E(z) E r(n/ + 1)’rt--0

If a(t) is differentiable, we note that, since

dE(zg(t- s))
d8

dE(z)E’(z)
dz

integration by parts gives

E’(@(t s)). (-),

dE(9(t- s))y(t) < a(t)-
ds

a(s)ds

a(t) -[E(v(t- s))a(s)]to + E(tg(t- s))a’(s)ds

E(zgt)a(O) + E(9(t s))a’ (s)ds.
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Here we consider the estimate of the entire function E(z). If 0 < z < 1, we can
estimate

(6.2) E(z) <_ 1 +
z

to(l- z)’
where Fo inf<< F(x) 0.8.

On the other hand, for a constant a" 0 < a < 1, it is known [2] that, if z >_ a,

ez
E(z) < +

P

1 f u-leu

du

where the contour (-oc- 0i, 0,-cx 4-0i) is the negative real axis described twice.
Since elementary calculations give

inf{[u$ z$1 u e (-x, 0), z > a} >_ (asinr)$
1</<1if

ifO</< ,
we have

F(Z)E(z) <_ -- 4-

if 1/2_<<land

r(z)E(z) < - +
’(a sinr)

if 0 </3 < 1/2. It follows from (6.2) that for every constant ao 0 < ao < 1, which
satisfies

the following estimate holds:

r() ]-r(--2) E(z) < +E z <_ -- - ra -- r ao sin

for every z >_ 0 if 1/2 <_ < 1 [0 < < 5]" For instance, taking ao 7r-1/ we have

E(z) <_ -- + F() E(z) <_ -- + (sin

for everyz_>Oif1/2_</<l [0<< 1/2],since

1 + 1.58,
to(1 -ao)

o r() >
o r()

/ (sin/r)$ -- +
raoB

1.8.
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7. Appendix 2. Following a routine argument (for instance, see Theorems 3.1
and 3.3 in 6 of [9]), we can show the existence of the (classical) solution of (2.4). In
fact, note that

D(A) L2() D(A)

and put

Y := D(A) D(AZ),
Y := D(A) L2(t).

Then it follows from (1.4) that the nonlinear function 9(t, ) := (4) + w(t) is locally
Hhlder continuous and locally Lipschitz continuous from R+ YZ to Y such that there
exist constants L(c), 0 < /_< 1"

]l.E’(tl, 1) ’(t2, 2)lly L(c)(lll 21I, + Itl t21)

for (t, ) e R+ Y’ltl + ]JCJl
_

c, 1, 2. Since the function w(t) is uniformly
bounded, from (1.5) we can show that 9r satisfies the linear growth condition: there
exists a constant K such that

(7.1)

On the other hand, denote the analytic semigroup, generated by ,4, by T(t) :=
[Sl(t),S2(t)]. Then, since the operator A+ is bounded, we can easily show that
T(t) Y Y, t >_ O. Thus, to apply the contraction principle as in the proof
of Theorems 3.1 and 3.3 in [9], it is sufficient to define the mapping G on the space
Y := C(0, to Y) by

Gy(t) T(t)AZyo + AZT(t- s)iTz(s,A-Zy(s))ds,

where yo E YZ and to are given by a routine estimate, which yields the contraction
property of G, to obtain a local solution. Furthermore, following the conventional
argument with (7.1), we obtain the global solution (t) jt-y(t) in C(0,T YZ)
C(O,T’L2() n2()) for every T > 0.

Acknowledgments. The author would like to thank the referees for many sug-
gestions that improved the presentation of this paper.
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IDENTIFICATION FOR PARABOLIC DISTRIBUTED PARAMETER
SYSTEMS WITH CONSTRAINTS ON THE PARAMETERS AND

THE STATE*

WENHUAN yut

Abstract. We consider the problems for identifying the parameters all(X, t),..., atom(x, ) and
c(x, ) involved in a second-order, linear, uniformly parabolic equation

S Ou Oi(aij(x, )Oju) + bi(x, )Oiu + c(x, )u f(x, t) in gt (0, T),
10=g, l=0=0(x), e

on the basis of noisy measurement data

z(x) u(x,T) + w(x), x E

with equality and inequality constraints on the parameters and the state variable. The cost func-
tionals are (one-sided) G&teaux-differentiable with respect to the state variables and the parameters.
Using the Duboviskii-Miljutin lemma we get the two maximum principles for the two identification
problems, respectively, i.e., the necessary conditions for the existence of optimal parameters.

Key words, system identification, constraints on the parameters and state, Gteaux-differentiable
functional, distributed parameter systems, maximum principle

AMS subject classifications. 35R30, 49K20, 93E12, 49K35

1. Introduction. In this paper we use a general optimization theory, the Dubovi-
skii-Miljutin theory, to study identification problems for a parabolic distributed pa-
rameter system with constraints on the parameters and the state variable.

These problems are motivated by a number of practical, industrial applications.
For example, one hopes to identify the parameter q(x) in the parabolic differential
equation:

v. f(z t)
0t

based on noisy measurements of p(x, t), pbs (xi, t), at a set of discrete spatial locations,
i=l,...,m.

It is well known that the equation (1) can be used to describe the motion of a fluid
flow in the so-called reservoir region, where the dependent variable p(x, t) represents
the pressure distribution, f(x, t) accounts for the withdrawal or injection of the fluid,
and q(x) is the transmissibility in the reservoir. In this instance one can get not
only the observation of p(x), pbs(xi,t), but also the observations of q(x), q(xi), at
the measurement locations, Xl,... ,x,. Furthermore, the pressure p(x,t) is always
nonnegative. So, this is a typical identification problem for a parabolic distributed
parameter system with constraints on the parameter and the state variable.

There are many papers dealing with various identification problems. We only
list a few references [1]-[18] for the reader’s convenience. Most of the research work-
ers only considered that the parameters submit certain limits, such as smoothness
properties or upper and lower bounds. But only a few papers are concerned with
equality constraints on parameters and/or inequality constraints on state variables;
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for example, cf. the references [19]-[22], some of which discuss optimal control prob-
lems with constraints on the controls and the state variables. In many cases one
can get the direct measurement on a subset S of the parameters to be determined
and the properties of the state variables. Of course, this kind of information is very
helpful to estimate the parameters. Therefore, it is natural for us to present identifi-
cation problems with inequality and/or equality constraints on the parameters. For
these problems we could not directly use any method that needs the computation of
Frchet derivatives with respect to (w.r.t.) unknown parameter functions because the
admissible parameter sets in these cases, perhaps, are those with empty interior.

Next, the outline of this paper is given as follows. In 2 we present a description
of the identification problem we discuss and of the main results of the paper. That is,
we consider identification problems for the distributed parameter system governed by
a uniformly parabolic partial differential equation (PDE) of order two, of which we
want to determine the coefficients of the lowest-order derivative and the highest-order
derivatives, which satisfy certain inequality constraints and have given values at a set,
by means of measurement data of the state variable on the final time.

In 3 we state the above-mentioned identification problems as optimization prob-
lems in appropriate function spaces and then state the Duboviskii-Miljutin lemma
for general optimization problems. In 4 we, first, calculate a descent direction cone,
cones of admissible directions, a tangent direction cone, and their dual cones accord-
ing to the requirement of the Duboviskii-Miljutin lemma. Next, from the dual cones
we get functionals that satisfy the Euler-Lagrange equation. Finally, from the Euler-
Lagrange equation we derive the useful necessary conditions that are satisfied by the
optimal parameters minimizing the cost functionals, which may be only one-sided
Ggteaux differentiable.

By the way, it should be pointed out that the study of uniqueness of the solution
to an inverse problem remains a great challenge for applied mathematics, so there are
only a few papers concerning this topic; see, e.g., [9]-[14], [16], and [18]. But it is a
most important topic for practical researchers. We do not discuss this problem in the
paper.

Finally, we also mention the relationship between identification of distributed
parameter systems governed by PDEs or inverse problems in PDEs and the opti-
mal control theory or optimization theory. Usually, one recognizes an identification
problem as a special optimal control problem and the parameter as a special control.
Therefore, the optimization theory offers a research approach for the study of idea-
tification. On the other hand, because of the specific characteristics of identification
problems, they provide new research topics for optimization theory.

2. Description of the problem. Consider the problem of identifying the un-
known coefficient functions all (x, t),..., amm (X, t) and c(x, t), which are regarded as a
parameter vector q (al,..., atom, C), involved in the following second-order, linear,
uniformly parabolic system:

(2)
Lu =_ Otu Oi(aij(x, t)Oju) + bi(x, t)Oiu + c(x, t)u f(x, t), (x, t) e D,
Ioa= (, t), (, t) e 0fl [0, T], I=0= (x),x e (,

on the basis of the measurement

(3) I_= z(x) + (x), x e ,
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where D =_ t (0, T), z is a given function defined on t, w is a white measurement
noise with zero mean, and

x (xl,..., Xm), aibi- - ab,
O =_ 0 O =- 0/Ox.

In addition, some value of q is given:

(4) q Is qo,

where S is a subset of f and qo is an (m2 + 1)-valued given function defined on S.
Furthermore, the solution of (2) is subject to a constraint:

(5) (x, t, u(x, t)) <_ O, V (x, t) e D.

Remark. If we take (x, t, u) -u, then (5) means that the solution of (2) is
nonnegative on D.

In order to let the problem (2) be well posed we always suppose in the paper that
the following assumptions are true.

H1. C ]m is a bounded open set and its boundary 0t E C2+.
H2. bi E ’l+a(D), f e ((D), u C2+a, and g 2+ are given.
H3. u and g satisfy the compatibility conditions, i.e., C2+, where

f
(x, t) (x,t) e oa x [0,T],

(, t) e a {0}.

Then by [24] for any q in

(6) Qad,1 {q E Q; 11 _< aij(x, t)ij <_ 112, v c m, V(x, t) c D},

there exists a unique solution u V 2+a(D) to the problem (2), which is denoted
by u u(q) u(x, t; q) to show the dependence of u on q, where Q [l+a(D)]m2
((D), and the definitions of ’(D), ’l+(D), and ’2+(D) can be found in [24].

One can recognize the above-mentioned parameter identification problem as a
minimum problem exactly as most researchers have done. That is, seek a minimal
parameter 0 Qad such that the cost functional

(7) Fo(q) fo(,(q), q; z)

reaches its minimum over the admissible parameter set Qad at 0, i.e.,

(8) Fo(O) min Fo(q),
qEQad

where the admissible set Qad is defined by

(9) Qaa Qad,1 CI (ad,2,

(10) Qad,2 {q Q; q IS-- qo},

and fo is a (one-sided) Ggteaux-differentiable functional.
Under the same constraint conditions (2), (6), and (10), depending upon the

choice of fo, one can consider the following extremum problems.
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PROBLEM A. The cost functional is

(11) Fa(q) =- (x, u(x, T; q), q(x, T); z(x)) dx.

PROBLEM B. The cost functional is

(12) F (q) I (x, T; q)

Adding to the assumptions H1-H3, we also suppose that the function satisfies
the following assumption, H4.

H4

is continuous w.r.t, all their arguments. Moreover, (x,., .; z) satisfies
the Lipschitz condition

I(/)(X, tl, ql; Z) (/)(X, t2, q2; Z)l

_
L{ltl u21 + Iql

for any x E t and for any bounded u and q, and is differentiable w.r.t.
u and q in the directions and O. That is, there exist the following limits:

(13)
limt__.+0[b(x, u + t/t, q; z) (x, u, q; z)]/t =_ Cu (x, u, q; z)/t,
limt__.+0 [(x, u, q + tO; z) (x, u, q; z)]/t (q(X, u, q; z), 4)-

Now, we state the main results as follows.
THEOREM 2.1. Suppose that the hypotheses H1-H4 are valid and that there exists

a solution qO Qad Qad,1 Qad,2 to Problem A, where qO (al,..., anm, C),
and Qad, and Qad,2 are defined by (6) and (10), respectively, such that (u, qO) with
u u(q) minimizes the functional (11).

Then there is a nonnegative measure u rca(D) with compact support contained
in the set

(14) 9 {(x, t) D; (x, t, u(x, t)) 0},

such that the following maximum principle,

(15) supqQad {fD[aijOJUOiV + CUV] fn(q(X, u(x,T), q(x,T); z(x)), q)}
fn[ajOjuOiv + cuv] fn (q(x, u(x, T), q(x, T); z(x)), q(x, T)),

holds, where v is the generalized solution in Ladyzhenskaya’s sense to the adjoint
equation of (2), i.e., v is the solution of the following variation equation:

(16)
fD[(OtW + biOiw + cw)v + aiOiwOjv]

fn Cu(x, u(x, T), q(x, T); z(x))w(x, T)dx
+ fD Xfflu(x, t, u; z)w ,(dxdt), Vw e 5,

where/ O/3/Ou, X9 0 if 5 0; otherwise Xff is the characteristic function of
9l,

Y3 {w e HI(O,T;H(f)); w [t=o 0},

and rca() is the space of all regular countably additive scalar-valued functions on
the a-field of all Borel sets in and the norm in rca(), [#], is the total variation
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Similarly, for Problem B, we have the following results.
THEOREM 2.2. Suppose that the hypotheses H1-H3 are valid and that there exists

an optimal solution qO E Qad to Problem B, such that u u(q) minimizes the
functional (12).

Then there is a nonnegative measure # rca(), of which support is contained
in the set

(17) --{x f; lu(x,T)-z(x)]:max]u(y,T)-z(y)l}yEt

and a nonnegative measure rca(D) with compact support contained in the set 9
such that the following maximum principle,

(18) sup /D[aijOjUOiV + cuv] dxdt =/D[aiOjUOiV + cuv] dxdt,
qEQad

holds, where v is defined by the following variation equation:

fD [(OtW + biOiw + cw)v + ajOjwOiv] dxdt
(19) fa X sign[u(s, T) z(s)]w(s, T) p(ds) + fD X!Y(x, t, u; z)w (dxdt),

Vw e

and the definitions of Qad, rca(D), rca(t), 9, Xg, u, and Y) are the same as those
in Theorem 2.1, and XE 0 if u(.,T) z(.), otherwise XE is the characteristic
function of .

3. Preliminary. In order to solve the minimum problems we use the Duboviskii-
Miljutin lemma [25]. Therefore, we consider a general extremum problem in a locally
convex topological space E, i.e., minimize a cost functional

 o(Y)
with inequality constraints

(21) YeEj (j=l,...,n)

and an equality constraint

(22) Y En+l,

where Ej (j 1,..., n) are sets with a nonempty interior in E.
From [25] or [28] we get the following lemma.
LEMMA 3.1 (Duboviskii-Miljutin). Assume that the following hypotheses hold.

(n+lFo(Y) is a regular decrease functional at Yo E,,j= Ej, and its decrease di-
rection cone at Yo is Ko.
The inequality constraints Ey (j 1,..., n) are regular at Yo and their ad-
missible direction cones at Yo are Ky.
The equality constraint E,+ is regular at Yo and its tangential direction cone
at Yo is Kn+.

n+lThe functional Fo(Y) reaches its minimum at Yo on,,y= E.
Then K+, K+ are the dual cones of K, 0,...,n+l, such that

0,...,+, which are not all simultaneously equal to zero, satisfy the Euler-Lagrange
equation

n+l

0.
i--0
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From now on we suppose

(24) Y_=(u,q), E_=VQ,

where V 2+a(D)and Q [(l+(D)]m (D) Moreover, it is obvious that

E* {f (fl,f2); fl e V*, f2 E Q*},

i.e., E* V* (R) Q*, where E*, V*, and Q* are the adjoint spaces of E, V, and Q,
respectively.

Moreover, suppose

(25)
(26)
(27)

E1-- {Y (u, q) ueV, qeQad,1}=VxQad,1,
E2 =- {Y= (u,q) e E; P(Y) =O},
E3---{YeE; Z(x,t,u(x,t))<_0, V (x, t) e D),

where Qad,1 is defined by (6) and P" E --+ F is defined by

(28)

(30)
(31)

P(Y) =_ {L(q)u f, Lb(q)u g, Lsq qo},
L(q)u =_ Otu Oi(aijOju) + biOiu + cu,

ib(q)u =-- U [Ogt,
Lsq q Is,

where

(32) F _= Ca(D) (2+(0gt [0, T]) x ,
v _-- e O"x ([0, T]); x E S, p is continuous on S x [0, T]};

moreover, ifwe set IlwllF IIwll.+llw2112++tlw311 and IIw311
then F is a Banach space.

Furthermore, set

(33)

(34)

(35)

Z E1 N E2 N E3,

Ja(Y) ./ (x, u(x; T), q(x); z(x)) dx,

Jb(Y) =-- nax lu(x, T)

Therefore, the parameter estimation problems A and B will be deduced to special
extremum problems.

PROBLEM A’. Minimize Ja(Y) on the same constraints (33) with (25)-(27).
PROBLEM B’. Minimize Jb(Y) on the same constraints (33) with (25)-(27).
4. Proof of the main results. In order to use the Duboviskii-Miljutin lemma

to prove Theorems 2.1 and 2.2 we need several lemmas.
From [25] one can get the following.
LEMMA 4.1. Let f E* and

I =_ {x e E; f(x) O}, I2 {x e E; f(x) >_ O},
13 =- {x e E; f(x) >0}.
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Then

I+=(Af; AR1}, I2+={Af; AeR),
and I3+ E* if f 0; otherwise I3+ I2+.

From [25] one also gets the following.
LEMMA 4.2. Suppose that F(Y) satisfies the Lipschitz condition in a neighborhood

of Yo E E and is (one-sided) Gteaux differentiable at Yo in any direction Y, and that
the Gdteaux variation, F’(Yo,), of F(Y) at Yo is convex w.r.t. . Then F(Y)
regularly descends at Yo and the descent direction cone, K, of F at Yo is

K {l); F’(Yo, 1)) < 0}.

LEMMA 4.3. The functional Ja(Y) is one-sided Gdteaux differentiable, and its
Gdteaux differential is determined by

(36) J’a(Y) fa[(s, u(s, T), q(s, T); z(s))iz(s, T)
+<q(s, u(s, T), q(s, T); z(s)), (l(s, T))] ds, v? e E,

where Cu and Ca are defined by (13). Moreover, Ja(Y) is a regular descent functional
at Y (u, q), and its descent direction cone, Ko, at Y is

(37) go e E; J’a(Y) < o},

and the dual cone of Ko is

(38) go+ (-AoJ’(Y); O<Ao < +o}.

Proof. By the assumption H4 one immediately gets

limt-+O[Ja (Y / t) Ja (Y)]/t limt--++0 fn {[(s, u + t/, q + tO; z)
-(s, u, q + tO; z)]/t + [(s, u, q + tO; z) (s, u, q; z)]/t} ds
=/a[(s, u, q; z)/ + <q(s, u, q; z), O>] ds,

and then (36) is true.
It is obvious that J(y.)lk < 0 if l) e K.o.
On the other hand, if Y satisfies J’a(Y)Y -6 < 0, then there exists el > 0 such

that J(Y + el)) < Ja (Y) e/2, Ve (0, el), by the definition of Ggteaux differential.
Let h e BI() -= {h e E; ]]h- ])]1 < /(4L)}. Then, by the assumption n4,

J(Y + eh) J(Y + e) + [J(Y + eh)- Ja(Y + eik)] < J(Y + elk)
+e6/4 < Ja (Y) e6/2 + e6/4 J(Y) e6/4.

So, if we take c -/4, then 1) e Ko. Therefore, (37) is true. In addition, it follows
by (36) that the set K0 is convex. Hence, Ja(Y) is a regular descent functional at Y.

Finally, (38) can be deduced by Lemma 4.1. [:l

Furthermore, we also have the following lemma.
LEMMA 4.4. The functional Jb(Y) is one-sided Gdteaux differentiable, and its

Gdteaux variation is determined by

(39) J(Y, l)) max{/(s, T)sign[u(s, T)- z(s)]}, V (ix, (t) e E, u [t=T z,

(40) or J(, l)) max I/(s T)I Vq e Q (g,q) e E with It=T z.
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Moreover, Jb (Y) is a regular descent functional at Y (u, q); its descent direction
cone at Y, Ko, and the dual cone of Ko, Ko+, are

(i) if Y (u, q) with u It=T z,

(41) Ko { e E; it(x, T) sign[u(x, T) z(x)] < 0, x e },

(42) Ko+= {itE (I); f it(x, T) sign[u(x, T) z(x)] #(dx) > O, V E K0},
(ii) or if (t, q) with (t [t=T z,

(43) K0 0, Ko+ 0,

where

(44) b =_ {it e rca(); supp(it) G , it(dx) >_ 0}.

Proof. For all u It=T# Z we have

J(Y, 1?) limt_+0{max [u(x, T) + tit(x, T) z(x)l max lu(x, T) z(x)[}/t
lim{max lU(Xo, T) Z(Xo)]

+ tit(x, T) sign[u(x, T) z(x)] max lu(x, T) z(x)l}/t.

Obviously, for t small enough we have

max= lu(x, T) z(x)l + tit(x, T)sign[u(x, T) z(x)]
maxxe lu(x,T) z(x)l + tmaxze it(x,T)sign[u(x,T) z(x)] + o(t).

Thus,

J(Y, 1?) ma{it(x, T) sign[u(x, T) z(x)]}.

Obviously, (40) and (43) are true.
Next, one easily obtains that the Gteaux variation, J(Y, ), defined by (39)

or (40) is convex and that the functional Jb.(Y) satisfies the Lipschitz condition and
is one-sided differentiable in any direction Y. So, by Lemma 4.2 Jb(Y) is a regular
descent functional. Moreover, (41) is true.

From the definition of a dual cone and the Riesz representation theorem, (e.g.,
cf. [23, p. 265]), it immediately follows that the equality (42) is also true. D

Regarding the set E1 we have the following lemma.
LEMMA 4.5. Suppose Yo (u, qO) E1 V x Qad,1, where Qad,1 is defined by

(6). Then E1 is regular at Yo and the dual cone of E1 at Yo is

(45) K+={(0,f2) eE*; f2(q q) >_0, Vq e Qd,1},

where Qad,1 is the interior of Qad,1, i.e., f2 is a support functional of Qad,1 at qO.
Proof. It is obvious that the cone of admissible directions of E at Yo (u, qO)

is

(46) Kl=VX{keQ; k=A(q-q), qQOad, A>_O}.
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Thus, K1 is convex and E1 is regular at Yo.
Next, by E* V* (R) Q* and (46) we have

(47) K+ ={(fl,f); fl(u)_0, VuV, f(k)_0, k-A(q-q), A_0}.

Considering that V is the whole space, we have fl 0. Owing to A _> 0, we get
f2(q- qO)

_
O, Vq Qd,l" 13

From [27] we can get the following.
LEMMA 4.6 (Lusternik). Let W(Y) be an operator mapping E into F, differen-

tiable in a neighborhood of a point Yo with W(Yo) O. Let W’(Y) be continuous in
a neighborhood of Yo, and suppose W’(Yo) maps E onto F (i.e., the linear equation
w’(Yo)? oto ? o F).

Then the set of tangential directions to the set. =_ {Y e E; W(Y) 0}

at the point Yo is the subspace

: =_ {? e E; W’(Yo)? 0}.

LEMMA 4.7. The operator P(Y. ), which is defined by (28), is Frdchet differentiable
with respect to Y (u, q) and VY (it, it) e E the Frdchet differential of P(Y) at
Y E E is determined by

(48) P’(Y)" {L(q)it Oi(izijOju) + du, Lb(q)it, Ls(t},

where (t (11,..., tmm, ), i.e.,

(49) P’(Y) e .(E; F),

and F is defined by (32).
In addition, the tangential direction cone K2 to E2, where E2 is defined by (26),

at Y El, is

(50) K:= { eE; P’(Y)=O};

i.e., VO Q satisfying the condition

(51) LsO O,

it is the solution to the problem

(52) Otit- Oi(aijOjit) + biOiit + eit Oi(dijOju) u,
Ioa= 0, It=0 0,

(x, t) D,

where (u, q) =_ (u, a11,..., amm, C) e E1 also locates on the manifold E:, or u u(q)
is the solution to the problem (2) with the constraints on q.

Proof. The results (48) and (49) are evident. So, we only need to prove (50) using
Lemma 4.6.

By [26] we know that the mapping is surjective, in fact, V(f,g, qo) F, the
operator equation

(53) P’(Yo) {f g, qo}
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has a unique solution l? (it, ) E E. And then it follows from Lemma 4.6 that (50),
and therefore (51) and (52), is true.

LEMMA 4.8. The dual cone of K2, which is defined by (50), is determined by

(54)
K+ {f (fl, f2) e E*; fl e V*, f2 -[u’(q)]*fl}

+ Uxes {(0, Ax)Lx; Ax e 1},
Lxq=--q(x), VxS,

where [u’(q)]* is the adjoint operator of u’(q) and u’(q)4 it is determined by (52).
Proof. We first denote the cone of tangent directions K2 as

(55) K2 L1 N L2,

where

(56) L1 {(it, 4) e E; L(q)it Oi(iijOyu) + u 0, Lb(q)it 0}

and

(57) L2-={(it, O) eE; LO=O}.

Obviously, we have

(58) K2+ L + L,

where L and L are dual spaces of L1 and L2, respectively, which are subspaces of
E*.

For any (it, c)) L1 we have

/(q)it Oi(ijOju) u, (X, t) D,(59) Ioa= 0, It=o O.

It is easy to see it u(q)O, where (al,... ,mm, ), i.e., it is the Fr6chet
differential of u at q. Therefore,

L1 { (it, 0) e E; it u’(q)0}.

Moreover, L is a subspace of E, so

L {f (f, f2) e E*; 0 fl(it)+ f2(4), V(it, O) e L1}.

Considering it u’(q)(t on L1 we have

0= f(it) + f2(4) (f,u’(q)O) +
([u’(q)]*f + f2, 4), V0 e Q.

Thus, [u’(q)]*f + h 0, i.e.,

f2 -[u’(q)]*fl.

Next, L2 CesA, where A {(it, O) E; LO 0}.
Obviously, L UesA and by Lemma 4.1 we have fl 0 and f: AL,

hence

A; {(0, A)Lx; A e ]1}.
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So, we get (54). F1

LEMMA 4.9. The inequality constraint, E3, which is defined by (27), is regular at
Yo (u, qO) E E3, and its admissible direction cone, K3, at Yo is determined by

(60) K3 E, if J 0;

otherwise

(61) K {? (, ) e E; Z(x, t, (x, t)) < 0, V (x, t) e }.

Furthermore, the dual cone of K3 is

(e) + {0}, ,
or, V w K3+ there is rca(D) with supp C_ J and (dxdt) >_ 0 such that

(63) (, 0) e E*,
w(Y) (v(it) fry[ flu(x, t, u(x, t))it(x, t)(dxdt), V?eE.

Proof. Obviously, (60)and (62)are valid.
Next, consider the following nonlinear functional

(64) G(u) max_ (x, t, u(x, t)).
(x,t)ED

Then G(u) 0 if 9 - 0. Moreover, following [25], we can prove that the mapping
]1G C(D) is Ggteaux differentiable and its Ggteaux differential at u in

direction h is

(65) G’(u)h max [flu(x, t, u(x, t))h(x, t)].
(,t)9

By the definition of admissible direction cone, ] (/t, c)) K3 means that there
exist an e0 > 0 and a neighborhood of zero, U(0), such that

Yo + (? + Y) e E, V e [0, 0], VV (, q) e U(0).

So, by the definition of E3

G(o + ( + )) <_ o,

and owing to G(u) 0,

a’(o)(e + ) + o() <_ o.

Consider (u, q)e U(0); therefore,

(66)

Hence, F] K3, we have

G’() < o.

(67)

On the contrary, if ] (/t, ) satisfies (67), then (66) is true, and it is easy to
prove ] K3.
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Therefore, (61) is valid.
Because the space V is a dense subset of C(D), /w (z, 0) E K3+ there is

f, rca(D) by the Riesz representation theorem [23] and the Minkowskii-Farkas
theorem [25] such that (62)is valid.

Now, we return to the proof of Theorem 2.1.

Proof of Theorem 2.1. If (u, qO) [uo u(qO)] is the solution to Problem A’ (i.e.,
Problem A), then the cost functional Ja(Y) defined by (11) attains the minimum at
o= (o, qo).

By (Duboviskii-Miljutin) Lemma 3.1 there exist i KS (i 0,1,..., 3), which
are not all simultaneously equal to zero and satisfy the Euler-Lagrange equation

3 3

(68) EOi()=0’ V NKi=2"
i--0 i=0

By Lemma 4.3 there is a Ao >_ 0 such that

(69) o(?) --)’OJ’a(’o)(?),

and by Lemma 4.5 we have

(70) DI(]r) --(0, f2)(]r) f2({),
f2 is a support functional of Qad,1 at qO,

and by Lemma 4.8 we have

(71)

where

2,1 --(fl, f2) e E*, fl e V*, f2 -[u’(q)]*fl

Therefore, we get

(72) 2,() y(/t) + f2(c)) f(/t)- [u’(q)]*f(?l)

and

(73) ,() O(x).
xES

Considering 1 (/t, )) E 2 we have

(7) O(x) o, x e s,

and by Lemma 4.7, 1 u’(q)(1, so it follows from (72) and (73) that

(75) W,(?) o, v?2,
(76) 2,2(]J)- o, v e 2.

If we take (1 (q- qO) Q and q Qd,1, then by (70)

l(])--f2(c))--f2(q-q) >_0, Vq Qd,.
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And then by the continuity of f2 and the convexity of (ad,1 we have

(77) f(_ o) > 0, v e,.
Finally, by Lemma 4.9,

(78) 23(r) AoJ(Yo)() / fD Xey(x, t)3u(X, t, u(x, t))it(x, t) (dxdt),
v?2.

gets

(79)

Substituting (69), (70), (71), and (78)into (68) and considering (75)-(77)one

o < f(O)= (?)= oJ’(Vo)(9)
+ fD X9(x, t)(x, t, u(x, t))it(x, t) (dxdt), V2.

Obviously, A0 0, otherwise by (69) and (79) one can get 0 1 3 0;
besides, by (75) and (76), 2 0, but by Lemma 3.1 this is impossible.

Therefore,

(80) Ja(Yo)() +/D Xg(X’ t)u(x, t, u(x, t))it(x, t) (dxdt) >_ 0, V e 2,

where /Ao. Furthermore, by Lemma 4.3 and (16)

0 <_ fa[u(s, u(s, T), q(s, T); z(s))it(s, T) + (q(s, u(s, T), q(s, T); z), O(s, T))] ds

+ fD X9(x, t)u(X, t, u(x, t))it(x, t) (dxdt)
fD[Otit O(aOjit) + bOit + cit]v dxdt
+ fn (q(s, u(s, T), q(s, T); z(s)), (l(s, T)) ds.

(8)
Because (/t, ) 2 C K:, by (52) in Lemma 4.7

0 <_ f(q(x, u(x, T), q(x, T); z(x)), l(x, T)) dx + fD[Oi(izijOju) u]v dxdt

fa (q(s, u(x, T), q(x, T); z(x)), (t(x, T)) dx
fD[iZijOuOiv + duv] dxdt.

Taking 1 q- qO we immediately have

qO z), q} dxfD[aijOjuOiv + cuv] dxdt fa (q(x, u,
qO z),qO< fD[ajOuOiv + cuv] dxdt fa <q(x, u, dx

Vq (all,..., a,,, c) E Qad,

which is just (15). [:]

Proof of Theorem 2.2. Obviously, most of the proof is the same as that in Theorem
2.1 except the proof of the inequalities (18) with (19). We have, especially,

o(?) + (?) -(?) -f(O) _< o.

By Lemma 4.4 there exists # E such that

o(1) Ja X(x)iz(x, T)sign[u(x, T) z(x)] #(dx),
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and by Lemma 4.9 there exists e rca(D) with supp C_ ) and (dxdt) >_ 0 such
that

)3() --/D XF(X’ t)u(X, t, U(X, t))t(X, t) (dxdt).

From the above two equalities and the inequality one can get

(82) fD Xg(x, t)(x, t, u(x, t))(x, t) ,(dxdt)
+ f X(x)it(x, T) sign[u(x, T) z(x)] #(dx) >_ O.

Owing to (19), one has

(83) /D [(Otit + bOit + cit)v + ajOvOjit] dxdt >_ O.

Considering 1 E 2 c K2, it follows by (52) in Lemma 4.7 that

(84) O <_ /D[O(jOju) du]v dxdt lD(jOjuOv + duv) dxdt.

CIn particular, take 4 q_qO with q (a,..., a,,, c) and qO (al,... atom,
and then we can immediately get (18). D
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A CONVEX APPROACH TO THE MIXED 7-/2/7-/ CONTROL
PROBLEM FOR DISCRETE-TIME UNCERTAIN SYSTEMS*

J. C. GEROMELt, P. L. D. PERESt, AND S. R. SOUZA

Abstract. This paper considers 7/2/Tt control problems involving discrete-time uncertain
linear systems. The uncertain domain is supposed to be convex bounded, which naturally covers, as
a particular case, the important class of interval matrices. The 7-/ guaranteed-cost control problem,
solved for this class of uncertain systems, under no matching conditions, can be stated as follows:
determine a state feedback gain (if one exists) such that the 7-/ norm of a given transfer function
remains bounded by a prespecified level for all possible models. In the same context, problems on
the determination of the smallest T/ upper bound and the minimization of an 7/2 cost upper bound
subject to 7/ constraints are also addressed. The results follow from the fact that those problems
are convex in the particular parametric space under consideration. Some examples illustrate the
theory.

Key words, discrete-time system, uncertain systems, mixed 2/7/ control, convex analysis
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1. Introduction. In the last decade, o control theory has been largely de-
veloped in both frequency and state-space approaches. Concerning continuous-time
systems, [4] states elegantly the optimal solutions of and T/2 control problems
in terms of algebraic Riccati equations where both state feedback and observer-based
output feedback are considered (see [4] and [21] and the references therein). However,
few papers have proposed methods that take into account uncertain models. In [13],
T/ control by state feedback is related to quadratic stabilizability in norm-bounded
uncertain domains, but no control synthesis is proposed. On the other hand, methods
such as the one introduced in [23] do not consider any uncertainty acting on the input
matrix or assume some kind of matching conditions. This obviously restricts the class
of uncertain systems to be dealt with. Quadratic stabilizability of continuous-time
systems under convex-bounded uncertainties, by means of a state feedback control
and with prescribed T/ norm upper bound, is addressed in [7].

The development is not quite the same when one regards discrete-time systems.
Necessary and suicient conditions have appeared in [5], [12], [17], and [24] for known
models (i.e., all parameters are precisely known), relating discrete-time Riccati-like
equations and T/ norm bounds. An interesting work [15], dealing with mixed
T/2/T/ control via convex optimization, focuses on precisely known systems. Us-
ing an appropriate matrix transformation, the state feedback control problem with
mixed 7-/2/7-/. performance measure, the same used in [11], can be reduced to the
minimization of a nonlinear--but convex--function over a bounded convex set of real
matrices.

However, the extension of the above necessary and sufficient conditions to un-
certain systems is not straightforward and, if possible, may lead to highly nonlinear
problems to be solved. In I22], discrete-time norm-bounded uncertain systems are
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investigated under T/ constraints. Sufficient conditions for quadratic stability with
disturbance attenuation are provided, which circumvents the above-cited difficulty.
The results presented in the control synthesis problem suppose the existence of a
dynamic output controller, which remains to be determined.

This paper is devoted to analyze the convexity and solve several problems in-
volving discrete-time uncertain systems. First we consider the -/ guaranteed cost
control problem, for which preliminary results have already been presented in [19].
It consists of the determination of a constant state feedback control gain such that a
certain closed-loop transfer function remains bounded by a prespecified 7-t level for
all uncertainties varying in a convex-bounded domain. Further, related control prob-
lems are also analyzed and solved. For instance, the above ?-/ norm bound may be
included in the optimization procedure in order to determine the smallest feasible one
[1], [14]. Moreover, an approximate version of the the mixed t2/-{cx control problem
is considered. It is important to emphasize that all results provided here follow from
the definition of a special parameter space [6] on which the above problems are shown
to be convex.

This paper is organized as follows. The next section introduces the system to
be dealt with and basic assumptions needed throughout. Section 3 is devoted to the
parametrization of 7-/2 and 7i norms in terms of algebraic Riccati inequalities. In
4, the ?-/ guaranteed-cost control problem is solved, including the determination
of the smallest ?-/ norm bound. The approximate mixed ?-/2/T/ control problem
is addressed in 5, where, in addition, decentralized control structures are considered
and compared with [10]. Section 6 particularizes the results to the case of precisely
known discrete-time systems and compares them with the ones provided in [24]. The
examples included in 7 illustrate the theory, and in 8 the conclusion follows.

The notation used throughout is standard. The set of real numbers is denoted by, Tr (.) means the trace of (.), (’) stands for transpose of matrices and vectors, and
(A, B} Tr (A’B) denotes the inner product of matrices with appropriate dimensions.
Singular values and eigenvalues are denoted by a(.) and A(.), respectively. Finally,
7-/ and 7-/2 norms are defined as follows:

max rma
[-,]

Tr {H(e-J)’H(ej) } dw.

2. Preliminaries. Let us consider the following LTI discrete-time system:

x(k + 1)

(1) u(k) -Kx(k),

Ax(k) + Blw(]) + B2u(k),

Clx(k) + Dlt(k),

where x(k) E }n is the state, u(k) liTM is the control, z(k) e q is the controlled
output, and w(k) Rl is the external disturbance. It is assumed that all matrices
are of appropriate and known dimensions and, as usual, CD1 0 and DID1 > O.
In fact, the above orthogonality hypothesis could be weakened with minor changes in
the results that follow. Associated with (1), we define the following extended matrices



1818 J. C. GEROMEL, P. L. D. PERES, AND S. R. SOUZA

(p n + m):

0 0
E :PP, G- I

px.

and

(3) Q=[BIB 0 ] [ CLOG1 0
0 0

It is further assumed that matrices Q and R are precisely known. On the contrary,
matrix F, which defines the open-loop model, belongs to a convex-bounded uncertain
polyhedral domain :D, defined as [6]

That is, any feasible F can be expressed as an unknown convex combination of the
"extreme matrices" F (A, B2)i, 1,...,N. At this point, it is important to
stress that any polyhedral convex and bounded domain can be expressed as (4) by
a suitable choice of Fi, 1,..., N and N. It is clear that :D generalizes the well
known and important case of interval matrices uncertainties.

For each feasible model F :D and K R,n, the closed-loop transfer function
fr)m w(k) to z(k)is given by

]-1(5) HF() ’ Ccl I- At1 B1,

where Ccl C1 DK and Acl A- B2K. Now, restricting our attention to those
gains such that K E K:F, with K:F being the set of all stabilizing state feedback gains
for the model defined by F T),

(6) h:F -- { K ’n Ac asympt, stable},
the norms IIHFII2 and IIHFII are easily calculated [12]. Indeed, the 7Y norm is given
by

where Lo and Lc are the observability and controllability Gramians, respectively.
That is, Lo and Lc are the solutions to the linear equations

(8)
AciLAtc L + BIB O,

AclLoAcl Lo + CcCcI O.

The determination of the ?-/ norm is numerically more involved. The results pre-
sented in [12] can be used to define a unidimensional search procedure for its calcula-
tion. As will be clear later, neither 7-t nor 7-/ norms have to be calculated explicitly.
From the above discussion, it is clear that the real-valued functions gF(K)
and hE(K) IIHFII are well defined for all elements of the set
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Let us state the problems to be dealt with in the rest of the paper. The reader is
referred to the appendix A for the definition of the epigraph of real-valued functions.

7-t guaranteed-cost control (P1). Given a prespecified 7-t norm level 7,
find a constant state feedback gain K such that K E F and IIHFII <_ 7 VF E 79.
This is equivalent to the determination of K such that (K, 7) epi hF V F 79. Note
that in the case of precisely known systems (N 1), the above problem reduces to
the one considered in [12], [24].

Optimal T/ guaranteed-cost control (P2). It is a natural generalization of
the previous one, where 7 itself is involved in the optimization process, that is,

(9) min {7 (K, 7)epihF F79 }.
Obviously, in the case N 1, (9) reduces to the classical optimal control problem

Mixed T/2/-/ guaranteed-cost control (P3). Given a prespecified
norm level 7, find a constant state feedback gain K and the smallest ?-/2 norm level

such that K K:F, IIHgl] <_ 7, and IIHFII2 <_ V F 79. Equivalently, it can be
restated as

(0) min { (K,)epigF, (K, 7)epihF VFE79 }.
Once again, in the case (N 1), the above problem amounts to the determination of
a constant state feedback gain K such that

(11)

which, after some approximations, has already been solved in [1] and [14] for
continuous-time linear systems.

To the authors’ knowledge, there are no available results for the above problems
for discrete-time uncertain systems in convex-bounded domains. Even then, the mo-
tivation for introducing them is quite clear in the sense that they generalize the most
important and well-known 7-/ control design results available for precisely known
models to uncertain systems.

Note that (P1) is a generalization of the state-space 7-/ control approach
proposed in [12] and [24]. The same is true for (P2), on which 3’ is included
as an additional decision variable in the optimization process. In principle, re-
sults available to solve (P1) can also be used for solving (P2) iteratively. For in-
stance, consider the following procedure: set @ sufficiently large, solve (P1), redefine

@+1 maxFe IIHFII, and iterate until convergence. Since the sequence
is bounded below and 7k+l _< @, it converges but not necessarily to the optimal
solution of (P2). Furthermore, it may be time consuming due to the fact that its rate
of convergence is normally poor and /k+l is hard to obtain. For this reason, we pro-
pose here a new method which solves (P2) directly and provides both the stabilizing
state feedback gain and the optimal 7-/o-norm level. Finally, it is important to add
that (P3) is a generalization to discrete-time uncertain systems of the mixed
control problem solved in [1] and [14].

As stated, problems (Pl)-(P3) are difficult to solve. The main difficulty stems
from the nonconvexity of the set and functions g(.) and hF(.) in the parameter
space generated by the elements of K, for each F 79. The obvious conclusion is that
some kind of approximation or majorization should be adopted in order to render
them more tractable. In this way we consider the following:
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(i) Instead of/C Fe)/CF, the set of all state feedback gains which stabilize
simultaneously all models F E 7), we restrict our attention to the subset/CQ C_/C com-
posed by all state feedback gains which stabilize quadratically the uncertain system
(1) and impose on it a certain disturbance attenuation level 7 (see Definition 4.1).

(ii) The 7-/2 norm is replaced by a suitable and convex upper bound. On the
other hand, the inequality IIHFIIoo <_ 7 is tested by means of a simple sufficient
condition yielding only convex problems to be solved.

Throughout the paper, we assume that matrix 142 E PP, partitioned as

(12) 142= I W1W w3W2 ] _>0,

is symmetric with W1 > 0 :nxn, W2 }:nxm, and W3 rr. The null space
of G’ is denoted by Af. From (2), it is clear that all v Af have the particular
structure v’ Ix’ 0] with x E Nn. In addition, we define the matrix functions
OooF(W, ) F1A;F’ 142 + )4;RIA; + #Q and Oi(.), which is the same as
but with F replaced by the extreme matrix Fi, 1,..., N. Furthermore, we suppose
that V F T), the pair (A,B) is controllable and range (B2) C_ range (B). This
condition implies that (Acl, B) is controllable V K mn and V F :D. It is
simple to verify that this assumption can be dropped if the inequalities, given in what
follows, involving functions Og(’) and 0(.), 1,..., N are strict.

3. 7-/2 and 7-/ norm bounds. In this section, we consider F 7) fixed but
arbitrary. Our aim is to establish bounds to 7-/2 and :H norms in terms of an algebraic
Riccati inequality.

LEMMA 3.1. Given (K, 7 > 0), if the matrix inequality

(13) AclPA’cl P + PCclCclP + 7-2BxB <_ 0

admits a symmetric positive definite solution, then K F and

(14) HF(()HF(-:)’ <_ 72(I CclPCcl), ej V w e [-Tr, r].

Proof. For the proof of this lemma, see appendix A.
This result is a generalization of the one presented in [10]. Indeed, it provides

a sufficient condition under which upper bounds to the closed-loop transfer function
/2 and :H norms can be determined. In addition, it enables the definition of an
estimate of the difference between the actual IIHFII and the prescribed value 7.

LEMMA 3.2. Given (K, 7 > 0), suppose that (13) holds for some positive definite
matrix P Nnxn. The following hold:

(a) There exists 0 <_ 02 < Tr (CclPCcl) such that IIHFII <_ 72(1 --02) _< 72;
(b) IIH II <
Proof. For the proof of this lemma, see appendix A.
To provide an interpretation of the above results, it is important to keep in mind

that, for a given pair (K, 7), the solution of (13) is not necessarily unique and that
the exact value of 2 cannot be determined a priori since (see appendix A) it depends
on IIHFIIoo itself. As a result, the only information we get from part (a) of Lemma 3.2
is IIHFIIoo < 7 or equivalently that (g, 7) epi hE whenever (13) admits a positive
definite solution. However, from the part (b) of Lemma 3.2 we notice that for (K,
fixed, the best upper bound to the IIHFII2 is determined by choosing P which min-
imizes Tr (CclPCcl) among all positive definite solutions of (13). By doing this, 0
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1.5

0.5

FIG. 1. epi hF (--), epi gF (--), and approximations (- -).

is constrained to be small, which implies that the inequality ]]HFJI <_ becomes
tighter.

The above discussion will be important in the sequel. For the moment, let us
compare numerically the results provided by Lemma 3.2 and the exact ones. Consider
a linear time-invariant system such that

(15) F=
0 0

R-
0 1

Q=
0 0

In this case, it is obvious that K:F {K E 1 < K < 3}. Figure 1 shows
the epi hF and its approximation given by all pairs (K, /) such that (13) holds for
some P > 0. Figure 1 also shows the epi gF constrained to those K E ]g such that

IIHFII <_ 10 and its approximation provided by part (b) of Lemma 3.2. The
solution of (P2) is calculated as K 2 (exact) and K 1.8 (approximate). For (P3),
both (exact and approximate) coincide at K = 1.6. This fact (see also the numerical
examples in 7) gives a measure of the "quality" of approximations introduced.

In addition, note that, in the general case, all shapes in Fig. 1 are nonconvex.
Fortunately, those defined by the approximations can be generated from a nonlinear
mapping acting on the elements of a convex set. This key property is proved below.
Before that, let us introduce the following definition.

DEFINITION 3.3. The pair (A, B2) is said to be stabilizable with / disturbance
attenuation if there exist K ]F and P > 0 such that (13) holds.

THEOREM 3.4. Define the set CF as

(16)

ThenCF is convex and {(WW-1, 1/x/-fi (}V, #) e CF} C_ epi hR. Furthermore,
the pair (A, B2) is stabilizable with / disturbance attenuation if and only if, for some
W, (W, 7-) C.

Proof. Let us first prove that 2F is convex. Indeed, since the set of nonnegative
definite matrix is convex, it remains to show that for an arbitrary v Af, the function
v’OF(W, #)v is convex. To this end, note that

(17) V v’Og(V + aAI/Y, it + cAit)v 2v’A]/YRAYYv >_ 0

holds for all AI/Y A1/Y’ G PP and A# E , then the convexity of CF follows.
Now suppose that (/Y, it) Cg. From (16), for all v

0 >_ v’O.(W, p)v
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>_ x’[(A- BWW-x)W(A- BWW-)’- Wx

+w (c1 D W;Wf D W;Wf )W1

(18) + #BxB + B(W WWW)B;]x.
Since 142 _> 0 implies W3- WW-W >_ O, the conclusion is that (13) holds for
K WW-I 7 1/Vrfi, and P W > 0 Consequently, from Lemma 3.2
(K, 7) e epi hg. On the other hand, suppose the pair (A, B) is stabilizable with
disturbance attenuation. From Definition 3.3, we know that there exist K and P >
such that (13) holds. Consequently for all x n we have

>_ x’ [(A- BK)P(A-0 BK) P

+ P(C DIK)’(C DK)P + /-2BB]x
(19) > v’OF(l/V, /-)v,
where the last inequality holds for

(20) V- KP KPK’ >_ O,

implying that (l/Y,’-2) CocF, and the proof is concluded.
THEOREM 3.5. Consider the convex set CoF defined in Theorem 3.4 and assume

that / > 0 is given. Then {(WWI-,) ()/Y,-2) e CF} C epi gF for 1

Proof. Consider any 1/Y such that (W, ,-2) CF. From (18) we note that (13)
holds with K WW-1 and P- W > 0. We use part (b) of Lemma 3.2 to get

IIHFII2 < /2Tr ((C DWW-)W(C DWW[I)’)
\ /

"72Tr (CIW1C + DIWW:IW2DI)__
9/2Tr (CIWIC[ + D1W3Di)

(21) <__ ")2Tr (RW) ,
which implies that (WWx,/) epi gF. The proof is complete. B

As noticed before, both Theorem 3.4 and Theorem 3.5 provide convex approxi-
mations to epi hE and epi gF, respectively. Each of them is generated by a nonlinear
mapping with the same convex domain CF. As a result, the main difficulty to solve
(P1)-(P3) directly in terms of the state feedback gain matrix K is circumvented by
simply reformulating them as convex programming problems over CF. Only after
their solutions have been calculated, the corresponding feedback gain K is determined
by K WW- for the optimal M; CF. Furthermore, the same reasoning can be
easily generalized to deal with uncertain systems in convex-bounded domains.



MIXED 7-/2/7-/o CONTROL PROBLEM 1823

4. The 7"/ guaranteed-cost control problem. This section is completely
devoted to solve (P1) and (P2). For that, the key observation (see [6]) is that for any
V /Y _> 0 and # _> 0, the function OF(YY, #) is convex with respect to F E 79.
Using the notation introduced before, this means that

N

i=1

holds for i > 0, EN
i=1 i 1. Before proceeding, we need the following definition.

DEFINITION 4.1. System (1) is said to be quadratically stabilizable with / dis-
turbance attenuation if there exist K E F and P > 0 such that (13) holds for all
FED.

The set of all state feedback matrix gain K satisfying the above definition is
denoted by KQ. it is important to keep in mind that the concept of quadratic stabi-
lizability with -y disturbance attenuation implies that for K E KQ, the same matrix
P > 0 should satisfy (13) for all F E 7).

THEOREM 4.2. Define the convex set Co as CF for all extreme matrices F
F, 1,..., N. The followin9 hold:

=_

(b) {(WW 1/yrfi) (W, #) E Coo } C_ epi hF,
Furthermore, the system (1) is quadratically stabilizable with / disturbance attenuation

if and only if for some l/Y, (1/Y, .y-2) E C.
Proof. Only part (a) will be proved. The other statement follows immediately

from part (a) and Theorem 3.4. First suppose that (1/Y,p) E Ci, i 1,...,N.
In this case, vOi(14],#)v <_ O, i 1,...,N v E Af. However, each F E 79
can be expressed as a convex combination of the extreme matrices F, 1,..., N.
Consequently, with (22) we have

N

i--1

(23) _<0 VvEAf, VFE79,

meaning that (l/V,#) E CF, F E 79. The converse is straightforward because
F E 79, 1,..., N. This concludes the proof of the theorem. [:i

This results furnishes the theoretical basis to the solution of both problems (P1)
and (P2). Indeed, as a consequence of the convexity of the uncertain domain 79, a
convex subset of epi hF V F E 79 can be easily generated only from the N extreme
matrices that define 79. In addition, using the last part of Theorem 4.2 we conclude
immediately that

(24)

Viewed the intricate dependence of (13) on K, it is somewhat surprising that
could be generate from the elements of the convex set Ca. Furthermore, given > 0,
any K E Q solves (P1) and the global solution of the convex programming problem

(25) max {#" (]&,#)E6oo }
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provides K- WW-1 and 7-- 1/v/-fi such that the pair (K, 7)is suboptimal to (P2).
It is obvious that 7 1/v/-fi is the minimum value of 7 as far as the approximation

introduced in part (b) of Theorem 4.2 is adopted. As noticed before, we claim that
this approximation is good enough (see the numerical examples included in 7) to
produce near-optimal solutions to (P2).

Being convex, the global optimal solution of (25) can be found by many powerful
convex programming methods available in the literature (for details, see [2], [3], [8],
and [9]). However, from the numerical point of view, the difficulty in solving (25)
may be increased due to the fact that # is not explicitly bounded. For this reason,
we now determine an upper bound to # such that the optimal solution of (25) does
not change.

THEOREM 4.3. Consider F fixed but arbitrary. Assume that matrix VF E lxp
given by

(26) VF = (BBI)-IB A-I -B2

is of full rank and the perturbations w(k) are "rich" in the sense that dim(w(k))
n- rank (C1). Then (l/Y, #) CF V # > -fi(F), where

(F)= min { #>0 det(VVF-#R)=O}.
Proof. Define Re R+ eI for e > 0 sufficiently small and F F- I. After simple

but tedious algebraic manipulations, we can show that the following factorization
holds:

FI,VF )42 + )/YR )4; + #Q _f-’R[ + )4; R Rj +
(28)

+ +
Since the left-hand side of (28) goes to Oaf(l/Y, #) as e 0+ then,

(29) VtOaF(), #)V >_ lim v’ (/R-/’- #Q) v.
e---0+

We conclude that (l/Y,/z) CaB provided that # is chosen sufficiently large in order
that the right-hand side of (29) becomes positive for some v Af. An immediate
consequence of this fact is that (l/Y, #) CaR for all # > (F), where

(F) lim min {w’VFR-iVw w’w 1 }e--,O+

(30) _> lim sup {#" v’ (/R-I’- #Q) vOv Jf }.e--,0+

Calling the full rank matrix E C D and E# E’(EE’)- its pseudo-
inverse, it is a simple task to verify that

(31) R;I E#E#’ +5-1 (I- E#E)
as e 0+. Using this fact and (30) we get

(F) min {w’VFE#E#’Vw (I- E#E)Vw O, w’w 1 }
(32) =min{z’z" Vw-E’z=O, w’w=l},
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where the last inequality follows from the definition of the new variable z such that
E’z Vw. It is important to observe that (32) always provides 0 < (F)
Indeed, w(k) being "rich," a w 0 always exists such that (I- E#E)Vw 0, and
on the other hand, with VF of full rank, Vw 0 implies w 0 which is not feasible.
Now, writing the optimality conditions to (32) we immediately conclude that It(F) is
given by (27), which proves the theorem.

Defining the upper bound min { (F) 1,...,N }, the convex
programming problem

(33) max { It (l/V, It)Co, 0<It<}
is equivalent to (25) in the sense that they have the same global optimal solution. In
fact, for It > , there exists an extreme matrix F F 7) such that It > (F).
From Theorem 4.3, any pair (W, It) C whenever It > .

The above result is very useful for numerical computation. Actually the search
interval on # is reduced to the closed line segment [0, ]. The upper bound can be
easily computed since no operations involving o norms calculation is needed. As a
matter of fact, in many cases, (F) can also be obtained directly from (30) without
using equation (27), i.e.,

(F)= lim
e--0+

(34) lim
e--0+

min {w’VFR-[1V)w w’w-1 }
/min { VF(tot-I)-Iv },

overcoming the hypothesis concerning the richness of w(k) introduced in Theorem 4.3.
Note, however, that under the sufficient conditions in Theorem 4.3, the limit (34)
always exists and is finite.

As a final remark concerning (P1) and (P2), we want to add that majoriza-
tions/approximations as introduced here have also been adopted in several papers [1],
[14]. The main advantage of our approach is that we always obtain convex problems
to be solved. As a consequence, the convergence of any applicable method is sure to-
ward their global optimal solutions. For instance, this is not the case of the interesting
procedure given in [1], for which, however, no proof of convergence is known.

5. The 7-/2/ guaranteed-cost control problem. In this section, we ana-
lyze the solution of problem (P3). The results are based on the convex combination
(22) and on Theorem 3.5. Once again, it will be possible to approximate (P3) by a
convex programming problem.

THEOREM 5.1. Consider the convex setC as defined in Theorem 4.2 and assume
that / > 0 is given. Then

(35) { (WWI-1,/) (]/W,’-2)E Coc }
__
N epi
FEZ)

where 3 9/2Tr
Proof. From Theorem 4.2 we note that (l/Y, 5-2) E C implies

V F 7). Using Theorem 3.5 we have IIHFII <-- Tr (RV) 2
Consequently (35) holds.

With Theorem 5.1, we are able to rewrite problem (P3) as a convex problem, that
is,

(36) min {72Tr (Rid;) (l/V, /-2) Co }.
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For 7 fixed, its objective function is linear. Furthermore, its global optimal solution
provides K WW-1, which is feasible to (P3) being consequently a suboptimal
solution. Indeed, with (/V, 7-2) E C, the associated state feedback gain given above
is such that (K, 7) E epi hE ’ F T) and (K,) epi gF V F :D. Clearly, the
objective function of (36) is the available upper bound to IIHFII2 for all F :D, which
is reduced to its minimum level. An observation that has perhaps occurred to the
reader is that the above conclusions hold only because the same nonlinear mapping
(WW1) generates elements on both epi gg and epi hF.

Finally, we have to notice that problems (33) and (36) are of the same kind.
Actually, both are convex with linear objectives. The main difference between them
is that the former presents one more variable than (36).

We are now in position to generalize our results along the lines of [14]. Suppose
that to the basic model (1), we add a new output variable y(k) C2x(k)+ D2u(k),

Dwhere C2 2 0 and D2D2 > 0 and whose closed-loop transfer function from w(k)
to y(k) is denoted by TF(). Our goal is to solve the 7-/2/-/ guaranteed-cost control
problem considering IITFII2 <_ subject to IIHFII _< 7 V g E ). To this end, defining
the matrix

R2 0 DD2
the functions gF(K) IITFII2 and hF(K) ]IHFII, and using the same reasoning
adopted before, we get

min {72Tr (R2V) (V, 7-2) Ccx }.
This shows that the above generalization is easily incorporated in problem (P3) with-
out loss of any of its geometric properties.

Another important generalization of the above problem was first proposed in [10]
in the case of precisely known systems. In our context, it consists of the solution of
(P3) with a decentralized control structure. Under the approximation and majoriza-
tions introduced before, it can be solved by simply noticing that if kV is constrained
as (see (12))

[ W1D W2D ] > O,(38) kV kVD WD W3

where the subscript D imposes a prespecified decentralized structure on each matrix,
then the mapping which defines the control gain turns out to be

(39) K WDW- KD,

meaning that K KD presents the same decentralized structure imposed on 1/V in
(38). Consequently, (P3) can be rewritten as

min {72Tr (R21/VD) (YVD,7-2) C }.(40)

Problem (40) is once again convex and easier to solve than (37). In fact, I/V

D imposes a priori the zero value on many elements of /V which clearly can be
simply eliminate in the optimization process, reducing consequently the number of
free variables to be determined. As before, the solution of (40) (if any) provides VD
which is used with (39) to get the decentralized control gain.
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Before concluding this section, n final remark, in many practical applications, the
"inverse" 7-t/Tt guaranteed-cost control problem may be more attractive. It consists
of the determination of the smller T/ norm level > 0 such that IIHF[I <_ subject
to the 2 norm constraint ][TF[2 , for some > 0 fixed. Even in the case F
fixed, this problem cannot be solved by the procedures introduced in [1], [14]. On the
contrary, in our context, it can be approximated by a convex programming problem.
To show this, note that from Theorem 5.1 we have

(R W) V (W,

which implies that for > 0 fixed, (R2W)- 2p 0 imposes ITF12 .
Consequently, the problem stated before can be written as

(42) mx

which exhibits the same number of variables as and only one additional linear con-
straint than (P2). Once (42) is solved, the corresponding state feedback gain is given
by K WW, and as expected, (42) reduces to (25) whenever is chosen suffi-
ciently large.

6. Comparisons. We are able to compare our results with those of [24], where
the necessary and sufficient counterpart of Lemma 3.2, part (a) h been proposed.
For that we have to restrict our nnalysis only to the case of precisely known systems
(N= 1).

We immediately observe that (13) is a good approximation to the necessary and
sufficient condition of [24] if its solution is such that

(43) (I + CciPC)-1 = I.

For W 0 being the optimal solution of (25) or (36), condition (43) must be verified
for P W1 and Cl C1- DWW. Using the fact that W3 WW[IW2, (43)
holds whenever

(44) Amax ([ C1 -D1 ]W[ C1

which shows that the quality of our results can be verified by a simple postoptimi-
ation test. rthermore, it is interesting to note (see the discussion after Lemma a.2)
that the trace of the matrix indicated in (44) equals (R), yielding the conclusion
that for (Pa) the condition (44) generally holds because an upper bound of its left-
hand side is minimized. To show that this fact actually occurs, we hae calculated,
for the simple example included in a, the maximum eigenvalue indicated in (44). or
the optimal solution of (2) it is equal to 0.47, while for the one of (a6) it is equal
to 0.04.

As a final and important remark we note that problems (25) nd (36) always
provide feasible solutions to (P2) and (P3), respectively, even when (44) is not verified.
The suboptimMity of their solutions is the price to be paid for the approximntion of
both (P2) nd (P3) by convex programming problems. Unfortunately, if we replace
(13) by the necessary and sufficient condition of [24], the same reasoning as used before
does not lead to convex problems being thus an open problem for future research.

We now turn our ttention to problem (36). The goM is to analyze its optimM
solution ns + in the particular case of precisely known systems. We observe
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that since N 1, then C CF, and with # 1/72 and W >_ 0 fixed we get

lim #-locxF(#/ ) FWF’ W + Q

On the other hand, calling J(W) #-lTr (RW) the objective function of (36), it
is obvious that J(#W) Tr (RV). This fact together with (45) allows us to conclude
that as 7 +c, problem (36) degenerates to the convex problem

(46) min { Tr(RI/F) WEC2 },
where C2 {P W’ _> 0 v’O2(W)v _< 0 V v E Af}. It is possible to prove that the
optimal solution of (46) coincides with the optimal solution of the linear quadratic
regulator problem (see [18]). In other words, as 7 -- +cx, the optimal solution of the
approximate problem (36) coincides with the optimal solution of (P3), which in this
case is nothing more than the classical linear quadratic problem.

7. Numerical examples. In this section we consider a numerical example first
proposed in [16] and also analyzed in a preliminary version of [24]. Using the notation
introduced before, the data are as follows:

(47)

F-F1-
0.9974 0.0539 -0.0013
-0.1078 1.1591 -0.0539

0 0 0

Q- 1 1 0 R- -1 1 0
0 0 0 0 0 1

By reducing successively the 7 parameter and testing for the existence of a
positive definite solution to the necessary and sufficient conditions provided in

[24], we get a near-optimum solution to the T/ optimal control problem as being
K*[ 37.1242 22.4845 ], IIHFl[- 7* 36.44 dB. The numerical difficulty in-
volved increases as 7 -+ 7" because the condition to be tested becomes ill conditioned.

Considering N 1 and 4.0 x 10-4, problem (33) has been solved, yielding

7 1/ v/-fi = 38.65 dB,

(48) 0.1375 -0.1641 -0.4410 ]-0.1641 0.3954 2.5492 10-2.
-0.4410 2.5492 21.8803

The quality of this suboptimal solution (against the optimal one) can be measured a
priori by simply verifying that the left-hand side of (44) gives 0.2230. Indeed (48)
provides

(49)
K-[8.8829 10.1327],

IIHFI[ 37.63 dB,
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which corresponds to a loss of optimality of about 3.2%. It is important to remark
that in solving problem (33) we did not observe the ill-conditioning of its solution as
pointed out before.

We turn now our attention to the case of uncertain systems. Our goal is to obtain
an approximate solution to (P2) for N 2 and 7) given by (4), where F1 is as before
and

(5o) F
0.9974 0.0539 -0.0013 ]-0.1078 1.1591 -0.1078

0 0 0

which has been calculated assuming that the (2, 1) element of the input matrix B2 may
increase 100%. Once again, problem (33) has been solved with the same algorithm
and the same upper bound as before, yielding

/= I/v/-fi 38.82 dB,

(51) v---
0.1231 0.1478 0.2768 ]0.1478 0.4608 3.0178 10-2

0.2768 3.0178 26.0642

K [9.1290 9.4792].
Since every F E 7) can be expressed as F F1 + (F2 F) for E [0, 1], Fig. 2
shows the "shadow" singular value diagram corresponding to the closed-loop uncertain
system under consideration, that is, am,x[HF(e.i)] versus w, parametrized on

[0, 1]. Figure 2 also shows .the closed-loop system 7-/ norm versus with both the
guaranteed ?-/ cost control gain (51) (--) and the optimal ?-/ state feedback gain
K* (- -) (which is optimal for F F or equivalently for 0). The following
conclusions can be drawn.

(i) Although both feedback gains are quite different, comparing (51) with the
optimal solution for F F, we note that the guaranteed cost is very close to the
optimal one. This occurs mainly because for each [0, 1], the associate singular
value diagram is kept near enough to the optimal one.

(ii) Figure 2 makes evident the importance of the suboptimal solution to the
7-/ guaranteed-cost control problem proposed here. The state feedback gain K is
stabilizing and IIHFII

_
/V e [0, 1]. The same conclusion does not hold if instead

of K we use the state feedback gain K* which is T/-optimal for the "nominal" model
F (or equivalently 0). Indeed, with K*, the closed-loop system becomes unstable
for > 0.8 and, worse, the 7-/ norm of the closed-loop transfer function becomes
greater than the one with K for > 0.05. This shows that for very small parameter
variations (about 5%) the solution of (33) is already better than K*.

8. Conclusions. In this paper, we have investigated three important problems
arising in 7-/ and mixed 7-/2/7-/ control design. The results follow from two ba-
sic facts. The first one concerns the proposition of a simple sufficient condition for
testing whenever the T/ norm of a certain closed-loop transfer function is smaller
than a prespecified level 7. The second one consists of the definition of a suitable
majorization to the 7"/2 norm of the same closed-loop transfer function. Based only
on that, the three problems considered are approximated by convex problems all with
linear objective functions. Obviously an immediate consequence is that all machin-
ery of convex programming can be used to solve them in order to find directly the
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0|.8

corresponding optimal state feedback gain matrix. Furthermore, it is important to
emphasize that the convex problems are defined in a special augmented parameter
space whose elements generate through a nonlinear mapping the set of all stabilizing
state feedback gains of a given linear discrete-time system.

In the real world all systems are subject to parameter uncertainties. Then the re-
sults presented here are important because, for the first time, they generalize to actual
systems many basic and well-known control design tools available in the literature to
date.

In this sense, based on the numerical solution of some examples we claim that our
suboptimal and easy-to-determine solution to the three problems proposed before may
constitute a useful and valid tool design when convex-bounded uncertainties have to
be considered. The suboptimality is largely compensated by taking into account the
uncertainties, and in many cases, the results presented here can be even better than
the ones obtained by using an optimal policy calculated for the "nominal" model.

Appendix A. Consider f(.) S - a real-valued function defined for all
x E S c n. Following [20] we define the epigraph of f(.) as

(52) epi f - { x "), x S, f x <_ /} c_ }n--t-1.

An important property relating a function and its epigraph is that f(.) is convex if
and only if epi f is convex. In our context, the function hE(K) ]F given by

(53) hF(K) --II(C DK)(I- (A- B2K))- BII
is well defined for all K F since as required in (53) any element of (F stabilizes
the closed-loop system. Consequently

(54)

Unfortunately epi hF is not a convex set because generally the set F is not convex.
The set epi gF is similarly defined.

Proof of Lemma 3.1. Given (K, /), assume that P P’ > 0 satisfies the matrix
inequality (13). In this case it follows that

(55) AclPA’cl P <_ -’-2B1B’ <_ O.
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However, we also assume that the pair (A, B1) is controllable and range (B2) c_
range (B1). This implies that (Acl, B1) is also controllable, which together with (55)
enables us to say that Acl is asymptotically stable. Consequently K E/F. To prove
the inequality (14) we first note that for - ej, w E [-r, r], we have

(56) ((:I- Ae)P(-I- Ae) + AclP(-I- Ac)+ ((:I- Ae)PAe P- AePAe.
So inequality (13) can be rewritten as

(I- Ac)P(-II- Acl)- AclP(-lI- Acl) (I- Acl)PAci

(57) + PCclCclP + 9/-2BIB[ <_ O,

which after some algebraic manipulations gives

CclPG1 Ccl(I Acl) -1 -1 -1PC CclP(-lI- Ae) G1

/ Ccl(I- Acl)-IpCciCclP(-II- Acl)-ICcI

(58) + 9/-2Ccl(I- Aci)-IB1B[(-I- Acl)-lcl <_ 0.

Keeping in mind the definition of HF() (see (5)) and defining the auxiliary transfer
function LF() Cl(I Ae)-PCcl from (58) we have

(59) clPVcl- LF() LF(-I) / LF()LF(-I) + 9/-2HF()HF(-I)’ <_ O,

which after completing squares becomes

HF()HF(-I) <_ ?I 9/2CclPCc 9/2[I LF()][I LF(-)]

(60) <_ 9/2(I CePC).

Since (60) holds for all ej, w e [-r, r] the lemma is proved. V1

Proof of Lemma 3.2. From the definition of the 7-/ norm, there exist w [-r, 7r]
and a vector z (z denotes its complex conjugate) such that

z~HF(eJ)HF(e-J)’z
zz_

9/2 9/9 zCclPCclZz,z

(61) _< 9/2(1 02),

where the second inequality follows from Lemma 3.1 and

02 z~CePCclZ
zz

(62) <_ ,max(CclPCcl) <_ Tr (CclPCcl).
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it is clear that the exact value of 02 cannot be calculated only in terms of the inequality
(13) because it depends on the value of IIHFII. The above inequality provides an
upper bound for it, thus proving part (a).

For part (b) we note once again that if P P’ > 0 satisfies (13), then it also
satisfies (55). As a result, Lc being the controllability Gramian defined in (8) we get

p>/-2E k kAcBBA
k=O

(63) >_ -2Lc.
This inequality together with (7) yields

IIHFII Tr (CclLCcl)

(64) _< 2Tr (Cc:PC),

which concludes the proof of Lemma 3.2.
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A FINITE-DIMENSIONAL RISK-SENSITIVE CONTROL PROBLEM*

ALAIN BENSOUSSANt AND ROBERT J. ELLIOTT$

Abstract. A partially observed stochastic control problem with exponential running cost is

considered. The dynamics are linear and the running cost is quadratic, although the control may
enter nonlinearly. Explicit solutions are found to a modified Zakai equation and a backward adjoint
equation. This enables the problem to be expressed in terms of observable finite-dimensional dynamics
and a separation principle to be applied.

Key words, risk-sensitive partially observed stochastic control
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1. Introduction. There are few partially observed stochastic control problems
for which the optimal control can be given in terms of finite-dimensional sufficient
statistics. The linear quadratic Gaussian case is one. In [12] Wonham extended this
result to a nonquadratic cost function. In recent years there has been interest in
the case of linear dynamics for the state and observation and a cost which is the
exponential of a standard quadratic cost. This model can be used to study risk
aversion, or preference, in terms of a real parameter 0, and it was first discussed by
Jacobson [6]. Whittle solved the linear discrete time partially observed problem in [11].
In continuous time the existence of finite-dimensional sufficient statistics was studied
in particular cases by Jacobson [6], Speyer [10], and Kumar and van Schuppen [8] and
was finally solved by Bensoussan and van Schuppen [2]. A detailed treatment can be
found in Bensoussan [1].

In this paper, motivated by Wonham’s contributions, we consider dynamics and
running cost which are, respectively, linear and exponential quadratic in the state
variables but which may be nonlinear functionals of the control. The terminal cost is
also a general measurable function. An explicit solution of a modified Zakai equation
is found, and the problem can then be described in terms of an information state
defined by finite-dimensional fully observed dynamics. The value function, in turn,
is a function of these finite-dimensional parameters and so is not a finite-dimensional
quantity.

In 1 a general partially observed stochastic control problem with an exponential
running cost is discussed. A modified Zakai equation is introduced whose solution
is a measure related not only to the state of the process but also to the exponential
running cost. A robust form of this equation is defined, and an adjoint measure val-
ued process introduced. Section 3 discusses a verification result for a fully observed
stochastic control problem. The case when the dynamics are linear and the exponen-
tial running cost is quadratic is considered in 4, although the control parameter may
enter both dynamics and cost nonlinearly. It is shown that in this situation there is
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an explicit solution of the modified Zakai equation in terms of a modified mean r and
variance II of the state process and also an explicit solution for the backward, adjoint
process. Results of 4 extend those in [1] and [2] and permit the partially observed
stochastic control problem, with exponential cost, to be written as a completely ob-
served stochastic control problem with finite-dimensional state variables r and II. If
the verification theorem of 3 can be applied, we can conclude the separation principle
holds.

2. Dynamics. Suppose (f, 4, P) is a probability space with a complete filtra-
tion {-t}, t >_ 0, on which are given two independent ct-Wiener processes w(t) and
z(t). We assume that

w(.) takes values in R and has covariance matrix Q(.);
z(.) takes values in R and has covariance matrix R(.);
R(.) is uniformly positive definite.

is an Rn-valued random variable which is $’0 measurable and independent of
w(.) and z(.). The distribution of is the measure II0(.).

U is a nonempty subset of Rk. Consider the Borel functions

g:Rn x U x [0, o) ---, Rn,
a: R’ x [0, oc) L(R’, R’),

where

]g(xl, v, t) g(x2, v, t)l <_ klXl
and

II(Xl, t) or(x2, t)ll _< klXl x21.
Zt a{zs s <_ t} is the complete filtration generated by z and an admissible

control is a Zt-adapted process which takes values in U. For any admissible control
vt there is a strong solution x. x. of the stochastic differential equation

dxt g(xt, vt)dt + a(xt)dwt,
(2.1)

X0 --o
Equation (2.1) describes the dynamics of the state process. Note that here, and in
what follows, to simplify notation we omit t when writing g, a, etc.

Consider the Borel function h :R x [0, ) R, where we suppose

Ih(x,t)l k(1 +
For any admissible control v, with x. the corresponding solution of (2.1), we suppose

(1 th,E h(x , <

Define

(foo lfooth, )Ao,t exp h*(x.,s)R-idzs - (x s)R- h(x,s)ds

Then from Novikov’s result, (see Thm. 13.27 of [3]), A is an 9ct martingale and

E[Ao,] 1.
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A new probability measure P P(v) can be defined if we put

dP
A0,t.dP

Define the process bt b by the formula bt zt- fh(xs, s)ds. Then b. is a Wiener

process under P with covariance matrix R(.). Therefore, under P

(2.2) zt h(xs, s)ds + bt.

Note it is under measure P that z, satisfying (2.2), describes the noisy observations
of the state process. Note also that A0,t is given by

(2.3)
dAo,t Ao,th* (xt, t)Rldzt,
Ao,o 1.

Consider Borel functions

L Rn U [O,x R,
O:R’ R.

For any admissible control v and real number 0 we consider the expected exponential
risk-sensitive cost

J(v)- O,[expO( foTL(xs,%)ds +

Write

so

(2.4)

with Do 1.

/o )Do,t Dt exp (0 L(x, %)ds

dDt OL(xt, vt)Dtdt,

Following [7] we now define an information state a.
Notation 2.1. For any function : Rn R for which the expectation is defined,

write

a()t E[Ao,tDt(xt)lZt].

Write

In case the measure defined by a(.)t has a density q(x, t) we have

a()t n (x)q(x, t)dx.

+ Ox Ox/i,j

where a(xt) ga(xt)Qta*(xt). We now obtain a modified Zakai equation for cr()t.
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PROPOSITION 2.2. Suppose " R --+ R is a C2 function with compact support.
Then

(7()t (7(o) + 0 (7(L)rdr + (7(h*(xr, r)Rl)dzr +

where (7()0 E[(xo)] f ()Ho(d).
Proof. The It6 rule implies

(.) () (o) + ()()a + .()a,

where D (o ,..., o ) om (2.a), (2.4), and (2.)we have

(.

Ao,tDt(xt) (xo)+ Ao,rDr(xr)h*(xr,r)R;ldzr + 0 Ao,rDrLr(xr)dr

+ o,()()a + o,(.()a.

We now condition each side of (2.6) on Zt and use the facts that w(.) and z(.) are
independent and that z(.) h independent increments under P (it is Wiener). (See
Lemma a.2 of Chapter 7 of Hajek and Wong [g].) We thus obtain

(.) () ()o + ()+ (h*(,);)a + ().

Coaoaa 2.a. If (’)t has densit q(z, t), ietegratin9 each term 4 (2.7) b
parts implies that q satisfies

q(z,t) qo(z) + q(z,r)h*(z,r)R;ldzr + 0 L(,r)q(,r)dr + (A*q)(,r)dr.

Here A* is the adjoint of A, and qo(z) is the densit sch that

no(e) qo(le.

Remark 2.4. Analogs of (2.8) appear in [2] and [7]. or any admissible control v
we have defined

J( 0[o,xp(0e()]

O[[Ao,Drexp(O(mr))lZr]]

With At,T and Dt,T defined in the obvious way and with t {z s t} the
filtration generated by z(.),

[o,p(0e(l ZI [[o,,o,,p(0e(l Z, XIZ
[Ao,tDo,t[At,rDt,xp(O(mr))lZ,mt]Zr],

using the Markov property. Write

p(z,t) E[At,rDt,rexp(O(zr)) Z,zt z].
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Then

E[Ao,TDTexp(O(xT)) ZT] E[Ao,,D,p(x,,t) ZT]

] q(x, t)p(x, t)dx.

Clearly this quantity is independent of t. The expression is similar to results of
Pardoux [9] on filtering and smoothing. Pardoux obtains the forward Zakai equation
for q and an adjoint backward stochastic partial differential equation for the analog
of p. However, in the control case which we are considering, we cannot immediately
find the backward stochastic partial differential equation for p because, although the
Wiener process z(.) could be reversed, the coefficients and running cost n(xr, v)
involve the control v(.) which is adapted to the forward filtration. Consequently, we
consider the robust form of the equation for q.

That is, we introduce the factor

t(x) exp(-h*(x, t)Rlzt).

We suppose the derivative

d
d(h*(x,t)R;1) (h*(x,t)R;)

exists so that

1
(2.9) d t(-h*(x,t)R;ldzt (h*(x,t)R;1)’ztdt + -(h*(x,t)Rlh(x,t))dt).

Define 0(x, t) := q(x, t)t(x). Then dO dq. + q d + (dq, d}, and from (2.8)
this is

1
(2.10) Oq.Ldt + q.(A*q)dt q.(h*R-1)’ztdt -q.(h*R-lh)dt.
Note here that the stochastic integral, dz-term has cancelled. The .(A*q) coefficient
on the right side can be written as .(A*(-10)) so that (x, t) is defined by a forward
parabolic partial differential equation in which the observation process z appears as a

parameter. That is,

0_ 1
h.R_0tLdt -- (A*(q2-1t))dt- t.(h*R-1)’ztdt- -(t.( h)dtOt

B(0), say, c0(x) qo(x),

where B is a second-order operator. We can then consider a backward adjoint equation
for a function 15(x, t)"

op
B*(), (x,T) exp((x) + h*(x,T)RlzT).Ot

Defining p(x, t) 15(x, t)- we have

fR P(x, t)q(x, t)dX fR (x, t)gl(x, t)dx,

a quantity independent of t.
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We can, therefore, write

For any times 0 s < t T write N,t for the admissible controls on the interval Is, t],
that is, the functions v" Is, t]x U which are adapted to {Z,}. The minimum
cost from time 0 is of course

V(qo, O) inf J(v).
VE[O,T

The density q(x, t), or alternatively (x, t), can be taken as the observable state
of the system at any time t E [0, T]. In general, therefore, this state is infinite dimen-
sional. Consider an intermediate time t and suppose the system is in state q q(x, t)
at time t. For s > t and any v lt,T, using (2.8), write q (x, s) q for the solution
of

(2.11) q q+ q(x,r)h*(x,r)R;’dz+O L(x,v)q(x,r)dr+ (A*q)(x,r)dr.

Then the cost for this process, using control v and starting in state q at time t, is

J(v,q,t) E[/Rexp(OO(x))q(x,T)dx

The minimum cos saring from sae q & ime is, herefore,

VMt,T

Consider h > 0 such that 0 t < t+h T. We have the following dynamic
programming result.

THEOREM 2.5.

(2.12)

Proof.

V(q,t) inf E[V(q(.,t + h),t + h) lq(.,t) q].
UEUt,t-h

inf inf
Ult,t+h Vt+h,T

ueut,+inf E[ ve-+,rinf E[ pV(x,t+ h)q(x,t+ h)dx q(.,t+ h)] q(., t)= q]
inf E[V(q(x,t + h),t + h) lq(. ,t) q].

The interchange of minimization and conditional expectation is justified because
of the lattice property of the set of controls. See Elliott [3, Chap. 16].
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Remark 2.6. There is a similar result in terms of the robust state (., t)"

V(), t) inf E[V()(., t + h), t + h)I 0(. t) ].
UEUt,t+h

Here c) evolves according to (2.10). We have noted that the state q, a density, is in
general infinite-dimensional. Consequently, it is difficult to differentiate (2.12) and
obtain a minimum principle. In 4, however, we consider a situation where q(., t) (and, i5) are defined in terms of finite-dimensional parameters.

3. A verification theorem. The notation is that of 2. In this section we
consider a fully observed risk-sensitive control problem with dynamics

(3.1) dxt g(xt, vt)dt + a(xt)dwt,
Xo E Rn, 0 <_ t <_ T,

and cost

(3.2) o [ox O(/o L(xs,vs)ds + O(XT))]
The admissible controls are those functions on U [0, cx) with values in U which are
adapted to the filtration generated by x and for which the expectation (3.2) is finite.
Sufficient conditions for the latter result to hold are given in [2].

Recall a (aij(x)) 1/2aQa*. Suppose there is a solution X(x, t) of the nonlinear
parabolic equation

(3.3) 0--- + nn[DX.g(x, v) + L(x, v)] + TrD2X.a + ODX.*a.DX O,

with X(x, T) O(x). Write

ht L(xs, vs)ds + X(xt, t).

Then J(v) OE[expOhT]. Suppose u* Rn --. U is the function such that for each
x E R’

(3.4) DX.g(x, u*(x)) + L(x, u*(x)) [DX.g(x, v)+ L(x, v)].

We can then establish the following verification theorem. A similar proof is given in
the paper by Fleming and McEneaney [4].

THEOREM 3.1. Suppose there is a function X C2,1 which is a solution of (3.3).
With u*(.) defined by (3.4) the feedback control u*(xt) is optimal for the fully observed,
risk-sensitive control problem (3.1), (3.2).

Proof. Using ItS’s rule

X(xt, t) X(xo, O)+ -s + OX.g(x, v) + TrD2X.a)ds + DX.adw.
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Therefore,

From (3.3), therefore,

/o

J(u*) 0 exp 0X(xo, 0).El exp (0 DX.adw 02 DX.*a.DXds

0 exp 0X(xo, 0)

because the term in the expectation is a martingale. For any other control v

OX
0-- + DX.g(xs, vs) + L(xs, vs) + TrD2X.a + ODX.*a.DX

OX>_ + DX.g(x,u*(x)) + L(xs,u*(x)) + TrD2X.a +ODX.*a.DX O.

Consequently, from (3.5)

J(v)>_ Oexp(OX(xo, O))E [exp (O Ji
T

jo
T

0 exp(OX(xo, 0)) g(u*).

Therefore, u* is an optimal control.

4. Linear dynamics. The results of 2 are now specialized to the situation
where

g(x, v) F(v).x + G(v),
a I, the n x n identity matrix,

1
a -Q(t), a time-varying n x n matrix,

h(z, t) Htx + ht,

1M(v)x.x + m(v) x + N(v),L(x, v) -(x)

Here F(.) and M(.) are maps from U into the space of n n matrices L(R,R’),
G(.) and m(.) are maps from U into Rn, Hte L(Rn, R’), ht e R", and N is a real
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function defined on U. We suppose is described by a normal density

Po (x) exp (2ii),/21Po11/2

The mean of is, therefore, x0. We shall often write H for Ht, Q for Qt, etc.
LEMMA 4.1. In this case the equation (2.8) for q(x,t) is

(4.1) dq [- Dq.(F(v)x + G(v)) qTr.F(v)

+ Oq -M(v)x.x + m(v).x + N(v) + -TrQD2q dt

+ q(Hx + h)*Rldzt,

with q(x, O) po(x).
THEOREM 4.2. The solution of (4.1) is

(4.2) q(x,t)
II;l(x- rt) (x- rt))ut .exp

2II)n/2 l[it [1/2

Here rt r is given by

(4.3) drt (F(v) rt + G(v) + O[it(M(v) rt + m(v)))dt
+ [itH*R-l(dzt- (Hrt + h)dt),

with r(0) xo; [It II is given by the Riccati equation

(4.4) fit F(v)nt + IItF* (v) + Q + IIt(OM(v) H*R-IH)IIt,

with IIo Po; and

(4.5) ’t exp (Hrs + L)*R-ldzs - (Hrs + h)*R-l(Hrs + h)ds

t 1 1
+ 0 (sM(v)rs .rs + re(v).% + N(v)+ 5Tr.IIM(v))ds].

Note that we are making the following assumption: we suppose (4.4) has a

bounded, symmetric solution H..
Pro@ Differentiating q(x, t) defined by (4.2), (4.3), (4.4), and (4.5) and substi-

tuting in (4.1) verify the result.
Remark 4.3. Recall that under measure P bY b is a Wiener process where

bt zt- (Hr + h)ds;

consequently equation (4.3) for r can be written

(4.6) drt (F(v)rt + G(v) + OHt(M(v)rt + m(v)))dt + IItH*R;ldbt.

PROPOSITION 4.4. Suppose the derivative ((Hx + h)R-) ((Hx + h)R-l)
exists. If we write t(x) exp(-(Hx + h)*R[lzt), the robust process O(x,t)
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q(x,t)t(x) is the solution of the parabolic partial differential equation

[-(H*Rlzt + D)(F(v)x + G(v))dO

( 1
M(v)x x + .(v) x + N())TE(v) +- (Hx + h)*R-(Hx + h)O((Hx + h) R)’zt

(4.7) + TrQt D20 + qz R?HQtH*R?lzt + z;H*R?Qt DO dt,

O(x, o) o(x).

Proof. om (2.10) and (4.1)we have

d [- Dq(F(v)x + G(v)) q. TrF(v)

+ Oq. + m(v).z + N(v) + .TrDq
1

(4.8) q.((Hz + h);)’zt q.(Hz + h)*;l(Hz + h)dt.
We wish to write the right-hand side in terms of 0 q. Now

Dt -t
Dt tH*Rlzt @ H*Rlzt

Also, D(q) D q + Dq and

(ql q +( (q + q,
so

and

-. Dq -(q)H*Rztdt- D(q)

D2q D2(q) (q)H*R-lzt (R) H*R?zt + 2H*R-zt (R) (D(q) (D). q).

Substituting in (4.8) we obtain (4.7).
Remark 4.5. The adjoint backward parabolic equation for iS(x, t) is, therefore,

Ot (D H*Rlzt)(F(v)x + G(v))
1
M(v)x x + m(v) x + g(v)) ((Hx + h)*R;)’zt+o(

1 1,2 (Hx + h)*R(Hx + h)+ TrQt D2 + pz R HQtH*Rzt
(4.9)

H*R[- Q D] dt+ zt

[(x,T) exp((x) + (Hx + h)*tlzT).
It is of interest that we can give a finite-dimensional solution of (4.9).
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THEOREM 4.6. The solution of (4.9) is

exp 1/2S-(x /t(y)) (x /t(y)))
(4.10) iS(x,t) #t (2n),/2iSti1/2

exp((y)+ zrRlHTy)dy.

Here St S is given by

(4.11) t F(v)St + StF*(v) Q + St(H*R-H OM(v))St,

with ST 0; 7t 7t(Y) 7(Y) is given by

(4.12) t St(H*R-H- OM(v))t + F(v)t + St(H*R-)’zt
+ StF*(v)H*R-zt + StH*R-h- OStm(v) + G(v) -Qg*R-zt,

with T Y Rn, and

xp ( r.() + r.(s*-) or.(s(l

272m(v 2ON(v)+ 2;H*R-h- z2R-1HQH*R-lzs

Pro@ Differentiating (,t) defined by (4.10), (4.11), (4.12), and (4.1a) and
substituting in (4.9) verify the result.

g. A separation principle. With the linear dynamics and cost of 4, for any
admissible, Zt-adapted control v

Using the explicit form of equation (4.2) for q, this is

-OE[/.. exp(OO(x)), exp[1
T

(Hr, + h)*R; dz, (Hr, + h)*R:’(Hrs + h)ds]
2

exp
(2n)n/nT]’/’

and, in terms of the measure P, this is

(2H)n/2]HTI/2
dx
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F[1/2Write x r + (H)1/2 rT + "’T , and

Then

(5.1)

1 []/d.(x, IIT) (2H) -n/2 exp(0(x + II/2c))exp (

^[exp ( foo
T

(1M(v)rS.rs+rn(v).rS+N(v)J(v) OE O (rT, II) +
1

where 4(x, H) 0-1 log (X, n).
The partially observed, stochastic control problem of 4 is now expressed as a

fully observed stochastic control problem with finite-dimensional state (r, H) defined
by (4.6) and (4.4). Consequently, if there is a function ’ which is the solution of the
analog of equation (3.3) for these dynamics and cost (5.1), we can conclude that the
optimal control u* is the feedback control determined by the function which minimizes
the Hamiltonian (3.4). Therefore, in this situation the separation principle holds.

Alternatively, we note that the observed state q is determined by the parameters ,
r, and H:

t) t,., n) .. lII-l(x- r) (x- r))exp g

(2II)n/eInll/e

Consequently, the cost process V(q,t) defined in 4 can be considered as a function
of , r, II: V(, r, H, t).

If there is an optimal control u*, consider the iS(x, t) 5(x, t, #*, S*, 7*) de-
fined by (4.10). Write

p*(x,t) (x,t,#*,S*,7*)exp((Hx + h)*R?lzt).
Then

V(q,t) V(,r, II, t) E[/Rnp*(x,t)q(x,t,,r, II)dx

The dynamic programming result, Theorem 2.5, becomes

(5.2) V(, r, II, t) inf E[V(@+h rt+h, IItU+h, t + h) r,t , rt r, IIt II].
UEUt,tq-h

Suppose V is twice diffentiable in and r and differentiable in II and t so that

Substituting in (5.2), dividing by h > O, and letting h go to 0 we obtain the
separated minimum principle which states that, for almost all t, the optimal control
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u* (u, r, II) is the value which minimizes the Hamiltonian

OV
Or (F(v)r + G(v)+ OII(M(v)r + rn(v)))

OV
+ --. (F(v)H + HF* (v)+ OIIM(v)II)

OV (1 1Tr.HM(v))+ -v vO -M(v)r r + m(v) r + N(v) + -6. Conclusion. In a partially observed stochastic control problem with an ex-
ponential running cost of modified Zakai equation was introduced whose solution is
a measure which is related not only to the state of the process but also to the cost.
The situation when the dynamics are linear and the exponential running cost is qua-
dratic is discussed, although the control parameter may enter both dynamics and cost
nonlinearly. In this case the solution of the modified Zakai equation can be found
explicitly. An explicit solution was also found for the backward adjoint process. This
permits the partially observed stochastic control problem to be written as a fully ob-
served problem in terms of an information state with finite-dimensional dynamics so
that the separation principle holds.
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ON THE TOPOLOGY OF THE KARUSH-KUHN-TUCKER SET
UNDER MANGASARIAN-FROMOVITZ CONSTRAINT

QUALIFICATION*

HARALD GNZELt
Abstract. This paper deals with smooth optimization problems P in n depending on param-

eter y E P. The problem P(y) is defined by means of a finite number of equality and inequality
constraints. We study the set KKT of pairs (x, y) such that x is a Karush-Kuhn-Tucker point of
the problem 7(y). Let ] denote the subset of KKT at which the Mangasarian-Fromovitz con-
straint qualification is fulfilled. For problem data in general position we prove that ] is a topological
manifold of dimension p.

Key words, parametric optimization, Karush-Kuhn-Tucker set, Mangasarian-Fromovitz con-
straint qualification, topological manifold
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1. Introduction. Consider the optimization problem P(y), where y E :P is a
parameter:

p(y) max{ f(x,y) lx e M(y) }, where

M(y) { x e lR’ hi(x,y) O, ie:H; gj(x,y) <_ O, jeG}.

The sets 7-/ {1,... ,h} and G {1,...,g} are finite index sets. If not explicitly
stated otherwise, all appearing mappings and manifolds are assumed to be smooth,
i.e., of class C. Let KKT C :nX JRp denote the set of Karush-Kuhn-Tucker
(KKT) points of 7); a pair (x, y) n X P is called a KKT-point if the following
conditions hold with some A h and # E/Rg

(KKT1) x e M(y),
(KKT2) ttj >_ 0, j 0(x,y),
(KKT3) #j=0, jCG0(x,y),
(KKT4) Dxf -iAi Dxhi + -# Dxgj I(,)"
Here, G0(x,y) := { j e gy(x,y) 0 } denotes the set of active inequality

constraints. A pair (A, #) satisfying conditions (KKT1)-(KKT4) is called a Lagrange
multiplier associated with (x, y). Note that the set of Lagrange multipliers associated
with (x, y) is a convex polyhedron.

The Mangasarian-Fromovitz constraint qualification (MFCQ) is said to hold
at (x,y) if (KKT1)-(KKT3), together with the relation -Ai Dh(x,y)+
-j tj Dgj(x,y) 0, imply that (,#) vanishes. In that case, the set of La-
grange multipliers for (x, y) is compact (cf. [3]) and will be referred to as a Lagrange
polytope. Let C ’]KKT denote the subset of those KKT-points at which the MFCQ
is satisfied. The set ] is called the KKT-set.

MAIN THEOREM. There exists a C2-open and C-dense subset of C(1Rn+p,
/Rl+h+g) with the following property: If (f, H, G) , then the corresponding KKT-
set , is a topological manifold of dimension p.
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1994. This research was supported by Deutsche Forschungsgemeinschaft, Graduiertenkolleg "Analyse
und Konstruktion in der Mathematik."
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Here, H (hi,..., hh). The topology used above is defined as follows. First, let
s E /N. For/ E Cc(1Rn, 1TM) and e C(1Rn, 1R+), we define an e-neighborhood
of F:

Here, a stands for the multiindex of a partial derivative, /R+ := (0, oe). The sets
U(F) form a basis of the CS-topology. The C-topology is defined to be the union
of all CS-topologies. Let A" be the KKT-set blown up by means of the associated
Lagrange polytope, i.e.,

X- {(x,y,/,#) /Rnx/RPx/Rhx/Rg (KKT1)-(KKT4) and MFCQ hold at (x,y)}.

We call A’ the extended KKT-set. We actually will prove the following theorem, which
implies our main theorem.

THEOREM 1.1. There exists a C2-open and C-dense subset :1z of C(1Rn+p,
/Rl+h+g) with the following property: If (f, H, G) $-, then the extended KKT-set
X is a topological manifold of dimension p. Moreover, there exists a homeomorphism

" X -- E, arbitrarily C-close to the natural projection X -- E.
The main point in Theorem 1.1 is the existence of the homeomorphism . The

fact that the extended KKT-set ’ is a topological manifold was already known (cf.
[12]). For a nice outline of the latter idea see [9]. The one-parametric case (including
the KKT-set E) was treated by Kojima and Hirabayashi (cf. [10]).

The reason for the homeomorphy between A" and E can be illustrated as follows.
There is a natural equivalence relation on A’, namely, to belong to the same Lagrange
polytope. The set E then becomes the quotient space. The family of Lagrange poly-
topes is upper semicontinuous; i.e., each Lagrange polytope has an arbitrarily small
open neighborhood which itself is union of Lagrange polytopes (cf. [11]). There are
general techniques dealing with topological spaces (like E) obtained by simultaneous
identification of an upper semicontinuous family of closed discs in a manifold (like
(cf. [2]). However, it seems hard to verify the assumptions made there, in particular
the so-called disjoint disk property of the target space. Nevertheless, in our case we
can exploit the special structure.

There are only a few partial results about the (local) homeomorphy of A’ and E.
In fact, the two-parameter case is treated by Hirabayashi, Shida, and Shindoh (cf.
[7]). Under additional assumptions, the multiparametric case is studied by Schecter
[12], where our main theorem was conjectured. In particular, Schecter assumes a
certain rank condition as well as a condition on the "nondegeneracy" of the Lagrange
polytopes. Both conditions, however, are not generic.

Roughly speaking, our homeomorphy proof is based on induction. Suppose we
have established a homeomorphism sending the subset of A" formed by all Lagrange
polytopes with dimension less than d to its projection in E. The induction step
consists of perturbing the latter homeomorphism in order to make an extension to
the critical set, which is the union of Lagrange polytopes of dimension equal to d.
To this end, one considers certain fibres in A’ which properly contain exactly one
Lagrange polytope of dimension d. These fibres are pairwise disjoint and form a
partition for a neighborhood of the critical set. For a specific fibre we make a special
construction, and then we extend this construction over the bundle of all fibres. For
the latter extension we apply Thom’s isotopy lemma.

The rest of this paper is organized as follows. In 2 we cover the background
material needed for the application of Thom’s isotopy lemma in a nonproper setting.
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Section 3 is devoted to the special construction on a specific fibre. Finally, in 4 all
information is put together in order to prove Theorem 1.1.

2. The characteristic set. Our situation modelled in terms of jet extensions.
First applications of this technique to mathematical programming are due to Jongen,
Jonker, and Twilt (cf. [8]). We define characteristic sets S c Jetr. and K C Jetx
Jet. /Rh /Rg in jet spaces and a characteristic mapping jl ./Rn+p __+ Jet. such
that we have the fundamental relations

z y, =. j(z) s and

The characteristic mapping jl will in fact be a (reduced) 1-jet extension of
(f, H, G). In this section we show that S admits a Whitney regular disc stratification.
Here, we use tools from real algebraic geometry (cf. [1]). Finally, we introduce a
nonproper version of the well-known first isotopy lemma by R. Thom.

Put Jet. := jh X Jg X Jn,h Jn,g -A/In,l, where JA,k stands for the space
of real (n, k)-matrices. For problem data (f, H, G), define the following reduced 1-jet
extension:

1Rn+pJ(f,H,G) -- Jet,

(H, G, T T TJ(f,H,C) Dx H, Dx G,D f).

Here, Dxf stands for (0z f,..., 0xnf) and DT for the transposed matrix of D. When
there is no ambiguity, we omit the index (f, H, G). We define the following conditions
for a point (a, b, V, W, v, A, #) E Jetx:

(K1) a=0, b<_0, It>0, andbT#=o;
(Z2) v V/ + Wit;
(MF) (K1) and (K2) imply (’, #’) (0, 0) for any (a, b, V, W, 0,/V, #’) E

Jetx.
Using the above abbreviations, we define the characteristic set K:

K { (a, b, V, W, v, A, It) E Jetx (K1), (K2), and (MF) }.

Denote the restriction of the natural projection by H" K -+ Jet; we then have the
relation S H(K).

2.1. Whitney regular disc stratifications. We prove the existence of a Whit-
ney regular disc stratification of S which extends as such to its closure S. By virtue
of [6], both S and its closure are semialgebraic sets. For details on semialgebraic sets
see, e.g., [1].

DEFINITION 2.1. Let A be a subset of 1Rm with a locally finite partition 4. If
the elements of A are smooth manifolds, then .4 is called a stratification of A and
the pair (A, Jr) a stratified set. In the latter case, the elements of jt are also called
strata. The stratification ,4 is called a disc stratification if its strata are open discs,
i.e., diffeomorphic to open real unit balls.

DEFINITION 2.2. Let (A,A) be a stratified subset of 1Rm. Let X,Y A be
distinct strata and X. Then Y is called Whitney regular over X at point if for
any pair of sequences x and yk __+ with the following properties

1. x X y EY;
2. TykY - T in G(m, dimY);
3. (yk xk)

__
L in G(m, 1)
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the inclusion L C T holds. Y is called Whitney regular over X if this holds at any
point 2 of X. The stratification 4 is called Whitney regular if any stratum is over

any other stratum.
Here G(m, k) denotes the Grassmann manifold of k-dimensional linear subspaces

of/R", whereas stands for the linear hull and Ty for the tangent space considered
as a subspace of the embedding space. Note that Whitney regularity is well defined
on manifolds as well, since it is invariant with respect to diffeomorphisms.

DEFINITION 2.3. Let Jt and be families of subsets of a given set M. Then jt

is called a refinement of B if each X E A is contained in some Y 13.
LEMMA 2.4 (cf. [1]). Let A be a semialgebraic subset of 1RTM and assume a finite

family of subsets of A, all semialgebraic. Then there exists a finite refinement A of
B into semialgebraic manifolds constituting a Whitney regular stratification of A.

LEMMA 2.5 (cf. [1]). Let A be a semialgebraic subset of 1R". Then there exists
a finite disc stratification of A with semialgebraic strata.

In the present paper we need the following corollary of Lemmas 2.4 and 2.5.
COROLLARY 2.6. Let A be a semialgebraic subset of 1Rm and a finite family of

semialgebraic subsets of A. Then A admits a (finite) Whitney regular disc stratifica-
tion refining B.

Proof. For arbitrary d /N we prove the following claim.
CLAIM (d). There exists a finite Whitney regular stratification 4 of A refining

with semialgebraic strata such that any stratum is a disc or has dimension less than
d.

Claim (0) yields the desired result. Claim (m+l) follows from Lemma 2.4. It
remains to show that claim (d+l) implies claim (d).

Put 4d { X M dim(X) d } and 4>d :’-- { X A dim(X) > d },
where jt has been chosen according to claim (d+l). By virtue of Lemma 2.5, for
any X Ad there exists a finite semialgebraic disc stratification Cx of X. Let Cd
denote the set of all d-dimensional strata in the union of all Cx, X E Ad. Then, the
semialgebraic set C A \ J A>d \ [.J Cd has dimension less than d; i.e., each stratum
of any stratification of C is of dimension less than D. Moreover, 4>(d-1) A>aUCa
is a finite Whitney regular disc stratification refining B (since Cd refines Ad). Let
7? be a refinement of the family A>(d-1) U B as stated in Lemma 2.4. We replace
the subset of 79 refining 4>(d-1) by A>(d-) itself. In such a way we again obtain
a Whitney regular stratification. Now, the stratification 7? satisfies the assertion of
claim (d).

COROLLARY 2.7. There exist Whitney regular disc stratifications A of S and
of S, respectively, such that A A.

2.2. Thorn’s isotopy lemma. We need a slight extension of Thom’s first iso-
topy lemma; see Proposition 2.9 below.

Notation. Let (A,4) be a stratified set in a manifold N, and let N be an open
subset of N. Define (A,A)IN, := (A C? N’,AIN,), where AN, := {X C N’IX A}.

Note that the restriction (A, 4)IN, again is a stratified set. Whitney regularity is
carried over as well.

DEFINITION 2.8. Let f N --+ M be a mapping between manifolds and (A, A) be
a stratified subset of N. Then (A,A) is said to be topologically trivial over M (with
respect to f) if there exist a stratified set (B, 13) and a homeomorphism h: M x B A
such that

1. f o h IIM, IIM denoting the natural projection;
2. for each X 13 there exists some Y A such that h M x X ---+ Y.
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For later use, we emphasize that in the following proposition the set B in Defini-
tion 2.8 can be chosen as AV f-l(y), and B can be chosen as { X V f-l(y) IX E A }
for some y E M.

PROPOSITION 2.9. Let f" N 1R be a mappin9 between manifolds and (A,
be a locally closed Whitney regularly stratified subset of N. Let .4 C .4 be such that

:= I.J fi. is locally closed and such that the following conditions hold for any X
1. fix is a submersion,
2. f l-c4 is proper.

Then there ezists an open set N C N containing A such that (A, A)IN, is trivial over
1R" (with respect to f

Sketch of Pro@ We use the proof (cf. [4]) of the proper version of the isotopy
lemma (i.e., Proposition 2.9 for the case A ). In order to keep the exposition
short, we focus on merely pointing out the modifications to be made. For missing
details we refer to [4]. Starting from the fibre {0} in/R", we can fill out the space
/R" by successive integration of the constant coordinate vector fields 0xi. The main
idea of the proof is to perform the same construction on A, starting from the fibre
A C f-l(0) and integrating controlled lifts of the coordinate vector fields. Any vector
field on/RTM admits a controlled lift A onto A, at least in a neighborhood of
i.e., we have Df A o f, and certain control relations hold with respect to a tube
system. We essentially use the fact that A is globally integrable if is. Beyond [4],
it remains to show that A (and not just Ali) is globally integrable. In order to see
this, recognize that the vector field A lifts (AIx 0) from X x/R with respect to the
mapping (77x, Px), where X ft.. This is due to the control relations with respect to
the tube system; 77x is standing for the tubular projection mapping and px for the
distance function of the tube at X. Since (77x, px) is proper, an analogous argument
as above yields that A is globally integrable on a tubular neighborhood of X. Finally,
N can be chosen as a union of tubular neighborhoods of the strata in i..

3. Controlled explosions in special fibres. For an arbitrary stratification 4
of S and X 4, 2 X, we construct a special projection mapping 77 onto X such
that the fibre H-17r-l(2) c K can be handled as well as a differentiable manifold. To
this end we use a topological transformation of K which removes the natural creases.
This is done in 3.2. Then we can obtain a controlled explosion of the Lagrange
polytope II-1(2) within this fibre by virtue of the construction made in 3.1.

3.1. Controlled explosions.
DEFINITION 3.1. Let P be a compact subset of a metric space M and f/ P. A

continuous mapping : (0, 1) x (M \ {9}) M \ P is called a controlled explosion of
P (in M) if the following conditions hold for any e (0, 1):

1. : M \ {9} -- M \ P is a homeomorphism,
2. : P \ {} -, U(P) \ P,
3. IM\Ua(P) idM\ua(p),
4. Ce(-1)" M \ P -- M \ {} extends continuously by P -- {}.

Here define (y) (, y) and (-) -. Ue(P) stands for the union of the
e-neighborhoods Ue(y), y P. Point 9 is called the centre of explosion.

PROPOSITION 3.2. Let M C 1R be a smooth manifold and P c M be a compact
convex subset of 1R. Then P admits a controlled explosion in M.

The following technical lemma is essential for the proof of Proposition 3.2.
LEMMA 3.3. There exists a continuous mapping ] (0, 1) x [0, 1] x /R+ --/R+

such that the following conditions hold for any e (0, 1) and [0, 1]
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1. , + 1R+ is a homeomorphism if 5 > 0;
2. r&,0 /R+ -- (1, oo) is a homeomorphism;
3. ,. (0, ) - (0,1 + );
4. ,1 ida+;
5. Ue,](l+2,) id(+2e,);
6. by (0, 1) {0} (0, 1] {0}, U(-) extends to a continuous mapping (0, 1)

[0, 1] x + +.
Here define ,5(x) U(, , x) and U(-)(, 5, x) ,5-1 (X).

Proof. Put, for instance,

x/, x e (o, ],
1 + a(x-5) xe (5,11,(x) :=
x + (1 + 2- x)(1 5)/2, x e (1, 1 + 2],
x, x> 1+2. B

Proof of Proposition 3.2. Reduction Step. Let d be the dimension of P. As-
sume the nontrivial case d > 0. In a neighborhood of M there is defined a pro-
jection mapping n M; i.e., we have filM idM. Consider the affine hull
aft(P) c n, which is a submanifold of n. Note that lp idp. Hence laff(p)
is a diffeomorphism in an open neighborhood of P. Consequently, (aff(P))
is a d-dimensional submanifold of M containing P. Finally, near P the manifold M
is diffeomorphic x dimM-d. Hence we have without loss of generality M n
and P C d C n. Using a standard coordinate transformation in d, we also can
assume that P Dd x {0}, where Dd stands for the d-dimensional closed unit ball in
d.

Application of Lemma 3.3. We may assume that M n d X n-d and
P Dd x {0}. Now we define " {0} n Dd as follows"

( Ue,min{1,11yll/e}(ll x II), y ), x o,
(x, Y)

Here has been chosen according to Lemma g.g. A moment of reflection shows that
is a controlled explosion of P in M with centre in 0.

g.. he special fibre. Consider the following topological embedding:

(v, w, , .) (0, ._, v, , + .+, , .+).

Here let + := max{0, } and + +
_ . Put -(K); note that is open

in its embedding space (hence a manifold) and that " N is a homeomorphism.
Hence the set N constitutes a topological manifold which has codimension + h + g
in Jetx.

Let be I c {1,...,g}. or any b g let b g be defined by means of the
following relations: b bi if I, and b 0 otherwise. Note that (b)+ (b+) I.
Define I {bI b g}. Put CI {1,..., 9} I. Let SI denote the subset of S
with active index set I, i.e.,

s { (,v,v,,) s l-0 i }.

PROPOSITION .4. et X be a smooth sbmanifold of Jet sch that X S
for some I {1,...,g}, ad let X. Then there ezists a projection mappin9
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r "Jet X (defined in a neighborhood of ) such that -II-r-(2) is a smooth

manifold.
Proof. Consider the following linear subspaces of the Euclidean spce Jet

h . L1 := {0} n and L2 L, the orthogonal com-
plement. Let HL Jet L denote the orthogonal projection and TX the tangent
space considered subspace of Jet. Let us consider the subspaces T := TX L
and T2 HLTX. Put H := HT and note that (H,H2)]x is diffeomorphism at
2. We define the following mapping:

Jet Jet,
a" (a,b,V,W,v) (a, bC,v,W,v+WbI).

Since X c SI, we have a]x idx. Hence there is defined a projection mapping "
Jet X (defined on a neighborhood of 2) by the relation (H1, H2)o (H, H2)oa.
It suffices to show that -() is a manifold, where T T2 is defined by

:= (H, H2) a H and by (H1, H2)(2). Now

(y, w, , ) (0, [ + ,, v, w,v + w+).

In n neighborhood of -H-(2) we have #+ # and # pc. Hence

(y, w, , ) %o, (0, c, v, w,v + w).

The latter mapping is smooth and thus is as well. Note that at point the Jacobian

D(y,w,,c) maps surjectively onto T2 and D(,,) onto T. An application of the
theorem on implicit functions yields the desired result.

Remark. The problem in the latter construction was to find a differentiable map-
ping defined on Jet such the fibre induced to became a differentiable manifold,
Mthough this induction was due to a mapping which not had been differentiable at
all.

4. Proof of the theorem. The concepts of active index set and Lagrange poly-
tope are extendedto S in a natural way. For x S we put G0(x) I iffx SI.
Using the abbreviation x (a, b, V, W, v) for elements of Jet, we define the Lagrange
polytope P(x) for x e S"

P(x) := (vw)-() ( o).
Here + [0, ). Note that H-I(x) {x} z P(x). It is useful to consider the faces
of the Lagrange polytope P(x) by means of its generating index sets:

y(x) {g 6o(x) p(x) ( +) }.

We have an estimation result for the fineness of disc stratifications of S.
PROPOSITION 4.1 (cf. [5]). Let A be a Whitney regular disc stratification for S

and X A. Then both set-valued mappings o X 2 and X 22a are
constant.
om now on, let us use the following notation. IfX is a set then X := +P X,

and if f X Y is a mpping between sets, then f X Y denotes the mapping

f := id+ z f.
Note that the mappings (id+,, j) n+p Jet and (idea+p, j) id+ are

embeddings of E into S and of X into K, respectively. In this setting, the mapping



1854 HARALD GNZEL

II" K - S coincides on X’ C K with the natural proje.ction onto E C S. We have
a mapping Jets -- Jets defining E as a subset of S, i.e., E g A -1(0). This
mapping is given by jl o H+p IIjet., where II+p and 1-IJet denote the
natural projections. Note that (f,H,a) depends on the problem data (f, H, G)
which have been used.

For J C I C , we define the following subset of K"

KJ := { (a, b, V, W, v, A, #) E K bi =0 E I and #j > 0 ===> j J}.
In view_of Corollary 2.7, there^ exist Whitney regular disc stratifications ,4 C 4 Af
S and S, respectively. With jt {X X Jr} we have a disc stratification of S.
Applying the jet transversality theorem as described in [6], we see the existence of a
C2-open and C-dense subset yz C C(1Rn+p, IRl+h+g) such that 1 is submersive
on -1 (0) for any X G .4. Here we assume (f,H,a) with (f, H, G) 9.

For d E/N, let Sd be the union of all strata X G ,4 with dimension dim X >_ d.
Put Kd 1-I-lSd Let gd :--- S’ Now let denote the dimension of S; i.e., we
have Sd and Sd+ . For d 0, 1,..., we are going to prove the following
assertion.

Assertion (d). There exists a continuous mapping d : -- , arbitrarily CO.

close to H, such that the following conditions are satisfied:
1. (d maps X’ onto E;
2. d mapsKd homeomorphically onto Sd;
3. outside K, d and II coincide.

Besides showing that A’ is a topological manifold, it suffices to verify Assertion
(0) in order to prove the theorem.

Let X ,4 be of dimension d. Whitney regularity of A guarantees that X is open
in S; hence II-I(X) is open in K. A moment of reflection shows that the dimensions
of the topological manifolds X and H-I(X) coincide. According to Proposition 4.1,
the Lagrange polytope has a constant dimension on X; hence this dimension is zero.
Consequently, again in view of Proposition 4.1, we have H-I(X) C K That

implies " -1()) __, ) to be a homeomorphism. Altogether, Assertion (d) holds
with d II.

Now assume Assertion (d) for some d G {1,..., d} and X Jt with dim X d-1.
Since Jt is locally finite, it suffices to verify the following assertion in order to prove
Assertion (d 1).

Assertion (X). There exists a continuous mapping K S such that the
following conditions are satisfied:

1. outside an arbitrarily small neighborhood of -1(), coincides with d;
2. maps X’ onto E;
3. maps Kx homeomorphically onto Sx, where Sx Sd U X and Kx

4. outside Kx, coincides with II.
If the Lagrange polytopes have dimension zero on X, then we have finished by

taking d. In the remainder of this paper we exclude this trivial case.
Step 1 (fitting together special fibre and problem data). The first step combines

two projection mppings onto X. The first one, 7rl Jet --+ X, is defined in a
neighborhood of X V -1(0) and compatible with ; i.e., we have Orl . This will
prove that the approximation to be constructed maps X’ onto E. The existence of
rl follows from that of a tube at X which is compatible with (cf. [4]).
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The codimension of {0} in Jets is greater than zero; hence that of --1(0) in

is as well. Thus, we can assume a certain point (2,2) E X (2 ZRn+p, 2 X)
outside the open set on which 7rl is defined. X is stratum in a Whitney regular disk
stratification. According to Proposition 4.1, it holds X C S6 and the application
of Proposition 3.4 yields ’a projection mapping 7r2 Jets X (near 2) such that

-1II-17r1(2) is a smooth manifold. The second projection mapping onto is just
2. It will provide the special fibre. In order to combine 7rl and 2we use a third
projection mapping, 7r3, defined in a neighborhood of the whole set X. By means of
an appropriate partition of the unity we obtain a convex combination #" Jets - X,
which coincides with 7rl near -1(0) and with 2 near (2, 2). Obviously, r constitutes
a projection mapping.

Step 2 (application of the isotopy lemma). Identify G0 and J with their (constant)
images on X (in view of Proposition 4.1). The dimension of the affine space jtffj(x) :=
(VIW)-I(v)N(1Rh IRJ) does not depend on the particular choice of x _= (a, b, V, W, v)
in X, provided that J 7. Hence Aj := {(x,A,#) Ix X, (A,#) Aftj()} is a
manifold which contains Xj H-I(X)n Kj as an open subset. Finally, we have
Aj, c Aj for J’,J E Jwith J’ c J. Altogether, {Xj J J} gives aWhitney
regular stratification of II-I(X) refining {K J C I C }, which is a Whitney

regular stratification of K. Let L/ be an open set in Jet- containing -1() as a

closed subset. Then the following is a Whitney regular stratification of Jetx n/:

B B U {Kj \ fi--1 where

J

:F/ and -1(2) U are closed subsets of L/. Restricting the mapping roff. L/--

to 1-1() one obtains a proper mapping and, restricting it to the strata from , a

submersion. Since .4 is a disk stratification, it holds X =/Rm for some m. We define
the special fibre/ fi-$r-(2, ). This fibre contains the polytope/5 := -(2, ).
After we shrink the oen s_et 5/^if necessary, an application of Proposition 2.9 yields a

homeomorphsm h" X F K n b/with the following properties:
1. # o II o h H, the natural projection;

2. h" ) x (/ n Y) Y for any Y B.
Since h preserves strata, it maps 2 x/5 onto fi-l(). In order to see that X is a

topological manifold, recall that t" : n fi-x- (0) and that o fi o h coincides with
o Ii (where defined). (The latter relation is in view of 1. above and Step 1.) Hence

h-(X) (n-(0)) x/. For problem data from 9r, q-(0) is a manifold. We
will see that (F) is a topological manifold and thus X is as well.

Step 3 (tame explosion). Recall the construction of # near the point (2, ) made in

Step 1. We have r-1(2, ) {2} x zr2-(5:). Thus, -(/) is a smooth manifold which
contains the polytope -(/3). Using the homeomorphism , Proposition 3.2 yields
a controlled explosion of P in F. Let denote the centre of explosion and T the

trace of under application of h, defined by T h(X, {}). Also, put OX := X \ X.
Let " X (0, 1) be a continuous mapping such that (xi) tends to zero for

any sequence {xi} C X converging to some point in OX. There exists a continuous

mapping 5" . -- (0, 1) such that h maps {x} x U4(x)(/5) into Ue(x)I-(x). The fact
that can be chosen arbitrarily small proves the approximation property claimed in
Assertion (X). Let denote U "-Ue hi {x} x U(P) and U’ := Uxe hi {x}
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U35(x) (P) ]. The sets U and U’ are open subsets of:, and it holds ’\U
Define an explosion 9" V \ T --, V \ -1() by 9 h o (id x ) o h-1. Then

(T1) 91x
is a homeomorphism;

(T2) outside U’, 9 and id coincide;

(Ta) o 9 extends continuously onto T U -(0’) by ;
(T4) o 1I o 9 o 11, where defined.
In fact, 9 operates within the fibres h(z,P) -l#-l(z), and we also have

119-H11 < co#oH. If we useid, 9 extends continuously to 9 K\(TU
-(0)) - :\-(), being globally defined and satisfying (T1), (T3), and (T4).

Step 4 (perturbed eztension of the homeomorphism). Define

(
on T U fi-(O),
elsewhere.

By the very construction it suffices to check that is continuous at ) E -1(0).
To this end assume a sequence yk converging to . Assume the nontrivial
case that yk T U I-(OZ). By (T3), o 9(yk) tends to (). Since the family of
Lagrange polytopes is upper semicontinuous, 9(yk) is arbitrarily close to the polytope
-(()), provided that k is sufficiently large. Hence, d o 9(yk) converges to

H() d(). This completes the proof of the theorem. D
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PONTRYA(IN MAXIMUM PRINCIPLE FOR SEMILINEAR AND
QUASILINEAR PARABOLIC EQUATIONS WITH POINTWISE

STATE CONSTRAINTS*
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Abstract. This paper studies the first-order necessary conditions for the optimal controls of
semilinear and quasilinear parabolic partial differential equations with pointwise state constraints. A
Pontryagin-type maximum principle is obtained.
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maximum principle, Ekeland variational principle
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1. Introduction. In this paper, we are concerned with the following parabolic
equation:

n

Yt- E (aiy(x,t)yx)x# f(x,t,y,u(t,x)), in T,

{1.1) i,j=l

y 10n= 0,

I =o x e

where aij and f are some given functions, -T X (0, T), with t C IPn being a
bounded domain and T > 0 being a given time duration. The function u(x, t) is called
the control, which takes value in some separable metric space U. The solution y(x, t)
to (1.1) (for given yo(x) and u(x,t)) is called the state of the system, and yo(x) is
referred to as the initial state. We set L/= {u" T --+ U I_u is measurable }. Under
proper conditions (see 2), we have that for any y0 e C(D) and u e/g, (1.1) admits
a unique solution y(x, t) which is in C((T) (actually, it is even better; see 2). Then,
we may talk about the state constraint of form,

(1.2) G(y) e Q,

for some continuously Fr6chet differentiable map G’Co(FtT) --+ Z, where CO(DT)
{r e C(T) I0ax[0,T] 0}, Z is some Banach space, and Q c Z. Let us take a look

at two important examples of the above type of constraint. First, let Z C0(DT),

e z t) o, (x, t) e },

and G(y)(x, t) g(x, t, y(x, t)) for some function g" T x . Then, (1.2) reads

(1.4) g(x, t, y(x, t)) O, (x, t) e T.
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Our second example is as follows: We again let Z CO(T), and define

Q={TEZl(xi,ti)=b, l<_i<_m}

for some given (different) points (xi, ti) E tT (t X {T}) and numbers bi, and G I,
the identity operator on Z. Then, (1.2) reads

(1.6) y(xi, ti) bi, 1 <_ <_ rn.

For elliptic equations, similar constraints like (1.4) and (1.6) were considered in [4], [5],
and [19]. The above two examples all require pointwise behavior of the state y(x, t).
There are many other examples covered by (1.2) (see 5). It is seen that our state
constraint (1.2) is very general.

Now, we introduce the following functional:

(1.7) J(u) far f(x, t, y(x, t), u(x, t))dxdt,

for some function f0, where y(x, t) is the solution of (1.1) corresponding to u. This is
called the cost functional. Next, we set

(1.8) L/ad --= {u L/ the corresponding y satisfies (1.2)}.

Any element u Aad is called an admissible control. In what follows, we assume that
ad . Then, we may state our optimal control problem as follows.

PROBLEM C. Find fi b/d, such that

(1.9) J() inf J(u).

Whenever such a ad exists, we call it an optimal control; the corresponding state
is called an optimal state and (9, ) is called an optimal pair.

Our goal is to obtain a set of first-order necessary conditions for the optimal pairs.
This set of conditions is called the Pontryagin maximum principle.

In recent papers [3]-[5], [20], the Pontryagin maximum principle was derived for
semilinear and quasilinear elliptic partial differential equations with pointwise state
constraints (see [2] also). For parabolic equations, an abstract evolution equation
setting was used a little earlier to obtain similar results [9], [10], [14], [15], [18]. We
note that by using the abstract framework for parabolic equations, people treat the
time variable t and the spatial variable x unequally, in the sense that the variable x is
"averaged" and actually does not appear explicitly in the whole process. Consequently,
some pointwise information on the state y(x, t), like Hblder continuity, and values at
some particular points (x0, t0) E T are lost. In particular, the problem with the
state constraint (1.6) cannot be covered by abstract framework. In this paper, we
use the idea of [5] (see [13] and [20] also) to discuss the optimal control problem for
parabolic equations without using the abstract evolution equations. By this approach,
we retain some pointwise behavior of the state y(x, t). Consequently, we can treat
general (pointwise) state constraint (1.2), which contains (1.6) as a special case.

Due to the fact that U is just a separable metric space, only the spike perturbation
of the control is allowed when we derive the necessary conditions. On the other
hand, the pointwise state constraint is presented. These two together cause the main
difficulty in our procedure. The key which overcomes this main difficulty is to find the
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"Taylor expansion" of the state with respect to the spike variation of the control, in a
strong enough topology that is sufficient for us to treat the pointwise constraint. We
achieve this by improving a technical lemma found in [5] and using proper estimates
for parabolic equations. Once this is obtained, we then use the usual procedure of
applying Ekeland’s variational principle to derive the desired conclusion.

We refer readers to [17] and [19] for some classical relevant results.
The rest of the paper is organized as follows. In 2, we give some preliminary re-

sults and state the main result. Section 3 is devoted to proving some technical lemmas.
The proof of the Pontryagin maximum principle is carried out in 4. Some applica-
tions are given in 5. The result corresponding to quasilinear parabolic equations is
briefly discussed in 6.

2. Preliminary results and the main result. Let us first give some assump-
tions and preliminary results. We let f c IRn be a bounded domain with 0f E C2,
T X (0, T), OpT (t x {0})[J(012 x [0, T]) be the parabolic boundary of fiT,
and U be a separable metric space. We use 1. or I]" (sometimes with a subscript)
as the norm in various spaces, which can be identified from the context. For any
measurable set S c ]Rn, we use ISI to denote the Lebesgue measure of the set S. In
what follows, we will denote by CO(T) C C(T) the set of all continuous functions
on =T which vanish on 0t x [0, T], by C,/2((’tT) the set of all continuous functions
on T which are Hblder continuous in (x, t) with the exponent/ in x and//2 in t
(/3 e (0, 1)), and by C0(t) the set of all continuous functions on which vanish on
0a.

The following assumptions will be assumed throughout the paper.
(A1) The function aij gtT -- is measurable, aij aji, and there exist

constants A >/k > 0, such that

n

(2.1) 112 -< E aij(x,t)ij <_ AII2, for a.e. (X, t) e T, e ]Rn.
i,j=l

(A2) The function f t [0, T] ]R U ]R has the following properties:
/(.,. y, u) is measurable on t [0, T], f(x, t,., u) is in Cl(IR) with f(x, t,-, .) and
fv(x, t,., .) being continuous on lR U. There exists a constant C > 0, such that

f(z, t, < c(l ] + V(x,t,y,u) [0, T] lR U.

Moreover, for any R > 0, there exists an MR > 0, such that

(2.3) If(x, t, y, u)l + Ify(x, t, y, u)l <_ MR, V(x, t, e [0, T] u, Ivl _< R.

The same conditions, except (2.2), hold for the function/0. t [0, T] ]R U lR.
(A3) Z is a Banach space with the dual Z* being strictly convex. Q c Z is

convex and closed, and is of finite codimension in Z (see below or [15, Def. 2.2]). The
map G’Co(tT) Z is continuously Fr6chet differentiable.

Let us make some remarks on (A3). First, a set Q c Z is said to be finite
codimensional in Z if for some z0 Q, the space Z0 spanned by Q- z0 {z- z0 z E
Q} is a finite codimensional subspace of Z and the convex hull --6(Q- z0) of Q- z0
has a nonempty relative interior in Z0. It is not hard to see that the set Q defined
by (1.3) has a nonempty interior in Z and hence is of codimension 0 in Z; the set Q
defined by (1.5) is of codimension rn in Z.
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Next, we consider the case Z CO(T). Then, by the Hahn-Banach Theorem,
for any # E Z* _= C0(tT)*, there exists a E C(tT)* AA(FtT) (the set of all Radon
measures on tT), such that #- lCo(fi,) and

(2.4) (, d, V e C(tT).
X

Then, for any ] Co(tT) (note riloa --0)

jf =/
In what follows, we let ]0(T) be the set of all Radon measures on [T with the
support contained in [T [.J([ x {0, T}). Clearly, A/[O(T) CO(T)*, with the iden-
tificatio being (2.5). It is known that if we use the usual norm in Co(ftT), the dual
CO(T)* of it is not strictly convex. However, since the space Co(tT) is a separable
Banach space, by [7, p. 167], there exists a norm, denoted by I" 10, which is equivalent
to the norm II" IICo(fiT), such that the dual of (Co([tT), I" Io) is strictly convex. It is

clear that any element # (Co(CtT), I" Io)* can still be identified with an element of
A40(tT), such that (2.5) holds. This will be useful when we discuss the case with
Z C((’tT) (see 5).

Next, we define

(2.6) dQ(r]) inf [z gl Vr] e Z.
?EQ

Then, dQ Z IR is convex and Lipschitz continuous (with the Lipschitz constant
being 1). From [6], we know that the Clarke’s generalized gradient, denoted by OdQ,
which coincides with the subdifferential in the sense of the convex analysis in this case

[6, Prop. 2.2.7], is convex and weak*-compact. Therefore, given E OdQ(), we have
that

(2.7) <,z- 7 -[-dQ(r) _< dQ(z), Vz e Z.

This implies that I( , z-r }1 - Iz-rt], for all z e Z, since dQ(.) is Lipschitz continuous
with Lipschitz constant 1. Thus, IIllz* -< 1. The identity IIllz* 1 is true whenever

Q; see [15, Lem. 3.4]. Since Z* is strictly convex, OdQ() is a singleton for every
r] Q [15, Cor. 3.5]. Furthermore, dQ Z -- IR is Gteaux differentiable at every
point Q and {VdQ()} OdQ() [6, Prop. 2.2.4], where VdQ() is the Gteaux
derivative of dQ(r]) at ft. Hence

(2.8) IlX7d(w)llz* 1, Vr/ Q.

The following result is basic.
PROPOSITION 2.1. Let (A1)-(A2) hold. Then, for any u bt and yo C(t)

Co() (0 < c < 1), there exists a (0, 1), such that (1.1) has a unique solution
y y(.,. ;u) CZ,Z/2(tT)L(O,T;H()). Furthermore, there exists a constant
C > O, independent of u Lt, such that

(2.9) ; -< c, w e u.
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Sketch of the proof. Uniqueness follows immediately from the energy estimates.
For the existence, it suffices to establish the a priori estimates for the solution. The
assumption (2.2) immediately gives us the L(T) estimates. Then the standard
energy inequality gives L2(O,T;HI()) estimates, and the existence of the solution
follows. The estimates (2.9) is standard and can be found in [12, Chap. III, 10].

In what follows, any pair (y,u) e (C,/2(tT)rCo((T)) bl satisfying (1.1)is
called a feasible pair and we refer to the corresponding y and u as feasible state and
control, respectively. Clearly, under (A1)-(A2), b/coincides with the set of all feasible
controls and for each feasible control u E b/there corresponds a unique feasible state.
Also, we see that the cost functional J(u) is well defined for each u E L/and the state
constraint (1.2) clearly makes sense.

Now, we assume that the set/ad defined in (1.8) is nonempty and there exists an
optimal pair (, fi) to Problem C. Our main result then can be stated as follows.

THEOREM 2.2 (Maximum Principle). Let (A1)- (A3) hold and let the following
compatibility condition, for the set Q, the map G, and the initial state yo, hold:

(2.10)
su,, c a U(a {T}),

V? CO(T) with G(7) e Q, ,1 =0
Let (, fi) be an optimal pair of Problem C. Then, there exists a constant 0 < 0, a

function d2 e nq(o, T; w’q()) (1 < q < +2), and a e OdQ(G(I)) c Z* such thatn+l

(2.11) I1 + II llz* > O,

(2.13) z G(), ) < 0, Vz e Q.

(2.14)
H(x, t, 9(x, t),t(x, t), o, (x, t)) maxH(x, t, l(x, t), v, O, (x, t)),

vEU

a.e.(x, t) e [0, T],

where

(2.15)
H(x, t, y, u, 0, ) =0f0(x t, y, u) + Cf(x, t, y, u),

V(x, t, y, u,,) e x [0, T] x lit x U x lR x JR.

In the above, (2.12) is called the adjoint equation, (2.13) is called the transversal-
ity condition, and (2.14) is called the maximum condition. It will be seen that in the
proof, we only need (2.10) to hold for . Also, in 5, we will give some examples
for which such a compatible condition holds.
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3. Some technical lemmas. In order to derive the first-order necessary con-
ditions for optimal pairs, we need some sort of "directional derivatives" of the state y
and the cost functional J(u) in the control variable u. However, since the control do-
main U is just a metric space and there is no convexity in general, the perturbation of
the control variable is restricted to be of "spike" type. Thus, to find the "directional
derivative" is not obvious. In this section, we will present some technical lemmas
which will give us exactly the "directional derivatives" we need in the proof of the
maximum principle in 4. The results of this section are comparable with those in [5]
for elliptic equations (see [13]-[15] and [20] also).

LEMMA 3.1. Let ho E Ll(f) and h Lp(ft), 1 < p < cx. For any p (0, 1), we

define

(3.1) $p {E C t E measurable and IE] pltl }.

Let y be a Banach space with the embedding y --. Lp’ (ft) being compact (p’= p--l)"
Then,

(3.2) inf { 1 --XEo (X) h(x)dx
P

1

Proof. Let p (0, 1) be given and let 5 > 0 be arbitrary. We let B be the closed
unit ball in J;. This set is compact in Lp’ (t) by our assumption. Thus, we can find a
set of finitely many step functions O {0i, 1

_
i

_
r}, such that for any y B, there

exists a 0i O satisfying

Since O is a finite set, we may let {Kj}=I be a partition of f with IKjl > 0 for each
1 <_ j <_ m, such that

m

(3.4) 0,(x) E cXgj (x), x E ft, 1 <_ _< r.
j=l

Then, for any y B, by choosing 0i O with the property (3.3), we have
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Here, we have used the fact that Oi(x) is a constant on each set Kj. We have seen
that the above estimate is uniform for y E B.

Now, for any y E B, let us define " f - IR to be the following:

1 ]’g y()d, x Kj, 1 <_ j <_ m.(3.6) Igjl

Then, (3.5) can be written as (by setting p’ 2.3p’-15p’, which is still arbitrary)

Next, on each Kj, we approximate the functions h and h by step functions:

i--1 i--1

with aiy,/y JR, {Fj}= being a partition of Ky, [Fj[ > 0, and such that

(3.9) /g Ih(x) h(x)ldx +/g Ih(x) hy(x)ldx < IKYI’ 1 <_ j <_ m.

Let us takeEpj cFO,suchthat IEYl =plFjl Set E= r 0[.J=l Ej. Since hy(x) and
hi(x) are simple functions, we have

mFinally, we take Ep [.Jj= EJp. Then, Ep e Sp, and for any y e B,

(3.11)

---fiXEo h(x)y(x)dx <_ 1---XE h(x)(x)dx

+ 1 -- --XEp [h(x)l [y(x) (x)ldx
P

/i(1 )
J=

1- -XE(X) h(x)(x)dx + 1 +- IIhlIL"(.)IlY--’IIL’

From (3.7) we see that

(3.12) 1 + IIhIIL,,t.)IlY- llL,,’(a) <- 1 + -On the other hand, we notice that (x) is a constant on each set Kj (we denote this
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constant by (Kj)). Thus, by (3.9)-(3.10) and (3.6), we have

(3.13)

/Ks (1--XE(X))h(x)(x)dx
j--1

<- E I(KY)] 1 + E(X) Ih(x) hy(x)ldx
j--1

m

/K(1 )E(KJ) 1 - hj(x)dx
j=l

(1) " (1)<_ 1 + - EelKJ[ I"(Kj)[ <_ e 1 + I[YI[
j=l

(1)Ll(t)

_
e 1 + C.

Here, IIyIILI(a) _< CIlylly <_ c, since y E B. Thus, (3.11)-(3.13) imply that

(3.14) ( 1 )1---XEp h
P

On the other hand by (3.9)-(3.10) again, we have

pXE (x)) h(x)dx fK(1--XE(x))hO(x)dx]
m

1 0(3.15) -< E 1 + Ih(x)- hd(x)ldx +
j=l j=l

1// (1--fiXE)h(x)dx

Therefore, our conclusion follows.
The above result was proved for 3 W’P() in [5] using different methods. The

proof given here is inspired by a personal communication of the second author with
E. Casas.

Now we consider the equation

pXE (x, t) h(x, t), in

lo a =o,

where aid satisfies (A1) and OpaT (0a x [0, T]) [.J(a x {0}) is the parabolic boundary
of fiT. It is clear that the solution Eo (x, t) is uniquely determined by the choice
of the coefficient co and the set Ep.

LEMMA 3.2. Suppose that n+2 < p < oc Then, there exists a 0 E (0 1) such2
that for each h e LI(tT), h e LP(T), {c(x,t); IIClIL(aT) <_ K} (g > 0), and
any p e (0, 1),

f
(3.17) inf sup . 1 -XE (X, t) h(x, t)dxdt

T P
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Proof. By the assumption, h E LP(FtT) p > n+2 Therefore the right-hand
side of the equation (3.16) is in LP(tT) (although the LP(FtT) norm may blow up as
p --, 0). It follows from the parabolic estimates [12, Chap. III, 10] that there exists
E (0, 1), such that

(3.18) sup sup I1(, IIc,,,/.(a) -< co.
EoEo cpE]C

We claim that, for any 0 < 0 < , (3.17) holds. In fact, we first note that the identity
mapping C,/2(fT) Lp’ (ftT) is compact. Therefore, if we take Y CZ,Z/2(T) in
Lemma 3.1, then

(3.19)
fa ( 1 )1- -XEo h @odxdt

T P
1(1_  ll,. } =o.

Using a change of variable (x, t) (x, t)eKt if necessary, we may assume without loss
of generality that co(x, t) >_ O. Multiplying equation (3.16) with CEo and integrating
over tT, we immediately obtain

(Ep)2(x,T)dx + IVE (x’)ldxdr
T

<_ C 1 -XEo h. Epdxdt
P

Notice that Ep 0 on 0a x {t}, for each t e (0, T). Therefore, fn(Ep)2(x,t)dx <_
C fn IVEpl2(x,t)dx, by Poincar’s inequality. Integrating over t [0, T], and taking
(3.20) into account, yields

(3.21) (Ep)2(x, t)dxdt <_ C
T ia ( 1 )1 -XE (x, t) h(x, t)E (x, t)dxdt

By the interpolation theorem (see Lemma 3.4 below), for any e > 0, there exists

C > 0, such that

Using (3.19), (3.21) and (3.22), we obtain

inf sup { pXE, (x, t)) h(x, t)dxdt

Since e can be arbitrarily small, the lemma follows.
Now, for any feasible pair (y, u), we define

(3.23) (x, t) -A(x, t, (x, t), (x, t)),
o(, t) f(x, t, (x, t), (x, t)),
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and for given v E/,

(3.24)
h(x, t) f(x, t, y(x, t), v(x, t)) f(x, t, y(x, t), u(x, t)),
h(x, t) f(x, t, y(x, t), v(x, t)) f(x, t, y(x, t), u(x, t)).

Consider the following problem:

n

zt E (aij(x,t)zx)x + c(x,t)z h(x,t),
i,j=l

Z IOpT-" O.

Clearly, since h E L(flT), this problem admits a unique solution z Cfl,fl/2(T)N
L2(O,T;H()), as in Proposition 2.1.

Our main result of this section is the following.
THEOREM 3.3. Let (y, u) be a given feasible pair and v l be fixed. Then, for

any p (0, 1), there exists a measurable set Ep C T, with property [Ep[ plT[,
such that if we define up by

(x, t), f (x, t) e \ G,
(.) Up(X t)

(x, t), f (, t) e G,

and let yp be the state corresponding to up, then the following hold:

yp y + pz +
1

for some 0 (0, 1), and

J(up) J(u) + pz + rp,
lim

1
irO 0,

where z is the solution of (3.25) and z is given by

(3.29) z =/a [c(x’ t)z(x, t) + h(x, t)]dx.

Proof. First, we recall the so-called Ekeland distance. For any u, v E b/, we let

(3.30) (,)= I{(x,t) e a l(x,t) #

It is standard that (b/, d(., .)) is a complete metric space (see [8]). Clearly, d(u, up) <_

Now, we set

zx,, t) (x, t) (x, t)(.) X E t.
P
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Then, zp satisfies the following:

(3.32)

n
1

(z,), (a(x, t)(z,)) + ,(, t)z, (x, t)(x, t),
i,j=l

Zp IOp2T O,

where

(3.33) cp(x, t) fo fu(x, t, y(x, t) + T(yp(x, t) y(X, t)), Up(X, t))dT.

We see that (note (2.9) and (2.3)) cp(x,t) and h(x,t) are uniformly bounded (with
the bounds independent of Ep, the controls u and v). The function h(x, t) is actually
independent of the set Ep; we shall use this fact when we apply Lemma 3.2. Since
h e L(T) C LP(T) for any p > 1, the parabolic HSlder’s estimate implies that
yp y pzt satisfies, for fixed p > +2

2

(3.34) [lYp YlIc,/=(T) CIIEIIL() (Cp) - O, s p - O,

where the constant C is independent of E, and w is a modulus of continuity. It follows
that

(3.35) (x, t) (x, t) =_ -(, t, (x, t), u(x, t)), in LP(T), 1 <_ p <

By recalling z, the solution of (3.25), we have the following:

(3.36)

n

(zp- z)t E (aj(x,t)(zp- z)x) + co(x,t)(zo z)
i,j--1

-(co(x t) c(z, t))z 1 --Eo (X, t) h(z, t),
P

We note that the above equation is linear in (zt-z). Thus, we may write zt,-z t,+p
with p and satisfying the following:

(3.37)
(p)t E (aj(x’t)(P)x’)x + cp(x,t)p -(cp(x,t) c(x,t))z

i,j=l

P IOpT 0,

(3.38) ((6)t E (aj(x’t)(6)’) + cp(x,t) 1
i,j--1

7x, (x, t) h(z, t),

By HSlder estimates, again (notice that z E C’/2((T) Q L(T), and p is fixed
n+2with p > --V-), we have

(3.39) IIllc,/=<) CIl(c C)ZIILp<T) o(1) as p 0;
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all the constants involved in the above are independent of the choices of Eo.
Now we fix 0 E (0, fl) as in Lemma 3.2. Then we can choose Eo C ftT with the

property levi- p aTI, such that the solution p of (3.38) satisfies

(3.40) ] (1
1 )-(z, t) h(x, t)dzdt

r P

This proves (3.27). The proof of (3.28) is similar but simpler. [:]

The above result will play a very important role in the proof of our main result
(Theorem 2.2). Conclusion (3.27) gives a "Taylor expansion" (of first order) in the
space C,/2(tT) C C((2T). This will be sufficient for us to deal with the pointwise
state constraint. It is not hard for us to see that the stronger the topology under which
(3.27) holds, the harder for us to prove it. Thus, for example, if in (3.27), C,/2((2T)
is replaced by LP(ftT), then it will be much easier to prove it. In another word, an

LP(T) constraint of the state is much easier to treat than a C(T) constraint.
We now give a proof for the interpolation theorem used in the proof of Lemma

3.2. The identity mappings CZ,Z/2(T) CO,/2(tT) L2(aT) are continuous and
compact. Therefore, the interpolation follows from a compactness argument. However,
the compactness argument does not give us the exact form of the constants C. Lemma
3.4 below is a stronger statement.

The interpolation involves different types of spaces. Nonetheless, the proof is
similar to that in, for example, [11].

LEMMA 3.4. Suppose that Ot is Lipschitz continuous, 0 <_ 0 < < 1 and 0 <
p <_ o. Then there exists a constant C, depending only on ft and T, such that

(3.41)

0 .+2 andwhere # (n-o) + (-O)p,

(3.42)
[]co,o/.((r sup

IIllco,o/.(T) II(I

II(llco,o/() I1(I

I((x. t)- (. t-)l (. t) : (. t-) e ft}(v/Ix s:l + It- -I )o;

c fir when 0 0.

when 0 < 0 < 1,

(The I1 IILP(aT) should be understood in the usual sense; it should be noted that it is
not a norm when 0 < p < 1.)

Proof. We let 5 1/(-0); then 0 < < 1. Splitting the sup in (3.42) into two
sets { V/Ix 212 + It- [I -< 5} and { v/ix 212 + It- [I > 5} immediately gives us

(3.43) IIllco,o,.(a)<_ 5z-[fflc,/2(@r)+ (1+ 5-)I111c(),
from which the case p oc follows.

Now consider the case 0 < p < oc. Since ff is continuous on tT, IlffllC(fr)
I(, t)l, for some (, t) aT. Now let B5 {(x, t) aT; z 1. + It- tl <_ 5};
then by the mean value theorem,

1
I(x, t)lpdxdt I(x*, t*)l
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for some (x*,t*) E BOtT. Since OFt is Lipschitz continuous, [BaT[
_
(n+2/C

for some generic constant C > 0. It follows that

(3.44)

the case 0 follows immediately. Now substituting (3.45) into (3.44), we obtain

3(C)
1/p

<_ +

and the general case 0 < 0 < < 1, 0 < p < follows.

4. Proof of Theorem 2.2. In this section, we are going to prove the main
theorem of this paper.

Proof of Theorem 2.2. Let (, ) be an optimal pair. For any u E L/, let y(., .; u)
be the corresponding state, emphasizing the dependence of it on the control. For any
e > 0, we define

(4.1) Je(u) {[(J(u) J() + e)+]2 + dQ(G(y(., .; It)))2} 1/2.

Clearly, this functional is continuous on the (complete) metric space (/, d) (recall that
d is the Ekeland distance; see (3.30)). Also, we have

(4.2) J(u)

(4.3) Js() s _< inf Js(u) + e.
u

Hence, by Ekeland’s variational principle [6], we can find a us H, such that

(4.4) d(ft, u

(4.5) Js(u

(4.6)

We let v L/and e > 0 be fixed and let yS y(.,. ;uS). By Theorem 3.3, we know
that for any p E (0, 1), there exists a measurable set E c ftT with the property
IE,I ptftTI, such that if we define

(4.7) u(x, t)
uS(x’ t), if (x, t) e aT \ E,
v(x, t), if (x, t) e E,

and let y y(., .; u) be the corresponding state, then

(4.8)
yg ys + pzs + rg,
J(@) J(u) + pz, + r’s
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where z and z,e satisfy the following:

(4.9)

n

z E(aij(x, t)zg)xj
i,j

f(x, t, (x, t), (x, t))z h(x, t), in T,

(4.10) z’ Ja [fY(x’ t, ye(x, t), u(x, t))z(x, t) + h,(x, t)]dx,
T

with

(4.11)
h(x, t) I(x, t, y(x, t), v(x, t)) I(x, t, y(x, t), u(x, t)),
h,e (x, t) f(x, t, ye(x, t), v(x, t)) f(x, t, ye(x, t), ue(x, t)).

and for some 0 (0, 1),

(4.12) lim
1
IIollco,o/.() lim

1, 0,e

o--*O p pO p
Irp O.

Now, we take u in (4.6). Then, it follows that

(4.13)

J()-J()

J()+J()

where

VdQ(G(y)), if G(y) Q,
(4.14)

0, if G(y) e Q.

We note that since G" Co((’tT) Z, to obtain the convergence in (4.13), the expansion
(4.8) in the space Co(tT) is necessary.

Next, we define (0,,) E [0, 1] x Jt4(tT) as follows"

(4.15)
qo, (J(u) J(t) + )+

J()- de(a(u))
g()

Then we see that (4.13) becomes

(4.16)
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By (2.8) and (4.1), we have

(4.17)

On the other hand, by the definition of subdifferential, we have

(4.18) , G(y) <_ O, e Q.

Next, by (4.4), we have

(4.19) Ily IIIc,/2(T) --. O, ( -- 0).

Thus, (4.18) implies

(4.20) , r/- G(3) <- , C(Y) G(3) <_ IIC(y) C(3)llz --* 0,

Since Q is finite codimensional in Z, from [15, Lem. 3.2], we know that by extracting
some subsequence, still denoted by itself, one has

(4.21) # 0.

On the other hand, from (4.19) and the equations (4.9), (4.10), we have

e -- z, in C,Z/2((T),
( - O)(4.22) z, z0

where z is the solution of the following variational system:

(4.23)

n

zt- E (aij(x,t)z,)xj f(x,t,(x,t),t(x,t))z
i,j=l

+ f(x, t, ](x, t), v(x, t)) f(x, t, l(x, t), fi(x, t)),
Z [Op-]T--- 0

(4.24)
z ] f(x, t, (x, t), t(x, t))z(x, t)dxdt

T

+/a [f(x’ t, l(x, t), v(x, t)) f(x, t, l(x, t), t(x, t))]dxdt.
T

We note that the solution z of (4.23) and the quantity zo defined by (4.24) depend
on the choice of v E/. Thus, we denote them by z(.,. v) and zO(v), respectively.
Then, taking limits in (4.16), we obtain

(4.25) z(v) + , G’(9)z(.,. ;v) >_ 0, Vv e b/.

Now, we let

(4.26) 0 _o e [-1, 0].
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Then, (2.11)follows from (4.21). Also, we obtain (2.13) by taking limits in (4.20)
(along the above-mentioned subsequence). Furthermore, (4.25) can be written as

(4.27) 0z0 (v) G’()*, z(.,. v) _< 0, Vv e b/.

We note that G’(9)* E 4(tT), and by our compatible condition (2.10), we see that

(4.28)

By [1], we know that (2.12)admits a solution in Lq(O,T, W0’q (gt))for any 1 < q < n+--"
However, unlike the elliptic equations, the function z(x, t; v) is not smooth enough (in
the t direction) to be a test function for the equation (2.12). We shall get around this
problem by approximating the equations for z and the equations (2.12).

We consider the following approximation for z(x, t; v):

(4.29)

where a E C2,1(tT), aj satisfies (A1), and

(4.30) a in LP(T), as 5 O,

for any 1 < p < cx. By Lp estimates for the parabolic equations, z5 z(., ;v)
Wp2’1 (FtT) for any 1 < p < cx. As before, we have the estimates

(4.31)

where the constants C and J are independent of 6 and v b/. Thus, by compactness
and the uniqueness of the equation (4.23), one can easily derive that

(4.32) I1: zllc(  ) 0, 0.

Clearly, (4.27)and (4.32)imply that

(4.33) lim {z(v)- (G’()*,zS( ;v)}} < 0, Vv e b/.
5-+0

By [1], if we replace aij with aSj, then (2.12) has a solution Lq(O,T, w’q()),
where 1 < q < n+2 (e is actually unique.) Purthermore,n+l

(4.34)

where the constant C is independent of 5. Clearly, v is not involved in the definition
of . By passing to a subsequence if necessary, we have, as 5 --+ 0,

(4.35) 5 in L(T), " Cx in L(tT),
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for some function . It follows that is a solution of (2.12).
Since z E W2p’I(T) for p > q/(q- 1), we can use z5 as a test function in the

equation for 5.
Then, by some direct computation, we can reduce (4.33) to the following:

(4.36)
] {o[fo(x, (x, t), (x, t)) fO(x, (x, t), (x, t))]t, t,

T

+ 5(x, t)[f(x, t, (x, t), (x, t)) f(x, t, (x, t), v(x, t))]}dx
_> o(1), as 5 --, 0.

Now letting 5 0 and recalling (4.35), we obtain
(a.az)

/n {0[f0(x, y(x, t), (x, t)) f0(x, y(x, t), v(x, t))]t, t,
T

+ (x, t)[f(x, t, (x, t), t(x, t)) f(x, t, ](x, t), v(x, t))]}dx

=_ ][H(x, t, (x, t), fi(x, t), 0, (x, t)) H(x, t, (x, t), v(x, t), 0, (x, t))]dx,

_>0,

Then, by the separability of U and the continuity of the Hamiltonian H in the variable
v, noticing also that v E/ is arbitrary, we obtain the maximum condition (2.14) (see
[]).

5. Applications. In this section, we would like to discuss some special cases
which are covered by our main result.

We first consider the following case. Let Z CO(T) with some norm ]. 10 which
is equivalent to lie(fiT) and whose dual, still denoted by J0(=T), is strictly convex.

We let Q c Z be defined as in (1.3) and g" T R - IR be continuous, with gy(x, t, y)
also being continuous. Moreover,

t, 0) < 0, V(x, t) e 0a [0, T],
(5.1)

g(x, 0, yo(x)) < 0, Vx e t,

where yo e Co(t). We let GO?)(x t) g(x, t, (x, t)), for any Co(tT). Then, the
following result holds.

PROPOSITION 5.1. For the above Q, G, and yo, condition (2.10) holds.
Proof. By (5.1), we see that for any e > 0, there exists a 5 > 0, such that

g(x, t, y) <_ -, if t e [, T], lyl < , d(x, Ogt) < ,
or t E [0,5],x , lY- yo(x)l < .

Thus, for any e CO(T) with G() e Q and lt=o -yo(x), we have the following:
For any > 0, there exists a 5 > 0, such that

(x, t, n(x, t)) <_ -, if d((x, t), OptT) < .
Now, for any C(T), if for some 5 > 0, it holds that

(5.4) supp: C {(x,t) e tT d((x,t),OpFtT) <_ 5};
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then, for all small enough a > 0, we have

(5.5) (x, t, v(x, t)) + (x, t) < 0, (x, t) e v.
This means G(r/) + a E Q for all small cr > 0. Hence, by the definition of the
generalized gradient, we obtain

(a.6) (,) =0, V e Od(G()) c (fT).

In other words, we have (for the above

supp C {(x,t) E T[d((x,t),Op]T) >_

Since G’() gy(x,t,l(x,t))I, with I being the identity on Z, we see that (2.10)
holds. D

We already know that Q has a nonempty interior in Z, hence it is of codimension
0 in Z. Then, our main result is applicable to this case. Let us state the corresponding
result.

THEOREM 5.2 Let (1, t) be an optimal pair. Then, there exists a constant o <
O, a function C q(0,T; Wd’q(fl)) aT2(q < T-), and a JlO((T), such that

(5.8) I1 / I111o() > 0,

(.9)

n

Ct + E (aij(x, t)xj)x -fy(x, t, l(x, t), t(x, t))2
i,j=l

f(x, t, 3(x, t), (x, t)) + gy(x, t, 3(x, t))*l,

(5.10) [z(x,t) g(x,t,l(x,t))]d(x,t) <_ O, Vz Q.
T

(5.11)
H(x, t, 3(x, t),fi(x, t), o, (x, t)) max H(x, t, 3(x, t), v, o, (x, t)),

vEU

a.e.(x, t) e ft [0, T],

where H is the Hamiltonian defined by (2.15).
Let us make some further remark on the above result. We set

(5.12) {(x, t) e a(x, t, (x, t)) 0}.

Then, by our condition (5.1), we see that

(5.13)

The set gtT is called the active set for the optimal state . We have that

(5.14) suppq C f.
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In fact, for any r C(ftT) with supp r C ftT \ ar, g(.,. 9(., .)) :t: e E Q if e is small
enough. By the transversality condition (5.10), we see immediately that

(5.15) (, t)e(, t) o.
T

This gives (5.14).
The above situation is comparable with the case discussed in [5] for quasilinear

elliptic equations.
Next, let us look at another important case. Let Z Co(fT) as before and

let (xi,ti) E "TU( x {T}) (1 <_ <_ m) be given m (different) points and also
let bi IR, 1 _< i _< rn. We define Q as in (1.5). Then, we see that Q is a finite
codimensional convex and closed subset of Z. Also, it is not hard to see that for any
r/ Q and any OdQ(?), we have

m

(5.16)
i=1

where Ai IR and 5(x,t) is the Dirac measure concentrated at point (xi, ti) with mass
1. Thus, we see that condition (2.10) holds (in the present case, G- I, the identity).
Hence, our result applies to this situation. Let us state the corresponding result below.

THEOREM 5.3. Let (f], ft) be an optimal pair. Then, there exists a constant o <_
O, a function Lq(O,T; w’q(ft)) (q < -1), and real numbers ), 1 <_ i <_ rn, such
that

m

(5.17) I1 + I1 > 0,
i=1

(5.18)

H(x,t,f/(x,t),ft(x,t), o, (x, t)) max H(x, t, f/(x, t), v, o, (x, t)),
vU

a.e.(x, t) e ft x [0, T].

Next, let us point out some other state constraints, which are covered by our
general result.

1. Let Z LP(fT), 1 < p < oc. F’ftT x IR --. IR and

a(v)(x, t) (x, t, v(x, t)), vv e Co(fir).
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Then, the corresponding state constraint is

F(x, t, r/(x, t))dxdt < O.
T

2. Let Z LP(T)m, 1 < p < oc, Fi ’T ]R JR, 1 < <_ rn,

I Q= {zeLP(ftT)m faaT z(x,t)dxdt= 0},
GO?)(x,t (Fl(x,t,(x,t)),...,Fm(x,t,(x,t))), vv Co(at).

Then, the state constraint is

Fi(x, t, y(x, t))dxdt O,
T

1 <i<rn.

3. Let Z Co (fiT), F" (T ]R -- ]R such that

(5.24) F(xi, ti, y) 9i(Y), 1 <_ i <_ m,

where (xi, ti) E gtT U(f x {T}) are given different points. Let

Q {z e Co((T) Z(xi, ti) bi, 1 < < m},
G()(x, t) F(x, t, rl(x, t)), V e Co(ftT).

Then, the state constraint is

(5.26) gi(y(xi,ti)) bi, 1 < < m.

This is a generalization of (1.6).
4. Let Z Co(ftT), F’fT x ]R IR such that (5.24) holds. Let

Q {z e Co((T) Z(xi,ti) z(xj,ti), 1 <_ i,j <_ rn},
G(rl)(x, t) F(x, t, rl(x, t)), Vrl e Co(ftT).

Then, the state constraint is

(5.28) gi(y(xi,ti)) gj(y(xj,tj)), 1 < i,j < m.

In particular, if we take F(x, t, y)= y, then (5.29) means

(5.29) y(xi, ti) y(xj,tj), 1 < i,j < m.

Physically, this means that we want the temperatures, say, at points (xi, ti) to be the
same.

There are many other examples, but we prefer to omit them here. We should
point out that the pointwise constraint, like (1.6), is actually an approximation of the
constraint, like

(5.30) ly(x, t) b <_ e, 1 <_ <_ rn,
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with e > 0 being very small. Physically, this means, for example, that the temperature
at point (x, t) has to be controlled near b with an accuracy e.

6. Quasilinear parabolic equations. Finally, let us remark that the result
extends to the quasilinear parabolic equations as those considered in [5] for elliptic
cases. The HSlder estimates for the gradient (in the x direction) of the solution are
required. These are available [16] when the leading coefficients are assumed to be
HSlder continuous in the x direction. After a careful examination of the proof of
Lemma 3.2, we conclude that a0 can actually be allowed to depend on p.

We consider the equations

(6.1) ( 1
t- E (ai(x,t)x) +cp(x,t)(x,t)= 1--XE,(x,t) h(x,t),

,j=l P

o, (, t) e o.
It is clear that the solution CEp (x, t) is uniquely determined by the choice of the
coefficients aij cp and the set Ep. Let K > 0, 0 < A < A, and

(6.2)

tC { (a,(x, t), c(x, t)); Ilcll/()
_
K,

AII 2 <_ ao(x, t)y < AII2, V(x, t) e fiT,
i,j=l

LEMMA 6.1. Suppose that n-22 < p < x. Then, there exists 0 E (0, 1) such that
for each h LI(T), h LP(T), K > O, and any p (0, 1)

(6.3)

inf sup
Ep.p { T (Iff -XEp1-  0(x,

We now consider the following parabolic equation:

(6.4)
yt Vx (a(x, t, Vxy)) f(x, t, y, u(t, x)),
y [on= 0,

1=o vo(), x e a,

where a satisfies the follwoing assumption.
(A--) The functions a" T ]Rn --* ]Rn and T ]Rn - ]R are continuous.Opj

There exist A > A > 0, A1 > 0, a (0, 1), and m > 1 such that

(6.5)

Oai (x t,p)ij > A(1 + Ipl),-lSI

Oai___
(x, t,p) < A(1 + Ipl)m-2,

V(x,t,p) e [0,T] IRn,

V(x, t, p) e 9t [0, T] Rn,
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and

(6.6)
la(x,t,p) a(5, t,p)l <_ A(I + [pl)’-lx 5l,

V(x, t), (, t) e [0, T], p e .
Under the assumptions (A1) and (A2), (6.4) has a unique solution y(x, t) such that
y, yx E CZ’Z/m((T) for any Y0 E Cl+(t) C0(t) (see [16]). The a priori estimates
for y and yx in the space CZ,Z/m(tT) are valid uniformly for u /g. If u, b/and

y, ff are the corresponding states, then by using an interpolation theorem of the Ck+
spaces, we have, for any 0 < 0 < fl,

(6.7) uniformly as d(u, ) O.

Lemma 6.1 and (6.7) are the essential estimates needed to establish the variation
theorem similar to Theorem 3.3. We have the following lemma.

LEMMA 6.2. The same statement of Theorem 3.3 is still valid for the quasilinear
case, with the aij(x, t) in (3.25) being replaced by 5ij(x t) =_ -a (x, t, Vxy(x t)).Opt

Sketch of Proof. The proof of Theorem 3.3 also goes through, where we shall
replace ay(x, t) in (3.32) with

p foaj(x, t) =_ -p (X, t, Vy(x, t) + TV(yp(X, t) y(x, t))dT.

Using (6.7), we can easily obtain

P in C(tT).(6.8) % - a,

Write zo z (zp ) + ( z), where satisfies the equation

(6.9)

n

($)t E (a%(x,t)())x + c(x,t)p h(x,t),
i,j=l

We can treat Zp p the same way as before, apply Lemma 6.1 instead of Lemma 3.2,
and then obtain

(6.10) Ilzo ollco,o/.() 0 s p --. O,

for a special choice of Ep with IEpl plfTI. Clearly, by H61der’s estimates [12,
Chap. III, 10], for zp- z,

(6..) IIollc,,,/,(a) -< IIollc,,,/.(a)+ Ilzllc,,,/:(a) _< c,

and p satisfies the equation

(6.12)

(p)t- E (a(x’t)(P))x +c(x,t)
i,j=l

([a5 (x, t) i(x, t)lz (x, t))
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Multiplying the above equation with 40 and integrating over tT give us the usual
energy estimates:

(6.13) IIGIIL.<> < IIV611L<>
< cI1% as p -- 0,

where we have used the fact that IIVxZllL2(aT) _< C, which is an easy consequence of
the energy estimates for the solution z(x, t).

Using the interpolation (Lemma 3.4) and the estimates (6.11) and (6.13), we
immediately obtain, for any 0 <

(6.14) II’p Zllc,/=(a) IIGIIco,/(a) - 0, as V - 0.

Combining (6.10) and (6.14), we get a variation theorem like Theorem 3.3. El
Therefore, with the same argument as in 4 (where we used (6.7) for the conver-

gence of the leading coefficients), we have the following maximum principle.
THEOREM 6.3. Consider the same problem except that the governing equation

(1.1) is replaced by (6.4). Let (A1), (A2), and (A3) be in force. Suppose that yo e
Cl+a(t) rco(Ft) and that (2.10) holds. Let (1, t) be an optimal pair of Problem C
corresponding to the state equation (6.4). Then, there exists a constant d2 <_ O, a

function e Lq(O,T; w’q()) (1 < q < +2n+l], and a e OdQ(G(I)) c Z*, such that

(6.15) I1 + IIllz" > O,

(6.16)

(6.17) z G(), ) < 0, Vz E Q.

(6.18)
H(x, t, O(x, t),t(x, t), o, (x, t)) max H(x, t, 0(x, t), v, o, (x, t)),

vEU

a.e. (x,t) [0, T],

where

(6.19)
H(x, t, y, u, o, ) =of0(x t, y, u) + d2f (x, t, y, u),

V(x,t,,,W,W) e x [0,T] x x v x x .
Remark 6.4. The semilinear case is not a special case of the quasilinear case, since

the HSlder continuity of aj (in the x direction) is not assumed in the semilinear case.

Acknowledgment. The authors thank Dr. Hong-Ming Yin for a stimulating
discussion on this problem.
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RISK-SENSITIVE CONTROL ON AN INFINITE TIME HORIZON*

WENDELL H. FLEMING AND WILLIAM M. McENEANEY$

Abstract. Stochastic control problems on an infinite time horizon with exponential cost criteria
are considered. The Donsker-Varadhan large deviation rate is used as a criterion to be optimized.
The optimum rate is characterized as the value of an associated stochastic differential game, with
an ergodic (expected average cost per unit time) cost criterion. If we take a small-noise limit,
a deterministic differential game with average cost per unit time cost criterion is obtained. This
differential game is related to robust control of nonlinear systems.

Key words, risk-sensitive control, H control, differential games, viscosity solutions, Hamilton-
Jacobi equations, Isaacs equations

AMS subject classifications. 93E20, 93B36, 93C10, 90D25, 60F10, 49L25, 35B37

1. Introduction. There are various approaches to treating disturbances in con-
trol systems. In stochastic control, disturbances are modelled as stochastic processes
(random noise). On the other hand, in robust control theory, disturbances are mod-
elled deterministically. The theory of risk-sensitive optimal control provides a link
between stochastic and deterministic approaches.

For linear systems with quadratic cost criteria, H-optimization provides a meth-
od for robust control design. The disturbance attenuation problem is one of those
considered in robust H-control theory. If a state space formulation is used, an asso-
ciated "soft constrained" differential game arises naturally; see Basar and Bernhard
[2]. The stochastic control counterpart is a linear exponential quadratic regulator
(LEQR) problem, introduced by Jacobson [24]. This analysis of the LEQR problem
leads to the same differential game. Glover and Doyle [20] gave a further connection
between the LEQR problem and H-control via a minimum entropy principle.

An interesting question is to find, for nonlinear systems or nonquadratic cost
criteria, similar connections between stochastic and robust control approaches to dis-
turbance attenuation problems. Whittle [40], [41] introduced an interesting approach
to this question, using large-deviations ideas. Whittle considered problems on a finite-
time horizon 0

_
t

_
T and used Freidlin-Wentzell-type "small-noise" asymptotics.

In [11] and [25] Whittle’s formula for the optimal large-deviations rate was obtained
using partial differential equation (PDE)-viscosity solution methods in a special case
when the process being controlled is governed by a stochastic differential equation
(SDE).

In this paper we are concerned with infinite-horizon risk-sensitive control problems
with state-feedback control laws (the "complete state information case.") For these
problems a different kind of large-deviations principle, of Donsker-Varadhan type, is
needed. Runolfsson [32], [33] used Donsker-Varadhan-type large-deviations ideas to
obtain a corresponding stochastic differential game for which the game payoff is an
ergodic (expected average cost per unit time) criterion.
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As outlined in [12], we approach these problems with different methods. To
illustrate the ideas we will consider the following "model problem." Let xt and ut
denote respectively the state and control at time t > 0, with xt E n, ut U. (U is
the control space.) The state dynamics are

(1.1) dxt f(xt,ut)dt + dbt,

with initial state x0 x, where b. is an n-dimensional Brownian motion. Here /is a
given constant and e is a parameter related to the noise intensity. As a criterion to
be minimized we take a long run expected rate of exponential growth criterion:

log Ex exp e-1 L(xt, ut)dt

where L > 0. Further assumptions on f, L, and U will be stated later (see (7.1), (7.2)).
The risk-sensitive stochastic control problem is to minimize A among all U-valued
progressively measurable control processes u..

To postpone discussions involving stochastic differential games, we begin in 2-5
with the conceptually simpler situation when the control ut is absent. For the model
corresponding to (1.1)-(1.2), xt is then a Markov diffusion process satisfying an SDE

(1.3) dxt g(xt)dt + dbt,

and the long run expected rate of growth is

logEx exp e-1 g(xt)dt

The functions g and t are assumed to satisfy assumptions (3.1). For given e > 0,
formula (1.4) is just a particular case of a Donsker-Varadhan large-deviations formula.
We wish to give a stochastic control interpretation of A and afterward (5) take a
deterministic limit as e 0.

If the expectation in (1.4) is denoted by (T,z), then satisfies a PDE of
parabolic type related to this expectation via the Feynman-Kac formula. If one
formally writes for large T that exp[e-(,VT + W(x))], then A, W(x) satisfy
formally the dynamic programming equation for a stochastic control problem with
expected average cost per unit time criterion. This formalism is explained in 2.
Then the model (1.3)-(1.4) is treated rigorously in 3 and 4. A stochastic control
interpretation of A was first given by Holland [21] in a slightly different formulation.
The assumptions (3.1) on g and t are stronger than necessary in order to obtain
the Donsker-Varadhan formula (1.4). However, they are used to obtain the "cost
potential" function W(x) and also in passing to the deterministic limit in 5. Bounds
are obtained for A and IVWl which do not depend on e. In the limit, A0 and W(x)
are obtained, with W a viscosity solution of the first-order PDE (5.3) which is the
dynamic programming equation for a deterministic average cost per unit time control
problem. For applications to robust nonlinear control, a key question is whether
A0 0 or A0 > 0. If/0 0, then a dissipation inequality which is familiar in robust
control holds. See (5.15).
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In 6 and 7 we return to considering risk-sensitive stochastic control problems,
with the goal of finding a control which minimizes the long-term growth rate A in

(1.2). If the control enters (1.1) via a stationary Markov control policy _u(x), namely,
ut u(xt), then (1.1)-(1.2) correspond to (1.3)-(1.4)with

g(x) f(x, u(x)), g(x) L(x, u(x)).

The corresponding growth rate A A(u) depends on the control policy u. One
would like to find a policy u* which minimizes A(u). In 6 we describe a formalism
by which dynamic programming leads to a kind of nonlinear eigenvalue problem for
a pir A, . See (6.3). By making a logarithmic transformation of the positive
eigenfunction , equation (6.3) becomes the Isaacs equation (6.10) for a stochastic
differential game with an expected average cost per unit time payoff criterion. The
number A has two interpretations: first as the optimal growth rate and second as the
value of the stochastic differential game. These results are treated rigorously in 7, for
the model problem (1.1)-(1.2). In 8, we consider the deterministic limit -+ 0. As
e --+ 0, A tends to a limit A, which is the value of the corresponding deterministic
differential game. Connections with nonlinear robust control are also discussed in 5
and 8.

Recently Dupuis and Ellis [7] introduced a different technique, based on stochastic
control idens, which is applicable to a wide variety of large-deviations problems.

We consider only risk-sensitive control problems with complete state information
in which the current state of the process being controlled is known. For problems
with partial state information see [26], [33], [39], [41] and references cited there.

2. Logarithmic transformations and exponential growth. In this section
we recall a large-deviations formul (2.1) of Donsker nd Varadhan [6] and reformulate
it in terms of a stochastic control interpretation. The discussion in the present section
is formal, without proofs. In 3 and 4 we will put things on a rigorous basis in a
particular case of interest for disturbance attenuation control problems.

Let xt be a time-homogeneous Markov process with state space E. Thus xt E
for t :> 0. Let g be a bounded, continuous function on E, and e > 0 parameter.
Under suitable assumptions on xt, the following limit exists:

T-*c
log Ex exp --1 g(xt)dt

where the subscript x indicates the initial state x0 x. Among the assumptions a
sufficiently strong kind of ergodicity is needed. Moreover, one anticipates that
can be interpreted as the dominant eigenvalue of the linear operator G + e-l, where
G is the generator of the Markov process xt. See [6, part I] in case E is compact and
[6, part III] for noncompact E. Moreover, considered as a function of , -l(t)is
dual (in the sense of convex duality) to the Donsker-Varadhan entropy function I(#).
This viewpoint is well developed in Stroock [36].

Let

(2.2) (T,x) Ex exp e-* e(xt)dt

Then (2.1) implies that (T,x) grows exponentially at rate e-*A as T --+ cx. To
obtain heuristically the eigenvalue interpretation of e-*A, we proceed formally as
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follows. Under suitable assumptions, satisfies the linear evolution equation

(2.3) __2_ +OT

where Gx G(T, .). If we formally separate variables, namely,

4) exp(e-1AT)(x),

then should be a positive eigenfunction corresponding to the dominant eigenvalue

(2.4) - G+-.
The Donsker-Varadhan formula (2.1) involves but not the eigenfunction . Extra
assumptions are generally needed to ensure that exists. However, for compact state
space E, the eigenfunction exists under the original assumptions in [6, part I]. See
Fleming, Sheu, and Soner [14, 4]. The eigenfunction , or more precisely its log
transform W e log , plays an essential role for the stochastic control interpretation
which we use.

In 5, we will let xt depend on the parameter in such a way that xt is nearly
deterministic for small e. Thus G G, . The scaling is such that tends to
a limit 0 as e --. 0.

Logarithmic transformations. Let W e log . Then (2.4) is changed into a
nonlinear equation

(2.5) 7-/(W) + t, where

n(w)

For a broad class of generators G, (2.5) has an interpretation as the dynamic pro-
gramming equation for a stochastic control problem with average cost per unit time
cost criterion. Then is the optimal expected average cost per unit time, and W(x)
is an associated cost potential function. Heuristically, e log (x, T) AT + W(x) for
large T.

In the stochastic control problem arising from the logarithmic transformation, we
will denote by t the state of the process being controlled and by vt the control acting
at time t. The goal is to find a control process v. which maximizes an average cost
per unit time criterion

(2.6) J lim sup
1 fo

T

T- Ex k(t, vt)dt,

where k is a suitably chosen "running cost" function. We will describe the choice of
k and the state dynamics for t only for nondegenerate diffusions in n. For other
classes of processes (for example, Markov chains or jump Markov processes) see [15,
Chaps. 3 and 6] and Sheu [34].

Consider a Markov diffusion xt with generator G of the following form. Sufficiently
strong ergodicity properties will be needed in order for the results outlined formally
above to hold.
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For e C2(n),x (xl,...,xn), let

n

G(x) E aij(x)xx (x) + g(x)
i,j=l

In this case

1
a(x)VW. VW,+

where for any vector p- (Pl,..., Pn)
n

E aijPiPj.
i,j=l

If the symmetric matrices a(x) (aij(x)) are positive definite, then

(2.7) -ap.p max 2 + v.

where the maximum is taken over ]? n. In this case, (2.5) takes the form

(:.s)

n- E aj(x)Wxx
i,j--1

+ VW + a(x,

where the running cost function is

1 -1(2.9) k(x, v) g(x) -a (x)v v.

If a(x) a(x)o" (x), then the dynamics of the controlled Markov process t are gov-
erned by the Ito-sense SDE

(2.10) dt [g(t) + vt]dt + e1/2 a(t)dwt,

with wt a Brownian motion. We admit any bounded, progressively measurable control
process v., associated with some reference probability system [15, p. 160]. If the
control is feedback via a Markov control policy v (vt v(t)), then under suitable
technical assumptions on v the process t is Markov. We anticipate that an optimal
Markov control policy v_* can be found by taking arg max in (2.8), namely, v_* aVW.

For the class of problems to be considered in 3-5, we take a (22)-1I, with
> 0 a constant and I the identity matrix. The "drift" coefficient g(x) satisfies

assumption (3.1) which ensures a sufficiently strong form of ergodicity of the Markov
diffusion xt needed for the analysis.

3. Ergodic stochastic control problem. In this section and 4 we will put
the formalism in 2 on a rigorous basis in the following special case. In (2.8) we
take the matrix a (aj) to be constant and positive definite. By a linear change of
coordinates in n, we may then assume that a (272)-1I, where I is the identity
matrix and /> 0 is a constant which has a prominent role in robust, deterministic
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control theory (5). Assume that g E Cl(]:n),g Cl(n). Let gx denote the matrix
of partial derivatives of g. Additionally we assume the following.

(a) g, Vg are bounded and t _> 0;

(3.1) (b) gx is bounded;

(c) there exists c > 0 such that, for all x, y /Rn,
(x <_ - lx

These assumptions are considerably stronger than what is needed to prove the results
that follow. However, these strong assumptions will make the proofs much less tech-
nical. Proofs of similar results under weaker assumptions can be found in McEneaney
[30]. In (3.1a), the assumption that t is bounded can be omitted. See Remark 4.4
below. The assumption that Vt is bounded allows linear growth of g(x) as
but not quadratic growth. Some issues concerning quadratically growing t(x) are dis-
cussed at the end of 5. Assumption (3.1b) can be replaced by a weaker assumption,
involving one-sided bounds [30]. However, assumption (3.1c) plays a crucial role in
the proof of Theorem 3.3 and in passage to a deterministic limit in 5. By the mean
value theorem, (3.1c) has the equivalent form

(3.2) z. gx(x)z < -clzl 2 for all x, z e .
For the results of the present section to hold, it may suffice to require (3.2) only for
x outside some bounded set. See Remark 4.5. However, to obtain the dissipation
inequality (5.15) of deterministic robust control theory, we need (3.2) for all x

We consider the Markov diffusion process xt governed by the SDE

(3.3) dxt g(xt)dt + dbt, t >_ O,

with the initial data

(3.4) x0 x.

This SDE has a strong (pathwise) solution for any reference probability system [28], (ft, {get}, P, b.), where ft is a sample space, {grt} a filtration, P a probability
measure, and b. a P-Brownian motion adapted to {’t }. The generator G of xt is

Assumptions (3.1b) and (3.1c) imply that xt is ergodic. More than that, we will show
that they insure that the Donsker-Varadhan large-deviations formula (2.1) holds and
that the positive eigenfunction in (2.4) exists.

Let us now introduce controlled processes t, already discussed in an imprecise
way in 2. Let #- (ft, {grt}, P, w.) be some reference probability system, which may
or may not be the same as the reference probability system u for (3.3). We admit as
control processes all n-valued 9Or-progressively measurable processes v. such that vt
is bounded. Let I/YM denote the set of all such v. for which Ivtl < M for all t >_ 0. Of
course, /]M depends on # but our notation does not make this explicit. Then
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is the set of all admissible control processes. Given v., let t be the solution to

_1

(3.6) dt -[g(t)+ vt]dt + dwt

with 0 x. The goal is to choose v. E 1/Y to maximize the criterion J in (2.6).
LEMMA 3.1. Let F(x) exp[Kv/1 + Ix12], where K > 0 is any constant. Then

there exists C1 (depending on x and previously introduced constants) such that

ExF(t) <_ CI for all t < o.

The proof is rather standard and is postponed to Appendix A.
Remark 3.2. Comparing (3.3) and (3.6), we see that we also have ExF(xt) <_ C1

for all t < c. Furthermore, this bound implies a bound for all moments of t and xt
for all t < c.

We proceed to state the main results of this section. The dynamic programming
equation (2.5) now takes the form

e 1
+ vw + IvwI +

or equivalently (see (2.8)-(2.9))

(3.7’) A AW+ max [(g(x) + v). VW + k(x v)]

where

(3.8) v)  21vl2.
Let I[" denote the sup norm.

THEOREM 3.3. There exist , W C2(n) such that (3.7) holds. Moreover,
there exists B (not depending on ) such that IVWI <_ g and 0 <_ A <_ Ilgll.

This theorem is similar to one by Bensoussan [3, Thm. 7.1]. Unfortunately, the
presence of the (maximizing) controller taking values in all of 7n and the unbounded
cost (at least in the control but also possibly in the state as in Remark 4.4) prevents
a direct application of the Bensoussan result. The addition of a second (minimizing)
controller in 6-8 will further complicate matters.

The proof will give B c- liV ll, with c the constant in assumption (3.1c). We
postpone the proof of Theorem 3.3 to 4. In (2.6) let us write J J(x, v.) to indicate
dependence on the initial state x and the control process v.. The maximum in (3.7’)
is attained at v*(x) (23,2)-1VW(x). This gives an optimal Markov control policy
for the control problem with the average cost per unit time criterion J, as is seen by
the following corollary to Theorem 3.3. Define as the solution to

dt [g() + v* (t )]dt + dwt

with x. The control process v.* defined by

(,)

belongs to 1/Y since VW is bounded.



1888 WENDELL H. FLEMING AND WILLIAM M. McENEANEY

COROLLARY 3.4 (a) J(x, v.) <_ for all x E n, v. 142.
(b) J(x, v*. A for all x e :tn.
Proof of (a). We apply Ito’s rule to obtain

E W( r) W(x) + +
e AW(t)}dr.

Note that since g(x) and VW(x) are bounded, IAW(x).I grows at most linearly with

Ix as Ixl cx, by (3.15) and (3.7). Therefore, by (3.7)

(3.9)
T

E=W(T) <_ W(x) E: k(t, vt)dt + AT,

which yields

(3.10) ) > J(x, v )+ lim sup
[|E:W(T)- W(x)|]

Since VW is bounded,

for suitable kl, k2. Since ExiST is bounded, by Remark 3.2, the last term on the right
side of (3.10) is 0. This proves (a).

Proof of (b). In (3.9) equality now holds when v. v*, . .*. We repeat the
argument for part (a). [:]

Without referring to the controlled process t, we also obtain from Theorem 3.3
that A is the Donsker-Varadhan large-deviations rate in formula (2.1). Also note that
the function exp(e-1W) satisfies the eigenfunction equation (2.4), with generator
G as in (3.5).

THEOREM 3.5. If , W are as in Theorem 3.3, then

T--.o
log Ex exp g(xt)dt

Proof. Let (t, {’t}, P, b.) be a reference probability system, and let x be
the corresponding solution to (3.3)-(3.4). Let vt (2"2)-IVW(xt), which is $’t-
progressively measurable and bounded since VW is bounded. From (3.3)-(3.4)

(3.11)

x, x + [g(xr) + vr]dr +

x + [g(x) + v]dr + b

which defines b.
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Since v. is bounded, we may use Girsanov’s theorem [27] to obtain a probability
measure p0 under which b is a Brownian motion. In fact,

Under this change of measure

(3.12)
Exexp[ljoT J {I[jaTe(xt)dt E exp (e(xt) "lvtl)dt

where E indicates expectation with respect to p0.
On the other hand, by (3.7), (3.11), the definition of vt, and Ito’s rule

(3.13)

T

W(XT) W(x)= foo [ e(xt) +

T

Combining (3.12) and (3.13) yields

t(xt)dt exp Ex exp

which implies

(3.14)
T-oc

logE exp g(xt)dt A + lim
e 0

e T
logE exp -e

(where we anticipate the existence of the limit which follows below).
Now note that by assumption, there exists K < o such that

-Kv/1 + Izl 2 <
-W(z) <_ KV/1 + izl2 Vz E

(The constant K depends on e, which is fixed throughout this section.)
By Lemma 3.1 and Jensen’s inequality (E(Z-1) >_ (EZ)-1) this implies that

there exists C1 < o such that

1 -< Eexp [--W!XT)]Cle for all T<

Employing this in (3.15) yields the result.
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4. Proof of Theorem 3.3. In this section we prove existence of , W(x) sat-
isfying the dynamic programming PDE for the average cost per unit time control
problem governed by (3.6) with running cost function (3.8). This is done by a rather
standard technique. We consider the corresponding infinite-horizon discounted-cost
problem, with small discount factor p > 0. Let Wp(x) be the value function for this
problem. Once an a priori bound for Wp(x) is found, Theorem 3.3 is obtained by
letting p --. 0 and using standard estimates for elliptic PDEs.

We begin by considering finite-horizon discounted-cost problems. Let

T

(4.1) J(T, x; v.) Ex e-tk(t, vt)dt,

where t is the solution to (3.6) with o x.
LEMMA 4.1. For every T > 0, x, y E 1Rn, and v 142
() J,(T,x; .) <_
(b) IJp(T, x; v J(T, y; v )1 < p+c

Proof. Part (a) is immediate from (4.1). To prove (b), let . and .Y denote the
solutions to (3.6) with initial data x, y. By applying Ito’s rule to I-tYl2,
one easily obtains, using (3.1c),

2c f0
Gronwall’s inequality gives

Since

IJ(T,x;v.)- J(T,y;v.)l < IlVglIE 71T
we get part (b).

LEMMA 4.2. For T’ > T,

IJp(T’,x; v.) Jp(T,x; v.)l < p-(llgll + =llv.l12)(-T -T’).
Lemma 4.2 is immediate from (4.1). Let us fix a bound Ivtl <_ M for the

controls, and denote by M the corresponding class of admissible control processes.
Later we will show that the choice of M is arbitrary if M is large enough (in fact,
if M >_ (22)-1B with B the bound for VW in Theorem 3.3). Consider the value
function

(.2) y(T,x) su J(T,; .).

By results about parabolic PDEs and a verification theorem, V is a solution to the
dynamic programming equation

(4.3)

Ov A- pVp -7-4 xVp + max [(g(x) + v) VVp + k(x, v)],OT

y(o, x) =o.
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Moreover, Va and the partial deviatives VaT Vax, Vax:j, i, j 1,..., n, are continu-
ous. See Appendix B. Since g _> 0, Ja(T, x; 0) _> 0. Hence, Va _> 0. Lemma 4.1 implies
the estimates

(4.4)

Lemma 4.2 implies that

(b) IVVal _<
p+c

(4.5) [V(T’,x) Vo(T,x)I <_ p-(l[e[I + "M)(e-oT- e-OT’).
By (4.5) the limit

(4.6) Wa(x lim Vo(T x)

exists. Moreover, Wa(x is the value function for the corresponding infinite-horizon
discounted control problem. From (4.4), for each x, y E tin

(4.r)
(b) ]Wa(x Wa(y)l <_ IlVell Ix yl.

p+c

Since the right side of (4.7b) is less than c-ll]Vglllx- Yl, the bounds in (4.7) do not
T’depend on p. (They also do not depend on e.) If in (4.5) we set T + h and let

h + 0, we obtain

(4.8) I(V )TI <  - (llfll / /:M:)e-’T.
Thus (V)T tends uniformly to 0 as T --+ oo. Since Vp satisfies the PDE (4.3), AxVa
is also bounded uniformly on compact sets. (This bound may depend on e but not
on p.) From (4.6)-(4.8) and standard estimates for semilinear parabolic PDEs (see
Appendix B) Wp E C2(n) and satisfies the steady-state form of (4.3):

 wo=
(4.9)

+ max [(g(x) + v). VWo + k(x, v)].

Let B c-*llvell. By (4.7b), IVW(x)[ <_ B for each x e n. We take M >_
(2-2)-1B. Then the maximum in (4.9) is an interior max, achieved at v(x)
(272)-llVWa(x)I. Thus, Wa satisfies the same equation as (4.9), with max over

Ivl _< M replaced by max over n.
Proof of Theorem 3.3. Fix any "reference point" x0 E 5. By (4.7), pWa(xo is

uniformly bounded and the functions Wa(x Wo(xo) are equicontinuous. If we use
Ascoli’s theorem there is a sequence Pm tending to 0 as m + cx such pmWa. (xo)
tends to a limit and Wo. (x)- Wo. (Xo) tends to a limit W(x) uniformly on compact
sets. We have

(4.10)
(b)
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for all x,
is also bounded on compact sets independent of rn. This implies a Hblder estimate
for VWo. which is uniform on compact sets. Standard arguments for elliptic PDEs
[19] then give that W E C2(n) and that , W satisfy (3.7). This proves Theorem
3.3.

Remark 4.3. According to Corollary 3.4 (or Theorem 3.5), the number A in
Theorem 3.3 is unique. We anticipate that W(x) is unique up to an additive constant,
i.e. that the corresponding solution exp(e-1W) to equation (2.4) is unique up to
a positive multiplicative constant. (This has since been proved. See [42, Thm. 3.1].)

Remark 4.4. In all of the results of 3, the assumption that t(x) is bounded in
(3.1a) can actually be omitted. The remaining assumptions in (3.1a) imply that, for
suitable

0 _< t(x) _< C(1 + x ).

The fact that there exists K(x) such that Exltl <_ K(x) for any solution t of (3.6)
corresponding to v. 1/YM depends on assumptions (3.1b) and (3.1c). In the definition
(4.1) of Jo let us replace t by go, where go(x) is bounded:

0 _< g0(x) _< C(1 + Ixl),

go(x) g(x) if Ix[ p--1.

In Lemma 4.1, inequality (a) is replaced by

pJo(T,x; v.) <_ C(1 + K(x)),

and inequality (b) is unchanged. In (4.7), inequality now becomes

0 <_ pWo(x <_ C(1 + K(x)),

and inequality (b) is unchanged. The proof of Theorem 3.3 proceeds as before, with
(4.10a) replaced by

0 _< A <_ C(1 + K(xo)).

The proofs of Corollary 3.4 and Theorem 3.5 relied on boundedness of VW, which
still is true without boundedness of g(x).

Remark 4.5. The crucial step in the proof of Theorem 3.3 was to get a priori
bounds for pWo and VWo (see (4.7)). The bound 0 _< pWo <_ [Igll was immediate.
We conjecture that it suffices to assume (3.2) only outside some bounded set in order
for a bound IVWol <_ B to hold. This is seen to be correct in dimension n 1 by the
following argument. Assume that gx(x) _< -c < 0 if Ixl _> r. Since Wo(x is bounded
on E there exist sequences tending to -t-oe for which (Wo)x(x) tends to 0. To obtain
an a priori bound for (Wo)x it sumces to do so at inflection points (local maxima and
minima of (Wo).) At an inflection point x0 with Ix01 _< r, we have (Wo)(zo) O.
Since

(4.11)
e 1

W (W,) + (x)(W) + (W) +
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and pWp is bounded, the quadratic formula gives a bound I(Wp)x(xo)l <_ B1.
Ix01 > r, we differentiate (4.11). Then Z (Wp)x satisfies

If

(4.12) pZ Z+gZ + gZ + ZZx + .
If Z has a positive local maximum at x0, then Zx(xo) 0, Z(xo) <_ O. Hence
(p+c)Z(xo) <_ (p-g(xo))Z(xo) <_ Ilgxll. A similar estimate holds if Z has a negative
local minimum at x0. Thus

(4.13) I(W ) I <_ I1  ,11
Ixlp+c

This is the same bound obtained in (4.7b). When combined with the bound above
for Ix[ <_ r, we obtain I(Wp)xl <_ B for some B which does not depend on p.

5. Limiting deterministic control problem. We now let the noise intensity
in (3.6) tend to 0. Thus, in (3.6) we consider e --+ 0 with "7 > 0 fixed. The formal limit
of the stochastic control problem in 3 is then a deterministic problem with average
cost per unit time criterion. The deterministic analogue of (3.7) is the first-order PDE
(5.3), and the cost potential function W(x) turns out to be a solution of (5.3) in the
viscosity sense [4], [15].

Let us indicate the dependence of A, W(x) on e in 3 and 4 by relabelling them
as , W(x). According to (4.10)

By Ascoli’s theorem, there is a sequence e, - 0 such that as m (x

WO(x).

The convergence of Wm is uniform on compact subsets of n. It is easy to show
that W(x) is a viscosity solution to the corresponding first-order PDE

(5.3) A max [(g(x)+ v). VW(x)+ k(x v)].

See [15, Chap. 2]. Thus we have the following theorem.
THEOREM 5.1. There exist )o >_ 0 and Lipschitz continuous W such that W is

a viscosity solution of (5.3).
By (3.8) the PDE (5.3) can be rewritten in the form

(5.4)
1

g(x) vw(x) / 0 Ivw(x) / e(x).

If B is a Lipschitz constant for W, then in (5.3) the max over v E n can be replaced
by the max over Ivl <_ M, if M _> (2-y2)-lB. For W obtained as the limit of W’
as above, we can take B c-llVgll according to (5.1). Since W is a Lipschitz
continuous viscosity solution, the gradient VW(x) exists and (5.3) holds for almost
all x E n However, W may not have continuous first-order partial derivatives, and
thus W need not be a solution to (5.3) in the classical sense. By Corollary 5.3 below,
A is unique.
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Let us now consider the deterministic control problem which is the formal limit
of the stochastic control problem in 3 as --. 0. The state dynamics are

(5.5) dt
dt

g(t + vt

with 0 x. The control v is a bounded Lebesgue-measurable function of [0,
such that Ivtl <_ M for some fixed (sufficiently large) M. As in the discussion above,
we require that M _> (22)-1B, with B a Lipschitz constant for W. Let )4;0M denote
the set of all such admissible deterministic control functions v.. The running cost
function is k(x, v) given by (3.8).

THEOREM 5.2. If W is a Lipschitz continuous solution to (5.3), then for every

[/0T(5.6) W(x) sup k(t,vt)dt + W() AT.
v.

Proof. Denote the right side by I//(T, x). Then is the value function of the
finite-time-horizon control problem on 0 _< t <_ T, with running cost function k- A0
and terminal cost function W. Moreover, 1 is Lipschitz continuous on [0, To] n
for any To < x. See [15, 4.8]. Therefore, by standard results [15, Chap. 2], W is a
viscosity solution of the time-dependent PDE

WT~ --IriS-- Mmax [(g(x)+ V)" Vxi/V + k(x, v) o]

with initial data

Y(O,x) W(x), x e n.

However, W is also a (stationary) Lipschitz continuous viscosity solution to (5.7)-
(5.8). By a uniqueness theorem for viscosity solutions, (see [5, Tam. 7.2] among
others) W W. []

Since M is arbitrary, subject only to M >_ (272c)-111Vg11, in (5.6) we can replace
/Y by the class 4; of all bounded measurable v.. Let us consider the finite-time
control problem, with running cost k(x, v) and zero terminal cost. Let V(T,x) be
the value function

T

(5.9) V(T,x) sup k(t,vt)dt.
v. EW

COROLLARY 5.3.

(5.10) o lim
1 VO(T,x

uniformly for x in any compact set.

Proof. Let Ixl _< R and v. E V. By assumption (3.1c) there exists R1 _> R
such that Itl _< R1 for all T >_ 0. In (5.6) we divide by T and let T -- c. Then
T-iW(x) tends to 0, and T-W(t) tends to 0 uniformly with respect to v.
and x 0 in the ball {Ixl _< R}.
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Let us next show that A0 is the maximum of the infinite-horizon average cost per
unit time criterion J(x; v.), which is the deterministic version of (2.6). Let

(5.11) J(x; v.) limsup
1 fo

T

T - k(’ vt)dt"

We have the following theorem.
THEOREM 5.4. For any x E

(5.12). Ao sup J(x;v.).

Proof. For any v. E W and T < c (5.6) implies that

T

(5.13) wOtO Wo o AoT, (x) <_ k((t,vt)dt + T.

By dividing by T and letting T - cx, we obtain as in the proof of Corollary 5.3 that
0 is no less than the right side of (5.12). It remains to show that v. can be chosen
so that J(x, v.) is arbitrarily close to/0. Fix x, with Ixl <_ R. As in the proof of
Corollary 5.3, Itl _< R1 for some R1 >_ R. Given 5 > 0, by Corollary 5.3 there exists

To such that

(5.14) IV(To, y)- ATo < for lYl <- R1.

On [0, To) we choose vt such that

T 5Tok(t, vt)dt > V (To, x)
2

which by (5.14) exceeds ATo- 6To. Proceeding by induction on N 1, 2,..., we
choose vt on INTo, (N + 1)To) such that

N+l)To 5T0, > V (To, o) >  To  To.
J NTo

By summing from 0 to N- 1,

k(t vt)dt > o 5.
NTo o

Since k(x, v) is bounded, this implies that

jO(x; v.) >_ o 5

as required. [:]

Robust regulation of nonlinear systems. Let us now relate these results
to recent work on robust control approaches to the disturbance attenuation problem
for nonlinear systems. See [22], [23], [37], for example. As mentioned earlier, we
consider in this paper only the complete state observation case. We claim that, from
the viewpoint of robust regulation, a key question is whether 0 0 or/k > 0. Since
we have assumed that the running cost function t(x) is bounded, our results are not
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immediately comparable with those in robust control in which (x) is quadratic. In
order to make this comparison, some "cut-off" argument is needed. See the comments
at the end of the section. By (3.8), when A 0 the inequality (5.13) becomes

(5.15) [e(t0) 721vtl2ldt + Wo (OT) <-- W(x)

for every deterministic control function v and T < c. Inequality (5.15) is called a
dissipation inequality in robust control theory. Whether A0 0 or A0 > 0 depends on
the parameter . We note that if W(x) has a minimum at some point x*, then for
the initial data x* the dissipation inequality (5.15) implies that for each v. and
T

(5.16) e()dt 2lvt]2dt.

For quadratic g(x), (5.16) is a similar condition in robust control theory corresponding
to bounding an L2-operator norm by . See [2]. Typically, in robust control theory
x* is a point about which the system dx g(x)dt without disturbances is globally
asymptotically stable. Let us assume that x* 0 and that l(0) 0, g(x) > 0 for
x 0. We recall that the PDE (5.3) can be rewritten as

1 ]2 g(x(5.4) 0 g(x). VW + IVW + ).

Since W is a Lipschitz cominuous viscosity solution to (5.4), it satisfies (5.4) in the
usual sense for almost all x (in fact, at each x where W is differentiable). This
implies the following necessary condition for A0 0:

(5.17) g(x) 2]g(x)[2 for all x e n.
If (5.4) holds in the usual sense at x, then (5.17) is immediate from the inequality

1 2

+  vW(x) 0.

By continuity of g and g, (5.17) then holds for all x.
In dimension n 1, (5.17)implies that (5.4) has a classical solution W e C()

with A 0. In fact,

(.S) W2(x -e(x)- e (sn x)(4(x)- (x)).
Since g(0) g(0) 0, we have W2(0) 0. By (3.1), g(x) << g2(x) as Ix] and
hence W2(x) is bounded. In fact, W2(x) 0 as Ix] . For x > 0

1- 1-

Since g(x)is bounded and
Similarly, Wx(x) 0 as x

is bounded below, the last term tends to 0.
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If 0 0, then (5.4) is just the steady-state form of the time-dependent PDE
(5.7) satisfied by the value function V(T,x). Corollary 5.2 says in case A0 0 that
T-1V(T,x) tends to 0 uniformly on compact sets as T - oc. Under suitable further
assumptions it should be true that V(T, x) tends to a Lipschitz continuous viscosity
solution W(x) as T --, . However, we have not proved any result of that kind.

If/0 > 0, then according to Theorem 5.3 there is a control v. for which average
cost per unit time accumulates at a rate arbitrarily close to 0. The dissipation
property is violated by the appearance of the term /T on the right side of (5.13).
If W(x) has a minimum at the reference point x* 0 and/0 > 0, then W cannot
be differentiable at 0. Indeed, if W is differentiable at 0, then 7W(0) 0. Since
(0) 0, this implies 0 0 by (5.4).

Example 5.5. Let n 1, g(-x) -g(x), t(-x) t(x) with t(O) O, t(x) > 0 for
x O. Suppose that, for x > O, t(x) -g2(x) has a positive maximum at a unique
point xl. Let

(5.19) /o max[g(x) 7g(x)] (Xl) 72g2(Xl).

We define W(x) by

and for x > 0

w(o) o, w(-x) w(x),

+

(5.20) a(x) 1 if 0 < X Xl
-1 if x > xl,

[(x)
Then W is continuous except at x 0 and satisfies (5.4). At x 0, W jumps, with

w (o+)
Let us rewrite (5.4) as

,o + H(x, VW) O,

1
H(x,p) -g(x) p -- ]pl 2

Since H(x, p) is concave in p, in dimension 1 the derivative W of a viscosity solution
W(x) can have positive jumps but not negative jumps. See [15, 2.8]. Thus, W(x)
defined above is a viscosity solution. As in the discussion following (5.18), W(x) is
bounded. In fact, since c(x) -sgn x for Ixl > Xl, Wx(X) --+ 0 as Ixl--+ c.

Remark 5.6. As already noted in Remark 4.4, the assumption that f(x) is bounded
in (3.1a) can be omitted. In dimension n 1, if tx(x) is bounded but not t(x), then
in (5.18) one cannot expect that W(x) --, 0 as Ixl-- oc. If Ig(x)l-lf(x) tends to
limits as x -- +c, then the elementary argument below (5.18) shows that W(x)
tends to the same limits.

In robust control theory, typically f(x) is taken to be quadratic. Of course, a
quadratic does not have Vg(x) bounded; hence a different result must be expected.
This is seen from the following simple example.
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Example 5.7. Let n 1, g(x) -cx, g(x) Kx2. The value function V(T,x)
for the finite-time-horizon problem (with /V replaced by /y0 in (5.9)) is quadratic
in x. If c22 > K, then V(T, x) tends to a limit W(x) kx2 as T . Moreover,
W(x) satisfies (5.4) with A0 0. On the other hand, if c272 < K, then V(T,x)
explodes at some time T* < x, and there is no infinite-horizon, average cost per unit
time control problem.

One can reintroduce average cost per unit time control problems by a "cutoff"
procedure, in which quadratic g(x) is replaced by bounded functions which agree with
g(x) on large bounded sets. Of course, the optimal average cost per unit time must
tend to infinity as the cutoff is relaxed. We illustrate this idea in Example 5.7. For
R > 0 let

When g(x) -cx,

Kx2

gR(X) KR2

(K-c272)x2

eR(x) 72g2(x) KR2 c2y2x2

When c272 < K, this is maximum when Ixl- R. By (5.19), A A (K-c272)R2,
which tends to infinity as R oc. On the other hand, if c272 > K then A 0 for
every R > 0.

This example suggests the following kind of result. If t(x) is unbounded, with
t(x) growing quadratically as Ixl oe, then one should look for a critical value 71 of
the parameter 7 with the following properties. If 7 > 71, then a dissipation inequality
like (5.15) should hold with W(x) a quadratically growing viscosity solution to (5.15)
for ,0 0. On the other hand, if 7 < 71 then the optimal average cost per unit time

A for cutoff problems should tend to infinity as R

6. Infinite-horizon risk-sensitive control. In the remainder of the paper,
we return to consider risk-sensitive control problems of the kind mentioned in the
introduction. The format will be similar to that of 3-5. The present section is
concerned with a rather general problem formulation, without proofs. The method of
dynamic programming leads, in a formal way, to a nonlinear analogue of the eigenvalue
problem in 2. By making a logarithmic transformation we arrive (again formally)
at an Isaacs equation for a stochastic differential game, with average cost per unit
time payoff criterion. In 7, we put these ideas on a rigorous basis for a particular
class of risk-sensitive control problems governed by SDEs. Then in 8 we consider
deterministic limits.

We now consider controlled Markov processes xt with state space E, with the
dynamics of xt affected by a control process ut. We require that ut U, where U is
a given "control space." Proceeding formally, for each constant control u U, the
process xt should be Markov with generator G". More generally, given a stationary
Markov control policy u(x) belonging to some admissible class, xt is a Markov process
with generator Gu-. For further discussion of controlled Markov processes in this
general setting, see [15, Chap. 3].

Let L(x, u) be a running cost criterion, and e > 0 a parameter (in this section
and 7, e is fixed.) Given a stationary Markov control policy _u, we may refer to the
formal results in 2 with G G- and

e-(x) L(x, u(x)).
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From (2.1) we anticipate that (under suitable hypotheses) the limit

(6.1)
T---(x

log Ex exp e- fU-(xt)dt

exists and that -1A_ can be interpreted as the dominant eigenvalue of the linear
operator G + e- lu__.

The goal is to find a stationary Markov control policy u* which minimizes A-*
Again proceeding formally, we let

(6.2) A inf Au-.

Then dynamic programming and the separation of variables technique in 2 lead
formally to a nonlinear eigenvalue problem for A and a positive eigenfunction (x)"

(6.3) e-lA(x) min[GUt(x)+ e-lL(x, u)(x)].
uEU

This is done via the heuristic (T, x) exp(e-lAT)t(x), where (I,(T, x) is the value
function for a finite-time-horizon control problem of minimizing the exponential cost
criterion

[ ]Ex exp e- L(xt,ut,)dt

The dynamic programming equation for the finite-time problem is

(6.4) OT min[G (I) + e- L].
uEU

As in 2, we make the logarithmic transformation W- e log 9, and let

(6.5) 7-/u (W) e exp(-e-W)G[exp(e-W)].

Then (6.3) becomes

(6.6) A min[7-/u(W) + g].
uGU

By introducing another (maximizing) control v in the same way as in 2, (6.6) becomes
the Isaacs equation for a stochastic differential game. The game payoff has the average
cost per unit time form

(6.7) J lim sup
1 f0

T

T--, -Ex K(t, ut, vt )dt,

with suitably defined running cost function K(x, u, v). Here t denotes the state of
the game at time t.

Let us describe explicitly the game and the form of the Isaacs equation (6.6) only
for controlled nondegenerate Markov diffusions in in. Proceeding in a way similar
to 2, we suppose that xt is governed by an SDE

(6.8) dxt f(xt, ut)dt + 1/2 a(xt, ut)dbt,
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with initial data x0 x. Here b. is an n-dimensional Brownian motion, and the
matrix a act is positive definite for all z E ffin, u E U. (In the rigorous treatment
in 7 we will take U compact, a (272)-1I with assumptions on f (z, u), L(x, u)
corresponding to those made for g(z), e(x)in 3.)

For the dynamics (6.8), the family G of generators becomes (see [15, p. 173])
for C2(/in)

(6.9) GU(x) - E aij(x, u):xj + f(x, u) V(x).
i,j--1

By arguing as in 2 (see (2.7)-(2.9)) we obtain for W elog the PDE

(6.10) A- min max aij(x u)Wxj (x)
uEU vEK

i,j--1

+(f(x, u) + v). VW(x) + If(x, u, v)l
a-l(x,u)(6.11) K(x, u, v) L(x, u)

2
v v.

Equation (6.10) is the Isaacs equation for a stochastic differential game with state
governed by the dynamics

(6.12) dt [f(t, ut) + vt]dt + e1/2 a(t, ut)dwt,
with wt some Brownian motion and with payoff J as in (6.7). Note that (6.12) is just
a "controlled" version of (2.10). Formally, A corresponds to the upper game value,
since min max and max min cannot in general be exchanged in (6.10). However,
if a a(x), then the minimizing control u and the maximizing control v appear
separately in (6.10). In that case, the Isaacs condition min max max min holds. In
particular, this is true when a is constant, as in 7.

7. Ergodic stochastic differential game. In this section we will put the for-
malism in 6 on a rigorous basis, in a special case in which the matrix a in (6.10)
is constant. In fact, we assume as in 3 that a era’ (2-72)-1I, with assump-
tions on f(x, u),L(x, u) similar to the assumptions (3.1) made earlier. Then in 8 we
will consider the deterministic differential game obtained in the limit e -- 0 and its
relation to some questions in robust nonlinear control theory. The results of these
two sections are analogous to those of 3-5, and we will simply adapt those proofs
whenever possible.

We make the following assumptions.

(7.1) The control space U is compact.

The functions L, f are continuous on 5 x U.
class C(/Rn) for all u e U, and

Moreover, L(., u), f(., u) are of

(a) L, VL are bounded and L >_ 0;

(b) f is bounded;

(c) There exists c > 0 such that for all x, y n, U U,
(x y) If(x, u) f (y, u)] < -clx yl 2.
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As in the discussion following (3.1) these assumptions are considerably stronger
than needed to prove the results that follow. However, they make the proofs much
less technical. In particular, the assumption that L is bounded can be omitted, using
arguments similar to Remark 4.4. The assumption that f, L are of class Cl(:tn) can
be weakened to assume Lipschitz conditions for f(x, .), L(x, .) which are uniform in u.

Equation (6.3) for A and (x) now has the form

+ min[f(x, u). V(x) + e-lL(x, u)(x)].
uEu

Equivalently, equation (6.6) for A and W(x) now takes the form

(7.4)
A + 4--filVW(z)l

+ m[f(x, u). VW(x) + L(x, u)].

This is the same as (6.10) with a- (2,2)-1I and

(7.5) K(x, u, v) L(x, u) "21vl 2.

THEOREM 7.1. There exist A E :t, W C2(n) such that (7.4) holds. More-
over, there exists B (not depending on ) such that IVW <_ B and 0 <_ A <_ B.

We defer the proof of Theorem 7.1 to later in this section. The proof will give B
c- IIVxLII with constant c as in assumption (7.2c). Instead, we will first demonstrate
that A has an interpretation as the minimum cost for the risk-sensitive control problem
introduced in 6. We recall from 3 the definition of reference probability system.
Given any reference probability system, (t, {S’t}, P, b.), let L/ be the set of 5rt
progressively measurable processes with values in U.

We consider the dynamics given by (1.1)"

(7.6)

1_

dxt f(xt,ut)dt +
x0 x,

dbt

where bt is the Brownian motion of the reference probability system and u.
This system has a strong solution [28].

A candidate for an optimal control policy is defined as follows. By a measurable
selection theorem [11, Appendix B], there exists a Borel measurable U-valued function
u* on n such that

(7.7) u*(x) argunn[f(x u). VW(x) + L(x, u)]

for almost all x n. By a result of Veretennikov [38] as extended in [30], the SDE

dx f(x, u* (x )dt + dbt
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has a strong solution x.
THEOREM 7.2. Let A, W be as in Theorem 7.1, and let z be any reference prob-

ability system. Then
(a) For every u. E lg,

T--+cxa
log Ex exp --1 L(xt, ut)dt

u*(x), with u*(b) Let u x as in (7.7), (7.8). Then

A-e lim
1 [ fo

T

T-+oo
log Ex exp e-1

Proof. The proof of (a) is nearly identical to the proof of Theorem 3.5. However,
in place of (3.13) we have

(r.9)
W(x) > fo [A- L(xt, ut) + "y21vtl2]dt

+V/2"2 foo
T

vt" dbt

Thus, we have inequality rather than equality due to the minimization in (7.4). The
inequality passes transparently through the remainder of the proof.

For part (b), equality holds in (7.9) with probability 1, and this gives the desired
equality exactly as in the proof of Theorem 3.5.

Remark 7.3. Given any Borel measurable, U-valued Markov contol policy u, let
ut u(xt) where xt is the solution to the SDE (7.8) with u* replaced by u and with
initial data x0 x. If the limit A- in (6.1) exists, then by Theorem 7.2(a), A < A-.
Without knowing that the limit exists in (6.1) Theorem 7.2(a) provides a slightly
weaker result in which limit is replaced by lim inf. Theorem 7.2(b) asserts that )__u*
exists and that A-u* A. This justifies calling u* an optimal Markov control policy.

We now turn to the proof of Theorem 7.1. The proof will be structurally similar
to the proof of Theorem 3.3 given in 4. However, the addition of the minimizing
controller u. implies that we must now work with differential games which have two
controllers (or players), u. and v.. In contrast, in 4 we had a control problem with
one (maximizing) controller.

In parallel with 4, we start with the finite-time-horizon, discounted-cost differ-
ential game with dynamics

(7.10)
d{t [f ({t,ut) + vtldt + dwt

and payoff

T

(7.11) Jp(T, x; u., v.) E e-PtK(t, ut, vt)dt
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where K is given by (7.5). We use the Elliott-Kalton definition of value of a differ-
ential game [8] as extended to stochastic differential games by Fleming and Sougani-
dis [16]. We summarize this definition. Given a reference probability system #
(t2, {$-t }, P, w.) let/g denote the set of all U-valued, St-progressively measurable pro-
cesses u.. As in 4, let ]/YM denote the set of all n-valued S’t-progressively mea-
surable process v. such that Ivtl < M. The processes ut, vt are defined for all t > 0,
although in the present discussion only 0 < t < T is relevant. Of course, L/ L/
and }/M / depend on #. A strategy for the minimizing controller is a mapping
M -’ with the following property. For each t > 0, vr r for almost all

r e [0, t] almost surely implies [v.] =/3[.] for almost all r e [0, t] almost surely.
This set of strategies is denoted by AM. Similarly, a strategy for the maximizing
controller is a mapping c 5/ - /M with the corresponding property. This set of
strategies is denoted by OM. The lower value is defined to be

Vep(T, x) inf sup Jp(T, x; [v.], u.),

and the upper value is

V(T, x) sup if Jp(T, x; u., a[u.]).
OM

The Isaacs PDE for this differential game is

(7.14)
pV + VT 4,2 AV + [f(x, u) VV + L(x, u)]

+ max Iv-VV- 721vl]
I,I<M

with the initial data

(7.15) V(O,x) =0.

Results about semilinear parabolic PDEs (see Appendix B) imply that (7.14)-(7.15)
has a classical solution fZ(T,x), with all partial derivatives IFT, x, lFx, i,j
1,...,n, continuous. Moreover, VxV is bounded. In order to obtain a priori esti-
mates which do not depend on e, p, or T for small p and large T, similar to (4.4) and
(4.5), we first show that (/(T,x) equals the upper value V(T,x).

LEMMA 7.4. V V.
Proof. We show first that 1 <: Vu and then the opposite inequality. We consider

the control policy h(t, x) defined by

(7.16) h(t,x)= arvl<_M[maxV VIF(T t,x) 72lv[2].

Then h is continuous on [0, T] Kin, and h(t, .) satisfies a local Lipschitz condition
uniformly for 0 < t _< T. See [13, p. 170]. For each u. E U define a* [u.] by

dt [f(t, ut) + h(t,;)]dt +
(7.17)

dwt
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(7.18) a*[u.lt h(t,).

Since h is continuous, bounded, and locally Lipschitz in x, the strong solution to
(7.17) exists. Then (7.14) and (7.16)imply, for any u.

e Ax?(T- t,)0 <_ -VT(T t, t p?(T- t, t +

+f(, ut) VxV(T- t,) + L(t, ut)

+h(t,). VI(T t,)

Since VV is bounded, V(T,x) grows at most linearly as
Feynman-Kac formula and the fact that V(0, x) 0, we conclude that

By using the

V(T,x) <_ if Jp(T,x;u.,t*[u.]).

Therefore, V(T, x) <_ V(T, x).
In order to prove the opposite inequality ?(T,x) >_ V(T,x) it suffices to show

that, given any strategy c E OM and 5 > 0, there exists u. b/such that

Jp(T, x; u., a[u.]) _< V(T, x) + .
We will define ut to be piecewise constant in time, via a discrete time Markov control
policy in a way similar to [15, p 183]. Let r be a partition of [0,T] into intervals
[tj_l,tj],j 1,...,j0 with0 to < tl < < tyo T. Adiscrete-timeMarkov
control policy is

U--- (Ul,... ,__ujO),

where uj is a Borel measurable function from K/n into U. Given initial data 0 x,
a strategy a and a discrete time Markov control policy u, we define ut inductively as
follows. For 0 _< t < tl, ut Ul(X). Then (7.10) is solved on [0, tl] with vt a[u.]t
to obtain t. Proceeding by induction, if ut and the corresponding solution t have
been defined on [0, tj] we let

Ut ttj+ (tj) for tj <_ t < tj+l.

We then extend t to [tj,tj+l] as the solution to (7.10) on [0, tj+l] with the initial
data 0 x. By uniqueness of strong solutions to (7.10), this is consistent with the
definition of t on [0, tj]. We will choose in the following way. In addition to a
partition r of [0, T] we will partition/R into disjoint Borel sets Ao, A1,..., Ako. We
will also choose ujk U and let

ttj(y) Ujk if y Ak.

These partitions are chosen as follows. Since V(T, x) is a solution to (7.14),

(7.e0) + m][f(x, u). Vx + L(x, u)]



RISK-SENSITIVE CONTROL ON AN INFINITE TIME HORIZON 1905

for all v such that Ivl _< M. As in the proof of [15, Lem. 4.7.1], we choose R suf-
ficiently large and A1,... ,Ak0 a partition of the ball {lyl -< } into disjoint Borel
sets of sufficiently small diameter. Let A0 {lYl > R}. The points uj U,j
1,..., j0, k 1,..., k0 are chosen such that

f(y, ujk) Vxf/(T t, y) + L(y, ujk)

< [f(y, u)" VxV(T- t, y)+ L(y, u)] +

for all t E [tj-1, tj], y Ak, where r/ > 0. We choose ujo U arbitrarily. By (7.20)
and (7.21)

-pV(T t, t (dT(T t, t + 72Ax(T t, t

+(f(tj, ut) + vt) VV(T t, t) + K(t, ut, vt) < 7,

where vt a[u.]t if tj <_ t <_ tj+l and It <- R. By an argument in [15, p. 184], if r/
and the lengths of the intervals [tj, tj+l] are chosen small enough,

TM

(7.22) V(T,x) > E e-PtK(t, ut, c[u.]t)dt

+Exe-prR V(T 7R,

where TR is the smaller of T and the exit time of t from the ball {lyl R}. Since U
is compact and Ivtl <_ M, we have from Cauchy-Schwartz, together with

I1)(s, Y)I -< C(1 + Ivl), V(O, v) o,

that for suitable C,

(7.23)

J(T, x; ., [.]) <_ V(T, x) + -f

+T(IILll + 2M2)p(TR < T)

+C[E(1 + 11)2]1/2 [P(-R < T)]1/2.

Now -R < T if and only if I1. , where is the sup norm on [0, T], Moreover,
I1 <_ I1.11, By standard estimates for SDEs (see, for example, [28, 1.5] or [15,
Appendix D]), the sum of the last two terms in (7.3) is ess than 5/2, if R is large
enough. (The choice of R does not depend on u. or a.) Then (7.19) holds, which
completes the proof.

The assumptions (7.2) are essentially the same as assumptions (3.1), with the
exception that the bounds are now uniform in the new control variable u.. Thus by
the same methods as employed in 4 we obtain the same bounds on Jo and V. In
particular, we have the following lemma.
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LEMMA 7.5. For every T > 0, x, y E n, u. bl, v. "VM we have

(a) pJp(T,x; u.,v.) <_ IILII;

(b) IJp(T,x;u.v.) Jp(T,y;u.,v.)l < IIVxLII
p+c

(7.24) (c) 0_< pV(T,x) IlL]I;

p+c

(e) ](V)TI
_

p-le-pT(I]L]] + 72M2).

Let M* (2c)-IIVLI], and note that by (7.14) and (7.24d)

max Iv .VV -721v[ 21 max Iv .VV -72[v[2].
vKt [v[_M

Therefore, the solution V- Vp of (7.14)-(7.15) does not depend on M, if M _> M*.
Moreover, in the definition (7.13) of upper value, OM can be replaced by the set O of
all bounded strategies a.

Since Vu is a classical solution to (7.14), its first-order partial derivative in T and
first- and second-order partial derivatives in x are continuous. By (7.24e) the limit

Wp(x) lim V(T,x)T--cx

exists. Furthermore, the same argument used for (4.9) shows that Wp C2(5n)
satisfies

AW,(x)(x)=

+i[f(x, u). VW(x)+ L(x, u)]

max Iv. VWp(x)

In fact, Wp(x) is the upper value of the infinite-horizon, discounted-cost game (with
T c on the right side of (7.11)). Moreover, by (7.24c) and (7.24d)

(7.26)
() 0 pWp IIL[I,

(b) IVWpl IIV LII
p+c

To complete the proof of Theorem 7.1, we proceed just as in 4. By Ascoli’s
theorem, there is a sequence Pm 0 as rn -- oc such that pmWp, (x) tends to some
number A and, for fixed x0, Wpm (x)- Wp. (xo) tends to a limit W(x) uniformly on
compact sets. Moreover, W C2(i’) and A, W satisfy (7.4). Finally, (7.26) implies
that [VW]_<Band0_<A_<Bif

(7.27)
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8. Limiting deterministic differential game. Following the same procedure
as in 5, we take deterministic limits as e - 0. We indicate the dependence on
of A, W(x) in 7 by writing A Ac, W Wc. According to (7.26), the following
inequalities corresponding to (5.1) hold:

C

We again use Ascoli’s theorem to find a sequence , -- 0 such that as m -- oc

(s.e) A A, W(x)

uniformly on compact subsets of /in. Moreover, W is a viscosity solution to the
first-order PDE

Ao min[f(x, u). VW(x)+ L(x, u)]
uEU

+ max Iv. VW(x) 21v12].
E:l

The analogue of Theorem 5.1 is therefore the following theorem.
THEOREM 8.1. There exist A _> 0 and Lipschitz continuous W such that W

is a viscosity solution of (8.3).
The PDE (8.3) can alternatively be written as

A i[f(x, u). VW(x)+ L(x, u)]

1
+ lVW(x)l=.

As noted in 5, the maximum over v E /in in (8.3) can be replaced by the maximum
over Iv <_ M, provided M >_ (2-),2)-1B with B a Lipschitz constant for W.

Equation (8.3) is the Isaacs equation for a (deterministic) differential game, with
average cost per unit time payoff. Before considering this game, let us first consider
some corresponding finite-time-horizon games. There are two controllers (or players).
The minimizing controller chooses a Lebesgue-measurable function u., with values in
U. Let L/ denote the set of such u. The maximizing controller chooses v.
with ]A; the set of Lebesgue-measurable v. such that Ivtl < M as in 5. The state
of the game at time t is t, and the state dynamics are

(8.4) dt
dt f(t’ ut) + vt,

with 0 x. The running cost function is K(x, u, v) (see (7.5)). The payoff for the
finite-time-horizon game is

(s.5) P fo K(t, ut, vt)dt + Z(),

where Z is a Lipschitz continuous terminal cost function. Later in the section we will
consider two choices for Z, namely, Z W and Z 0.

This differential game has a value in the Elliott-Kalton sense. The Elliott-Kalton
value is defined in terms of strategies, as follows [8]. A strategy for the maximizing
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controller is a map c from/g into 142 which is "progressive" in the following sense.
For each t > 0 and u., . E/g, ur r for almost all r E [0, t] implies that c[u.]
c[.]r for almost all r [0, t]. This set of strategies is denoted by A. Similarly, a
strategy for the minimizing controller is a progressive map " I/YM -- L/. Let O
denote this set of strategies. For a game with payoff P, let us denote the upper and
lower values by u val P and t val P. Thus

(8.6)

u- val P sup iunofPAO
M

g- val P inf supP.

If u val P t- val P, this is called the Elliott-Kalton value and will be denoted
by val P. For the finite-time game (8.4)-(8.5) we also denote upper and lower values
by Wu and We.

The Isaacs PDE for the finite-time game formulated above is

(8.7)
WT mi_n.[f(x, u) VxW + L(x, u))

EU

max Iv. VxW- /2[vl2

with initial data W(O,x) Z(x). Considered as functions of (T,x), the upper and
lower values W,We are both Lipschitz continuous viscosity solutions to (8.7) with
the initial data. This follows from a dynamic programming principle, as was proved
by Evans and Souganidis [9]. Uniqueness of viscosity solutions (see [30]) then implies
that the finite-time-horizon game has a value W(T,x), where W We W is the
unique Lipschitz continuous viscosity solution to (8.7) with W(0, x)= Z(x).

Several other definitions of value have been given for differential games; see, for
example, [10], [18]. All "reasonable" definitions of value lead to the same (unique)
viscosity solution of (8.7) with the initial data. Such results can be proved by
method of Souganidis [35].

THEOREM 8.2. IfW0 is any Lipschitz continuous viscosity solution of (8.3), then
for every T <

(8.8) W(x)= val [foT K((t, ut, vt)dt + W(T)] AT.

Proof. We replace the running cost function K by K- A and proceed as in the
proof of Theorem 5.2. I’1

We next consider zero terminal cost, and let

T

(8.9) V(T, x) val K(t ut, vt)dt.

By the same proof as for Corollary 5.3, we get Corollary 8.3.
COROLLARY 8.3.

(8.10) A= lim 1V(T,x)
T--,cx

uniformly for x in any compact set.
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Let us next show that A is the value of the infinite-time-horizon differential game
with payoff

(8.11) jo lim sup - K(t, ut, vt)dt.
r---

THEOREM 8.4 For every initial state x E Kt’, A val jo.

Proof. Let us show that the lower value g- val jo equals A. The same technique
shows that u- val jo Ao. Given a strategy/ for the minimizing controller and
an initial state x o, we write in (8.11) jo jO(x;/3, v.), where the control u. is
chosen by ut [v.]t for all t _> 0. We begin by showing that, given any initial state
x, strategy/3, and 5 > 0, there exists v. E )/Y/such that

(8.12) J(x;/, v.) _> A 5.

To do this, we proceed in a way similar to the proof of Theorem 5.4. We choose R1
and To such that (5.14) holds for lYl -< R1 (where /o is replaced by A and V is
given by (8.9)). Since V(T, y) is the value of the finite-time game with initial state
y, given a strategy/3 we have

T
vt)dt (To y)(8.13) sup K(r/t,/[v.]t >_ yO

V.

where zh is the solution to (8.4) with 700 y and ut -/[v.]t. We first take y x,/, and choose vt on [0, To) such that

K(t Z[v.]t,vt)dt > V(To, x) 5To
2

Then we proceed inductively to define vt on INTo, (N + 1)To) as follows. Suppose
that vt has already been defined for 0 _< t < NTo. Define the strategy ]N as follows.
For each z. WM,

N[Z.]- /3[z.N], where

ztN= I vt if0<_t<NTo,

Zt-gTo if NTo <_ t.

In (8.13) we take y VTo,/ /3N, and vN such that

> V(To o) To
2

Let vt- vtN+NTo for NTo <_ t < (N + 1)To. Then

N+I)T
K(t, 3[v.]t, vt)dt > V(To, gTo) 5To

To 2

As in the proof of Theorem 5.5, we obtain (8.12). Thus

(8.14) t val jo inf sup j0 >_ Ao.
f
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It remains to prove the opposite inequality. Given an initial state x and 5 > 0,
we again consider R1, To such that (5.14) holds for lYl -< R1. For each y with lYl -< R
there exists a strategy Y such that

T 5To(8.15) sup K(, f[v.]t, vt)dt <_ V(T, y) + --,
V.

where t is the solution of (8.4) with 70 y and ut Y[v.]t. We define a strategy as
follows. For 0 _< t < To, [v.]t X[v.]t. Proceeding inductively, suppose that [v.]t
is defined for 0 _< t < NTo. In (8.14) let y YN ONT and for NTo <_ t < (N + 1)T0
let

VNt Vt NTo, t >_ NTo.

Then

N+ To 5T0sup K(t, [v.]t, vtldt <_ V(To, gTo) -t- -v. JNTo

As before we obtain

(8.16) g val jo inf sup jo <_ Ao. [:]
f v.

Robust regulation of nonlinear systems (continued). At the end of 5, we
related our results on risk-sensitive control to robust control approaches to disturbance
attenuation. The results in 5 apply if a control policy _u for the minimizing controller
is given, and we take g gU__,/= l_ with

g-(x) f(x, u(x)), gU-(x) L(x, u(x)).

If gU_ and gu_ satisfy (3.1), then according to Theorem 5.1 there is a pair Ao,_u, WO,_
satisfying the PDE (5.3). Moreover, Ao,u is the limit of the corresponding long-term
growth rate ’- in (2.1) as e - 0. From Theorem 7.2(a), Ae,_u >_ A and hence
o,_ _> Ao. If o,_ Ao for u _U_U*, then we call _u* an optimal Markov control policy.

A formal application of dynamic programming suggests that one should take

(8.17) u*(x) e arg m_in[f(x, u). VW(x)+ L(x, u)].

However, this formalism encounters evident, well-known difficulties. For example, the
gradient VW(x) of the viscosity solution W to (8.3) may not exist for all x.

In view of these difficulties, let us merely state and prove some results which hold
in a "classical" setting. Suppose that W E C2(n) is a solution to (8.3), with VW
bounded. Moreover, suppose that _u* is Lipschitz continuous on each compact subset
of and satisfies (8.17) for all x E n. Let

g*(x) =g(x,u_*(x)), g*(x) L(x,u*(x)),k*(x,v) g*(x)- ",/21v[2.

By (8.3) and (8.17),

A g* (x). VW(x)+ max Iv. VW(x)+ k* (x v)]
vEiRn
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which is just equation (5.3) with g g*, k k*. Let t satisfy (5.5) with g g*.
Formula (5.6) with k k*, A0 Ao is now elementary, since W is a classical solution.
An optimal v.* in (5.6) is given via the Markov control policy v_* (x) (2-),2)-lVW(x),

*=V*namely, v (), where t is the corresponding solution to (5.5) with x We
have not assumed that g* satisfies (3.1c). However, the corresponding assumption
(7.2) implies that given R > 0 there exists R1 such that Itl _< R whenever I1 <- R.
As in the proof of Corollary 5.3,

A0= lim 1vO,(T,x),
where V* V for the above choices g*, k*. We then define, as in (5.11),

(x; v lim sup
1 fjo

T
k*jo,

T-, - (0 vt)dt.

The proof of Theorem 5,5 is unchanged. Thus

A= sup jO,(x;v.).

Moreover, (5.13) holds: for every T and v. E M

W() W(x) <_ It* (t) -,),21vtl2]dt + AT.

In particular, if A 0 this is the dissipation inequality (5.15).
Appendix A. Proof of Lemma 3.1. Let . be a solution to (3.6), and let k :> ]x[.

We define the stopped process .k by

Tk inf{t" Itl _> k},

J" t ift_<-k,

By the continuity of VF and the boundedness of ., we see that

ot
VF(). dw

is a square-integrable martingale. Therefore, by Ito’s rule

(A.1) ExF(t F(x) + Ex dF()dr

where

Note that, when Ivl _< M,

_<

5 A + + v).

KF(kt
V/1 + Ikt 2

e
(n + K)(1 +
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There exists Ro < oe such that h(x) < 0 if Ixl > Ro. Thus, letting C2 maxlxl<Ro h(x),
we have by (A.1)

(A.2) ExF(kt)
_
F(x)+ C2t for all t <

Since C2 is independent of k, applying Fatou’s lemma to (A.2) yields

(A.3) gxF(t) <_ F(x) + C2t.

Applying Ito’s rule to the original system, (3.6), one has

() (x)+ d()d
(A.4)

+72Kfo V/1F(r)]
But since (A.3) holds for arbitrary K, the last term in (A.4) is a square-integrable
martingale. Therefore, taking expectations, one obtains

(A.a) Ef() f(x)+ Ex d()d.

Note that (3.1c) implies that there exists m < such that x.g(x) -cx2 +mx]
for all x. This yields a C3 < such that

5F [C- co F]F.

Employing this inequality, Tonelli’s theorem, and (A.5) yields

Then, by Jensen’s inequality, we have

f() ()+ {ca-og()}f()a.

A simple Lyapunov argument then yields the result.

Appendix B. In this appendix we review, without prooN, some results about
semilinear parabolic PDEs which were used in 4 and 7. Consider an initial value
problem for a PDE of the form

OV
(B.1) i)T

with the initial data

(B.2)

In (4.3), we have D (4y2) -1 and

(B.3)

+ pV DAxV + H(x, VxV),

v(0, x) =0.

p>0,D>0

max [(g(x)+ v) .p + k(x, v)]H(x, p)
IriS_M
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with k(x, v) t(x) -721vl 2, while in (7.14) we have the same D and

(B.4)
H(x, p) min[f(x, u) p + L(x, u)]

uEV

+ max [v .p /21v12].

Assumptions (3.1a) and (3.1b), (7.1)-(7.2)in both cases lead to

(b)

XIH(x,p) H(x’ P)I < C1(1 + Ipl)lx- I,

IH(x,p) H(x,p’)l C(1 + Ixl)IP-P’I
for suitable constant C1, C2. If H is as in either (B.3) or (B.4), then there exists
"classical" solution V(T,x) to (B.1)-(B.2) with all partial derivatives VT, Vx,,
i,j 1,...,n, continuous and ]VV bounded. In fact, these partial derivatives
are Hhlder continuous on every compact set. (In 3 and 4 this solution is denoted
by Vp(T,x), and in 7 by Y(T,x)..) This existence theorem can be obtained from
standard existence theorems for parabolic PDEs (see [17], [29], or [31]) by making
some approximations. This procedure is described in detail in [30], and hence we
merely sketch it here. If in addition to (3.1a) and (3.1b), the function g is bounded,
then on the right side of (B.hD) one can replace C2(1 4-Ixl) by some constant C3.
Existence of a classical solution then follows from [31, Thm. 14] or corresponding
results in [17], [29]. One then approximates g by a sequence of bounded functions
with (gk)x bounded independent of k 1, 2, If we use the control interpretation
(4.2) for the correponding solution Vk(T,x), a uniform bound for IVVkl is obtained.
(Unlike the bound (4.45) the bound may depend on T.) Once a uniform bound for
IVVk] is obtained, estimates for solutions of linear parabolic PDEs imply Hhlder
estimates for all partial derivatives (Vk)T, (Vk)x,, i, j 1,..., n, which are uniform
on every compact set. Finally, the uniform bound 0 _< Vk G p-1 i111 holds. We obtain
V as the limit of Vk as k -- oc through some sequence.

The Hhlder estimates for V,, V, are also uniform with respect to p and T,
since the bound IVxV G IIVfllc- holds independent of p and T according to (4.45).
(Here Y Vp in the notation of 4.) Therefore, the limit W Wp as T -- oc is
classical solution to the semilinear elliptic PDE (4.9).

For 7, with H as in (B.4), one proceeds similarly by making bounded approx-
imations fk to f, with (fk) uniformly bounded. A uniform bound for IVVkl can
be obtained by using the interpretation of Vt(T, x) as the upper value of a stochastic
differential game (with f replaced by f in (7.10).)
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PARALLEL GRADIENT DISTRIBUTION IN UNCONSTRAINED
OPTIMIZATION*

O. L. MANGASARIANt

Abstract. A parallel version is proposed for a fundamental theorem of serial unconstrained op-
timization. The parallel theorem allows each of k parallel processors to use simultaneously a different
algorithm, such as a descent, Newton, quasi-Newton, or conjugate gradient algorithm. Each proces-
sor can perform one or many steps of a serial algorithm on a portion of the gradient of the objective
function assigned to it, independently of the other processors. Eventually a synchronization step is
performed which, for differentiable convex functions, consists of taking a strong convex combination
of the k points found by the k processors. A more general synchronization step, applicable to convex
as well as nonconvex functions, consists of taking the best point found by the k processors or any
point that is better. The fundamental result that we establish is that any accumulation point of the
parallel algorithm is stationary for the nonconvex case and is a global solution for the convex case.
Computational testing on the Thinking Machines CM-5 multiprocessor indicates a speedup of the
order of the number of processors employed.

Key words, parallel optimization, gradient methods, unconstrained optimization

AMS subject classification. 90C30

1. Introduction. In this work we are interested in parallel algorithms for solving
the unconstrained minimization problem

(1) rain f(x),
xER

where f is a differentiable function from the n-dimensional real space Rn into R. The
basic idea behind our approach is to assign a portion of the gradient Vf of f to one
of k processors, let each processor perform one or more steps of a serial algorithm
on its portion of the gradient, and then synchronize the processors eventually. The
synchronization consists of taking a strong convex combination of the k points found
by the k processors when f is convex. For nonconvex f, the best point found by the
k processors can be taken, or any other point with a lower value of f will work.

The fundamental theorem we intend to parallelize is related to some classical
forcing function theorems given in [7], [4], [11] that establish convergence for a wide
class of algorithms. Such algorithms typically consist of a direction choice followed
by a stepsize choice. The combined direction-stepsize choice generates a decrease in
the objective function that forces the eventual satisfaction of an optimality condition,
namely, the vanishing of the gradient. Direction choices include descent directions,
Newton, quasi-Newton, and conjugate directions. Stepsize choices along the chosen
direction include minimization, finding the first stationary point, interval stepsize,
the Armijo stepsize, and others. Related algorithms, wherein the objective function
is sequentially minimized with respect to certain variables, include the serial algorithm
proposed by Warga [16] for a strictly convex function in each block of variables and
in which the function is sequentially minimized for each block of variables, and the
coordinate descent methods of Tseng [15] and Luo and Tseng [8]. Other parallelization
schemes are discussed extensively in [2].
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We note that our parallelization proofs are direct extensions of those for general
serial algorithms. However the resulting parallel algorithms are quite general and
have significant theoretical and computational implications. For example, the paral-
lelization proposed here played an important role in establishing the convergence and
computational results of the parallel back-propagation algorithm of neural networks
[9], the parallel variable distribution algorithm for unconstrained and constrained
optimization [6], and the parallel multicategory discrimination problem [I].

We give now an outline of the paper. In 2 we establish two serial convergent
algorithm theorems, 2.1 and 2.2 (SCAT1 and SCAT2), which cover many uncon-
strained direction-stepsize algorithms that are suitable for parallelization. We also
give a number of specific instances of well-known algorithms satisfying conditions of
these theorems. In 3 we establish a number of parallel convergent algorithm theorems
that utilize the serial algorithms. In Theorem 3.1 (convex PCATI), which covers the
convex case, each processor takes one step of any serial algorithm covered by SCAT1
or SCAT2, and then a strong convex combination (positively weighted average) of all
the points is taken as the next iterate. Corollary 3.1 (nonconvex PCATI) differs from
convex PCATI in that the synchronization step consists of taking the best point found
by the k processors or searching for a better point. By better we mean, of course,
lower f value. Corollary 3.2 (partially asynchronous nonconvex PCATI) allows par-
tial asynchronization among the k processors in the sense that each processor is free to
perform any number of steps of the serial algorithm that is desirable (say, until further
improvement in each processor is very small), followed by a synchronization step that
consists of taking the best point or searching for a better one. Theorem 3.2 (partially
asynchronous nonconvex PCAT2) combines, in a manner similar to SCAT2 for the
serial case, the direction and stepsize choices of Corollary 3.2 into a simpler and more
general forcing function condition (20). However, this theorem is not as suggestive
of an explicit computational scheme as the partially asynchronous nonconvex PCATI
of Corollary 3.2. In the concluding section we report briefly on computational expe-
rience with parallel gradient distribution algorithms on multicategory discrimination
problems [I] and on publicly available test problems [6] from the constrained and
unconstrained testing environment CUTE [3]. Computations were carried out on the
Thinking Machines CM-5 multiprocessor. Speedup efficiency depended on problem
size and number of processors employed (2 to 32) and averaged between 129/0 and
20%.

We now briefly describe our notation. The sequence {zi}, 0, 1,..., will
represent iterates in the n-dimensional real space R generated by some algorithm.
For g 1,..., k, z Re will represent an n-dimensional subset of components

k ngof z, where -g= n. The complement of g in {1,... ,k} will be denoted by ,
x xand we write x , ), g 1,...,k. For a differentiable function f:Rn ---+ R,

Vf will denote the n-dimensional vector of partial derivatives with respect to x,
and Vf will denote the n-dimensional vector of partial derivatives with respect to
xt Rhe, g 1, k. For k points y in R, Ekj=l AJYJ, such that Aj _> 5 > 0 and

kj= Ay 1, is said to be a strong convex combination of the points yj, j 1,..., k.
If f has continuous first partial derivatives on R, we say f Cl(_Rn). If f has
Lipschitz continuous first partial derivatives on Rn with constant K > O, that is,

]lVf(y) Vf(x)]l <_ K]]y x]] ’fix, y

we write f e LCk(Rn). Here and throughout, ]1" denotes the two norm, that is,

Ilzll (zTz) 1/2 for z in a finite-dimensional real space of unspecified dimension.
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2. Serial convergent algorithm theorems. We begin first with a simple se-
rial convergent algorithm theorem (SCAT1) for the solution of the unconstrained
minimization problem (1). The theorem is related to some classical forcing function
theorems given in [7] and [4] that establish convergence for a wide class of algorithms
that consist of a direction choice followed by a stepsize choice. The decrease in the
objective function forces the satisfaction of an optimality condition, namely, the van-
ishing of the gradient. Before stating and proving SCAT1 we adapt the definition of
a forcing function [10, p. 479] for our purposes.

DEFINITION 2.1 (forcing function). A continuous function a from the nonnegative
real line R+ into itself such that a(0) 0, cr() > 0 for > O, and for the sequence
of nonnegative real numbers {i}

is said to be a forcing function on the sequence {i}.
Some simple typical examples of forcing functions are

c, c2, max{a(), a2()}, min{al(), a2()} and a2(a()),

where c is a positive number and al () and a2() are forcing functions. We now state
and prove SCAT1.

THEOREM 2.1 (serial convergent algorithm theorem i (SCAT1)). Let f E CI(R’).
Start with any xo Rn. Given xi, stop if Vf(xi) 0, else compute xi+ from a di-
rection di and stepsize ) as follows. Choose direction di such that

-Vf(x)Td >_ x(llVf(x)l]),

where or1 is a forcing function on {lIVf(xi)ll}. Choose stepsize such that

(3) xi+ xi + Aidi

and

(4) f(x) f(x+) >_ a2(-Vf(xi)Td) >_ 0,

where a2 is a forcing function on the sequence of nonnegative real numbers
{-Vf(xi)Tdi} for bounded {di}. Then either {xi} terminates at a stationary point x,
that is, Vf(x) 0, or Vf(2) 0 for each accumulation point (2, d) of the sequence

Proof. The algorithm terminates at an x only if Vf(x) 0. Suppose now it does
not terminate and that {(xij, dij)} --. (2, d). Since f is continuous, limj_ f(xi)
f(). By the stepsize condition (4), the sequence {f(xi)} is nonincreasing and has an
accumulation point f(2), and hence converges to f(2). By (4) and the continuity of

0 lim f(xi) f(xi+) >_ .lim ag.(-Vf(xi)Tdi) a(-Vf()Td) >_ O.

Hence Vf(2)T= O. But by the direction condition (2)

0---Vf()Td lim Vf(x)Tdj > lim ox(llVf(x)ll)---l(llVf()ll) o,

Hence Vf(2) 0. 0
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We note that the boundedness condition on {di}, which does not restrict Theo-
rem 2.1, was not explicitly used in the proof. However, this condition simplifies the
application of the theorem to specific stepsize choices, such as the first stationary
point and Armijo stepsize choices given below.

We give now examples of direction and stepsize choices that satisfy the assump-
tions of Theorem 2.1.

Example 2.1 (serial direction choices). For f E CI(Rn) and cra forcing function,
a direction di E R’ satisfying any of the following conditions will satisfy condition
(2):

(i) descent direction:

-dTVf(xi) >_ llV/(x)l[ for some a > 0, / > 0.

(ii) quasi-Newton direction:

di -HiVf(xi), Hi Rnx, zTHiz > a[Izll 2 /zER for some a>0.

(iii) conjugate direction:

di -Vf(xi) +

where a is a forcing function on
We note that the conjugate direction conditions of (iii) are satisfied by the Polyak-

Polak-Ribire [11]-[14] coefficient

(6) a

for f C2(Rn) and such that

(X7f(xi) Vf(x_))TVf(x)

(7) / llzll 2 zTv2f(x)z >_  llzll 2 VzRn for some _>c>0.

We also note that the Newton direction d -V2f(xi)-Vf(xi) satisfies (ii) above
under the same condition (7).

We give now stepsize choices that satisfy conditions (3) and (4) of Theorem 2.1.
Example 2.2 (serial stepsize choices). For d Rn and f E C(R), a hi >_ 0

satisfying any one of the following conditions will satisfy conditions (3) and (4) of
Theorem 2.1:

(i) minimum along d:

Aie argmin f(x + ,kd) f LC(Rn);

(ii) first stationary point:

/ki e argmin {lVf(x + ,kdi)Td 0}, f e LCc(Rn)"
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(iii) interval stepsize:

2
O<s_<A_<

pK e2, Ildill < -pVf(xi)Td, f E LCk(Rn)

for some g > 0, g2 > 0 and p > 0;
(iv) Armijo [5, pp. 118-119]"

such that

f(xi)- f(xi + Aidi) > -hAiVf(xi)Tdi for some 5 e (0, 1),

and i > (a(-Vf(xi)Tdi))/(-Vf(xi)Tdi), where
LC(Rn).

It takes a bit of algebra to show that each of the four stepsizes (i) to (iv) above
satisfy conditions (3) and (4) of Theorem 2.1. We omit the details here.

We note that Theorem 2.1 can be written in a more general and simpler but
algorithmically less suggestive form by combining conditions (2) and (4) into the
single condition (8) below. This results in the following theorem, the proof of which
either follows from that of Theorem 2.1 or can be given in a few lines as is done below.

THEOREM 2.2 (serial convergent algorithm theorem 2 (SCAT2)). Let f CI(Rn).
Start with any xo Rn. Given xi, stop if Vf(xi) 0, else determine Xi+l such that

(8) f(xi)- f(xi+l) >_ (llVf(xll),

where cr is a forcing function on {I]Vf(xi)[I}. Then either {xi} terminates at a sta-
tionary point x or each accumulation point . of {xi} is stationary.

Proof. Suppose Vf(xi) 0 for all and that {xij} converges to . Since the
nonincreasing sequence {f(xi)} has an accumulation f(), it converges to f(S:). By
(8) we have that

0 lim (f(xj)-/(zig+l)) > .lira a(]lV/(x)[I > 0.

Hence limj__. I[Vf(xi)ll 0 and Vf(s:) 0.
We note that the full sequences {f(xi)} and {]]Vf(xi)ll} converge if f is bounded

below. We state this as the following corollary.
COROLLARY 2.1 (function and gradient convergence). Let f be bounded below on

the level set S(xo) {xlf(x <_ f(x0)}. Then the sequence {/(xi)} of Theorems 2.1
and 2.2 converges, and limi--+o ][Vf(xi)l] O.

Proof. From (8) the sequence {f(xi)} is nonincreasing, and since {xi} remains
in S(xo), {/(xi)} is bounded below and hence converges. From (8), we have that
lim_ o([[Vf(xi)[I) 0, and hence lim_

We now proceed to establish parallel versions of Theorems 2.1 and 2.2 and other
parallel results.

3. Parallel convergent algorithm theorems. We shall establish in this sec-
tion parallel versions of Theorems 2.1 and 2.2. The importance of these theorems,
PCAT1 and PCAT2, is that they enable each of k processors to perform, on a portion
of the gradient that is assigned to it, one or more iterations of the serial algorithms
independently of the other processors. The processor picks a direction and stepsize
based on the partial gradient assigned to it. A simple synchronization step follows
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in which a new point is generated by a strong convex combination of the k points
obtained by the k processors for the convex case and by using the best, or better,
point obtained by the k processors for the nonconvex case. We first state and prove
Theorem 3.1, our parallel theorem for the convex case. Corollary 3.1 extends Theorem
3.1 to the nonconvex case. Corollary 3.2 further extends Corollary 3.1 by allowing
partial asynchronization by letting each processor take as many steps as desirable.
Finally Theorem 3.2 gives a more general version of Theorem 3.1 for the nonconvex
case. We note here that a referee pointed out that the distribution of the gradi-
ent can also be made with respect to subspaces induced by other decompositions of

Px, 1, k,Rn. For example, the iterate x can be decomposed into x ...,
of x Here P1 Pk are projection matrices (that isinstead of into subvectors x

p2 pi, pT pi, i= 1,..., k) such that Eik_l Pi I.
THEOREM 3.1 (convex parallel convergent algorithm theorem i (convex PCAT1)).

Let f E CI(Rn) be convex on Rn. Start with any xo Rn. Given xi, stop if
Vf(x) 0. con.t X+l fo. dton d Rn .nd tsz R.

n1,... ,k, k=l n. Choose directions d such that

(9) -Vf(x)Td
_

T(IIVf(x)II), g- 1,...k,

where T is a forcing function on {[IVef(x)l]}, g ,...,k. Choose stepsizes
choose A, g 1,..., k such that for , the complement of g in {1,..., k},

(10) f(xi) f(x + Ad, x) >_ #(-Vf(x)Td) >_ O, g 1,... ,k,

where #t is a forcing function on the sequence of nonnegative real numbers {--Vf(xi)Td}
for bounded {d}, t-- 1,..., k. For synchronization, let

k

() [ :> 5 > O, g 1,...,k.

Then either {xi} terminates at a solution x of(l) or, for each accumulation point
(2, ) of {x, d}, 2 is a solution of (1).

Proof. First we show that the sequence {f(xi) } is nonincreasing.

(by convexity of f)
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Hence

k

(14) f(xi)- f(xi+l) >_ 5E#e(-Vef(x)Tde) >_ 0,
e=l

and the sequence {f(x)} is nonincreasing.
Now the sequence {x} of the PCAT1 algorithm terminates only if Vf(x) 0,

in which case x solves (1). Now suppose that it does not terminate and that
{(x dis)} --* (2, d). Since f is continuous, limj_o f(xs) f(2). Hence the non-
increasing sequence {f(x)} has an accumulation point f(2), and consequently the
sequence converges to f(2). By (14) and the continuity of #, t? 1,... ,k, we have
that

0 lim (f(xs)-
j cx

k k

Td 5E (-Vf(2)Td) > 0"> 5 lim E #e(-Vef(xisj s) #
e=l

Hence Vf(2)Td 0. But by the direction condition (9)

0 Vf()Td lim Vf(xis)Tdis
k k

=1 =1

Hence Vef() 0, e 1,..., k, and consequently Vf(5:) 0 and solves (1).
We note that the convexity of f was needed in (13) in the proof above, as well

as to show that the stationary point generated by PCAT1 is a global solution of

minzRn f(x). However, it is easy to extend Theorem 3.1 to nonconvex f by changing
the synchronization procedure (11)-(12) to one that takes the best of the points found
by the k processors or a better point. We state this as the following corollary.

COROLLARY 3.1 (nonconvex parallel convergence algorithm theorem 1 (noncon-
vex PCAT1)). Theorem 3.1 holds for nonconvex f, with a resulting stationary point,

if the synchronization procedure (11)-(12) is replaced by the following:
For synchronization, find Xi+l such that

(15) f(xi+l)

_
min f(x + )idi, x).
l<<k

Proof. The only changes needed in the proof of Theorem 3.1 in order to apply
it here are the following. Replace 6 with 1/4 in (14) and the string of inequalities of
(13), which establish the monotonicity of {f(x)} through the convexity of f, with
the following:

1
f(x) f(x+l) _> [f(xi)- f(x + Ad, x21,... ,x )1

+...+[f(xi)-f(x,...,x ,x +Aidi)] (by (15))
k

1
>_ - E #e(-VeI(xi)Td).



PARALLEL GRADIENT DISTRIBUTION 1923

We note now that partial asynchronization of the k processors for the nonconvex
PCAT1 is possible if we allow each of the k processors to take as many steps as desired
until, say, they encounter slow _convergence, provided we terminate each processor
t, t- 1,..., k, at a point (y, xi) such that

(16) f(y, x) <_ f(x + Afdi, x), *- 1,... k,

where , t 1,..., k, satisfy (10). Such an inequality is easily satisfied, for example,
when each processor takes a desired number of steps in Rn determined by any of

xt x) atthe standard serial algorithms described in 2 on the function f( i, starting
(x + Aidi,t * x). After these parallel steps are performed by each processor, then an
eventual synchronization step is needed that consists of determining Xi+l such that

(7) f(xi+l) <_ min f(y x).
l<<k

We summarize these procedures as the following partially asynchronous algorithm.
COROLLARY 3.2 (partially asynchronous nonconvex PCAT1). Theorem 3.1 holds

for nonconvex f, with a resulting stationary point, if the stepsize choices (10) and
synchronization procedure (11)-(12) are changed to the following.

Partially asynchronous stepsize: Choose y, t 1,...,k, such that for , the
complement of in {1,..., k, },

(18) f(x) f(y, x) >_ #(-Vf(xi Tdi) >_ 0, g= 1,...,k,

where # is a forcing function on the sequence of nonnegative real numbers
{-Vf(x.,)Tdi} for bounded {d$}, g 1,... ,k.

Comment: Inequality (18) is easily implemented by satisfying (16) and (10).
Synchronization: Find xi+ such that

(19) f(x+ <_ min f(y x).
l<<k

Proof. The only changes needed in the proof of Theorem 3.1 in order to apply it
here are to replace 5 with - in (14) and the string of inequalities of (13) that establish
the monotonicity of {f(x)} by using (18)and (19) as follows:

(by (19))

By combining the direction (9) and stepsize (18) choices of the partially asyn-
chronous nonconvex PCAT1 of Corollary 3.2 into a single forcing function condition
(20) below, we obtain Theorem 3.2, which is a simpler and more general theorem than
PCAT1 of Corollary 3.2. We omit the proof, which is similar to that of Theorem 2.2.

THEOREM 3.2 (partially asynchronous nonconvex PCAT2). Let f E C1(/n) on
Rn. Start with any xo Rn. Given x, stop if Vf(x) 0, else determine x+ in the
following manner.
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Parallel steps: Determine y, g 1,..., k, such that for [, the complement of
in {i,...,k},

(20) f(xi) f(Yi, xi) >- a(llVf(xi)ll), 1,... ,k,

where a is a forcing function on {llVf(xi)l]} for g 1,..., k.
Synchronization step: Choose xi+l such that

(21) f(xi+l) < min f(y,x).
l<<k

Either {xi} terminates at a stationary point x or each accumulation point 2 of {xi}
is stationary.

We conclude this section with the remark that the synchronization step in all the
proposed methods in this section can be further modified if desired. In particular, we
can search along the direction x + A(xi+1 xi), A E R, for a better point than xi+

as the next iterate and replace xi+ by this better point. All the convergence results
remain valid because of the forcing function arguments used to establish them.

4. Conclusion and numerical results. We have given a number of paral-
lel versions of fundamental convergence theorems for unconstrained minimization.
These basic results enable k possible massively large, parallel processors to perform
on portions of the gradient what one processor performs on the entire gradient in a
serial algorithm. The direction choices in these theorems include many of the pop-
ular directions (gradient, quasi-Newton, Newton, conjugate gradient) and stepsizes
(minimization, first stationary point, interval, Armijo). Note that each processor can
apply direction and stepsize choices different from those of the other processors. A
synchronization step is then used to obtain a strongly convex combination of the k
points obtained by the k processors for the convex case, or alternatively the best of
the k points or a better point can be taken as the next iterate for the convex as well
as the nonconvex case.

Numerical implementations of parallel gradient distribution algorithms have been
carried out in [1] and [6] on the Thinking Machines CM-5 multiprocessor. In these im-
plementations, inexact quasi-Newton minimization was used in each parallel processor
so as to satisfy (16). Each processor was allowed to take a number of steps before syn-
chronization. The synchronization consisted of searching the affine hull of the points
generated by the parallel processors as well as the current point. The problems solved
in [1] consisted of real-world multicategory discrimination problems, formulated as
unconstrained minimization of piecewise convex quadratic functions with Lipschitz
continuous gradients. Problem size varied between 70 and 140 variables. For these
multicategory discrimination problems, it is most efficient to use as many parallel
processors as there are categories. This happened to be 7 for the problems tested. A
standard measure of efficiency for parallel algorithms is the speedup efficiency, defined
as

time on 1 processor
speedup efficiency

(time on k processors) k"

Thus, a speedup efficiency of 100% means that the time taken by one processor is cut
exactly by a factor of k when k processors are employed. An efficiency of over 100%
indicates that some of the parallel processors that are solving smaller subproblems
have obtained very good points or that the affine hull generated by these points
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spans some very good points. For the multicategory discrimination problems, speedup
efficiency was between 50% and 91%. For more details see [1].

In [6], 30 unconstrained problems from the publicly available CUTE [3] were
tested. Among others, the parallel variable distribution algorithm version PVD0 was
tested, which is equivalent to a parallel gradient distribution algorithm. Problems
solved were between 100 and 1024 variables in size. These problems were solved on 2,
4, 8, 16, and 32 processors, with respective average speedup efficiencies of 129%, 122%,
77%, 44%, and 20%. These figures indicate that for problems of the size attempted,
parallel gradient distribution is capable of producing a speedup equal to or better than
44% of the number of processors used for 16 or less processors. In order to exploit
more fully a larger number of processors, larger problems need to be solved. We
believe, however, that we have demonstrated that parallel gradient distribution can
achieve speedups of the order of the processors employed and hence warrant further
study and testing.
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THE CONTINUUM-ARMED BANDIT PROBLEM*
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Abstract. In this paper we consider the multiarmed bandit problem where the arms are chosen
from a subset of the real line and the mean rewards are assumed to be a continuous function of the
arms. The problem with an infinite number of arms is much more difficult than the usual one with
a finite number of arms because the built-in learning task is now infinite dimensional. We devise a
kernel estimator-based learning scheme for the mean reward as a function of the arms. Using this
learning scheme, we construct a class of certainty equivalence control with forcing schemes and derive
asymptotic upper bounds on their learning loss. To the best of our knowledge, these bounds are the
strongest rates yet available. Moreover, they are stronger than the o(n) required for optimality with
respect to the average-cost-per-unit-time criterion.

Key words, bandit problems, controlled i.i.d, process, stochastic adaptive control, certainty
equivalence with forcing, learning loss, continuous arms
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1. Introduction. In this paper we consider the multiarmed bandit problem
where the arms are chosen from a subset of the real line and the mean rewards
are assumed to be a continuous function of the arms. Prior work on the multiarmed
bandit problem has dealt almost exclusively with only a finite number of independent
arms. One of the early papers on this topic was by Robbins [26] who constructs a con-
sistent (or optimal average-reward-per-unit-time) policy. More recently, the seminal
work of Lai and Robbins [23], [22] addressed this problem with the stronger learning
loss criterion (defined in (5)). They obtained asymptotic lower bounds on the learn-
ing loss and constructed asymptotically efficient schemes that achieved those bounds.
Various extensions of the basic Lai and Robbins formulation have been obtained by
Anantharam, Varaiya, and Walrand [6], [7]; by Agrawal, Hegde, and Teneketzis [2],
[3]; and by Agrawal, Teneketzis, and Anantharam [5], [4]. In [5] the arms are al-
lowed to be dependent, and the dependence is explicitly exploited to improve the
performance. One of the few papers that does deal with an infinite set of arms is by
Yakowitz and Lowe [28]. They consider only the e-learning loss criterion (defined in
(6)), and for this criterion they get a weaker rate than the one obtained in this paper
(Corollary 5.4). However, unlike us, they do not make any continuity assumptions.

Note that the case of an infinite number of arms is much more difficult than
the usual one of a finite number of arms because the built-in learning task is now
infinite dimensional whereas previously it was only finite dimensional. In this paper
we exploit the continuity of the mean reward as a function of the arms to devise a
class of learning schemes based on kernel estimators. We obtain an upper bound on
the almost sure and Lp uniform consistency rates for these estimators. These bounds
strengthen the ones available in the nonparametric regression literature as detailed in
3, and may thus be of independent interest.

Subsequently, using the approach taken in [4], we construct a class of adaptive
control schemes based on certainty equivalence control with forcing and derive asymp-
totic upper bounds on their learning loss. These bounds are not only much stronger

Received by the editors September 16, 1992; accepted for publication (in revised form) July 11,
1994. This research was supported by National Science Foundation grant ECS-8919818.

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madi-
son, Wisconsin 53706-1691 (agrawal(C)engr.w+/-sc. edu).
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than the o(n) required for optimality with respect to the average-cost-per-unit-time
criterion, but are also, to the best of our knowledge, the best rates available to date.

The rest of the paper is organized as follows: In 2 we give the precise problem
formulation. In 3 we concentrate solely on the learning aspect of the problem. We
construct a class of learning schemes and derive an upper bound on its rate of con-
vergence (Corollary 3.4). In 4 we derive various limit laws for "moving averages"
that are needed to obtain the rates of convergence in 3. Finally, in 5 we construct
a class of adaptive control schemes based on the learning schemes of 3, and obtain
upper bounds on their learning loss (Corollaries 5.2 and 5.4).

2. The problem. Consider a (memoryless) discrete-time stochastic system mod-
eled by a controlled i.i.d, process, i.e.,

P(Xn e BIUI,XI,... Un_l,Xn_l, art ) P(X, BIU, u)
(1) P(X1 E BIU1 it)

where {Un, Xn}=1 is the chronological sequence of controls and states. The states Xn
take values in some arbitrary set X, and the controls U are chosen from a bounded
set H C IR. In particular, we will assume that H [A, 1 A] for some 0 < A < 1/2;
any arbitrary bounded subset of IR can be handled easily by a slight modification.
There is a one-step reward, r(Un, Xn), associated with each pair (U,X),n >_ 1,
where r" H ’ - IR. Let m" H -- IR be defined by

rn(it) :-- E[(Un, Xn)IU it] E[(it, Xl)lU1 ],

and let W, := r(Un, X,) m(U,). Then we can write

?"(Un, Xn) m(Un) -- Wn,where E[Wn ]Un u] 0 and

P(Wn e BIU1, Wl, Un-1, Wn-1, Un u) P(Wn BIUn u)
(2) P(Wl e BIU1 u).

Throughout the rest of the paper we shall assume that {Un, Wn} satisfy the following
condition. There exist , so > 0 such that

(3) E[exp(sWn)]Un u] _< exp(282/2) VIsl _< so, u e .
In that case define

(4) a inf{q > 0" there exists so > 0 such that (3) holds}.

Then E[]WI21U u] < a2 for all u e/,/.
The problem is to design an adaptive control scheme -y {’n}n=l, i.e., U

’n (U1, X1, Un- 1, Xn- 1), SO 3S to "maximize" the total reward

n

i:1 i:1 i=1

as n . First note that

J nm* + W,
i=1
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where m* supu re(u). Now if m L/ - IR were known, then for any constant
M > 0, we could construct a scheme 7

M such that

n

> nm* + W-M.
i--1

In the absence of knowledge of m it is desirable to approach this performance as
closely as possible. For this purpose define the learning loss

n

(5) nn E m* ?Tt(Ui)
i--1

Also define the e-learning loss

(6) Ln E I{m* m(U) > e}
i=1

Therefore, more precisely, the problem is to design adaptive control schemes for which
the learning loss (or -learning loss) increases slowly regardless of the actual m. In
this paper we will investigate almost sure and Lp (p > 1) rates for the learning loss
and L rate for the e-learning loss.

Throughout the rest of the paper we shall assume that m"/ - IR is uniformly
locally Lipschitz with constant L (0 < L < ), exponent a (0 < a < 1), and
restriction ( > 0), i.e.,

Let ulL(a, L, 5) denote the class of all such functions.

3. The learning scheme. In this section we concentrate solely on the learn-
ing aspect of the problem as a first step toward the construction of adaptive control
schemes. More precisely, we are interested in choosing the controls {Un} and in con-
structing the estimates {U} based on the observations {m(Un)/ W,} made at those
points, so that m* -m(U) converges to 0 as rapidly as possible. Note that the esti-
mates U need not be the same as the control values Un. In this section we construct
a class of learning schemes and obtain bounds on their rates of convergence. These
bounds are important because they determine precisely how the learning schemes can
be used to design good adaptive control schemes.

First note that the only assumption we have made on the function m is that
it is uniformly locally Lipschitz. Since we do not make any unimodality assump-
tions we will need a "global search" strategy. Moreover, since the function m may
not be differentiable, we cannot use algorithms that rely on the estimation of the
gradient. For both these reasons, the Kiefer-Wolfowitz-type (K-W-type) stochastic
approximation algorithm is not appropriate for the problem at hand. Even with the
unimodality assumption, we would require additional differentiability conditions (ex-
istence, boundedness, continuity of the second derivative) in order to get any rate
of convergence results for the K-W-type algorithms (see Fabian [12], Nevel’son and
Has’minskii [25], Zushner and Clark [21]). Furthermore, the rates of convergence ob-
tained for these algorithms are slower than the ones obtained for the algorithm used
in this paper. This is possibly due to the fact that we are interested in constructing
the estimates U so as to minimize the difference from the maximum, m* m(U,),
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rather than to minimize the actual distance It*-UI from the point of maximum u*.
In fact, a point of maximum need not even exist for the problem considered in this
paper.

Recently, several researchers have studied a variant of the K-W-type gradient
algorithm, which incorporates the global search aspects of simulated annealing algo-
rithms by adding a slowly decreasing noise term. For this algorithm, convergence to
the set of global maxima can be established without any unimodality assumption,
but with suitable differentiability conditions (see [15], [20], [8], [14]). However, to the
best of our knowledge, no results are available on the rate of convergence of these
algorithms.

The learning schemes constructed in this section are based on the approach used
by Devroye [11]. We first obtain a "uniformly good" estimate An of the function
rn, and then use the point of maximum of An as the estimate U. We use a nearly
equispaced control (design)sequence {un} defined below in (7)-(8). This is a natural
choice that corresponds to a progressively finer sampling of [0, 1] along the dyadic
rationals. Note that the equispaced design scheme itself is not a progressive design
scheme, i.e., the set of design points at stage n is not a subset of the design points
at stage n / 1. The nearly equispaced design scheme described below is the best
progressive approximation to the equispaced design scheme in the sense that it visits
the equispaced design at stages n 2m, rn 0, 1,..., which occur earlier than the
successive visits of any other progressive design scheme. Based on the observations
obtained at these points, we estimate the function rn by means of a kernel estimator
defined below in (9)-(11). In Theorem 3.1 we obtain an upper bound (with an ex-
plicit constant) on the almost sure and Lp (p >_ 1) uniform consistency rates of this
estimation scheme. In Theorem 3.2 we show that the above upper bound is also a
lower bound on the in-probability uniform consistency rates of this estimation scheme
for the i.i.d, noise case. This shows us that the rate and associated constant obtained
in Theorem 3.1 cannot be improved in general.

The problem of estimating the function rn b/ IR on the basis of "noisy"
measurements {?7(Un)/ Wn}=l taken at a sequence of points {Un}n=l E has been
extensively investigated in the nonparametric regression literature in statistics. While
the almost sure rate itself is well known in the nonparametric regression literature,
the associated constant is not (see Stone [27]; Mack and Silverman [24]; Hrdle and
Luckhaus [18]; Hirdle, Janssen and Settling [17]). Also see Hrdle [16, Chap. 4,
pp. 89-98] for excellent coverage of results available to date on this nonparametric
regression problem. The identification of a sharp constant associated with this rate
is an important and challenging problem, as evidenced by the work of Fabian [13],
who obtains a constant associated with the in-probability rate for a nonprogressive
design scheme with a piecewise polynomial estimator. In fact, Fabian comments that
specifying the constants in the order of convergence seems difficult for the estimates
considered up to now. One of the key contributions of this section is to provide
precisely such a constant for a kernel estimator, which is one of the popular estimators
considered in the nonparametric regression literature. As explained in 4, we crucially
exploit the structure of the progressive nearly equispaced scheme to obtain the sharp
constant associated with the almost sure rate. The constant corresponding to the
design/estimation scheme considered in this paper is better than the constant obtained

There are other progressive design schemes which visit the equispaced design scheme at stages
n 2m, rn 0, 1,.... The design scheme described in this paper is the "best" progressive approxi-
mation to the equispaced design scheme in possibly a much stronger sense.
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by Fabian [13] for his design/estimation scheme (see the second remark following
Corollary 3.3). Another contribution of the results obtained in this section is to
establish that the same rates also hold both almost surely and in Lp, whereas all of
the papers cited above obtain the rates only in probability or almost surely.

Note that the uniform error between the estimate and the true function rn can
easily be decomposed into the sum of a bias term and a variance term (see (14)
below). The bias term is controlled by the continuity of the function m, while the
variance term is controlled by the "noise" in the measurements and by the choice of
the design scheme. The variance term is essentially a "moving average." Our main
result in Theorem 3.1 on the rate of convergence makes use of some fundamental limit
theorems on these moving averages that are developed in 4.

We use the nearly equispaced design sequence {u,}=l E b/ ,c [0, 1] described
below. For n 1, 2,..., consider the binary representation of n- 1:

(7) n 1 .... bab2bl.

First, choose the points n E [0, 1] to be dyadic rationals with the binary representa-
tion:

(8) gn O.blb.ba

Note that this is the best progressive approximation to the equispaced design scheme
on [0, 1]. The actual design points, un L/ [A, 1 A] c [0, 1], are obtained by
projecting gn onto the control set 5/. Thus

u := (g A (1- A)) V A.

The reason for choosing the actual design points in this manner is to ensure that
asymptotically we get enough observations close to the two boundaries. If we had
chosen L/= [0, 1] and u g, then we would have gotten only half as many observa-
tions in a window centered at one of the boundary points as we would in the interior.
Note that under any deterministic design scheme (such as the one above), {Wn} are
independent by (2).

We use a window estimator which is a special case of the more general class of
Nadaraya-Watson kernel estimators to estimate m. Thus,

(9) Irtn(t Ein=l Khn (t- ti)(frt(ti) + Wi)

where

(10) Kh, (u) h-1K(u/hn),
K(u) I{lu <_ 1/2}

is the window kernel, and {hn} is a sequence of bandwidths to be specified later.
Finally, we choose the estimate U by

U := argmax rhn (u).

Note that ?n is a piecewise constant function with at most a finite number of dis-
continuities. Hence, there exists at least one such argmax. Ties may be resolved in
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some fixed but arbitrary measurable manner. This completes the description of our
class of learning schemes.

In the remaining part of this section we obtain bounds on the rate of convergence
of the above scheme: in Theorem 3.1 and Corollary 3.3 for the estimates rhn, and in
Corollary 3.4 for UT,. Let

doo (rh, rn) sup I(u) rn(u)

be the uniform metric. The following theorem obtains (1) almost sure and Lp rates
of convergence for sup,EulL(,L,6) do(, m), along with a sharp constant, and (2) a
large deviations-type result for P(suptL(,e,6 d(, m) > ) for any > 0.

THEOREM 3.1. For the above window estimator with any bandwidth sequence,
h, such that (i) h is nonincreasing, (ii) nh is nondecreasing, and (iii) A’n’
nhn An for some 0 < a a < 1, A, A > O, we have

(12) lim SUPmeutL(a,L, d(n, m)
< 1 a.s. and in Lp,p 1.

+() ((/))/-+
Also, for the above window estimator with any bandwidth sequence, hn, such that (i)
h 0 as n , and (ii) nhn An’ for some 0 < a’ < 1, A > O, we have

(13) lim
1 1 ( ) 1

,N0 ff log P sup d(n, m) > <
mulL(a,L,5) 8ff2"

Remark. The above theorem can eily be adapted to handle N [a, b] for any- < a < b< . For eachm’[a,b] , m ulL(a,L, 5), simply consider the
shifted and rescaled function ’[A, 1- A] defined by (u) m(a + (u-
A)(b- a)(1 2A)-). Note that

b-a ,mulL(a,L,5)uIL a,L
1-2A b-a

Next observe that (12) holds for any > 0 and 0 < A < 1/2; however, it does
explicitly depend on a and L. Hence, in light of the above discussion, it would be
desirable to choose A arbitrarily smM1.

Proof. Since nh An’ for some 0 < a < 1, A > 0, we cn pick n0 such that
for all n n0, I{u- hal2} > 0 Vu e . Then, for all n n0,

+
EL1Khn(- 5i)

n hli{iu i] < hn/2}(m(ui) + Wi)
il h;lI{]u 5i] ha

i11{lu- 5il hn/2}(m(ui) + m)
EI I{]u- 5l h/2}

Thus,

(14)
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Since hn - 0 as n -- c, we can pick nl >_ no so that h,/2 <_ min{5, A} for all
n >_ nl. Then, for any u E//= [A, 1 A] and n hi, we have

(15) b’=nhn- [lognJ-lI{]u-] h/2}nhn+[lognJ+l-’a.
i=1

Thus, by the condition nhn An’ for some 0 < a < 1, A > 0, it follows that

Eil I{- i] < hn/2} an bn nhn, where by x Yn we mean that
Xn/Yn 1 as n .

Also, for any m ulL(a, L, ) nnd n n, we have

n

i=1
n

(16) < n
[nh + 2(a + 1)([log2 n] + 1)]

-a+l

where the second inequality is established in the appendix. Combining this with (15),
we get for any m ulL(a, L, ) and n nl,

i=lI{[u-i]<hn/2}]m(ui)-m(u)]<- L ()al+2(+l) [lg njl
nhn

Eil I{]U- i hn/2} + 1 1 [log nJ+l
nh

+ 1 +

Let {}L be a permutation of {Wi}L arranged in order of {gi}L. Define
the partial sums of{}i1 as follows:

k

i=j+l

Also let

(19) n an
O_j(k(n
k-j_an

Then
n

(20) E I{lt til hn/2}Wi n,a.
i--1

Putting together (14)-(20) we get that for all n _> nl,

sup d(rh, m) sup sup In(U) m(u)l
tL(,L,6) tL(,L,6)U

L
(21) < (l+yn) +,

-a+l
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Asymptotic bounds on the "moving average" /n,an are obtained in 4. In partic-
ular, by Theorems 4.5 and 4.7 we know that li-n [n,an/n <-- a a.s. and in Lp, p >_ 1,
respectively, where n (2an(log(n/an)+ loglogn)) 1/2, provided an satisfies some
conditions. It is straightforward to check that an nhn + [log2 nJ + 1 satisfies the con-
ditions of Theorems 4.5 and 4.7 whenever hn satisfies the conditions of this theorem.
Finally, we have

3n/bn
(2an(log(n/an) + loglogn)) 1/2

nhn- Llog nJ 1

.. (2nhn(log(n/nh) + log log n)) 1/2

nhn

(22) ( 21g(l/hn) )
1/2

nhn
Combining all of the above, we get (12).

We will now prove the remaining part of the theorem. Let 0 < r/< e be fixed but
arbitrary. Since the bandwidth sequence hn --* 0 and Yn 0 as n -- 0, we can pick
n2 :> nl so that hn/2 <_ min{5; A, (r/(a + 1)/2L(1 + n))l/c}, for all n _> n2. Also, by

> a a Athe condition that nhn A n for some 0 < < 1, > 0, it follows that bn/an 1
as n - oo. Thus, we can pick n3 >_ n so that we have (- ?/2)bn >_ (- )an for all
n _> n3. Then, from (21), we have for all n _> n3

P( sup
\mEulL(a,L,5)

(23) <_ P(Jn,a/an
Substituting n, m,p,t, s,a in Lemma 4.1 by n, an, [nd/anJ + 1, (- 2r), r, (e-

2r/- 2p)/(e- 2), respectively, we have

p(n,an/an >
__

?) <
1 (nd )[ max P(I ~n+1 ,j+an[/an > (e--2r/ 2p))

1--C an [0<y_<n

(24) + max P(IS,+k,/aj+l/an > p)
O<j<n

where c is such that

(25) max max P(iSj,j+al/an > r//4) _< c < 1.
O_j_n l<k<an+l

By Chebyshev’s inequality we have

ae(a + 1)
max max P(ISjn,j+kl/an > //4) <
ojn l<k<a+ (anal4) 2

By the assumptions on h, a nh + [log2 nJ + 1 as n . Therefore, given
any 0 < c < 1, there exists n4 n3 such that (25) holds for all n n4. We now apply
Lemma 4.2 to upper bound the right-hand side (RHS) of (24). Given any ; > a, let
s0 be such that (30) holds. Let e ;s0. Then by Lemma 4.2 we have

p(n ( 2 2xp (
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Similarly, if dp <_ q2s0, then by Lemma 4.2 we have

P(I ~n dp2an
Sj,j+[an/d]+ll/an > p) < 2exp

2anq2

Thus, by choosing d 4 and p 6-/4, we get that for all 6- < ;2s0, < 6-/4, and
n _> n4,

P(n,an/an > 6-- r]) <
1 (nd+1

1-c \an

Thus, by (23) and the above, it follows that

lin --1 logP ( sup d(rTn, m) > 6-) <_
n--,o an \mEuIL(o,L,5)

4exp (_ ((e/2) 2rl)2an
2 )

lim
log(1/hn) ((6-/2)- 2r/)

noo nhn + [log2 n + 1 2q2

Note that the last equality follows from the assumptions on hn. The left-hand side
(LHS) above does not depend on . By letting 0, we get for all 6- <_ q2s0,

/1
lim log P | sup
n--,cx an \mEulL(o,L,5)

6-2
d(?n m) > 6. <

82"

Now dividing by 6-2, taking limits as 6- 0, and finally letting ; a, we obtain (13).

Below, we show that the rate and the associated constant identified in (12) in the
previous theorem are the best possible ones.

THEOREM 3.2. If, in addition to the conditions already imposed on {W}, we
assume that

P(W e BIU u’) P(W1 e BIU1 u), VB, u’, u, n,

then we can also show that (12) holds with equality in probability, i.e.,

( SUPmEulL(c,L,6)_ d(rhn, m) )nlim P _____4__2-(-)- i-l-oh--:i-{/2---a <1 --6- 0 V6- > 0.

Proof. This follows because by choosing m E ulL(a, L, ) to be given by m(u)
-t-[u- c[ for c E [A’, 1 A’] with A < A’ < 1/2, one can show that there exists an

n such that for all n > n,

sup d(rh, m) > sup
ulL(c,L,6) cE[A’,I--A’]

(26)

En I{[c- [ < h/2}L[ cli--1

En__l I{IC- gl <-- hn/2}
[Ein=l I{]c- (zi] <_ hn/2}Wi[]+ -in=_l I{Ic-- il <-- hal2} ]"

Corresponding to the upper bound on the first term on the RHS used earlier in (16),
we have the following lower bound which is also established in the appendix. For all
n>_landub/,

(27) E I{lu-gil < hn/2}Llgi-u > [nhn-2(c+ 1)([log2 nJ + 1)].
-c+l

i=1
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Using (27) and (15)in (26) we get for all n >_ n,

sup do(rhn, rn) > L ()meuIL(a,L,5) a + 1

rn + 8ntn

Llog n] -J--[1 2(c + 1) rthn

1 + [log nJ +1
nhn

+ max
A’nj(1-A’)n n an

where b, _< a,,j _< a, for all 1 _< j < n, n 1, 2, As shown earlier in (17) and
(22), for any e > 0 there exists an n] > n such that for all n _> n],

rn >(l-e)- o-
L ()1

and

tn > (1- e)l/2 ( 21g(1/hn)nh

Thus, for all n >_ n] we get

+ nhn
a

which goes to 0 as n -- cxz by Theorem 4.3. Note that the collection of random
variables {V"} obtained by setting { V/n}=1 {/r? }in=l for Tt 1, 2,... satisfies
conditions (C1)-(C4), but not (C5) (see 4). However, since the RHS above does not
depend on (C5), we can still apply Theorem 4.3, whereas we would need condition
(C5) to obtain the corresponding almost sure result from Theorem 4.3. El

COROLLARY 3.3. For the above window estimator with the bandwidth sequence
hn h(log n/rt) 1/(2a+l), h > O, we have

(28) lim SUPmeIL(’L’e) do (?tn, 7)
_

C(O, L, or, h)
n--,cx lg n )c/(2c+1)

a.s. and in LP,p >_ 1,

where

c+l + h(2c+l)

1/2

Proof. First note that the above choice of hn satisfies the conditions of Theo-
rem 3.1. Moreover,

L ()a (2log(1/hn))+ 1
+

nh

1/2
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L log n
a+l n

2

[-210gh + (2a+l)(logn-loglogn)]l/2+ hn2/(2+l)(logn)l/(.+l
a

(a+l
+a

h(2a+l) n

c/(2c+1)

Remark. Note that the bandwidth sequence {hn } chosen above minimizes the rate
of convergence given by (12). This is so because if h,/(logn/n)
then

L a 2 log(1/h,)1/2 logn
a+ 1 + nh,

a
n

Moreover, the constant c(a, L, a, h) associated with the above rate is minimized by
choosing

h* 2(a(a + 1)/2aL(2a + 1)1/2)2/(2+1).

The minimum value of the above constant, say c*(a, L, a), is given by

]
1/(2ot--F 1)

c*(a,L,a)
L a2a(2c + 1)_a [(20)_2a/(2a+l -}-(2C)1/(2a+1)]"

(+1

Remark. The above constant can be compared with the one obtained by Fabian
[13]. Note that while we consider uniformly locally Lipschitz functions with exponent
0 < a _< 1, [13] considers functions with bounded rth derivative, r >_ 1. Thus
a r 1 is the only case in common between the two papers. In particular, for
a 1 and a 1, our constant reduces to

c*(1 L 1) L1/3 (1/4)1/3 + 21/3
61/3

In comparison, the optimal constant in [13, Thm. 5.4, p. 1359] for the above case

(r 1, s 2) is greater by a factor of r1/3. Also note that while our results hold
both almost surely and in Lp, p >_ 1, those of [13] hold only in probability.

The following corollary establishes the same rates for the sequence U,.
COROLLARY 3.4. For the learning scheme constructed above with the bandwidth

sequence hn h(logn/n) 1/(2+1), h > O, we have

lim
SUPmutL(’L’)(m* m(U))

<_ 2c(c,L,a,h)
n--+cx lg n )c/(2c+1)n

a.s. and in Lp,p >_ 1,

where c(c, L, a, h) is given by (29). Also, for the the same learning scheme with any
bandwidth sequence, hn, such that (i) hn -- 0 as n -- x, and (ii) nhn >_ A’na’ for

A’some 0 < a’ 1, > O, we have

(lim -7-- log P
n--+ oo

sup (m* m(Ur)) > e/ <_
ulL(c,L,5)

for all e > O, for some P(e) > O.
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Proof. Both parts of the corollary follow immediately from Theorem 3.1, Corol-
lary 3.3, and the following observation. Since, rhn(U) maxuu rhn(u),

re(u) m(U) <_ rh,(u) + d(,, m) rhn(U) + d(rhn, m) <_ 2d(rtn, m).

Taking supeu on both sides we get m* -m(U) <_ 2d(rhn, m). [1

4. Limit laws for moving averages. In this section we obtain almost sure
and Lp limit theorems for the moving averages that comprise the variance term in
the analysis of the kernel estimator considered in 3. If the noise were i.i.d, and
the design scheme were equispaced (see conditions (C4) and (C5) below), then exact
almost sure limit theorems are available in the literature for these moving averages (see
Theorem 4.3). These results can be viewed as generalizations of the law of iterated
logarithm. In light of the paragraph following Theorem 4.3, the weaker in-probability
result also holds for the the i.i.d, noise case with the progressive nearly equispaced
design scheme employed in this paper. This identifies the desired rate and constant.
However, in order to get the stronger almost sure results for the progressive nearly
equispaced design scheme, we have to work considerably harder. We first obtain a
coarser constant in Theorem 4.4 and then recover the desired constant in Theorem 4.5,
by applying that result on an appropriately chosen subsequence. This subsequence
argument relies heavily on the exact structure of the nearly equispaced design scheme.
Thus, the specific design scheme plays a crucial role in the analysis, if we desire to
get a sharp constant.

It is also worth noting that the techniques used here to obtain the abovementioned
limit theorems parallel those of de Acosta and Kuelbs [10], by relying on classical
probability inequalities rather than on the strong approximations approach of CsSrg6
and Rvsz [9]. This allows us to obtain results for {W} which are independent
but not necessarily identically distributed. Also, it gives us a way of extending these
results to higher dimensions (obtained in a forthcoming paper [1]), for which the
strong approximation results are not yet available, to the best of our knowledge (see
Mack and Silverman [24]).

In Theorem 4.7 we establish the same rates (with the same constant) in Lp. This
is done by means of a device due to Hoffman-Jorgensen [19]. The proof of Theorem
4.7 can be used more generally for establishing Lp counterparts of in-probability rates.

Throughout this section we will consider a collection of random variables {V/ n
1, 2,... ;i 1, 2,..., n} satisfying some of the following conditions.
(C1) E[Vi] =0 for all n= 1,2,...;i 1,2,...,n.
(C2) {V"}=I is an independent collection for each n 1, 2,
(C3) There exist , so > 0 such that

(30) E[exp(sVin)] <_ exp(;2s2/2) Vlsl _< 0, n 1, 2,... ;i 1, 2,..., n.

In that case define

(31) a "= inf{; > O" there exists so > 0 such that (30) holds}.

(C4) {V n 1, 2,... ;i 1, 2,.,., n} are identically distributed.
(C5) V V for all n 1,2,...;i 1,2,...,n.

Note that under (C1) and (C3), it follows that E[Ivnl 2] <_ a2, and under (C1),
(C3), and (C4), E[Iv n121 Also, note that the collection of random variables
{Wn "n 1,2,... ;i 1,2,...,n} obtained in the previous section with {ITdn}in__
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being a permutation of {Wi}_ arranged in order of {i}--I,T-- 1, 2,..., satisfies
conditions (C1), (C2), and (C3).

For each n 1, 2,..., define the partial sums of the random variables {V/n}=l
by

(32)
k

i=j+l

For m _< n, define

(33) Bn,m "= max max Isjn,j+kl.
O_j_n l<k<(mAn--j)

Note that by setting Vn Wn of the previous section, we get S,k S,k and

Bn,m Bn,m defined in (18) and (19), respectively.
Let {an} be a sequence of positive integers satisfying some of the following con-

ditions:
(A1) 1 _< an <_ n,
(A2) an is nondecreasing,
(A3) n/an is nondecreasing,
(A4) an/ log n ---,

(A5) For some a > 0, na-lan
(A6) For some ar, A’ > O, a 2 An for every > 0.

Finally, let

n (2an(log(n/an) + log logn)) 1/2.

In this section we determine the limiting behavior of {Bn,an/n}.
Below we give two lemmas that will be used to establish the limit theorems. The

first is a minor modification of a maximal inequality due to de Acosta and Kuelbs [10,
Lem. 3.1].

LEMMA 4.1. Let {V/} be a sequence of independent random variables and let

Sj,k ik__j+l V/. Then for every integer n > O, rn > O, p > O, p < n, rn <_ n, and
t>0, s>0,0<a<l,

max P ( j,j+kJ+ll >P(Bn,m > t+s) < P max P(lSj,j+ml > at)+o<_j<1-c[0<_j<_

provided

max max P(ISj,y+aI >_ s/4) <_ c < 1.
O_j_n l<k<mvLJ+l

LEMMA 4.2. Let {V/n} be a collection of random variables satisfying conditions
(C2) and (C3) with a as defined in (31). Given any q > a, let so > 0 be such that
(30) holds. Then for all j >_ O, k >_ 1, and O < a <_ kq2so,

/
P(lj,j+l >_ a) <_ 2exp ,-

Proof. For any 0 < s _< So,

a2

P(sjn,j+k >_ a) <_ exp(-sa)E[exp(sS,j+k)]
exp(-sa)E[exp(sVjn+l)]...E[exp(sVjn+k)]

<exp( kq2s2 )2
sa
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The same upper bound also holds for P(-Sn > a) Optimizing the upper boundj,j+k
over 0 <_ s <_ so, we get the desired result.

The first theorem from [9] gives almost sure rates for the process {B,}_
under conditions (C1)-(C5).

THEOREM 4.3 (CsSrg5 and R6v6sz [9, Thm. 3.1.1]). Let {Vn} be a be a collection
of random variables satisfying conditions (C1)-(C5) with variance a. Let {an} satisfy
conditions (A1)-(A4). Then

lim =cra.s.

If in addition {an} satisfies (A5), then

lim
maXAn<_j<_(1-A)n ISj,j-Fan ,j =cra.s.

fin

for all 0 <_ A < 1/2, 0 < p <_ 1, and an,j satisfying pan

_
an,j

_
an, V1 _< j <_ n, n

1,2,
From the above theorem we immediately have the same rate in probability for

any collection {Vn} satisfying conditions (C1)-(C4) (but not necessarily (C5)), i.e.,

(34) lim P(Bn,an/n > ((7 + )) O, Ve > O,

and a is the smallest constant for which (34) holds. In the next theorem we obtain
upper bounds on the in-probability rate (with the above constant) and on the almost
sure rate (with a larger constant) for {Vn} that do not necessarily satisfy conditions
(C4) or (C5).

THEOREM 4.4. Let {Vn} be a collection of random variables satisfying conditions
(C1)-(C3) with cr as defined in (31). Let {an} satisfy conditions (A1)-(A4). Then
(34) holds. If in addition {an} satisfies (A5) for some a > 0, then

(1)lim
Bn,a, < 1 +-

n--oo fin a

1/2
cra.s.

Proof. The theorem will follow from the Borel-Cantelli lemma if we can show
that for all c > a and e > 0,

(35) E P(Bn,a/fln > (pc + 4e))< ,
where p (1 + a-1) 1/2. Substituting n,m,p,t,s in Lemma 4.1 by n, an, Lnd/anJ +
1, (pc + 3e)fln, en, respectively, we have

(36)

P(Bn,an/n > (pc + 4e))

_
2 (n-n )+ 1 P(IS n, +a I/Zn > +

O_j_n

--+ 1 max P(lSjj+[an/dj+ll/n > ()
an Ojn

provided

(37) max max P( Sj,j+l/n >_ e/4)G 1/2.
O_j_n l<k<an+l
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By Chebyshev’s inequality we have

+ 1)
max max P(ISn
O<_j<_n l<_k<__an+l

j,j+k]/Zn /4) (]n(/4)2

By the definition of/3n and the assumptions on an, an/2n --’+ 0 as n cx. So there
exists an no such that (37) holds for all n k no. We now apply Lemma 4.2 to upper
bound the RHS of (36). Let So be such that (30) holds. Note that by condition (Ad)
on {an} it follows that n/an 0 as n cz. Hence, there exists an nl >_ no such
that for all n >_ nl, (pc + e)3n <_ anq280, and consequently for all n >_ nl,

P(lS,j+an[/n>(p+e))<2exp_ (- (p; + e)2/32n)2q2a
n

(_ (pc + e)22an (log(n/an)+ log log n)’2exp
22an

2exp(-(p’)(log(n/a) + loglogn))

n log

where p p+e/. Thus, for all n _> nl, the first term on the RHS of (36) is bounded
above by

+ 1 max P(I .,j+a, (log n) -(p’)
an O<_j<_n n

In view of the additional condition on an it is easy to check that

<_
n n

where - a((p + e/2g)2 1) > 1. By choosing the constant d > ((pc + e)/e)2, the
same asymptotic upper bound can be obtained for the second term on the RHS of
(36). This establishes (35).

Finally, by setting p 1 in (36) through (38), it can easily be seen that (34)
holds.

In the next theorem we obtain the same upper bound as in Theorem 4.3 for the
sequence {Bn,a, } that was defined in the previous section.

THEOREM 4.5. Let {Wn} be the collection of_ random variables defined in the
previous section with a as defined in (31). Let {Bn,an} be as defined in (19). Let
{an} satisfy conditions (A1)-(Ah) with a > 0 as in (Ah). Then

lim
[n,an < ff a.s.

n n nProof. Let {W’n}i=m be a permutation of {Wi}i=m arranged in order of {2i }i-.m.
Define their partial sums

k

’j,k W m-l <j<_k<n.
i--j+l
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Define

(40) [m .m,n
n,an max max

jZ,m--l<_j<_n l<_k<_(anAn--j)

~1Then, in terms of our prior notation, /n,an B,,an. The proof of this theorem
depends crucially on the following simple observation:

n,an < m,an " 2n-m Vm < n.
an+l

This fact is a consequence of the nearly uniformly spaced design sequence {u}. Now
let n [0J, k 1,2,... for some # > I. Given nny n, let k be such that n n <
n+. Then by substituting m n above and using the fact that a is increasing,
we get

n,an -- nk,ank+ + :2_.k an+

Now, since/nk _< n _< nk+l, we get

nk

n,2 n--n an+

Bn
(42) lim

,2 n+ _< N a.s.
n-+oo n

Choose 1 + (N/p;)2. It is ey to check that

lim + < .
Hence, (41) will follow by Borel-Cantelli if we establish that for all e > 0,

( nk-l’ank(43) P >q+4e <.

Using Lemms 4.1 and 4.2, as w done in the proof of Theorem 4.4 (cf. (36), (38)),
we get

P -’ > + 4e _< O((logk) -(l+e/)) _< O(-(l+e/))

and (4a) holds. Similarly, (42) will follow by Borel-Cantelli if we establish that for
all e > 0,

p ’+ > + 4e < .

Jn,an < nk+l Jnk,ank+ +Zn Zn+ Zn
Let p (1 + a-)/2. The theorem will follow if for all ; > a and 0 < N < 2p2, we
can find a > 1 such that

lim + nk,ank+ + a.S.,(41)
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Since/nk </nY2-a+l the above will follow from
n,2 an+l

(44) E P
Bn’2g--a+l

n

Again, using Lemmas 4.1 and 4.2, s was done in the proof of Theorem 4.4 (cf. (36),
(38)), we get

P >+4e O n o(n-)

for some 7 > 1. Hence (44) holds.
We now proceed to obtain the same upper bound as in Theorem 4.g but in

instead of almost surely. We first establish the following lemma which is needed
obtain the LP upper bound.

LMMa 4.6. et {} be collection of rndom variables satisfin9 condition

(C2). g{B,/}%l is stochsticll bounded and sup, then sup E[(B,/)’] < nd consequently, {(B,/)P}%l is niforml
integrable for ll 1 p < p.

Pro@ The proof of this lemma is bed on a technique borrowed from [19]. We
first prove the following claim:

(, t + ) (e, t) +( ),

where N "= SUpl<i< I[. Let

mn,an 1-1j<k<m
k-jan

Thus,

1,n l,m--1 m+l,n(45) Bn,a B, _< --n, + V + --,a for any 1 <_ m <_ n.

Let T be the stopping time defined by

Bi’m > t}T =inf{l<m<n _,_
1,nwhere inf . Then Bn,a 2t + s implies that T n, and so we have

n

P(Bn,a 2t + s) P(Bn,a 2t + s,T m)
m=l
n

m:l

-<
m:l
n

<__ p(m+l,n__n,a
m=l
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n

E P(B’+l’n---n,an > t)P(T m)/ P(Nn >_ s)
m=l

n

-< --,--n,aP(Bl’n > t) E P(T m)+ P(N, _> s)
m=l

P(Bn,a, >_ t) 2 + P(Nn 8).

The first inequality follows from (45), the second from the fact that T m implies
that ,- < t, and the third by the definition of N The next equality follows
from the fact that IBm+, > t} and {T m} are independent events.

Pick A so that P(B,/Zn A) 1/(2.3F). Note that this is possible by the
assumption thag {B,/n}%1 is stochtically bounded. Now we have

A

(3A)P’ + p’xp’-lp(Nn/n x/3)dx
A

+ p’z’-lP(Nn,/n z/a)2 dz
A

(3A)P’+ 3p’ p’xp’-lp(Nn/n x)dx

+ 1 p,zF_p(Bn,/n _> z)dz

1

Thus

E[(Bn,a,/n)p’] <_ 2(3A)P’ + 2.3P’E[(Nn/n)p’] <

The uniform integrability of {(Bn,a/n)P}n=I for all 1 <_ p < p’ is an immediate
consequence. This completes the proof of Lemma 4.6.

The Lp upper bound is now established in the following theorem.
THEOREM 4.7. Let {l/in} be a collection of random variables satisfying conditions

(C1)-(C3) with a as defined in (31). Let {an} satisfy conditions (A1)-(A4) and (A6).
Then

li-’ E[(Bn,a./n)P] 1/p <_ a p >_ 1.

Proof. The theorem will follow from the in-probability bound (34) obtained in
Theorem 4.4, if we establish uniform integrability of {(Bn,a,/n)P}n=l In view of
Lemma 4.6, it suffices to establish that {Bn,a,/n}nC=l is stochastically bounded and
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that sup,E[SUpl<i<,(lvnl/n)p’] < c for some p’ > p. That {Bn,a,/,},__l is
stochastically bounded also follows from the in-probability bound (34) obtained in
Theorem 4.4. Finally, using the fact that E[[XI] <E[]XIr] 1/ for any r >_ 1, we get

supEn [supl<i<n(]Yinl/n)P’] sup(1/n)P’E [l<i<n
<- sup(1/#n)P’E [

Ll<i<n
’vinIp’r]

1/r

<_ sup(1/#n)P’E Ivinlp’r
n

i-----1

sup(l/N)W [11’]
n

i=1

n l<i<n

ln<

sup(n/((2A’)/en’/e)’)l/ sup E[IV?I’] 1/
n l<i<n

ln<

(2A’)-P’/(1vnl/r-a’P’/)sup E[ll’]/
l<i<n
i<<

l<i<n
I<<

if we choose r 1 V 2/ap. Note that we have used the condition that a, >_ Ana’

to obtain a corresponding bound on #n in one of the above steps. Also, we have
used condition (C3) on the moment-generating function of {Vn} to deduce the last
inequality. This completes the proof of the theorem. [!

5. The adaptive control scheme. In this section we construct a class of cer-

tainty equivalence control with forcing-type adaptive control schemes based on the
learning schemes constructed in 3. Let {T} be a positive integer-valued sequence
to be specified later. Define the related sequence {t}$=l as follows:

t :=1+
i--1 i--1

E(T+I)=ET+i i>_l.
k=l k=l

At times ti, >_ 1 use (force) the ith control ui from the design sequence of the
learning scheme such as the one described in the previous section. Let U* be the
estimate based on the corresponding observations at times tk, 1 <_ k <_ i, with the
design sequence uk, 1 <_ k <_ i. Use the control U* from time ti + 1 to time t+l 1,
i.e., -i times. Thus,

Vt ui, Un V’ for ti + l <_ n <_ t+l -1, >_ 1.

This completes the description of the adaptive control scheme.
Let

(n):=min{i’ti>n}-l=max{i’ti_<n}=max i" Tk+i<n
k=l
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The following theorems and their corollaries provide upper bounds on the learning
loss associated with the class of schemes constructed above in terms of (n).

THEOREM 5.1. Assume that for a certain learning scheme m* m(U) O(ri)
a.s. (resp., in Lp with p >_ 1) for some known sequence ri. Then for the certainty
equivalence control with forcing-type scheme constructed above with the sequence -[brlJ for some b > O, we have Ln O(a(n)) a.s. (resp., in Lp with p >_ 1).

Proof. Since, rn :H [A, 1 A] - IR is uniformly locally Lipschitz, it follows
that K := supu rn(u)- inf rn(u) < oc. Thus,

r.= E
/=1

Now, for the first part we are given that rn* rn(U) O(ri) a.s. Thus, limi(rn*
m(U))r-1

_
C a.s. for some C >_ 0 that could depend on w. That is, for all e > 0,

there exists an i0 >_ 1, such that for all i >_ io, m* m(U.) <_ (C + e)r a.s. Then,
clearly,

o-1 (n)

Ln <_ Kn(n) + E (m* ?T(U;))br;l + E(?TL* m(U;))br;
i--1 i--io

<_ Ka(n) + M() + (C + e)ba(n) a.s.,

where M(e) v’i-i
z_i=l (rn*-rn(Ui ))bri depends on but not on n. Dividing by a(n)

and taking the limit as n c we get

lim Ln <_K+(C+e)b aoSo

Now, by letting -, 0 we get

Ln
liIn n---- _< K+Cb a.s.

For the second part we are given that rn* m(U) O(ri) in Lp with p >_ 1. Thus,
limi E[Irn* rn(U)lP]rp <_ Cp for some C >_ O. That is, for all e > 0 there exists an

i0 >_ 1, such that for all/>_ io, E[Im*-rn(U)lP]rT,p <_ CP+. Also by the well-known
inequality Ix1 +... + xk[p <_ kp-l([xl[p +... + Ixklp) we get

ILIp <_ 2p-1 KP((n))P + ((n))-i E Irn* rn(U)]PbPr(p
i:1
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Therefore,

E[ILI p] < 2p- KP((n))P + ((n))p-1 E[Irn* (g;)l]
i=1

io --1

2- K((n)) + ((n))- E[I* (u;)’];
i=1

(-)

+ ((n))p- E[lm* m(Uff)lP]ar;p)
i=io

5 ,-(n,(()), + (())’-IM()+ (C" + )((n))’),
io--1 m*where M(e) i=1 Ell -m(U )lP]rp depends on e but not on n. Dividing by

(n(n))p and taking the limit as n we get

E[ILnlp] < ,-(, + (c, + ))im
(()),

Now, by letting e 0 we get

E[[L[p]
n

< 2P-(KP + CP)"lim
(n(n))P

Note that we can also obtain a constam (in terms of K, C, b) associated with the
rate of increase of the learning loss, n(n). Moreover, (n) itself depends on b. In fact,
if 7i as , then asymptotically b(n) (n/b), where the subscript on

n(n) denotes the dependence on b. We may therefore want to choose b to minimize
the rate along with the constant.

COROLLARY 5.2. For the certainty equivalence control with forcing-type scheme
constructed above, with the learning scheme of 3 with the bandwidth sequence hi
h(logi/i) 1/(2+1), and with the sequence Ti [b(i/logi)/(2a+)J for some b > O,
we have n O(-(n)) a.s. and in nP,p 1, where B-1 [0,) [e,) is the
inverse of the function B" [e, ) [0, ) dCned by

()/(+1)B(t) "= b ds.

Moreover, -l(n) o(n ") for all V > 0.
Pro@ This corollary will follow immediately from Theorems 5.1 and 3.1, if we

2a+l
can show that (n) O(-(n)), and that -l(n) o(n+v) for all > 0, when
T [b(i/logi)/(2+l)J. To this end, define the functions v,B + + based
on the sequence {Ti} aS follows:

v(s) := ,-rr + 1,

B(t) := v(s) ds.

Then

B(i)=E-k+i, i=0,1,
k=l
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Also, observe that (1) B(t) is continuous in t > 0, (2) B(0) 0, (3) B(t) is strictly
increasing in t > 0 (since v(s) > 0), and (4) B(t) >_ t (since v(s) >_ 1). Hence, given
any n, there exists a unique 0 <_ t <_ n such that B(t) n. Denote this solution by
B-(n). Then

k=l - + [B-l(n)l + i B([B-(n)l)+ i

>_ B(B-I(n))+ 1

=n+l>n.

Therefore, by the definition of t(n) it follows that n(n) < [B-(n)] _< B-l(n)+l. It is
also easy to see that ifwe have a function (C) IR+ --. IR+ such that v(s) > (C)(s), s > 0,
then B(t) >/)(t), t > 0, and hence B-l(n) </)-l(n), n > 1. For the sequence ’i
[b(i/log i)/(2+1)j under consideration, note that v(s) [b([s]/log[s])/(2+)J +
1 > b(s/logs)/(2+)I{s > e} (s). Thus n(n) O(B-(n)). It is easy to verify

a--a-4-f for any /> 0. []that/)-l(n) o(n +v)
THEOREM 5.3. Assume that for a certaie learning scheme P(m*-m(U*) > e)

O(ri) for some known sequence ri. Then for the certainty equivalence control with
forcing-type scheme constructed above with the sequence Ti [br-J for some b > O,
we have E[L] O((n)) for all e > O.

Proof.

E[Ln] E P(m* -m(Ut) > e)
/--1

(n)

< t(n)+ E
i--1

()

a(n) + E P(m* re(U;) >
i=1

.(n)

< t(n)+ E
i--i

ti+l --I

/=t+l

P(m* m(U) > e)br: 1.

Now, we are given that P(m* m(U[) > e) O(ri). Thus, limi P(m* m(U[) >
e)r-1 < C for some C :> 0. That is, for all r/> 0 there exists an i0 > 1, such that for
all > io, P(m* -m(U[) > e) < (C + rl)ri. Then, clearly

i0--1 t(n)

E[Ln] < n(n) + E P(m* m(U;) > e)br- + E P(m* re(U;) > e)br-
i=1 i=io

_< + + (C +
io-1where M() Ei=I P(m* -m(U[) > e)br depends on r/but not on n. Dividing

by n(n) and taking the limit as n oc we get

E[L]
linm n(n) -< 1 + (C + r/)b.
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Now, by letting rt -- 0 we get

lim
E[L] <_ 1 + Cb.

COROLLARY 5.4. For the certainty equivalence control with forcing-type scheme
constructed above, with the learning scheme of 3 with any bandwidth sequence hi such
that (i) hi 0 as oc and (ii) ih > A’ia’ for some 0 < a’ < 1, A’ > O, and with
the sequence - [be(h)2j for some b > O, we have

(46) E[Ln] O((hn) -2 log n),

for all e > O.

Proof. This corollary will follow immediately from Theorems 5.3 and 3.1, if we
can show that

(47) t(n) O((hn) -2 logn)

when ’ [be(h’)J. Now by the definition of (n), it follows that

k=l

+ n(n) _< n.

Taking only the last term in the above sum we get

h-2 (log n log b) < h2 (log n log b).(n(n)- 1) _< (n)-i

This establishes (47). []

Remark. In light of (46) above, we can choose ha
making E[L] arbitrarily close to O(log n).

arbitrarily slowly, thereby

6. Concluding remarks. The e-learning loss of the class of adaptive control
schemes constructed in this paper for the case of an infinite number of arms is of the
same order as those obtained previously for the finite case. For the finite case it is
easy to see that the learning loss is within a constant factor of the e-learning loss.
The infinite case is fundamentally different in this respect. Thus, the learning loss
that we obtain for the infinite case is considerably worse than those available for the
finite case. Since we do not have any tighter lower bounds on the learning loss other
than those available for the finite case, there may be room for improvement. However,
to the best of our knowledge, these are the best rates available to date. Moreover,
the rates obtained by us are still stronger than the o(n) required for optimality with
respect to the average-cost-per-unit-time criterion.

In a forthcoming paper [1] we extend the results of this paper to the multiarmed
bandit problem as well as to the adaptive control of Markov chains, both with a
control set b/which is a bounded subset of IRd, d > 1. The principal difficulty with
this extension is that strong limit laws for moving averages in higher dimensions are
not available in the literature, and are also much more difficult to obtain for the kind
of sampling/design scheme that we employ.
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Appendix: Proof of (15), (16), (27). First let l(n) log2 nJ + 1, and
consider the representation of n in base 2"

n nl(n).., n2ni.

Note that we can partition {1... n} as

{1...n} U E,
i=1 ,/(n):

ni=l

where for 1,..., l(n) such that n 1, E are defined by

t(n)

E E nt2t- + {1,... ,2i-1 }
/=i+1

{(nl(n) ni+100... 01),...,
(hi(n)... rti+101... 11), (hi(n)... ni+l lO. 00)}

=:

We can now partition {5i}=1 correspondingly as

i= (n):
ni=l

It is easy to see that {k,k E E} is a uniform lattice of 2-I points in [0, 1]. More
precisely,

for k E E. As k ranges over the set E, the first term on the RHS stays fixed,
and the second term gives us precisely the set of all dyadic rationals in [0, 1] with
denominators dividing 2i-. There are a total of 2i- such points. Thus we can think

nof {ui}i=l as an overlay of these lattices of various levels of coarseness.
Then, we get for all n >_ 1 and u

Similarly, for all n >_ nl and u b/,
n

i--1
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This establishes (15).
Also, all n >_ 1 and u E /,

where 0 _< s(u, n, i) < 21- is the distance from u to the closest point in E Cl [u, 1].
Next, note that

E[(s(u, n, i) + k2-i)ai{(s(u, n, i) + k2-i) _< h,/2}

s(u, n, i)+ k21-i)
_

hn/2}]

which establishes (16). Similarly,

which establishes (27).
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FORMS OF OPTIMAL SOLUTIONS FOR SEPARATED
CONTINUOUS LINEAR PROGRAMS*

MALCOLM C. PULLANt

Abstract. This paper discusses the nature of optimal solutions for a class of continuous linear
programs called separated continuous linear programs. It is shown that under various different
assumptions on the problem data there exist optimal solutions that are piecewise constant, piecewise
polynomial, or, more generally, piecewise analytic. These results are reminiscent of bang-bang results
in linear optimal control.

Key words, continuous linear programming, linear optimal control, bang-bang solutions
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1. Introduction. In 1953, Bellman [6] introduced a class of optimization prob-
lems which he called bottleneck problems. These problems have now become known as
continuous linear programs because they can be formulated as linear programs having
variables that are functions of time as follows:

CLP: maximize

subject to

oT
c(t)Tx(t) dt

B(t)z(t) + K(s, t)z(s) ds < b(t),

x(t) > o, t e [0, T],

with x(t), c(t), and the elements of B(t) and K(s, t) bounded measurable functions.
The usual way to solve these problems is by discretization (see, for example, Buie

and Abrham [7]); however, a number of authors have tried to solve this problem by
extending the simplex method for finite linear programming. This was first attempted
by Lehman [15] and extended by Drews [8], Hartberger [9], and Segers [22]. The most
comprehensive, but still incomplete, solution method based on the simplex method is
that by Perold [17], later followed up by Anstreicher [4].

In this paper we will be considering the following subclass of CLP called separated
continuous linear programs, first introduced by Anderson [1] in an attempt to model
job-shop scheduling problems:

SCLP: minimize

(1) subject to

(2)

iT c(t)Tx(t) dt

i Gx(s) + y(t) a(t),ds

Hx(t) + z(t) b(t),
x(t), (t), z(t) > o, t e [0, T].

Here x(t), z(t), b(t), and c(t) are bounded measurable functions and y(t) and a(t) are
absolutely continuous functions. The dimensions of x(t), y(t), and z(t) are nl, n2,

and n3, respectively. We let w(t) denote a complete set of variables for SCLP, i.e.,

Received by the editors April 23, 1993; accepted for publication (in revised form) July 14, 1994.
Judge Institute of Management Studies, Mill Lane, Cambridge CB2 1RX, United Kingdom.
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w(t)T (x(t)T, y(t)T, z(t)T). SCLP has an alternative formulation as a linear optimal
control problem with state positivity constraints but without feedback as follows:

minimize

(3) subject to

T

[p(t)Tx(t) + q(t)Ty(t)] dt

(t) Bx(t) + v(t),
H(t)x(t) <_ b(t),
x(t), y(t) >_ 0, t e [0, T],

where v(t) -&(t) and B -G. The objective functions can be seen to be equivalent
by integrating by parts and substituting in (3).

The main existing theoretical results relating to SCLP may be found in Anderson
et al. [2]. These consist of three key results, which we now summarise.

THEOREM 1.1. If the feasible region for SCLP is nonempty and bounded, then
there exists an optimal solution for SCLP at an extreme point of the set of feasible
solutions (or simply, at an extreme point solution).

THEOREM 1.2. A feasible solution, w(t), for SCLP is an extreme point solution

if and only if the columns of the matrix

G / 0]K= H 0 I

corresponding to the support of w(t) (that is, i such that wi(t) > O) are linearly
independent for almost all t E [0, T].

THEOREM 1.3. Suppose that a(t) and c(t) are piecewise linear (but with a(t)
continuous) and that b(t) is piecewise constant on [0, T]. Suppose also that the feasible
region for SCLP is nonempty and bounded, then there exists an optimal solution for
SCLP with x(t) piecewise constant on [0, T].

The statements of these results make use of the following standard definitions
which will also be used throughout this paper.

DEFINITION 1.
1. A set P {to,..., t,} is said to be a partition of [a, b] if

a=to < tl < < tm =b.

2. We say that f: [a, b] ln is analytic on a neighbourhood of [a, b] (or [a, b))
if there exists > 0 and an analytic function g (a , b + ) ]n such that
f(t) t e [a, [a,

3. We say that f: [a, b] ---. ]n is piecewise analytic on [a, b] if there exists a par-
tition P {to,..., tin} of [a, b] such that f(t) is analytic on a neighbourhood
of [t_, t) for i 1,..., m. The elements of the smallest such partition P
(excluding a and, if f is continuous at b, b) are called the breakpoints.

We use similar definitions for piecewise constant, linear, polynomial, and continuous.
In a recent paper by Anderson and Philpott [3] the following result was also

proved.
THEOREM 1.4. Suppose that a(t) and b(t) are piecewise analytic (but with a(t)

continuous) and that c(t) is piecewise constant on [0, T]. Suppose also that the set
{ : H < b(t), >_ 0 } is bounded for each t [0, T] and that the feasible region for
SCLP is nonempty; then there exists an optimal solution for SCLP with x(t) piecewise
analytic on [0, T].



1954 MALCOLM C. PULLAN

Results similar to Theorems 1.3 and 1.4 are well known in the context of linear
optimal control and are often termed bang-bang results. Bang-bang results are results
that give conditions under which an optimal solution can be found that is "bang-
bang," that is, where the solution is always on the boundary of the feasible region
and, moreover, the number of breakpoints is finite. For instance, many bang-bang
results exist for the linear optimal control version of SCLP with feedback, i.e., with (3)
replaced by

](t) A(t)y(t) + B(t)x(t) + v(t)

but without state-positivity constraints, i.e., without y(t) >_ 0 (see, for example, Lee
and Markus [14] for a sample of such results).

When state positivity is imposed, the results seem much harder to establish (and,
in fact, may not even be true), although many have conjectured that such results are
true for various instances of CLP (e.g., Perold [17] and Tyndall [23]). This is now
known not to be true for all instances of CLP (see, for example, Ilyotovich [10]). In fact
we present simple counterexamples in 5 to show that this is not true for SCLP without
sufficiently well behaved problem data (Examples 5.1 and 5.2). However, some authors
have attempted to give conditions on CLP that guarantee an optimal solution with a
finite number of breakpoints, with limited success, and these include Ilyotovich [10],
Jasiulek [11], and JShannesson and Hanson [12] (and of course Anderson et al. [2] and
Anderson and Philpott [3] for SCLP).

There are many reasons why results that guarantee optimal solutions with a finite
number of breakpoints for either CLP, SCLP, or linear optimal control problems are

important. First, from the point of view of practical problems, it is useful to have such
results, as a practical problem with an optimal solution having an infinite number of
breakpoints would not be very worthwhile. Second, such results may enable useful
duality results to be established. For instance, Theorem 1.3 was used in Pullan [19]
to establish a strong duality result for SCLP under the conditions of Theorem 1.3.
Also in the context of linear optimal control, some authors, such as KShler [13] and
Maurer [16], have developed maximum principles given that an optimal solution exists
that is piecewise continuous. However, these authors did not establish conditions for
the existence of such optimal solutions and thus it is not known under what conditions
their results apply.

For the problem SCLP there is a third reason why results guaranteeing an optimal
solution with a finite number of breakpoints are important. This reason is from an
algorithmic point of view. If it is known that an optimal solution exists with a finite
number of breakpoints and, moreover, that this solution is an extreme point solution
and also that the maximum number of breakpoints is bounded, then the problem of
solving SCLP becomes a finite one. The reason for this is as follows. By Theorem 1.2,
the value of an extreme point solution for SCLP at any time (or, at least, at almost
all times) is uniquely determined by the choice of nonzero variables at that time (see
the proof of Lemma 2.1). Therefore, there are two main unknowns one wishes to
determine in finding an optimal extreme point solution for SCLP. The first of these
is the set of variables that are positive at any particular time, and the second, the set
of breakpoints. Thus, if one can show that there is an upper bound on the number of
breakpoints of an optimal extreme point solution for a given SCLP problem, then the
problem of finding the optimal solution, given that the feasible region of SCLP is non-
empty and bounded, becomes a finite one. Hence, in theory, one may construct an
algorithm that terminates in a finite number of steps. This was part of the motivation
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in Pullan [19] for developing an algorithm for solving SCLP under the assumption of
piecewise linear and continuous a(t), piecewise constant b(t), and piecewise linear c(t).

In this paper we consider the form of optimal solutions under different conditions
to either Theorems 1.3 or 1.4. In particular, in 3 we consider the case of SCLP with
piecewise linear and continuous a(t), piecewise constant b(t), and piecewise analytic
c(t). In this case, given that the feasible region for SCLP is also nonempty and
bounded, we prove that an optimal extretne point solution for SCLP exists with z(t)
piecewise constant (Theorem 3.3). This result also gives an upper bound on the
number of breakpoints for an optimal solution for a given SCLP problem. In 4 we
then consider SCLP with piecewise analytic a(t), b(t), and c(t). The result in this case
is that SCLP has an optimal extreme point solution that is piecewise analytic, given
again that the feasible region for SCLP is both nonempty and bounded (Theorem 4.3).
The proof uses Theorem 3.3 as a starting point and considers a problem with analytic
right-hand sides as a limit of a sequence of problems where a(t) is piecewise linear and
continuous and b(t) is piecewise constant. The proof also uses ideas from the proof
of Theorem 1.4 in Anderson and Philpott [3]. Using a simple observation, however,
we are able to weaken the assumption used in [3] that the set { : H <_ b(t), >_ 0 }
is bounded for each t E [0, T] to the assumption that just the feasible region for
SCLP itself is bounded. As a conclusion to the section we give a simple breakpoint
condition, namely that d(t)Tx(t) must not increase at a breakpoint (Theorem 4.4).
As with Theorem 3.3, Theorem 4.3 also gives an upper bound on the number of
breakpoints in an optimal extreme point solution for a given SCLP problem. However,
as this bound is slightly cumbersome to state, it is only given implicitly in the proof.
Although the results of 3 are just special cases of those in 4, it is convenient to
consider these as separate cases in order to bring greater clarity and understanding
to the proofs.

It is worth noting that neither Theorem 1.3 nor Theorem 1.4 guarantees an op-
timal solution of the appropriate form that is also an extreme point. However, the
results in this paper do guarantee such a solution.

As a conclusion to this paper we then postulate more general results in 5. First,
however, we present simple counterexamples to show that the assumption of analyt-
icity of the problem data cannot be weakened, e.g., to continuous or n-times differen-
tiable for some n, to ensure that an optimal solution exists with only a finite number
of breakpoints (Examples 5.1 and 5.2). These examples, however, suggest possible
extensions to the results in previous sections. Finally in 5, we comment on what
happens if a(t) and b(t) are chosen from a more restrictive class of functions than
that of piecewise analytic functions, e.g., piecewise polynomial (Theorem 5.1).

Before beginning the discussion we introduce some more standard definitions and
notations that will be used throughout this paper.

DEFINITION 2. 1. For any set S, we use the notation ISI to denote its cardinality.
2. We use the notation a.e. to mean almost everywhere with respect to the stan-

dard Lebesgue measure on N.
3. Let f be any real-valued function. We use the notations f(t-) to denote

limsTt f(s) and f(t+) to denote limsst f(s) when these limits exist.
4. For any n we define sgn() by

-1, i<0,
(sgn())i 0, i-0,

1, >0.
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5. For any E n,
_

O, We use the notation

supp() {i: i > 0}

to denote the support of .
We now begin the discussion by establishing some preliminary results that will

be used throughout the main body of this paper.

2. Preliminary results. Before we begin the development of the main results
in this paper, it is useful to establish some preliminary notation and results that can
be frequently referred to. We begin by the introduction of some notation relating to
the matrix K used to describe extreme point solutions in Theorem 1.2.

DEFINITION 3. We define

K= H 0 I

Let B be a basis matrix for K.
1. Let w(t)T (x(t)T, y(t)T, z(t)T) be a set of variables for SCLP We let xB(t)

denote the elements of x(t) corresponding to those of the first nl columns of
K that are also in B, arranged in the same order as the columns of B.

2. Let p(t) be a solution to Bp(t) d(t) for some d(t) (that is, p(t) B-Id(t)).
We use the notation px(t) to denote the elements of p(t) corresponding to
those of the first n columns of K that are also in B, arranged in the same
order as the columns of B.

Using this notation we now present a simple lemma that is essentially contained
in Anderson et al. [2]. The result shows that if w(t) is an extreme point solution
for SCLP, then x(t) can only take the values of a finite number of functions, these
functions being linear combinations of &(t) and b(t). It is this finite nature of any
extreme point solution which allows us to show that an optimal extreme point exists
with only a finite number of breakpoints, given that the problem data are piecewise
analytic.

LEMMA 2.1. Let a(t) be any absolutely continuous function and b(t) be any
bounded measurable function on [0, T]. Let B(),...,B(L) be the basis matrices for
K, and let

b(t)

Define x(i)(t) by (i) p(i) (t) to
Let w(t) be any extreme point solution for SCLP; then for almost all t [0, T],
x(t)

Proof. The constraints of SCLP, (1) and (2), are equivalent to

K (t) b(t)

a.e. on [0, T]. However, by Theorem 1.2, we know that the columns of K correspond-
ing to the nonero variables of (t) are linearly independent for almost all t [0, T].
Thus for almost all t [0, T], the nonero variables (and possibly some ero variables)
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of (x(t)T,](t)T,z(t)T)T are given by p(i) for some it. This establishes the result.

Throughout the course of the proofs in the following sections, we will frequently
derive our results for SCLP with problem data of a particular form and then establish
the result in the general case by considering SCLP with the general problem data as
a limit of a sequence of SCLP problems with the less general problem data. In such
cases it is useful to know that the limit of optimal extreme point solutions for the
simpler problems will be an optimal extreme point solution for the general problem.
This is the content of the next result. We note that the result we present is by no
means the most general result available. We only give the result for the circumstances
required in this paper.

LEMMA 2.2. Let a(n) be absolutely continuous and b(n) and c(n) be piecewise
continuous on [0, T] with a(n)(t) >_ a(t) and b(n)(t) >_ b(t) on [0, T] for each n
and a(n) a, b(n) --+ b and c(n) c uniformly on [0, T]. Let SCLPn be the problem
SCLP with a, b, and c replaced by a(n), b(n) and c(n), respectively. Suppose that Wn(t)
is an optimal extreme point solution for SCLPn for n E N and that xn(t) --+ x(t) a.e.
on [0, T]. Suppose also that x(t) and Xn (t) for each n are piecewise continuous. Define
w(t) from the constraints of SCLP, i.e., from (1) and (2). Then w(t) is an optimal
extreme point solution for SCLP.

Proof. By Lebesgue’s dominated convergence theorem (see, for example, Ru-
din [21]) we have yn(t) -- y(t) for all t e [0, T]. Let s be such that Xn(8 --+ X(8) and
such that s is not a point of discontinuity for x or Xn for any n. Then Wn(S) --and thus w(s) >_ O. Hence w(t) >_ 0 a.e. on [0, T] and so w(t) is feasible for SCLP.

Now suppose that w(t) is not an extreme point solution for SCLP. Then by
Theorem 1.2 there exists a set S of nonzero measure such that the columns of K
corresponding to supp(w(t)) for t e S are linearly dependent. Choose s S such that
xn(s) --. x(s) and such that s is not a point of discontinuity of x or Xn for any n.

Now, as noted above, we have Wn(S) w(s). Hence there exists n such that

supp(w(s)) C_ supp(wn(S)).

Now w is continuous at s and so there exists (c, ) such that s e (c, ) and

supp(wn(S)) C_ supp(wn(t)),

for all t e (c,). Thus supp(w(s)) C_ supp(wn(t)) for all t e (a,), and so by
Theorem 1.2, Wn(t) is not an extreme point solution for SCLPn. This contradiction
establishes that w(t) is an extreme point solution for SCLP.

Finally, suppose that w(t) is not optimal for SCLP. Then there exists (t) feasible
for SCLP satisfying

T

f0
T

C(t)T2(t) dt < c(t)Tx(t) dt.

Now a(n) (t)

_
a(t) and b(n) (t) >_ b(t) on [0, T], and so (t)T + (0T, (a() (t)

a(t))T, (b()(t)- b(t))T) forms a feasible solution for SCLPn for each n. But by
Lebesgue’s dominated convergence theorem again we then have

c(t)T2(t) dt< c(t)Tx(n)(t) dt,
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for some n, contradicting the optimality of w(n)(t) in SCLPn. Thus w(t) must be
optimal for SCLP. [:]

Our final result in this section is quite unrelated to the previous ones and concerns
the zeros of a linear combination of a finite set of analytic functions on a compact
interval [a, hi. While it is well known that such a linear combination will only have a
finite number of zeros (see, for example, Apostol [5, Thm. 16.25]), we show that the
number of zeros in this linear combination is dependent only on the functions involved
and not the particular scalars chosen. This result will be useful in establishing that a
sequence of SCLP problems with problem data all of some similar general form will
have optimal solutions with a uniform upper bound on the number of breakpoints.

LEMMA 2.3. Let f [a, b] --. n be a function analytic on a neighbourhood of
[a, hi. Then there exists M(I) (< o) such that for all e n, if

S(A,f)={te[a,b]:ATf(t) O },

then either S(,, f) [a, b] or IS(A, f <- M f
Proof. We prove the result by induction. For n 1 the result is well known (see,

for example, Apostol [5, Thm. 16.25]).
Let n be given. Suppose that for all m < n and for all f [a, b] -- m analytic

on a neighbourhood of [a, b] there exists M(f) < x) such that for all , E m we have
either S(A, f) [a, b] or IS(A, f)l -< M(f), where S(A, f) is as given in the statement
of the theorem. Let f [a, b] IIn be a given function analytic on a neighbourhood
of [a, hi. Define g, h" [a, b] In-1 by gi fn fnfi and hi f/for i 1,..., n- 1.
We now define

M max{(M(h)+ 1)(M(g)+ 2)+ 1, M(fn)},

where M(g) and M(h) are the required bounds for g and h given by the inductive
assumption. We claim that M(f) M satisfies the requirements of the lemma.

Let A E 1n. Suppose that ATf 0 (i.e., ATf(t) 0 for some t [a, hi). Let #
denote the first n- 1 components of A. Suppose that #Th 0. Then ATf(t) 0 if
and only if nfn(t) O. Hence either S(,, f) [a, b] or IS(A, f)l <- M(fn) <_ M.

Similarly, if "nfn 0, then either S(A, f) [a, b] or IS(A, f)l <- M(h) <_ M.
Now suppose that #Th 0 and nfn O. Let P- {to,..., t,} be the partition

of [a, b] consisting of all the zeros of the analytic function #Th and the points a and
b. Then m <_ M(h) + 1 (a and b may not be zeros of #Th). Consider the interval
(ti-1, ti). Let t e (ti-, ti), then

fn(t) 1
(4) ATf(t) 0

#Th(t)
Now either (4) has at most one solution in (ti-, ti) or it has more than one solution
in (ti-l,ti). Assume the latter. As ATf 0 there can only be a finite number of
solutions to (4). Let s and s2 be two consecutive solutions to (4) in (ti-, ti). By
Rolle’s theorem there exists t (Sl, s2) such that

(5) #Tg(t) ]n(t)#Th(t) fn(t)#Th(t) O.

Clearly (5) cannot be true for all t [a,b]; otherwise we would have ATf 0 on
(ti-1, ti). Hence (5) only has a finite number of solutions. Thus by the inductive
assumption,

I{t e (ti-,ti)’(5) holds}l <- M(g).
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Thus (and this includes the case where (4) has at most one solution in (ti-1, ti)),

I{t E (ti-l,ti)’(4) holds}l-< M(g)+ 1.

Now rn <_ M(h) + 1, and so IS(A, f) PI < (M(h) + 1)(M(g)+ 1). As P contains
rn + 1 <_ M(h) + 2 points, we have IS(A, f)l -< M. This proves the result by induction.

We may now begin the development of the main results of this paper.

3. SCLP with analytic costs. In this section we consider the case of SCLP
with a(t) piecewise linear (and continuous), b(t) piecewise constant, and c(t) piecewise
analytic on [0, T]. Under the assumption that the feasible region for SCLP is nonempty
and bounded, we show that there exists an optimal extreme point solution with x(t)
piecewise constant (Theorem 3.3). Our proof is based on the proof of Theorem 1.3
contained in Anderson et al. [2]. As with [2], we begin by concentrating on the case
where the problem data contain no discontinuities and present the proof in stages.

We outline the stages of the proof as follows. We begin with the assumption that
the components of the costs and their derivatives are concave, i.e., that the compo-
nents of c(t) have nonpositive second and third derivatives. Under this assumption
we derive a certain convexity property of all optimal solutions (Lemma 3.1). This
is a simple extension of a similar result in [2] (namely, Theorem 3). We now recall
Lemma 2.1, which states that in the case of constant &(t) and b(t), there are only a
finite number of possible values, x(1),... ,x(L), for an extreme point. Now as c(t) is
analytic, we either have for some k and j that d(t)Tx(k) d(t)Tx(j) for all t E [0, T],
or there is a partition P {t0,...,tn} of [0, T] such that for all k j we have
d(t)Tx(k) 7 d(t)Tx(j) for all t [0, T]- P. In the latter case we consider a typical
subinterval (ti_, ti) of the partition P. Using the convexity property established in
Lemma 3.1 it is then shown in Lemma 3.2 that d(t)Tx(t) is decreasing at a breakpoint.
Hence there can be at most L breakpoints in [ti-1, ti) and hence nL overall.

In the case where for some k j we have d(t)Tx(k) d(t)Tx(j) for all t [0, T],
we then construct a sequence of piecewise constant solutions for SCLP whose costs
approach the optimal value of SCLP. This then completes the proof of Lemma 3.2,
which guarantees an optimal solution with x(t) piecewise constant in the case of costs
whose second and third derivatives are nonpositive.

To complete the proof of the result for general analytic costs it is required only to
transform a general problem into an equivalent one with costs that have nonpositive
second and third derivatives. This simple transformation is contained in Theorem 3.3.

We now begin by establishing the convexity property of all optimal solutions under
the restricted assumption of costs with nonpositive second and third derivatives.

LEMMA 3.1. Suppose that a(t) is linear and b(t) is constant on [0, T]. Suppose
also that c(t) is analytic on a neighbourhood of [0, T] and has nonpositive second and
third derivatives. Let w(t) be optimal for SCLP; then

q(t) -d(t)T x(s)ds

is convex on [0, T].
Proof. Suppose that w(t) is optimal for SCLP. Suppose the result is false; then

as q is continuous there is some interval Its, t2] C_ [0, T] such that

q(t) > r(t), t (t,t2),
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where

t-tl )(q(t2)- q(tl)),r(t) q(tl) +
t2 t

t Its, t].

Define

o(t) () a, t Its,

and

t tl ) (((t) (tl)),f(t) =(tl)+
t2-tl

t e Its, t];

then q(t) --d(t)T(l(t) for t e [tl, tl. We now claim that

(6) r(t) >_ --d(t)Tf(t), t E Its,t2].

Let t E (tl,t2); then

d2

dt(--d(t)Tf(t)) "(t)Tf(t) 2(t)T(t).

But

1 ]’tl x(s) ds > O,(t)
t t

and so (t)Tp(t) <_ 0 as (t) is nonpositive on [0, T]. Similarly, " (t)Tf(t) <_ 0 and
hence --d(t)Tf(t) is convex on (t, t2). Thus r(t) >_ --d(t)Tf(t) on Its, t2], as claimed,
as r(t) is linear on Its, t2] and r(t) --d(t)Tf(t) for t= tl and t= t2.

We now define 2(t) by

(t) t. t
(t), otherwise.

Define (t) from 2(t) by the constraints of SCLP, i.e., so that 2(t), 9(t), and 2(t)
satisfy (1) and (2) in place of x(t), y(t), and z(t), respectively. Then c(t) is feasible
for SCLP. Comparing objective function values for w(t) and &(t) gives

f0 f0
T

c(t)T2(t) dt c(t)Tx(t) dt

tl
c(t)T (2(t) dt

d
(f(t) Ct(t)) dt(t)N

d(t)T(f(t) el(t))dt + c(te)T(f(t) (l(t)) c(t)T((t) (l(t))
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by integrating by parts. But (tl) (tl) and/(t2) (t2) and so

c(t)T(t) dt- c(t)rz(t) dt i:(t)r(f(t) q(t)) dt

<_ (r(t) q(t)) dt

by (6). Hence

f0
T

c(t)T2(t) dt c(t)Tx(t) dt< O,

since r(t) < q(t) on (tl, t2). This contradicts the assumed optimality of w(t). Hence
q(t) is convex, and this establishes the result. [:I

We now use this result, as outlined at the beginning of this section, to establish
that SCLP has a piecewise constant optimal solution in the case of costs with non-
positive second and third derivatives. We also explicitly state the upper bound on
the number of breakpoints derived for such an optimal solution as this bound will be
useful in the next section.

LEMMA 3.2. Suppose that a(t) is linear and b(t) is constant on [0, T]. Suppose
also that c(t) is analytic on a neighbourhood of [0, T] and has nonpositive second
and third derivatives. If, furthermore, the feasible region for SCLP is nonernpty and
bounded, then there exists an optimal extreme point solution for SCLP with x(t) piece-
wise constant on [0, T]. Moreover, let x(1),...,x(L) be given by Lemma 2.1, where
L is the number of basis matrices for K, and P {to, t,..., t} be any partition of
[0, T] with (t)Tx(i) (t)Tx(j) for all t E (tin-l, tm) or (t)Tx(i) (t)Tx(j) for all
t (tm-, tin), for each j and each rn. Then such x(t) may be chosen so that for
all rn, the maximum number of breakpoints of x(t) in [tm-, tin) is L.

Proof. Let w(t) be an optimal extreme point solution, which exists by Theorem 1.1
as the feasible region is nonempty and bounded. By Lemma 2.1 there exist constants
x(1),...,x(L) such that for almost all t [0, T], x(t) x() for some it. Assume,
without loss of generality, that this is true for all t e [0, T].

Now by Lemma 3.1

q(t) -d(t)r z(s)ds

is convex on [0, T]. Hence (see, for example, Rockafellar [20]), gt(t) is monotonic
increasing a.e. on [0, T]; i.e., there exists a set S

_
[0, T] of measure T such that

is monotonic increasing on S. But 0(t)= -I(t) a.e., where

f(t) d(t)Tx(t) + 5(t)T x(s) ds.

Let

S S 0 {t e [O,T]: (t) -f(t) };

then f is monotonic decreasing on S. We now show that there is no loss of generality
by assuming that f is monotonic decreasing on [0, T] by redefining x(t) on [0, T]- S,
which has measure zero.
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Let s E [0, T]- S. Define

sup{ f(t) t > s, t S }.

As / is decreasing on S and S is dense in [0, T], we have a sequence {tk}-i such
that tk $ t, t S and lim_. f(t) V. As x(t) takes only a finite number of
values on S, there is an and a subsequence {tik}=l such that x(tik) x(t) and
lim_ f(ti) V. Redefine x(s) x(); then f(t)

_
f(s) for all t > s, t S. If this

is done for each s [0, T]- S, then it is clear that f is monotonic decreasing on [0, T].
We now assume that f is monotonic decreasing on [0, T] and that x(t) takes only

the values x(1),... ,x(L). We have two cases to consider. Either for each k j we
have

(7) d(t)Tx() :/: d(t)Tx(j) for some t e [0, T],

or there exists k :/: j such that d(t)Tx(k) d(t)Tx(j) for all t E [0, T]. We consider
the former case first; i.e., (7) holds for all k -- j. Now as d(t)Tx() is analytic on a
neighbourhood of [0, T] for each i, there are only a finite number of t [0, T] such
that d(t)Tx(k) (t)Tx() for some k : j. Label these t as tl,... ,tn-1, and set to 0
and tn T. Then d(t)Tx() : d(t)Tx(j) for all t (ti_,t) and for all k -- j and
i= 1,...,n.

Consider the interval (t_l,t). Assume without loss of generality that

(t)Tx(1) > d(t)Tx(2) >... d(t)Tx(L)

for t (t_l,t). We will show that x(t) takes the values x() in this interval with
j increasing; i.e., that if x(s) x() and x(s2) x() with sl < s2, then k _< j.
Suppose otherwise, then there is some Sl < s. with X(Sl) x() and x(s2) x() but
k>j. Let

a- sup {s" x(t)= x(t) for some l> j, for all t [s,s] }.
Then S

_
( s2. Define

1

then since d(t) is continuous, we can choose 51 > 0 with

>

for all - j and 7"1, T2 E ((:r- 51, (T --51). If we now define

d(t) (t)T x(s) ds,

then d(t) is continuous on [0, T] and f(t) (t)Tx(t)+ d(t). We now choose 52 so
that

Id(-e) d(z-)l < ,



FORMS OF OPTIMAL SOLUTIONS FOR SCLP 1963

for all 7"1, T2 E (Or (2, cr -+- (2). Set 5 min{51,52}. Now from the definition of a we
can choose al E (a- , cr] with x(al) xq) for some > j and or2 [a, cr + 5) with
x(a2) x(m) for some rn _< j. Then

f(a2)- f(a) > - Id(a)- d(e)l > O,

which contradicts the assumption that f is monotonic decreasing.
Hence if x(s2) x(J) and z(s) x(k) with s2 > s then k _< j. So if we define

Uk { t e (ti_,ti) x(t) x(k) )

for any k, and if Uk 0 we also define

Uk inf{t:t Uk },
v sup{t t U },

then x(t) x(k) for all t E (uk, vk). Hence, by redefining x(t) at uk and vk if necessary,
we can see that x(t) is piecewise constant on [t-l, ti) and hence, as was arbitrary,
on [0, T]. Moreover, x(t) has the maximum number of breakpoints as specified in the
statement of the lemma.

Now suppose that (7) does not hold for some k j, i.e., that

d(t)Tx() d(t)Tx() for all t e [0, T].

Suppose there exists and such that

(8) (t)x() (t)x
for some t [0, T]. In this case, let P (t0,...,tn) be any partition of [0, T] so
that (8) holds for all t [0, T]- P and for all such and 1. If, on the other hand, no
such i and exist then let P {0, T}.

Let {em(t)}= be any sequence of vector-valued functions analytic on a neigh-
bourhood of [0, T] satisfying the following properties:

1. m(t) -- 0 uniformly on [0, T] as m
2. em(ti) O for O,...,n.
3. [d(t) + m(t)]Tx(r)

7 [d(t) -- m(t)]Tx() for t e [0, T]- P and 7, 1,..., L
( ).

4. [d(t) + e.(t)]x(") < [d(t) + e.(t)]x() for some t E (ti-1, ti) if and only if
the same is true for all t (ti-1, ti).

It is clear that such functions exist as a suitable sequence of polynomials will do.
Let Wm(t) be an optimal extreme point solution for the SCLP problem with d(t)

replaced by d(t)+ e,(t). Prom the above we can choose Wry(t) so that x,(t) is
piecewise constant on [0, T]. Assume now without loss of generality that

[e(t) + (t)lx() > [e(t) + (t)]x() >... > [(t) + (t)lx
Lfor t (to, tl) and rn N. Then by the above, we can find Pm,j >_ 0 with j=0 Pm,j

t andto

x(t) x a.e. on to EPm’J to Pm,j
j=0 j=o
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As Pm,j is bounded for all m and j (by t -to), we may choose a subsequence,
{pmk,j}C=l, of {Pm,j}=l for each j, converging to pj, say. Define 5:(t) on [t0,tl) by

(t) to Epj to pjt
j=0 j=0

We now repeat the above process for the subsequence (Xmk}=l of {Xm}=l for
the next interval [tl, t2). Continuing in this manner will produce 2(t) that is piecewise
constant on [0, T] and also the limit of some subsequence of {Xm}=1. Hence by
Lemma 2.2, (t), defined from 2(t) by the constraints of SCLP, is an optimal extreme
point solution for SCLP. Moreover, x(t) has the maximum number of breakpoints as
specified in the statement of the lemma. This establishes the result. [1

By transforming a general problem into one where the costs have nonpositive
second and third derivatives, we may now establish the main result of this section.

THEOREM 3.3. Suppose that a(t) is piecewise linear and continuous, b(t) is
piecewise constant, and c(t) is piecewise analytic on [0, T]. Suppose also that the
feasible region for SCLP is nonempty and bounded; then there exists an optimal
extreme point solution for SCLP with x(t) piecewise constant on [0, T]. Moreover,
let x(),...,x(L) be given by Lemma 2.1, where L is the number of basis matri-
ces for K, and P {t0,t,...,tn} be any partition of [0, T] containing the break-
points of a(t), b(t), and c(t) and with d(t)Tx(i) d(t)Tx(j) for all t E (tm-1, tin) or

d(t)Tx() # d(t)Tx(j) for all t (tm-l,tm) for each 7! j and each m. Then such
x(t) may be chosen so that for all m, the maximum number of breakpoints of x(t) in
[tm-, tm) is L.

Proof. We begin by considering the case where the problem data contain no break-
points, i.e., that a(t) is linear, b(t) is constant, and c(t) is analytic on a neighbourhood
of [0, T]. We transform the problem into one where the costs have nonpositive second
and third derivatives. Let

and d(t) -Nt2(t + 1). Let e denote the nl-dimensional vector of all ones. We now
define

5(t) c(t) + d(t)e,

for t [0, T]. Now by the definition of N, 5 has nonpositive second and third
derivatives. Finally, let M be such that IleTxll <_ M for all feasible solutions
wT (xT, yT, ZT) for SCLP. Consider now the following separated continuous linear
program:

(9)

SCLP(M, N): minimize

subject to

T

[5(t)Tx(t) + d(t)Xnl+l (t)] dt

Gx(s) + y(t) a(t),ds

Hx(t) + z(t) b(t),
eTx(t) + Xnl +1 (t) M,
x(t), z(t), >_ o, t [0, T].
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Strictly speaking, this is not in the form of a separated continuous linear program
as (9) is an equality. However, this problem can be removed by replacing (9) by two
inequalities.

Now by the definition of M, w(t)T (x(t)T, y(t)T, z(t)T) is feasible for SCLP if
and only if )(t)T (X(t)T, M eTx(t), y(t)T, Z(t)T) iS feasible for SCLP(M, N). But

T

[5(t)Tx(t) + d(t)(M eTx(t))] dt M d(t) dt + c(t)Tx(t) dt,

and so w(t) is optimal for SCLP if and only if &(t) is optimal for SCLP(M, N). But
by Lemma 3.2, SCLP(M, N) has a piecewise constant optimal extreme point solution
and hence so does SCLP. It is also clear that Lemma 3.2 gives the required bound on
the number of breakpoints of x(t) on [0, T].

If we repeat the above argument a finite number of times, it is now not difficult to
extend the result to the case of problem data with breakpoints. We omit the details
as there is little to be gained from their inclusion. [:!

4. SCLP with analytic right-hand sides. In this section we consider the case
of SCLP with a(t), b(t), and c(t) piecewise analytic (with of course a(t) continuous).
Under the assumption that the feasible region for SCLP is nonempty and bounded, we
show that there exists an optimal extreme point solution with x(t) piecewise analytic
(Theorem 4.3). Although the result in the previous section, Theorem 3.3, is just a
special case of Theorem 4.3, it is convenient to separate the two and use Theorem 3.3
as a starting point. In particular, we approximate a(t) and b(t) by sequences of
piecewise linear and piecewise constant functions, respectively, and use Theorem 3.3
on these approximating problems to construct an optimal solution for the original
problem. The difficulty is in constructing appropriate approximations to a(t) and
b(t).

To perform this construction we need to introduce a definition that allows us to
distinguish between two types of breakpoints in an extreme point solution for SCLP
when the problem data have breakpoints. We recall that an extreme point solution
for SCLP can only take the values of a finite number of functions x(1)(t),..., x(L)(t)
(Lemma 2.1). Moreover each x(1)(t),... ,x(L)(t) is given by a linear combination of
the problem data and their derivatives. Thus x(1) (t),..., x(L) (t) will have breakpoints
when the problem data have breakpoints. Hence an extreme point solution will, in
general, have breakpoints that arise from these breakpoints and also from switching
from x() (t) to x(J)(t) for some j. It is this second type of breakpoint which is of
importance and that we now define formally.

DEFINITION 4. Let w(t) be a piecewise analytic extreme point solution for SCLP
and x()(t),.. x(L)(t) be given by Lemrna 2.1. By a change of basis we mean a time
s E (0, T) such that for some > O, x(t) x() (t) for t (s , s) and x(t) x(J)(t)
for t (s, s + ) for some and j such that x() (t) x(j) (t) on (s- , s + ).

We note that if a and b are analytic on a neighbourhood of [0, T], then a change
of basis is identical to a breakpoint. However, if a and b are piecewise analytic on

[0, T], then, in general, the set of changes of basis for an extreme point solution will
be a subset of the set of breakpoints for that solution.

Using the above definition we may now give more details about the development
of Theorem 4.3. We begin by taking sequences {a(n)}=l and {b(n)}= of piece-
wise linear (and continuous) and piecewise constant functions, respectively, so that
a(n)(t) >_ a(t) and b(n)(t) >_ b(t) on [0, T] and a(n) a and b(n) b uniformly
on [0, T]. This ensures that if SCLP is the problem SCLP with a and b replaced
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by a(n) and b(n), respectively, then feasibility of SCLP implies feasibility of SCLP.
Moreover, we also choose a() and b(’) so that SCLP has an optimal extreme point
solution with a bounded number of changes of basis independent of n. This is the
difficult part of the result. It is then relatively easy to construct a piecewise analytic
optimal solution for the original SCLP, in a similar way to the proof of the second
half of Lemma 3.2.

To establish that the problem SCLPn mentioned above will have an optimal
extreme point solution with a uniform bound on the number of changes of basis, we
will need to use ideas from Anderson and Philpott [3]. To use these ideas it is necessary
to have the set { " H <_ b(t), >_ 0 } bounded for each t E [0, T]. To guarantee
this, we begin by considering the case where there are upper bounds on x(t). This
extra assumption is removed later. As with the previous section, it is also convenient
to begin by considering the case where the problem data contain no breakpoints. We
therefore introduce the following assumption that we will use throughout this section.

Assumption 4.1. The costs, c(t), the right-hand sides, a(t) and b(t), are analytic
on a neighbourhood of [0, T]; H is of the form

I

and the feasible region for SCLP is nonempty.
We now develop some ideas and notation similar to those Anderson and Phil-

pott [3]. Let

f,;=[ G I -_ 0 1H 0 0 I

We note that K has full rank, and so any n + n3 linearly independent columns of K
form a basis matrix.

Now suppose that a(t) is piecewise analytic and continuous and that b(t) is piece-
wise analytic on [0, T]. Let S [a,/3] C_ [0, T] satisfy the following: if B is any basis
matrix for/ and

p(t) B-i [ iz(t) ]b(t)

then for each i, either pi(t) > 0 for all t S, pi(t) < 0 for all t S, or pi(t) 0 for
all t S. We now define

1as /_---2--(a() a(a)),

1 fo b(t)dr.

Now given any r e {-1, 0, 1} we define

/gs { }" H} < bs, > 0, sgn(as -G})-r },
s(t) { " HW _< (t), _> 0, sgn(a(t) Gg) r }, t S.

Strictly speaking,/s and Es(t) depend on 7r; however, we choose to omit this depen-
dence in the notation for simplicity. The following straightforward lemm is a simple
extension of results in Anderson and Philpott [3, Lems. 2.3-2.5]. As K is a submatrix
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of K, we extend the notations Definition 3 (i.e., of xB and px) in a natural way to
include basis matrices of K.

LEMMA 4.1. Let S be_as above and be any extreme point of s. Then there
exists a basis matrix B of K such that the nonzero components of 2 are contained in

S and S , where

p=B-Ias 1[s

Moreover, let

p(t) B-1 [ /(t)lb(t)
and define (t) by CB(t) px(t) with the other components of (t) set to zero for
t E S. Then

(t)dt dt

and 2(t) is an extreme point for Es(t) for t e S.
For any piecewise analytic and continuous a(t) and piecewise analytic b(t) it is easy

to construct a partition P of [0, T] so that each subinterval satisfies the requirements
for an interval S in the above lemma. Indeed, let

b(t) B is a basis matrix of K

R={pj(t)’pQ, l<_j<_n2+n3}.

Now since each component of a(t) and b(t) is piecewise analytic on [0, T], R consists
of a finite set of piecewise analytic functions. Thus if a(t) and b(t) are analytic on a

neighbourhood of some interval I, then each function in R is either identically zero or
contains a finite number of zeros on I. We can now let P be the (finite) partition of
[0, T] that contains all the zeros of each function in R that is not identically zero on
some interval, along with the breakpoints of a(t) and b(t). We call this the canonical
partition of [0, T]. It was for the subintervals of this partition that the above lemma
was proved in [3].

We may now begin the development of Theorem 4.3 by constructing appropriate
functions a(n) and b(n) to approximate a and b. This construction is rather compli-
cated although it is based on a relatively simple idea.

LEMMA 4.2. Suppose that Assumption 4.1 holds. Then there exists M N,
a sequence {a(n)}n= of piecewise linear and continuous functions and a sequence
{b(n)}n=X of piecewise constant functions with a()(t) >_ a(t) and b(’)(t) >_ b(t) on

[0, T] for each n, a(n) -. a and b(n) --. b uniformly on [0, T], and such that SCLPn
has a piecewise constant optimal extreme point solution with at most M changes of
basis, where SCLPn is the problem SCLP with right-hand sides a(n) and b(n)

Proof. Let B(1),..., B(L) be the possible basis matrices for/. The construction
of the a() and b(n) is done in two stages. Let

d(t) [ d(t)
b(t) l"
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First we consider approximating d(t) by d(t) 4- 1In e, where e is the vector of all
ones. We now define

p(n,)(t) B(y)-ld(t) + 1B(j)-I
n

Note that p(nj) is analytic on a neighbourhood of [0, T]. This completes the first stage
of the construction.

Second, we approximate d(t) + 1In e by a piecewise constant function

a(n) ($) 1d (n)(t) b(n) (t)

with the approximation being done so that a(n)(t) >_ a(t) and b(n)(t) >_ b(t) on

[0, T] for each n and a(n) -- a and b(n) --, b uniformly on [0, T], where a(n) is the
integral of/(n) taking the value a(0) 4- 1In e at zero. This second approximation is

achieved by taking a sufficiently fine partition, Pn {t(0n) tn) /(n)m}, and setting
j(/(n) 1In for t E Li_I, ), 1,...,mn.

Now by Lemma 2.3 there exists M1, independent of n, so that if

’n= tE[O,T]-/, (t)=Oforsomeiandjbutt, 0

then I’nl _< M. Again by Lemma 2.3 we may choose M2 so that if

n t e [0, T]" bUU)(t)Tp(xn)(t dB(k,(t)Tp(nk)(t) for some k and j but

T D(nj)-T o(xnk) }CB()rx CB()

then Inl-< M2. Define

N=M+M2+I.

Choose n. Let Rn {r0(n), rn),..., r(Nn)} be the partition of [0, T] that contains
all the points in ’n and 0n. By the definition of N, we have Nn <_ N. Such a partition

Rn ha been chosen for two reasons. First any subinterval [r_), r(h)] of Rn satisfies
the conditions required by an interval [a,/] in Lemma 4.1. Second any subinterval

[r(hn_), r(hn)] also satisfies the conditions of the form required by an interval [c,/] in
Theorem 3.3 to bound the number of breakpoints in an optimal solution for SCLP if
& and b are piecewise constant with no breakpoints in (r(n) r(h))h-l’

Having constructed a partition fine enough so that Theorem 3.3 and Lemma 4.1
can be applied when necessary on the subintervals, we now proceed to subdivide it
further so that approximations can be made to d + line so that a(n)(t) >_ a(t) and
b(n)(t) >_ b(t) on [0, T] for each n. Now by the uniform continuity of d(t) on [0, T],
there exists 5n so that 0 < 2din < IIRnll (where IIRnll, the norm of Rn, is the maximum
distance between consecutive points of Rn) and such that

{1 1}(10) It- sl < di, =# lid(t)- d(s)l[oo < min --,
This (n gives the required upper bound on the norm of the partition Pn needed to
form a(n) (f;) >_ a(t) and b(n) (t) >_ b(t) on [0, T].
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We now require one last bound on the size of the partition Pn. This bound will
ensure that an optimal solution for the problem SCLPn has a uniform bound on the
number of changes of basis. Define

some h and cTB(j)p(nj) CB(k

Note that by the construction of R we have n > 0. Again by the uniform continuity
of p(n) and d there exists > 0 such that

(11)

and

(12) n

for all ’l,T2,T3 e [r(hn__)l --n,r(hn)- n] for some h such that IT1- 7"21 ’n and

I-1 f3 < Cn and for all nj and nk such that Cs
We now define a partition Pn of [0, T] with the following properties.
1. P [r2,r21 + )= (r2} and P [r)- n,rn)) (r)- ) for
h= l,...,Nn.

2. P [r2 +,rn) n] is a partition of [r2 + n, rn) n] with norm no
greater than min(n, 4n) for h 1,..., Nn.

We are now ready to define a() and b() Suppose that P {tn) n) ,,(n)mn }.
Define a() (0) a(0) + 1In e for j 1,..., n2 and then define d ()(t) by

for t E [tn), tn)). Thus

1
a(n) (t) a(O) + -e + &() (s)ds

n

for j 1,..., n2. This defines a piecewise linear and continuous function a(n) and a
piecewise constant function b(n) for each n. Moreover, by the construction of a(n) and
b(n), in particular by (10), we have a() (t) >_ a(t) and b(n) (t) >_ b(t) on [0, T] for each
n with a(n) -, a and b(n) --. b uniformly on [0, T], and hence the problem SCLPn with
right-hand sides of a(n) and b() is feasible. We finally note that due to the structure
of the matrix H, the feasible region for SCLP is bounded.

We now claim that a piecewise constant optimal extreme point solution for SCLPn
exists with at most 3NnL changes of basis, where L is the number of basis matrices
for K (as opposed to L for K). As Nn <_ N for each n, we can then set M 3NL,
and this will then establish the result.

Fix n and let x(1) (t),..., x(L) (t) be the possible values of an extreme point solution
for SCLP as given by Lemma 2.1. Strictly speaking, x()(t),... ,x(L)(t) depend on
n, but as we will now only be considering the one problem, SCLP, we choose to omit
this dependence in the notation for simplicity. Now for each j there exists such that
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the nonzero components of x(j) (t) are contained in xl,)(t) and B(i)
’(j) (t) Dx

(n’) (/;/--l(n))
(n)for t E [tl_ 1, ), 1,..., rn. Hence x(j) (t) is piecewise constant with breakpoints

in Pn for each j.
(n) 1 [rn) fn) n) for h. NowConsider the intervals jrh_ --n, and + some

d(n) and b(n) are constant on these intervals, and so by Theorem 3.3 an optimal
solution can be chosen for SCLP such that the number of breakpoints, and hence
the number of changes of basis, in each of r(n)h-1 -5n, r21) and [rn) rn) + 5n) is at
most L. We now establish that such an optimal solution can be chosen so that for

(n) r)each h, the number of changes of basis in [rh_ + 5n, --5) is at most L. This
will establish the result. Note that we cannot expect w(t) to have only L breakpoints
on [r (n)h-1 + 5n, --5n) as the problem data a() and b(n) themselves may have more
than L breakpoints on this interval.

Now by the assumption on the partition R, for each k and j we have either
() r) d(t)Tx(k) (t) d(t)Tx(j) (t) for alld(t)Tx(k)(t) d(t)Tx(J)(t) for all t [rh_, or

() rn)t irh_, ). We assume that d(t)Tx(k)(t) d(t)Tx(Y)(t) for all t (r21,r))
(n) r)and for all k j. The case when d(t)Tx(k)(t) d(t)Tx(Y)(t) for all t [rh_l,

for some k j can be treated in a way identical to Lemma 3.2 by taking a sequence
(n) r)c() c uniformly so that d(m)(t)Tx(k)(t) d()(t)Tx(J)(t) for all t irh_l,

for all k j and for all m. Having made this assumption we now note that from (11)
and the definition of Pn we have

n>

for all k = j and s E (r(hn21 2t- n, r(hn) n).
Suppose that P, N [r(") r(h")h-1 +, --] {SO, Sl,...,S}. Again by Theorem 3.3

we know that an optimal solution, w(t), for SCLP, can be chosen such that the
number of breakpoints in [Si_l,Si) is at most L (and with the conditions on the
number of breakpoints in [rn)- 5n, rn) + 5n)specified above). This is not sufficient
for our purposes since bounding the number of breakpoints in [si-1, si) will not give
a bound independent of n. For such a bound we prove the following claim. If [u, v]
[r(n) rn)
h-1 + n, n] and

x(t)-{ t e

then d(s)Tx(k)(s-) > d(s)Tx(J)(s+). This will show that w(t) must have at most L
(n) r(hn)changes of basis in [rh_ + 5n, --) (note that x(t) will still have breakpoints at

each s).
(n) (hn) (n] weSuppose that the result is not true; i.e., for some u, v, s [rh_ -5n, r

have x defined as above but d(s)Tx()(s-) < d(s)Tx(Y)(S+). By the above, we now
have

<

We will construct a new feasible solution with strictly improved objective function,
thus contradicting the optimality of (t). We assume without loss of generality that
[u, v] is chosen small enough so that either s s for some or Pn n [u, v] 0.
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Let 7 be such that 0 < 7 <_ min{s u, v s}. Define

+

for -1 E [s-7, s), -2 E Is, s+7]. Note that does not depend on -1 or -2. Let
S- Is- 7, s + 7] and let 5s and Ds be given by

1 (a(n) (s + 7) a(n)(s 7))

1 fs+ b() (t) dr.

Let r sgn(as -Ga?,) and define/)s and Es(t) for t S by

/)s {" H < Ds, > 0, sgn(as G) r},
Es(t) {’H <_ b(n) (t), >_ O, sgn(d(n)(t)- G)-r }.

Note that/s is a convex set and, due to the structure of the matrix H, also a compact
set. Let { (J) j 1,... ,L } be the extreme points of/)s; then by Minkowski’s
theorem (see, for example, Rockafellar [20]), there exists #j _> 0, j 1,..., L with

L

#j 1
j--1

and

j=l

(n) r(hn)Now S c_ [rh_l, ], and so by a remark above, S satisfies the requirements for an

interval in Lemma 4.1. Hence by this lemma, there exists (J)(t), extreme points for
Es(t), t S, that are piecewise constant (with a possible breakpoint at s only) such
that

+
2() (t) dt dr,

,s--/

or in this case,

(14) 7(2(J)(8-) + )(J)(sq-)) 27@(j).

Moreover, there exists k such that the nonzero components of (J)(t) are contained

in k)(t) and either k)(t) p()(si-1) fort Is 7, s) and k)(t) p(nk)(s)
for t Is, s + 7] if s si for some i, or )(t) p(n)(si) for t E Is- 7, s + 7] for
some i, if Pn N [u, v] . Define

L

(t), t e +

x(t) otherwise.
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Note that 2(t) is no more than a vector of components of a convex combination of
p(n)(t) for j i,... ,. Hence 2(t) is piecewise constant on Is- ,s + ), with a
possible breakpoint at s only. Also from (12) and the definition of Pn we have

n() ()((+) (-)) < .
Define (t) from the constraints of SCLP, i.e., so that (t), 9(t), and

satisfy (1) and (2) for SCLP in place of x(), y(), and z(t), respectively. Then
(t) is feasible for SCLPn. The proof of this argument is given in Anderson and
Philpott [3], of which we present a brief description. Clearly we have (t), 2(t) O.
By the construction of (t) we have (t) y(t) 0 for t e [0, s -] Is + , T].
However, by the construction of Es(t), sgn((t)- G(t)) is constant for t e (u, v).
Hence each component of (t) is monotonic on [s-, s+] and thus we have ()(t)
between ()(s-) and ()(s +) for each and t (s-, s + ). Thus (t) 0
for t (s , s + ) as well and so (t) is feasible for SCLP.

We now claim that for some > 0 an improvement in the objective function can
be made. For this purpose we use the standard notation o(hn) for n e N to mean a
function defined on an interval containing zero such that limh0 o(hn)/hn O. Now

c(t)T((j)(t) (J)) dt

C(s)T((Y)(S-) ())dt + (t s)5(s)T((J)(s-) ())dt

+

2 )T (j) )) +()(()(-) ()) ( ( (-) ( o().

Similarly,

+
c(t)T(()(t) ) dt 7c(s)T((J)(s+) (J)) + 5(s)T(()(s+) ())

+ o().
Hence by (14) we obtain

C(t)T((J)(t) ) dt e(s)r(()(s+) ()(s-)) + o(),
as--y

thus giving
T 2c(t)T(2(t) &) dt 8(s)T(2(s+) (s--)) + o(2).

By a similar argument we now obtain

()(() ()) dt

c(t)r((t)- )dt + c(t)( z(t))dt

(((+ (- +((- (+) + o(..
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Hence

lim
1 f0

T

$0 - C(t)T((t) X(t)) dt

1.

Cn Cn
4 4

=0

by (13) and (15). Hence for some 0 < _< min{s u, v s} we have

c(t)T2(t) dt< c(t)Tx(t) dr,

contradicting the optimality of w(t). D
It is now a simple matter to construct a piecewise analytic optimal solution for

SCLP under Assumption 4.1. Again if we repeat the above argument a finite number
of times, it is now possible to extend this result to the case where the problem data
are piecewise analytic. We may also weaken the assumption that there are upper
bounds on x(t) to the assumption that just the feasible region for SCLP is bounded
to arrive at the main result of this paper.

THEOREM 4.3. Suppose that the costs, c(t), right-hand sides, a(t) and b(t), are
piecewise analytic on [0, T] (but with a(t) continuous) and that the feasible region for
SCLP is nonempty and bounded; then there exists an optimal extreme point solution

for SCLP with x(t) piecewise analytic on [0, T].
Proof. We first prove the result under Assumption 4.1. Let {a(n)}=l and

{b(n)}nC=l be sequences of functions given by Lemma 4.2. Let SCLPn be the problem
SCLP with right-hand sides a(n) and b(), M be the uniform bound on the number of
changes of basis in optimal solutions for SCLPn, and w() be the optimal solution for

SCLP with no more than M changes of basis. Finally, let P {t(on), tn), omn/(n) }
be the partition of [0, T] containing the changes of basis for w(n) and B(tn)) be a

basis matrix for K corresponding to the support of 02(n) on [t2)1, tn)).
Now by introducing artificial changes of basis, if necessary, we can assume that

mn M, i.e., that each w(n) has exactly M changes of basis. Now as [0, T] is a
bounded interval, there exists a subsequence {nk}c=l and t0, tl,...,tM such that

tnk) --+ ti. Moreover, as there are only a finite number of choices for basis matrices
for K, we may also assume that the subsequence {nk}=l is chosen so that for each

i, B(tn)) B(i) for some basis matrix B(i) of K for t [t), tnk)). We now define
the nonzero components of x(t) by

XB(, (t) p(xi) (t), t E [ti-1, ti),

for 1,...,M, where

p(i)(t B(i)-I [ /(t) 1b(t)

We now have x(’) (t) --. x(t) a.e. on [0, T]. Hence by Lemma 2.2, w(t), defined from
x(t) by the constraints of SCLP, is an optimal extreme point for SCLP.
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As mentioned above, we may now repeat the above argument a finite number of
times to extend the result to the case where the problem data are piecewise analytic.
It is therefore now only required to prove the result when the feasible region for SCLP
bounded, given that it is true for SCLP with upper bounds on x(t). Suppose then
that the feasible region is bounded. Let N be such that I[xllo <_ N for all feasible
solutions for SCLP. Let SCLP(N) be the problem SCLP with the extra constraints

x(t) + v(t) N,
v(t) >_ O,

where e is the vector of all ones. Now SCLP(N) has an optimal extreme point solu-
tion, w(t)T (x(t)T, y(t)T, z(t)T, v(t)T) that is piecewise analytic on [0, T]. Clearly
(x(t)T, y(t)T, z(t)T) forms a piecewise analytic optimal extreme point solution for the
original SCLP. [:]

As a closing remark we state a simple condition that must hold at a breakpoint.
As its proof is essentially contained in Lemma 4.2, we omit the details.

THEOREM 4.4. Suppose that the costs, c(t), right-hand sides, a(t) and b(t), are
piecewise analytic on [0, T] (but with a(t) continuous) and that the feasible region for
SCLP is nonempty and bounded. Let w(t) be a piecewise analytic optimal solution

for SCLP. Let [a,3] be a subinterval of the canonical partition. Suppose that w(t)
has a breakpoint at s e [a,/]; i.e., .for some functions x(k)(t) and x(J)(t) analytic on
neighbourhoods of [a, 13] we have

()(t)(t) x()(t)

for some u and v. Then i(s)Tx(k)(s) >_ d(s)Tx(J)(s).
Note that under the restrictions of piecewise linear a(t) and piecewise constant

b(t) of the previous section, the canonical partition is just the set of breakpoints of
a(t) and b(t) and the points 0 and Tn.

5. Extensions and remarks. It is interesting to speculate on possible exten-
sions to the results contained in the previous sections. One possible extension could
be that the costs need not be analytic but only n-times differentiable for some n, or
even just continuous. However, as the counterexample below shows, the result given
in Theorem 3.3 cannot be extended beyond analytic costs.

Example 5.1. Let c(t) be any continuous real-valued function defined on [0, 1]
such that if

s= {t e [0, ] (t) < 0},

then S is an open disconnected set containing an infinite number of components. For
example we could take

tn+l sinl/t,c(t) 0,
t e (0, ],
t=O,

for some n. Consider the following SCLP problem:

minimize c(t)x(t) dt
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subject to ds

x(t) + z(t)
(t), z(t) > o, te [0,

Clearly this has the following optimal solution:

1 a.e. on S,x(t)= 0 a.e. on [0,1]-S.

By the definition of c(t), x(t) has an infinite number of breakpoints.
In a similar way we may not extend Theorem 4.3 to allow a(t) or b(t) chosen from

classes of more general functions, provided that a breakpoint is understood to be
point where the optimal solution is not as well behaved as the problem data rather
than just a discontinuity (i.e., if the problem data are n-times differentiable, then a
breakpoint is a point where the solution is not n-times differentiable).

Example 5.2. Define b (t) and b(t) on [0, 1] as follows.

b(t) { tn+xl, sin 1/t + 1, tt (0,0, 1], b2(t) { tn+ll, cos 1/t + 1, tt (0,0, 1],

for some n. Consider the following SCLP problem:

jominimize z(t) dt

subject to z(s) ds + (t) 2,

x(t) + z (t) b (t),
x(t) + z2(t) b2(t),
x(t), y(t), Zl(t), z2(t) 0, t e [0, 1].

Let S { t [0, 1] tn+ cos lit > t+1 sin 1/t }. Clearly the given problem has the
following optimal solution:

x(t)= { bl(t) a.e. onS,
b2(t) a.e. on [0, 1]- S.

Using the definition of breakpoints above, x(t) has an infinite number of breakpoints.
Note, however, that the optimal solution for the above problem is continuous.

It is an open question whether continuously differentiable a(t) and continuous b(t)
(and sufficiently well behaved costs) give rise to an optimal solution that is piecewise
continuous.

It is also worth noting that the optimal solutions to the above two problems both
have a countable number of breakpoints. It is possible that extensions to Theorem 4.3
(and Theorem 3.3) could be made if we allow an optimal solution to have a countable
number instead of just a finite number of breakpoints.

A simple extension to the results in this paper comes from recalling that each of
the functions x()(t),... ,x(L)(t) in Lemma 2.1 lie in the linear space spanned by the
components of &(t) and b(t). However, for w(t) to be a piecewise analytic extreme point
solution for SCLP with piecewise analytic problem data, on each interval where x(t)
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is analytic we must have x(t) x(i) (t) for some i. (This was seen in the construction
of the optimal solution in Theorem 4.3.) Thus, if &(t) and b(t) are in some linear
subspace S of the vector space of functions piecewise analytic on [0, T], then under
the remaining conditions of Theorem 4.3, we obtain an optimal extreme point solution
for SCLP that is piecewise analytic, and on intervals where x(t) is analytic, x(t) is in
the linear subspace S. In particular the following result holds.

THEOREM 5.1. Suppose that c(t) is piecewise analytic on [0, T] and that a(t)
and b(t) are piecewise polynomials of degrees n + 1 and n, respectively (with a(t)
continuous). Suppose furthermore that the feasible region for SCLP is nonempty and
bounded, then there exists an optimal extreme point solution for SCLP with x(t) piece-
wise polynomial of degree n on [0, T].
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